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Abstract: In contemporary design practices, building structures are expected to not only meet 
safety requirements but also be optimized. However, optimal designs can be highly sensitive 
to random variations in model parameters and external actions. Solutions that appear 
effective under nominal conditions may prove inadequate when parameter randomness is 
considered. To address this challenge, the concept of robust optimization has been 
introduced, which extends deterministic optimization formulations to incorporate the 
random variability of parameter values. In this study, we demonstrate the applicability of 
robust optimization in the design of building structures using a simple orthogonal frame as 
an example. The static-strength analysis is conducted based on the displacement method, 
utilizing second-order theory. To assess the safety level of the steel frame, a preliminary 
evaluation is performed by determining the reliability index and failure probability using the 
Monte Carlo Method. Robust optimization is then employed, leveraging the second-order 
response surface. Experimental designs are generated following an optimal Latin hypercube 
plan. The proposal of a mathematical-numerical algorithm for solving the optimization 
problem while considering the random nature of design parameters constitutes the 
innovative aspect of this research. 
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1 Introduction 
The design of complex structures places a dual responsibility on engineers: ensuring 
building safety while simultaneously minimizing construction costs and structural 
weight. This trend has led to an increasing interest in optimization methods to 
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achieve efficient material utilization, making optimization an indispensable tool for 
rational structural design. While optimization modules are commonly incorporated 
in design approaches based on the Finite Element Method, they are typically 
employed in a deterministic manner. In this traditional approach, the random nature 
of design parameters is considered by incorporating partial safety factors into the 
optimization formulation. These factors, defined by relevant design standards 
(codes) [N1-N3], are often calibrated to suit a broad range of design tasks. However, 
this approach frequently yields overly conservative solutions, as the partial safety 
factors do not directly account for the random variations in design variables. 
Consequently, optimal structures may not achieve the desired level of reliability.  
If ensuring structural safety is a primary design requirement, it is worth considering 
a reliability-based design optimization (RBDO) formulation [1-7]. RBDO-based 
design constraints are formulated using probabilities of failure, which represent the 
likelihood of exceeding specific permissible states related to load capacity or 
allowable displacement. These permissible states are incorporated into the 
formulation through relevant limit functions in reliability analysis, commonly 
known as 'performance functions.' 

Random fluctuations in structural response degrade its quality, leading to deviations 
from intended functionality and increased maintenance costs (e.g., inspections, 
maintenance, and repairs). An effectively designed building should minimize such 
costs, ensure proper functioning, and be less sensitive to the random nature of 
design parameters. To meet the required level of quality, design methods and 
procedures have been developed, collectively referred to as 'robust design'  
[8-10]. This methodology aims to design structures, devices, and production 
processes that maintain high functionality within a system. The objective is to find 
solutions that are as resistant as possible to variations in design parameters. Limiting 
or eliminating the variability of input parameters can reduce variance in quantities 
characterizing the structural state, such as displacements and stress. However, 
implementing such procedures often incurs unacceptable costs. A more effective 
approach is to reduce parameter variability without altering the variance of the 
structure's input parameters. This approach is known as robust optimization. 

Robust optimization provides solutions that are less sensitive to model parameters 
that are challenging to control. This paper focuses on highlighting this significant 
aspect of optimal design for bar structures using robust optimization. The analysis 
centers on an orthogonal steel frame, with specific emphasis on columns subjected 
to high axial forces. The analysis incorporates the second-order theory, and the 
preliminary assessment of the steel frame's safety level involves determining the 
reliability index and failure probability using the Monte Carlo Method. Robust 
optimization is performed using a second-order response surface, which effectively 
mitigates the impact of uncontrollable model parameters. The second-order method 
accounts for non-linearity and interactions between variables in the model, enabling 
the identification of optimal solutions with a reduced need for experimental 
analysis. Reliable results are generated using an optimal Latin cubes plan for 
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conducting experiments, ensuring even and balanced sampling of the parameter 
space. This approach accelerates the analysis process while maintaining result 
reliability. The proposal of a mathematical-numerical algorithm for optimization 
that accounts for the random nature of design parameters contributes to the 
innovative nature of this research. 

2 Materials and Methods 

2.1 Displacement Method and Second-Order Beam Theory 
To reduce computation time, we employed explicit forms of the performance 
function and constraints. The calculations are based on the classical displacement 
method and the second-order theory. This method involves several simplifying 
assumptions, including assuming small curvatures of the member axis in the current 
configuration, assuming flat cross-sections (known as Bernoulli's geometric 
hypothesis), assuming longitudinal non-deformability, assuming a linear-elastic 
physical law, and assuming material continuity, homogeneity, and isotropy. 
However, the second-order theory does not account for the principles of stiffness 
(small displacements) and superposition. The degrees of freedom consist of 
translational and rotational displacements of nodes. By imposing constraints on 
unknown displacements, the level of geometric indeterminacy can be determined, 
resulting in the derivation of additional equilibrium equations known as canonical 
equations. The right-side vector in the system of canonical equations represents the 
reactions of constraints determined by the external load. 

These formulas establish a relationship between the forces and displacements 
associated with the local system of a given member. Our analysis focuses on a 
perfectly elastic prismatic rod with a length of 'l' and a bending stiffness of 'EJ' (see 
Figure 1). This rod serves as an illustration of the behavior of the columns in the 
frame, where significant axial force is considered alongside bending. 
Transformation formulas are derived through analytical solutions to the relevant 
boundary problem. 

To perform the computations, it is necessary to derive a differential equation 
representing the equilibrium of forces on two planes perpendicular to the axis, 
located at distances 𝑥𝑥 and 𝑥𝑥 +  𝑑𝑑𝑥𝑥 from the origin of the coordinate system.  
Figure 2 depicts a cut section of the member with a length of 𝑑𝑑𝑥𝑥 in a deformed 
configuration, subjected to external load and two systems of cross-sectional forces 
that represent the interaction with the remaining portions of the member. 
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Figure 1 
Rod in deformed configuration 

 
Figure 2 

Section of the rod dx long 

The section of the rod must be in equilibrium, so the equilibrium must be met: 

�
𝛴𝛴𝛴𝛴 = −𝑇𝑇 + 𝑇𝑇 + 𝑑𝑑𝑇𝑇 + 𝑝𝑝𝑑𝑑𝑥𝑥 = 0
𝛴𝛴𝑀𝑀𝐵𝐵 = −𝑀𝑀 + 𝑀𝑀 + 𝑑𝑑𝑀𝑀 − 𝑇𝑇𝑑𝑑𝑥𝑥 − 𝑆𝑆𝑑𝑑𝑆𝑆 + 𝑝𝑝𝑑𝑑𝑥𝑥 ⋅ 𝑑𝑑𝑑𝑑

2
= 0   (1) 

The quantity dx in the equation 𝑝𝑝𝑑𝑑𝑑𝑑2

2
 is infinitesimally small, so we can skip it. 

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑝𝑝 = 0
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

− 𝑇𝑇 − 𝑆𝑆 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0 → 𝑇𝑇 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

− 𝑆𝑆 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

     (2) 

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑝𝑝
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑2𝑑𝑑
𝑑𝑑𝑑𝑑2 − 𝑆𝑆 𝑑𝑑2𝑑𝑑

𝑑𝑑𝑑𝑑2

         (3) 

𝑑𝑑2𝑑𝑑
𝑑𝑑𝑑𝑑2 − 𝑆𝑆 𝑑𝑑2𝑑𝑑

𝑑𝑑𝑑𝑑2 = −𝑝𝑝  (4) 

𝑀𝑀 = −𝐸𝐸𝐸𝐸 𝑑𝑑2𝑑𝑑
𝑑𝑑𝑑𝑑2   (5) 

𝑑𝑑2𝑑𝑑
𝑑𝑑𝑑𝑑2 = −𝐸𝐸𝐸𝐸 𝑑𝑑4𝑑𝑑

𝑑𝑑𝑑𝑑4   (6) 

−𝐸𝐸𝐸𝐸 𝑑𝑑4𝑑𝑑
𝑑𝑑𝑑𝑑4 − 𝑆𝑆 𝑑𝑑2𝑑𝑑

𝑑𝑑𝑑𝑑2 = −𝑝𝑝
⋅(−1)

  (7) 

x dxw
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𝐸𝐸𝐸𝐸 𝑑𝑑4𝑑𝑑
𝑑𝑑𝑑𝑑4 + 𝑆𝑆 𝑑𝑑2𝑑𝑑

𝑑𝑑𝑑𝑑2 = 𝑝𝑝 (8) 

Transformating into the dimensionless space, we can write: 𝜉𝜉 = 𝑑𝑑
𝑙𝑙
 

𝐸𝐸𝐸𝐸
𝑙𝑙4 ⋅ 𝑑𝑑4𝑑𝑑

𝑑𝑑𝜉𝜉4 + 𝑆𝑆
𝑙𝑙2 ⋅ 𝑑𝑑2𝑑𝑑

𝑑𝑑𝜉𝜉2 = 𝑝𝑝

⋅ 𝑙𝑙4
𝐸𝐸𝐸𝐸

  (9) 

𝑑𝑑4𝑑𝑑
𝑑𝑑𝜉𝜉4 + 𝑆𝑆𝑙𝑙2

𝐸𝐸𝐸𝐸
⋅ 𝑑𝑑2𝑑𝑑

𝑑𝑑𝜉𝜉2 = 𝑝𝑝𝑙𝑙4

𝐸𝐸𝐸𝐸
   (10) 

𝜎𝜎2 = 𝑆𝑆𝑙𝑙2

𝐸𝐸𝐸𝐸
,   dimensionless parameter 2σ  

𝑆𝑆IV + 𝜎𝜎2𝑆𝑆II = 0   (11) 

The solution of the homogeneous differential equation is an exponential function:  

𝑆𝑆 = 𝑒𝑒𝑘𝑘𝜉𝜉  (12) 

where: k – the coefficient that we determine by substituting into the equation (11) 
the corresponding derivatives: 

𝑘𝑘4𝑒𝑒𝑘𝑘𝜉𝜉 + 𝜎𝜎2𝑘𝑘2𝑒𝑒𝑘𝑘𝜉𝜉 = 0   (13) 

(𝑘𝑘2 + 𝜎𝜎2)𝑘𝑘2𝑒𝑒𝑘𝑘𝜉𝜉 = 0   (14) 

𝑘𝑘2 = 0 𝑜𝑜𝑜𝑜 𝑘𝑘2 + 𝜎𝜎2 = 0
⇓ ⇓

𝑘𝑘1 = 𝑘𝑘2 = 0 𝑘𝑘3 = 𝑖𝑖𝜎𝜎 𝑘𝑘4 = −𝑖𝑖𝜎𝜎
   (15) 

The general integral of the equation (11) is therefore a function 

𝑆𝑆𝑜𝑜 = �̃�𝐶1 + �̃�𝐶2𝜎𝜎𝜉𝜉 + �̃�𝐶3𝑒𝑒𝑖𝑖𝑖𝑖𝜉𝜉 + �̃�𝐶4𝑒𝑒−𝑖𝑖𝑖𝑖𝜉𝜉    (16) 

After using the Euler formula 

𝑒𝑒±𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑜𝑜𝑐𝑐 𝛼𝛼 ± 𝑖𝑖 𝑐𝑐𝑖𝑖𝑠𝑠 𝛼𝛼  𝛼𝛼 ∈ 𝑅𝑅    (17) 

Get: 

𝑆𝑆𝑜𝑜 = 𝐶𝐶1 + 𝐶𝐶2𝜎𝜎𝜉𝜉 + 𝐶𝐶3 𝑐𝑐𝑜𝑜𝑐𝑐 𝜎𝜎 𝜉𝜉 + 𝐶𝐶4 𝑐𝑐𝑖𝑖𝑠𝑠 𝜎𝜎 𝜉𝜉 

𝑆𝑆𝑜𝑜
𝐼𝐼 = 𝐶𝐶2𝜎𝜎 − 𝐶𝐶3𝜎𝜎 𝑐𝑐𝑖𝑖𝑠𝑠 𝜎𝜎 𝜉𝜉 + 𝐶𝐶4𝜎𝜎 𝑐𝑐𝑜𝑜𝑐𝑐 𝜎𝜎 𝜉𝜉 

𝑆𝑆𝑜𝑜
𝐼𝐼𝐼𝐼 = −𝐶𝐶3𝜎𝜎2 𝑐𝑐𝑜𝑜𝑐𝑐 𝜎𝜎 𝜉𝜉 − 𝐶𝐶4𝜎𝜎2 𝑐𝑐𝑖𝑖𝑠𝑠 𝜎𝜎 𝜉𝜉                 (18) 

𝑆𝑆𝑜𝑜
𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐶𝐶3𝜎𝜎3 𝑐𝑐𝑖𝑖𝑠𝑠 𝜎𝜎 𝜉𝜉 − 𝐶𝐶4𝜎𝜎3 𝑐𝑐𝑜𝑜𝑐𝑐 𝜎𝜎 𝜉𝜉 

𝑆𝑆𝑜𝑜
𝐼𝐼𝐼𝐼 = 𝐶𝐶3𝜎𝜎4 𝑐𝑐𝑜𝑜𝑐𝑐 𝜎𝜎 𝜉𝜉 + 𝐶𝐶4𝜎𝜎4 𝑐𝑐𝑖𝑖𝑠𝑠 𝜎𝜎 𝜉𝜉 

The cross-sectional forces: the bending moment and the transverse force after 
switching to a dimensionless variable 𝜉𝜉 = 𝑑𝑑

𝑙𝑙
 will be as follows:  

𝑇𝑇 = − 𝐸𝐸𝐸𝐸
𝑙𝑙3 (𝑆𝑆III + 𝜎𝜎2𝑆𝑆𝐼𝐼) = − 𝐸𝐸𝐸𝐸

𝑙𝑙3 𝜎𝜎3𝐶𝐶2           
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𝑀𝑀 = − 𝐸𝐸𝐸𝐸
𝑙𝑙2 𝑆𝑆II = 𝐸𝐸𝐸𝐸

𝑙𝑙2 𝜎𝜎2(𝐶𝐶3 𝑐𝑐𝑜𝑜𝑐𝑐 𝜎𝜎 𝜉𝜉 + 𝐶𝐶4 𝑐𝑐𝑖𝑖𝑠𝑠 𝜎𝜎 𝜉𝜉)               (19) 

The integration constants present in the above formulas depend on the way the 
member is supported. For a fixed rod with support on both ends, as shown in 
Figure 3, the following boundary conditions can be written: 

⎩
⎪
⎨

⎪
⎧ w(0)=wi

wI(0)=lφi
w(1)=wj

wI(1)=lφj

                     

⎩
⎪
⎨

⎪
⎧ C1+C3=wi

C2σ+C4σ=lφi
C1+C2σ+C3 cos σ +C4 sin σ =wj

C2σ-C3σ sin σ +C4σ cos σ =lφj

  (20) 

 

Figure 3 
Fixed rod fixed on both sides 

𝛷𝛷𝑖𝑖 = 𝑀𝑀(0); 𝛷𝛷𝑗𝑗 = −𝑀𝑀(1); 𝛴𝛴𝑖𝑖 = −𝑇𝑇(0); 𝛴𝛴𝑗𝑗 = 𝑇𝑇(1)  

𝛷𝛷𝑖𝑖 = 𝐸𝐸𝐸𝐸
𝑙𝑙2 𝜎𝜎2𝐶𝐶3;  𝛷𝛷𝑗𝑗 = − 𝐸𝐸𝐸𝐸

𝑙𝑙2 𝜎𝜎2(𝐶𝐶3 𝑐𝑐𝑜𝑜𝑐𝑐 𝜎𝜎 + 𝐶𝐶4 𝑐𝑐𝑖𝑖𝑠𝑠 𝜎𝜎)  (21) 

After some rearrangement, we obtain: 

𝛷𝛷𝑖𝑖 = 𝐸𝐸𝐸𝐸
𝑙𝑙

�𝛼𝛼𝜑𝜑𝑖𝑖 + 𝛽𝛽𝜑𝜑𝑗𝑗 − 𝜗𝜗𝜓𝜓𝑖𝑖𝑗𝑗�            

𝛷𝛷𝑗𝑗 = 𝐸𝐸𝐸𝐸
𝑙𝑙

�𝛽𝛽𝜑𝜑𝑖𝑖 + 𝛼𝛼𝜑𝜑𝑗𝑗 − 𝜗𝜗𝜓𝜓𝑖𝑖𝑗𝑗�         

𝛴𝛴𝑖𝑖 = 𝐸𝐸𝐸𝐸
𝑙𝑙2 �𝜗𝜗𝜑𝜑𝑖𝑖 + 𝜗𝜗𝜑𝜑𝑗𝑗 − 𝛿𝛿𝜓𝜓𝑖𝑖𝑗𝑗�                           (22) 

S

S

w
j

ϕi
ϕ( )ξ

i j

ξ

Wi

Wj

w( )ξ

ψij

ϕj

i j

Wi Wj

ΦjΦi

T
N

M.
T M.

N

a)

b)

S S

Φi
Φj
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𝛴𝛴𝑗𝑗 = − 𝐸𝐸𝐸𝐸
𝑙𝑙2 �𝜗𝜗𝜑𝜑𝑖𝑖 + 𝜗𝜗𝜑𝜑𝑗𝑗 − 𝛿𝛿𝜓𝜓𝑖𝑖𝑗𝑗� 

The coefficients α, β, δ, 𝜗𝜗 are not numbers, but the complex trigonometric functions 
of the parameter σ. 

 
Figure 4 

Rod fixed at one end and freely supported at the other 

For a rod of the type fixed-joint (Figure 4), on the simply supported side (right), the 
bending moment is equal to zero 𝛷𝛷𝑗𝑗 = 0 

𝛷𝛷𝑗𝑗 = 0 ⇒ 𝛽𝛽𝜑𝜑𝑖𝑖 + 𝛼𝛼𝜑𝜑𝑗𝑗 − 𝜗𝜗𝜓𝜓𝑖𝑖𝑗𝑗 = 0 

𝛷𝛷𝑖𝑖 = 𝐸𝐸𝐸𝐸
𝑙𝑙

�𝛼𝛼𝜑𝜑𝑖𝑖 + 𝛽𝛽 �− 𝛽𝛽
𝑖𝑖

𝜑𝜑𝑖𝑖 + 𝜗𝜗
𝑖𝑖

𝜓𝜓𝑖𝑖𝑗𝑗� − 𝜗𝜗𝜓𝜓𝑖𝑖𝑗𝑗� = 𝐸𝐸𝐸𝐸
𝑙𝑙

��𝛼𝛼 − 𝛽𝛽2

𝑖𝑖
��������

𝑖𝑖𝐼𝐼

𝜑𝜑𝑖𝑖 − �𝜗𝜗 − 𝛽𝛽𝜗𝜗
𝑖𝑖

��������
𝑖𝑖𝐼𝐼

𝜓𝜓𝑖𝑖𝑗𝑗�  

𝛴𝛴𝑖𝑖 = 𝐸𝐸𝐸𝐸
𝑙𝑙2 �𝜗𝜗𝜑𝜑𝑖𝑖 + 𝜗𝜗 �− 𝛽𝛽

𝑖𝑖
𝜑𝜑𝑖𝑖 + 𝜗𝜗

𝑖𝑖
𝜓𝜓𝑖𝑖𝑗𝑗� − 𝛿𝛿𝜓𝜓𝑖𝑖𝑗𝑗� = 𝐸𝐸𝐸𝐸

𝑙𝑙2 ��𝜗𝜗 − 𝜗𝜗𝛽𝛽
𝑖𝑖

��������
𝑖𝑖𝐼𝐼

𝜑𝜑𝑖𝑖 − �𝛿𝛿 − 𝜗𝜗2

𝑖𝑖
������

𝛿𝛿𝐼𝐼

𝜓𝜓𝑖𝑖𝑗𝑗�  

𝛴𝛴𝑖𝑖 = 𝐸𝐸𝐸𝐸
𝑙𝑙2 �𝛼𝛼𝐼𝐼𝜑𝜑𝑖𝑖 − 𝛿𝛿𝐼𝐼𝜓𝜓𝑖𝑖𝑗𝑗�  

𝛴𝛴𝑗𝑗=-
EJ
𝑙𝑙2 �𝛼𝛼𝐼𝐼𝜑𝜑𝑖𝑖  - δ𝐼𝐼𝜓𝜓ij� 

2.2 The Reliability Assessment using Monte Carlo Method 
According to the codes [N4], the assessment of structural reliability is based on the 
concept of limit states, and their verification is conducted using a semi-probabilistic 
method with the use of partial safety factors. The purpose of these factors is to 
ensure the desired level of structural reliability. Approximate methods such as 
FORM [11-15] and SORM [16-18], as well as simulation techniques such as Monte 

S

w
j

ϕi

i j

Wi

Wj

Φi

i jS

ψij
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Carlo [19-23] and Importance Sampling [24-26], are extensions of the semi-
probabilistic limit state method. The probabilistic approach allows for a more 
accurate and realistic modeling of structural materials, geometric parameters, and 
loads. In the present study, the Monte Carlo method was employed to determine the 
probability of failure. 

The classic Monte Carlo simulation method involves generating realizations of the 
random vector 𝑿𝑿 according to the joint probability distribution density function 
𝑓𝑓(𝑥𝑥). In the next step, for each realization of the random vector 𝑿𝑿, the performance 
function is computed. The ratio of the number of 'hits' in the failure area to the total 
number of simulations provides an estimator of the probability of failure  
(see Figure 5). The above idea can be expressed by defining the characteristic 
function of the failure area set as: 

XΩf(x)= �
1  if    x∈ Ωf

0 if     x∉ Ωf
  (24) 

 
Figure 5 

Idea of Monte Carlo method 

𝑋𝑋𝛺𝛺𝑓𝑓
(x) is therefore a random variable with a two-point distribution: 

𝑃𝑃 �XΩf(X)=1� =Pf        P�XΩf(X)=0� =1-Pf  (25) 

where: Pf = P[X ∈ Ωf] 

𝑉𝑉𝑉𝑉𝑜𝑜 �XΩf(X)�  = E ��XΩf(X)�
2
� - �E �XΩf(X)��

2
= Pf - Pf

2 = Pf�1 - Pf�             (26) 
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In the Monte Carlo method, an estimator of the mean value of the characteristic 
function of the set of the form: 

X�Ωf
0  = 1

K
∑ XΩf(Xk) = Pf�K

k=1   (27) 

where: Xk - independent random vectors with a probability distribution defined by 
the density function fx(x), K - the number of simulations.  

The mean value and variance of the estimator are given as: 

Pf
0� = E�Pf� � = 1

K
∑ XΩf

0 (Xk) = 1
K

K ⋅Pf = Pf
K
k=1                                              

σPf�
2  =Var�Pf� � = 1

K2 ∑ Var[XΩf
 (Xk)] = 1

K2 K⋅Pf�1 - Pf� =  1
K

K
k=1 Pf�1- Pf�

               (28) 

The coefficient of variation of the estimator is of the form: 

vPf�  = 
σPf�

Pf
0� =�

1 - Pf

K⋅Pf
  (29) 

The formula above indicates that in order to obtain a coefficient of variation of the 
estimator of 0.1 along with the expected probability of failure, which typically 
ranges from10 -7 to 10 -4, for real structures, it requires conducting K = 10 9 - 10 6 
simulations. 

2.3 The Robust Optimization 
Robust optimization is a non-deterministic optimization method that takes into 
account the random nature of parameters, which leads to scattering of the response. 
It typically enhances the reliability of the structure. In robust optimization, the 
objective function commonly includes the variance of the selected structural 
response quantity. Constraints can be deterministic or expressed through statistical 
moments. The optimal structure achieved through robust optimization is more 
resilient to fluctuations in parameter values. Unlike other types of optimization 
(e.g., reliability optimization), the precise determination of probability distribution 
types is not crucial. The values of the first statistical moments of the structural 
response primarily depend on the first moments of random variables. In the absence 
of adequate data, a uniform or normal distribution of variables is often assumed. 

The goal of robust optimization is to minimize both the mean value and the variation 
(standard deviation) of the target function. Consequently, the task of robust 
optimization can be formulated as follows: 

Find values for variables: Xd, μx  (30) 

Minimizing: {E [ f (Xd, X, P)], σ[f (Xd, X, P)]}  (31) 

Subjected to: 

E [g
i
(Xd, X, P)] - βi

�  σ[g
i
(Xd, X, P)] ≥ 0,   i=1,…, kg,  (32) 
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σ [ck (Xd, X, P)] ≤ σk
u,                              k=1,…, kc,  (33) 

Xd j
l ≤ Xd j ≤ Xd j

u                                      j = 1, …, nd,  (34) 

μxr
l ≤ μxr ≤ μxr

u,                                          r = 1, …, nx,  (35) 

where: f – objective function, Xd – vector of deterministic design variables, X, P – 
vectors of random variables with expected values μx and μp respectively, gi – 
constraint functions, ck – functions whose standard deviations cannot exceed the 
permissible values σk

u,  βi �> 0 – the coefficients corresponding to the constraints,  
gi ≥ 0 represents the safety margins. 

The vectors of random variables have been distinguished due to their different 
nature. Random variables X can be defined as random design variables because their 
expected values μx change during the optimization process (where μx represents the 
design variable). This leads to a shift in the probability density function fX(x). On 
the other hand, the probability distribution of the vector P remains unchanged 
during optimization, making these variables pure random parameters. 

The concept of robustness is illustrated in Figure 6. The objective is to ensure that 
at the optimal point, the mean values of the constraint function gi , i = 1, ..., kg, are 
greater than or equal to their corresponding standard deviations. The natural 
consequence of robust optimization is an increase in the reliability of the structure. 

 
Figure 6 

The concept of robust optimization limitations 

In the above formulation, we are dealing with a multi-objective optimization 
problem: the mean value of E [f(𝑿𝑿𝒅𝒅, X, P)] and the standard deviation of 
σ[f(𝑿𝑿𝒅𝒅, X, P)]. 

A widely used approach for identifying points in the Pareto set is scalarization of 
the multi-objective optimization problem, where a linear combination of the 
objectives is used as the objective function. By adjusting the coefficients (weights) 
assigned to each component of the vector, one can obtain points in the Pareto set. 



Acta Polytechnica Hungarica Vol. 21, No. 1, 2024 

‒ 19 ‒ 

The values of these points are also influenced by the designer's preferences, which 
focus on minimizing both the average value and variance. Therefore, the task can 
be reformulated as the following scalar optimization problem: 

Find values for variables: 𝑿𝑿𝒅𝒅, μx  (36) 

Minimizing: F� = 1 – γ
μ* E[f (𝑿𝑿𝒅𝒅, X, P)] + γ

σ*  σ[f (𝑿𝑿𝒅𝒅, X, P)]                                  (37) 

subjected to: 

E [g
i
(𝑿𝑿𝒅𝒅, X, P)] - βi

�  σ[g
i
(𝑿𝑿𝒅𝒅, X, P)] ≥ 0,   i=1, …, kg,  (38) 

σ[ck (𝑿𝑿𝒅𝒅, X, P)] ≤ σk
u,                                k=1, …, kc,  (39) 

Xd j
l ≤ Xd j ≤ Xd j

u                                        j = 1, …, nd,  (40) 

μxr
l  ≤ μxr ≤ μxr

u,                                           r =1, …, nx,  (41) 

The weighting factor γ ∈ [0, 1] in the formula determines the meaning of each 
criterion, while μ* and σ* are normalizing constants. Assuming γ = 0, the 
optimization problem is transformed into a simple task of minimizing the mean 
value, while for γ = 1 to the task of minimizing the variance of the target function 
in the other words increasing structural robustness.  

In the algorithm of robust optimization, we can distinguish 7 stages: 

1) Definition of the permissible and choice of weighting factor γ. 

2) Generating N implementation of the vector of design variables, which are 
evenly distributed in the current permissible area, according to the plan of optimal 
Latin Hypercubes. 

3) Determination of statistical moments of the objective function and the 
constraint function for each of the N realizations of the vector {𝑿𝑿𝒅𝒅, μx}. 

4) Structure of the response surface, e.g. by kriging, directly for individual 
statistical moments: μ�f, σ�f, μ�gi

, σ�gi
, σ�ck . 

5) Solving the task of deterministic optimization 

Find the values of the variables: 𝑿𝑿𝒅𝒅, μx  (42) 

Minimizing : f̃DRS= 1 – γ
μ* μ�f �𝑿𝑿𝒅𝒅, μx�+ 𝛾𝛾

σ*  σ�f �𝑿𝑿𝒅𝒅, μx�   (43) 

Subjected to: 

μ�gi
�𝑿𝑿𝒅𝒅, μx� - βi

�  σ�gi
 �𝑿𝑿𝒅𝒅, μx� ≥ 0,            i=1, …, kg,  (44) 

σ�ck �𝑿𝑿𝒅𝒅, μx� ≤ σk
u,                                  k=1, …, kc,  (45) 

Xd� j
l ≤ Xd� j ≤ Xd�  j

u,                                  j=1, …, nd,  (46) 
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μ�xr
l  ≤ μxr ≤ μ�xr

u,                                      r=1, …, nx,  (47) 

where: Xd� j
l,  Xd�  j

u, μ�xr
l , μ�xr

u - the current boundaries of the permissible area, μ* and 
σ* – the normalization factors determined on the basis of the extreme values of the 
relevant moments obtained in point 3. 

6) Check the terminate convergence condition. 

7) Moving the permissible area over the optimal point determined in step 5. 
Reduction of the permissible area and return to 2. 

2.3.1 Determination of the Response Surface by Polynomial 
Approximation 

A crucial component of the algorithm employed in robust optimization is an 
efficient method for estimating the mean values and deviations of objective 
functions and constraints. To achieve this, various techniques have been utilized to 
approximate implicit functions of design variables using metamodels, also known 
as response surfaces. These surfaces are constructed by fitting suitable 
approximating functions to a set of experimental data points (Li et al. [26], Tang, 
Xu [27], Vining, Myers [28], Yeniay et al. [29]). 

To approximate the response function, a commonly used method is to employ a 
low-degree polynomial. The purpose of the polynomial is not to precisely describe 
the entire response surface of the structure, but rather to provide the closest possible 
approximation near the limit state. 

If the response of the structure is confined to a narrow region, it is possible to 
approximate the response surface using a linear function of independent random 
variables, which corresponds to a polynomial of the first-degree. Such a model is 
referred to as a first-order model and can be represented as: 

y�(x) = B0+ ∑ Bixi + εn
i=1   (48) 

where: Bi, i = 0, 1, ..., n – dimension of the boundary state surface, – design 
variables, 𝑥𝑥𝑖𝑖ε – error taking into account the scatter of yi values. 

In cases where there is interaction between the realizations of random variables xi, 
the first-order model can be extended to include second-order interaction terms, 
which take into account the curvature of the surface (taking into account the 
curvature of the surface) (Box, Wilson [30]):  

y�(x)=B0+ ∑ Bixi
n
i=1 + ∑ Biixi

2n
i=1 + ∑ ∑ Bijxixj

n
j=2 +εn

i<j   (49) 

In the strategy described in the paper, response surfaces are constructed not for the 
target function f or the constraint functions gi or ck, directly, but for their statistical 
moments. The approximate surfaces of the mean value and the standard deviation 
of these respective functions are taken into consideration. Typically, these surfaces 
are represented in polynomial form: 
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y�μ(z) = b0
μ + ∑ bi

μzi + ∑ bii
μzi

2+ndX
i=1 ∑ ∑ bij

μzizj
ndX
j=2, j>i

ndX
i=1

ndX
i=1   (50) 

y�σ(z) = b0
σ + ∑ bi

σzi + ∑ bii
σzi

2+ndX
i=1 ∑ ∑ bij

σzizj
ndX
j=2, j>i

ndX
i=1

ndX
i=1   (51) 

where: y�μ – approximation of the mean value of the function (f, gi or ck); y�𝑖𝑖  – 
approximation of the standard deviation of the function (y�σ f, gi or ck); zi,  i=1, ..., 
ndX – design variables (Xd and μx); ndX = nd + nx – number of design variables. 

3 Numerical Example 
In order to illustrate the advantages of robust optimization, a steel single-storey 
frame with dimensions L=600cm and B=550cm (Figure 7) was analyzed. Both the 
bolt and the columns of the frame were modeled with steel square tubes with 
dimensions D = 39cm and d = 33cm, Young's module E = 210GPa, Poisson 
coefficient v = 0.3, yield strength fy=235MPa. The structure was loaded with two 
forces with values, S = 1200kN and P = 120kN. 

Static Analysis 

According to the method of displacement, only horizontal displacement of the bolt 
is possible. Therefore, adopting the basic scheme of the displacement method, an 
additional bond blocking the movement was introduced. The reaction R in the bond 
was determined from the equilibrium equation of ∑ X floor 1-2 of the frame 
(Figure 8). 

∑ X =0      

P+R-W1-W2=0                            (52) 

R=W1+W2 - P=0 

 

 
Figure 7 

Geometry and cross-section of the steel single-storey frame 
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Figure 8 

Basic scheme of the frame according to the method of displacement 

The values of the parameter σ on both columns are the same (σ=�SL2

EI
). In the case 

of a unit displacement Δ, the angles of rotation of the columns 1-A and 2-B are 
equal to Ψ1A=Ψ1B= 1

L
 . Using the transformation formulas, the equilibrium equation 

can be written:  

2δI (σ)⋅Δ = P⋅L3

EI
  (53) 

The horizontal displacement of the frame bolt is: 

Δ = P⋅L3

2EIδI(σ)  (54) 

M = EI
L2 �-αI(σ)� PL3

2EI⋅δI(σ)  = - PL
2σ

 tg σ  (55) 

Reliability Analysis 

The reliability analysis of the structure was carried out using the Monte Carlo 
method (random sample size: 106). The geometrical characteristics of the cross-
sections of the members were adopted as random variables (D – the external 
dimension of the cross-section, d – the internal dimension of the cross-section).  
The random variables are described in Table 1. Random variables are not correlated. 
The initial mass of the modeled structure is M = 5935.36 kg. The value of the 
coefficient of variation was set at 2% for the external dimension D and 1% for the 
internal dimension d of the cross-section. 

The example assumes two boundary functions describing the serviceability limit 
state SGU and the ultimate limit state SGN, respectively.  
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Table 1 
Description of random variables  

Random 
variables 

Xi 

Average 
values 
[cm] 

Standard 
deviation 

[cm] 

Coefficient of 
variation 

[%] 
D 39 0.78 2 
d 33 0.33 1 

fSGU = Δmax - Δ   (56) 

where: Δ – horizontal displacement of the frame bolt, Δmax – maximum horizontal 
displacement equal to L/150=4 cm. 

fSGN = 0.87·Wy·fy - M  (57) 

where: Wy·– the section modulus. 

The reliability index for SGU and SGN were βSGU = 2.29 and βSGN = 3.82, 
respectively. 
Deterministic Optimization 

In the next step, we look for optimal cross-section dimensions, using the classic 
deterministic optimization algorithm. 

The objective function is the mass of the structure: 

fC = minimum (ρ⋅A ∑ Li )3
i=1  = min (Mass)  (58) 

where: Li – length of the ith member, A – cross-sectional area, ρ – volumetric density 
of steel. 

Simple bounds are described in Table 2. They are the upper and lower limits of the 
searched design variables. 

Table 2 
Simple bounds of design variables  

Design variable Lower limit 
[cm] 

Upper limit 
[cm] 

D 36.66 41.34 
d 32.34 33.66 

Simple bounds were imposed on the basis of literature [31, 32, N5, N6]. For this 
case 2% tolerance of the cross-sectional dimensions of the pipe was assumed. 
Inequality limitations are formulated as conditions for not exceeding the 
permissible displacement of the horizontal bolt of the frame and not exceeding 87% 
of the load capacity for bending: 
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fSGU = Δmax- Δ = 4 - Δ  (59) 

fSGN = 0.87·Wy·fy - M  (60) 

The resulting cross-sectional dimensions are summarized in Table 3. The value of 
the objective function was 3862.916 kg. 

Table 3 
Values of design variables obtained in deterministic optimization 

Design variable Optimal value 
[cm] 

D 37.61 
d 33.66 

The probability of failure and the reliability index were also verified. For SGU and 
SGN functions, respectively: pSGU = 0.495, βSGU = 0.011, pSGN = 0.065, βSGN = 1.51.  

Robust Optimization 

The objective function is mass of the structure, but assuming that it takes into 
account the weighting factor γ determining the meaning of each of the criteria. 
Design variables are the expected values of the external and internal dimensions of 
the cross-section: μD, μd. The value of the coefficient of variation was set at 2% and 
1%. 

The task of robust optimization takes the form of: 

Find the values of the variables: μD, μd (61) 

Minimizing: fC = 1- γ
η*

 E [Mass] + 𝛾𝛾
σ*

 σ [Mass]  (62) 

Subjected to: 

E[4 - Δ]   -     βSGU�⋅ σ[4 - Δ] ≥ 0 (63) 

𝐸𝐸 �0.87·Wy·fy - M�  -     βSGN�  ⋅ σ �0.87·Wy·fy - M�  ≥ 0 (64) 

36.66 ≤ µ𝐷𝐷 ≤ 41.34 (65) 

32.34 ≤ µ𝑑𝑑 ≤ 33.66 (66) 

where: γ ∈ [0, 1] – weighting factor determines the importance of each of the 
criteria, η*, σ* - normalizing constants, 

Robust optimization was performed using the second-order response surface. 
Experiments are generated according to the plan of optimal Latin cubes.  
The parameters: γ = 0.5, β𝑆𝑆𝑆𝑆𝑆𝑆�  = 2.0, β𝑆𝑆𝑆𝑆𝑆𝑆�  = 3.0.  

The values of the design variables obtained as a result of robust optimization are 
summarized in Table 4. The weight of the structure in this case was 5150.32 kg. 
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Table 4  
Mean values of random variables obtained in robust optimization 

Random variable Optimal value 
[cm] 

D 38.03 
d 32.34 

The probability of failure and reliability index were verified for SGU and SGN 
functions, respectively: pSGU = 0.04452, βSGU = 1.700, pSGN = 0.00035, βSGN = 3.390. 

Impact of the γ Weighting Factor on Optimization Results 

The weighting factor γ ∈ [0, 1] determines the importance of each of the criteria of 
the objective function. If γ = 0, the optimization problem is transformed into a 
regular average value minimization task, while for γ = 1 into a variance value 
minimization task. The influence of the weighting factor on the values of the 
optimized design variables is presented on Figure 9. 

The higher the weight of the average value, the more optimal the structure should 
be. And when weights of the standard deviation is increased, the robustness of the 
structure is increasing, but optimality is reduced. 

 
Figure 9 

Mass of optimal structure depending on the weight of the average value 

Conclusions 

An indispensable element of rational structural design should include both 
deterministic optimization and robust optimization. Through robust optimization, 
we obtain designs that are slightly less optimal in terms of weight but significantly 
safer, as indicated by the reliability indices. Optimal structures are sensitive to 
imperfections in design parameters. Optimal solutions located near the limit state 
surface can easily become infeasible if parameter values deviate even slightly from 
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the assumed nominal values. Incorporating the uncertainty of design parameters in 
the formulation of robust optimization effectively addresses this issue by providing 
the designer with control over the level of structural safety. By controlling the value 
of the weighting factor, we can consciously decide whether to prioritize minimizing 
the average value or the variance of the target function. 

Furthermore, it is recommended to integrate robust optimization as a standard 
practice in structural design processes. This approach allows engineers to account 
for the random nature of design parameters and provides a more realistic and 
accurate representation of the structure's behavior under uncertain conditions. By 
considering both the mean value and variance of the target function, designers can 
achieve designs that are not only efficient but also resilient to parameter variations. 

Future research efforts should focus on refining the methodologies and techniques 
used in robust optimization, such as improving the accuracy of response surface 
models and exploring advanced optimization algorithms. Additionally, 
investigations into the impact of different probability distribution assumptions and 
the development of techniques for handling correlated random variables would 
further enhance the robustness and reliability of structural designs. 

In conclusion, incorporating robust optimization into the design process enhances 
the overall safety and performance of structures, ensuring their functionality and 
minimizing the risks associated with parameter uncertainties. By embracing robust 
optimization as a standard approach, engineers can achieve designs that strike a 
balance between efficiency and resilience, meeting the demands of modern 
structural engineering. 
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