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Abstract  This work derives and simulates a two-
dimensional extension of the nonlinear Gao beam, by 
adding the cross-sectional shear variable, similarly to 
the extension of the usual Bernoulli–Euler beam into 
the Timoshenko beam. The model allows for oscilla-
tory motion about a buckled state, as well as adds ver-
tical shear of the cross sections, thus reflecting better 
nonlinear thick beams. The static model is derived 
from the principle of virtual elastic energy, and is in 
the form of a highly nonlinear coupled system for the 
beams transverse vibrations and the motion of the 
cross sections. The model allows for general distribu-
tive transversal and longitudinal loads and a compres-
sive horizontal load acting on its edges. The model is 
simulated numerically, using the dynamic version for 
better insight into the steady solutions. The terms that 
distinguish our numerical solutions from the solutions 
of the Gao beam, described in the literature, are high-
lighted. The numerical scheme and its characteristic 

finite element matrices allow us to obtain simulation 
results that demonstrate the type of vibrations of our 
extended and modified beam, and also the differences 
between these solutions and those of the Gao beam 
model.

1  Introduction

We derive, study and simulate a model for large dis-
placement and small plane strain deformations of a 
moderately thick nonlinear beam subjected to general 
distributive transversal and longitudinal loads and a 
compressive horizontal load acting on its edges. The 
model is in the form of a coupled system of three 
nonlinear differential equations, and is derived from 
virtual potential energy considerations. The beam 
allows for buckling, similarly to the usual Gao beam, 
and includes the deflection of the cross sections, simi-
larly to the Timoshenko beam, thus including the 
advantages of both.

Mathematical models of beams, structures in 
which one dimension is substantially larger than the 
other two, were studied extensively over the decades, 
starting with the linear Bernoulli-Euler model for a 
beam. Recently, they have been modified in the litera-
ture for non-standard applications and expanded with 
additional nonlinear terms, to achieve a more accurate 
representation of real beams in appropriate settings. 
This work extends this trend and by adding the shear 
of the cross sections, allows for a better description 
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of the motion of moderately thick beams. Indeed, we 
show that in our model, removing the thickness part 
reduces it to the nonlinear Gao beam [1], which sup-
ports oscillations about a buckled equilibrium state, 
and by removing the nonlinear parts, it reduces to the 
linear Timoshenko beam, see e.g., [2].

There exists an extensive literature about the 
Timoshenko beam, see e.g., [2–4] and the references 
therein. Currently, there is a rapidly growing scientific 
literature about the Gao beam, see, e.g., [5–19]. These 
publications deal with the modeling, mathemati-
cal analysis and computer simulations of the various 
aspects of the Gao beam model. The basic mathemat-
ical analysis of the model, including establishing the 
existence of the solutions, and also a study of contact 
problems, can be found in [20]. The dynamic contact 
of a Gao beam with an elastic or rigid foundation was 
described in [12]. The case of vibrations of a Gao 
beam with restricted movement between two rigid or 
elastic obstacles was studied in [7], while the analy-
sis of two coupled Gao beams connected via a joint 
with a gap can be found in [11]. Vibration character-
istics of one-dimensional structures in contact with 
a Gao beam were conducted in [10], which includes 
the model, existence of weak solutions, and computer 
simulations. Furthermore, an interesting problem 
analyzing the growth of a crack in a Gao beam was 
studied and simulated in [9]. For models regarding 
contact, one can refer to [21] and the numerous refer-
ences provided therein. Furthermore, recently in [13], 
a model for the vibrations of a viscoelastic Gao beam 
in contact with a deformable random foundation and 
subject to stochastic inputs, was presented and ana-
lyzed. The body force was represented by a stochas-
tic integral incorporating Brownian motion, while the 
gap between the beam and the foundation was treated 
as a stochastic process. The existence and uniqueness 
of strong solutions to the model were established.

The Bernoulli-Euler linear beam model has been 
extended in [22] by incorporating a nonlinear term 
that accounts for the influence of axial force. In [6] 
two new dynamical beam models in finite deforma-
tions were presented dealing with the nonlinear vibra-
tions of thicker beams subjected to arbitrary external 
loads. The total potentials of these beam models were 
non-convex, with a double-well structure, which was 
used in post-buckling analysis and also frictional 

contact problems. The analytical and numerical solu-
tions of the model were applied to a structure sub-
jected to a moving inertial load [14, 15], represent-
ing a wheel moving on a rail. It has been shown that 
an inertial load significantly altered the dynamic 
response of the system and that omitting the nonlin-
ear term in the differential equation led to incorrect 
qualitative and quantitative solutions. The Gao beam 
has been studied in numerous works by Machalová, 
Netuká et  al. In [17] the static contact problem for 
a large deformed beam with an elastic obstacle was 
formulated, analyzed, and numerically simulated. By 
employing a decomposition method, the nonlinear 
variational inequality was reformulated as a min-max 
problem of a saddle point of a Lagrangian [16]. Then, 
using a mixed finite element method with independ-
ent discretization and interpolations for the founda-
tion and beam elements, the continuous-space nonlin-
ear contact problem was transformed into a nonlinear 
mixed complementarity problem. In [18] the authors 
considered either pure bending or a unilateral contact 
with an elastic foundation, where the normal com-
pliance condition was employed. Under additional 
assumptions on the data, higher regularity of solution 
was proved. It enabled to transform the problem into 
a control variational problem. Finally, [19] deals with 
the identification of coefficients in the nonlinear Gao 
beam model which can act as the control variables.

The main novelty in this work is that it combines 
and extends both the Timoshenko and the Gao beam 
models. In this way, we obtain a 2D model that may 
vibrate about a buckled state, and allows for the rota-
tion of the cross sections, which generates additional 
planar strain. Moreover, the model allows taking into 
account longitudinal body loads, and allows for more 
complex boundary conditions. We construct the static 
model in Sect.  2, based on the principle of virtual 
energy. To depict the properties of the model, we con-
struct in Sect. 3 a dynamic finite element scheme for 
the solution of the model. Then, in Sect. 4 we show 
numerical simulations of a dynamic case to better 
visualize the properties of the system under investiga-
tion, treating the dynamic problem as a sequence of 
static steps. The vibrations about buckled states can 
be seen clearly. Section  5 concludes the paper with 
some unresolved interesting issues, to be investigated 
in the future.
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2 � Mathematical model

This section constructs a model of a moderately thick, 
two-dimensional (2D), Gao beam. It is based on elas-
tic energy considerations and neglects some second 
order terms. We show, as was noted in the Introduc-
tion, that the linear terms correspond to the well-known 
Timoshenko beam, and in the 1D approximation, it 
reduces to the Gao beam.

We consider relatively large displacements and 
small planar strain deformations of a moderately thick 
beam, which is subjected to applied transversal and 
horizontal loads, qv, qh , respectively and a loads p0, pL 
applied to the ends. The beam, of length L and thick-
ness 2h (with a unit depth), has as a reference configu-
ration Ω = {(x, y) ∶ 0 ≤ x ≤ L,−h ≤ y ≤ h} . The left 
end of the beam’s central axis is placed at the center of 
the coordinate system. The setting is depicted in Fig. 1, 
with the cross-section detail in Fig.  2. As in the 1D 
Gao beam, to cause buckling, the horizontal loads p0 
and pL are applied at the ends (x = 0, L) , respectively. 
These must be sufficiently large if one is interested in 
buckling. As we show below, when the applied hori-
zontal load vanishes, qh(x) = 0 , the horizontal stress is 

constant and we must take into account the equal and 
opposite reaction at x = 0 from the support, i.e., for 
applied load pL = p at x = L , we must set p0 = −p . 
When qh(x) ≠ 0 , the compatibility condition is more 
complicated and is given in (2.15).

We introduce the notation u(x), w(x) and �(x) for 
the longitudinal displacement, vertical displacement 
and the shear or rotational angle of the cross sections, 
respectively, as functions of 0 ≤ x ≤ L . The vector of 
horizontal and vertical displacements of the beam is 
assumed to be

We note that w, u and � depend only on x, while the 
displacement vector u depends also on y.

We take into account the shear strain explicitly, 
hence w,x ≠ � , where here and below, for the sake of 
simplicity, we denote the x-derivative of a  function 
g(x) by g,x =

�g

�x
 . We use the comma to distinguish 

from directional index.
Since we use large displacements, we use the full 

Lagrangian of finite strain, as a function of the dis-
placement gradient tensor, is given by

Using (2.1), the strain tensor E can be written in 
matrix form as

We assume that the longitudinal displacements u are 
much smaller than the lateral displacements w. There-
fore, the relationship u ∼ w,x holds, where ∼ means 
the same order of magnitude. This assumption leads 
to the second-order terms which we retain or neglect. 
Using the engineering strain notation, we obtain,

We assume, using linear elasticity, that the constitu-
tive equations have linear stress–strain relationship. 

(2.1)u(x, y) =

[
u − y�

[2mm]w

]
.

(2.2)E =
1

2

[
∇u + (∇u)� + (∇u)�∇u

]
.

(2.3)

E=

⎡

⎢

⎢

⎢

⎣

u,x − y�,x +
1
2

(

u,x − y�,x
)2 + 1

2
(w,x)2

1
2
(w,x − �) − 1

2
(u,x − y�,x)�

[2mm] 1
2
(w,x − �) − 1

2
(u,x − y�,x)�

1
2
�2

⎤

⎥

⎥

⎥

⎦

.

(2.4)

⎡⎢⎢⎣

�x
[2mm]�y
[2mm]�

⎤⎥⎥⎦
=

⎡⎢⎢⎣

E11

[2mm]E22

[2mm]2E12

⎤⎥⎥⎦
=

⎡⎢⎢⎣

u,x − y�,x +
1

2
(w,x)

2

[2mm]
1

2
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Fig. 1   The beam; w – vertical displacement of the central axis, 
u – longitudinal displacement, � – shear or rotational angle of 
the cross section; qv – vertical body force, qh – horizontal body 
force, p0, pL – compressive end tractions

θ

∂w
∂x

Fig. 2   The shear deformation � and the derivative w,x
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In the case of the small strain, which is the case here, 
the plane stress is given by

where E is the elastic Young modulus, � is the Poisson 
ratio and G is the shear modulus, G = E∕2∕(1 + �).

The elastic strain energy of the beam is given by

Here, qv(x) and qh(x) are distributed loads acting on 
the beam vertically and horizontally, respectively, 
p0 and pL(y) are the horizontal tractions acting at 
x = 0, L , respectively. For the sake of simplicity, we 
assume that the loads qv and qh are independent of y. 
However, it is straightforward to assume that qv(x, y) 
and qh(x, y) , i.e., depend on y too.

According to (2.4) and (2.5) the first variation of Π 
with respect to u, w and � , is given by

Using integration by parts, we obtain

(2.5)
�x =

E

1 − �2
(�x + ��y), �y =

E

1 − �2
(�y + ��x), � = G� ,

(2.6)

Π = 1
2 ∫

L

0 ∫

h

−h

(

�x�x + �y�y + ��
)

d y d x − 2h

∫

L

0
qv(x)w d x − 2h∫

L

0
qh(x)u d x

+ ∫

h

−h
p0(y)u d y|x=0 − ∫

h

−h
pL(y)u d y|x=L

= 1
2 ∫

L

0 ∫

h

−h

[ E
1 − �2

(

�2x + �2y + 2��x�y
)

+ G�2
]

d y d x − 2h

∫

L

0
qv(x)w d x

− 2h∫

L

0
qh(x)u d x + ∫

h

−h
p0(y)u d y|x=0

− ∫

h

−h
pL(y)u d y|x=L.

(2.7)

�Π =∫
L

0
∫

h

−h

[
�x
(
�u,x − y��,x + w,x�w,x

)
+ �y���

+�
(
�w,x − ��

)]
d y d x

− 2h∫
L

0

qv(x)�w d x − 2h∫
L

0

qh(x)�u d x

+ ∫
h

−h

p0(y)�u d y|x=0,L

− ∫
h

−h

pL(y)�u d y|x=L.

Next, we note that the variational displacements �u , 
�w and �� are independent and arbitrary. Since to 
minimize the energy we must have �Π = 0 , therefore, 
the corresponding terms in the variations must vanish 
separately. Separating the terms with �u , �w and �� , 
we find that equation (2.8) is satisfied if and only if 
the following equalities hold,

These expressions lead to the model equations. 
We note that if we assume that qv = qv(x, y) and 
qh = qh(x, y) , so that both depend also on y, then we 
need to replace 2hqh with ∫ h

−h
qh(x, y) d y and 2hqv 

(2.8)

�Π = ∫
h

−h

�x �u d y
|||||x=0,L

− ∫
L

0
∫

h

−h

�x,x �u d y d x − ∫
h

−h

�xy �� d y
|||||x=0,L

+ ∫
L

0
∫

h

−h

�x,xy �� d y d x + ∫
h

−h

�xw,x �w d y
|||||x=0,L

− ∫
L

0
∫

h

−h

(�x,xw,x + �xw,xx) �w d y d x

+ ∫
L

0
∫

h

−h

�y� �� d y d x

+ ∫
h

−h

� �w d y
|||||x=0,L

− ∫
L

0
∫

h

−h

�,x �w d y d x − ∫
L

0
∫

h

−h

� �� d y d x

− 2h∫
L

0

qv(x) �w d x − 2h∫
L

0

qh(x) �u d x

+ ∫
h

−h

p0(y) �u d y|x=0

− ∫
h

−h

pL(y) �u d y|x=L = 0.

(2.9)∫
h

−h

�x,x d y = −2hqh,

(2.10)∫
h

−h

(�x,xw,x + �xw,xx + �,x) d y + 2hqv = 0,

(2.11)∫
h

−h

(�x,xy + �y� − �) d y = 0.
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with ∫ h

−h
qv(x, y) d y in the expressions above and eve-

rywhere below.
Furthermore, the boundary variational terms in 

(2.8) yield the boundary conditions

These lead to the following boundary conditions for 
the model, however, we first obtain a compatibility 
condition on the horizontal forces. It follows from 
(2.12) that at the ends

Then, (2.9) yields upon integration over 0 ≤ s ≤ x,

Therefore, we obtain the horizontal loads compatibil-
ity condition

In particular, when the horizontal traction vanishes 
( qh = 0 ), we obtain

so the reaction of the support acting at x = 0 has to 
balance the applied load acting at the right end, to 
prevent the beam from moving horizontally as a rigid 
body.

Explicitly, the force compatibility condition 
imposes the following compatibility conditions on the 
boundary conditions,

(2.12)
∫

h

−h

(�x + p0)�u d y||x=0 = 0, ∫
h

−h

(�x − pL)�u d y||x=L = 0,

(2.13)∫
h

−h

(�xw,x + �) �w d y||x=0,L = 0,

(2.14)∫
h

−h

y�x�� d y||x=0,L = 0.

𝜎x(0) = −∫
h

−h

p0 d y = −p̂0, 𝜎x(L) = ∫
h

−h

pL d y = p̂L.

𝜎x(x) = 𝜎x(0) + 2h∫
x

0

qh(s) d s = −p̂0 + 2h∫
x

0

qh(s) d s.

(2.15)𝜎x(0) + 𝜎x(L) = p̂0 + p̂L = 2h∫
L

0

qh(s) d s.

(2.16)p̂L = −p̂0,

u,x(0) +
1

2
(w,x)

2(0) +
𝜈

2
𝜃2(0) =

1 − 𝜈2

E
p̂0 = −

1 − 𝜈2

E
p̂L

and

where p̂L is the total traction acting horizontally at 
x = L.

We note that the horizontal boundary conditions at 
the ends are coupled, and need to be carefully assigned.

It follows from (2.13), (2.5) and algebraic manipula-
tions that at both ends ( x = 0, L),

Finally, (2.14) and the expression for �x yield 
−

2

3
h3�,x = 0, hence

We now show that the system equations yields an 
expression for u in terms of w and � , thus decou-
pling the system for w and � from the equation for u. 
To that end, we substitute (2.4) and (2.5) into (2.9)-
(2.11), and assuming that all the integrands are con-
tinuous, obtain

Here, to simplify some of the equations, we let

Integration over x, using (2.17) and some manipula-
tions, we obtain

Next, it follows from (2.10) and (2.5), after y integra-
tion, rearranging and using (2.22), that

(2.17)+
(1 − �2)2h

E ∫
L

0

qh(s) d s,

(2.18)u,x(L) +
1

2
(w,x)

2(L) +
𝜈

2
𝜃2(L) =

1 − 𝜈2

E
p̂L,

(2.19)

(
2p̂0

1 − 𝜈
+ 1

)
w,x(0) + 𝜃(0) = 0,

(
2p̂L

1 − 𝜈
+ 1

)
w,x(L) + 𝜃(L) = 0.

(2.20)�,x(0) = �,x(L) = 0.

(2.21)

u,xx + w,xw,xx + ���,x =
(
u,x +

1

2
(w,x)

2 +
�

2
�
)
,x
= −q̃h.

(2.22)
�qh =

2(1 − 𝜈2)h

E
qh, �qv =

1 − 𝜈

E
qv,

�pL =
(1 − 𝜈2)

E
p̂L.

(2.23)

u,x(x) +
1

2
(w,x)

2(x) +
�

2
�2(x) = ∫

L

x

q̃h(s) d s − p̃L.
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Then, (2.11) and (2.5) imply that

The model equations are now (2.21), (2.24) and 
(2.25).

Next, to decouple (2.24) and (2.25) from u, we use 
(2.21)and (2.23) in the form

Also, for the sake of simplicity, we let

Then, straightforward manipulations, using the 
expressions above, yield the highly nonlinear system 
for w and � . To complete the system we must con-
sider the boundary conditions. It follows from (2.20) 
that �, x(0) = �, x(L) = 0 . Next, (2.19) implies that 
once w,x(0) = w0

x
 and w,x(L) = wL

x
 are prescribed, the 

values of �(0) and �(L) are given, once p̂0 and p̂L are 
prescribed. Indeed,

Finally, the same conclusion follows from (2.17) and 
(2.18), once w,x(0) = w0

x
 and w,x(L) = wL

x
 are pre-

scribed and p̂0 and p̂L are given, then

To complete the boundary conditions, we may pre-
scribe u(0) = u0.

We summarize our findings in the following Static 
Model.

(2.24)
u,xxw,x +

3

2
(w,x)

2w,xx + ���,xw,x + u,xw,xx

+
�

2
�2w,xx +

(1 − �)

2
(w,xx − �,x) = −q̃v.

(2.25)

2h2

3
�,xx − ��3 − 2�u,x� − �(w,x)

2� + (1 − �)(w,x − �) = 0.

u,xx = −w,xw,xx − ���,x − q̃h.

(2.26)QhL(x) = ∫
L

x

q̃h(s) d s − p̃L.

(2.27)
𝜃(0) = −

2p̂0 + 1 − 𝜈

1 − 𝜈
w0

x
, 𝜃(L) = −

2p̂L + 1 − 𝜈

1 − 𝜈
wL
x
.

u,x(0) = −
1

2
(w0

x
)2 −

1

2
𝜃2(0) +

(1 − 𝜈2)

E
p̂0,

(2.28)u,x(L) = −
1

2
(wL

x
)2 −

1

2
𝜃2(L) +

(1 − 𝜈2)

E
p̂L.

Model 2.1  Given the vertical body force qv , the lon-
gitudinal force qh and the traction p̂L , find the three 
functions (w(x), u(x), �(x)) , for 0 ≤ x ≤ L, such that

Together with the boundary conditions

Then, u is obtained by the integration of (2.23),

This nonlinear system of coupled ordinary differ-
ential equations describes static large displacements 
of a moderately thick beam.

We note that although the loads and tractions that 
act on the system may be functions of the y-coordi-
nate, the loads in the model depend only on x, and 
the y-dependence is ‘integrated out.’ Nevertheless, 
the displacement vector u = (u − y�,w)T depends lin-
early on y.

The existence of solutions, the model’s well-pos-
edness and the mathematical analysis of this system 
are open questions, yet. Generally, such systems do 
no have closed form solutions, and to gain insight into 
the model solutions we describe its numerical simula-
tions below.

3 � Numerical model

As noted above, generally, Model 2.1 does not have 
closed form or analytical solutions. It is even difficult 
to solve semi-analytically. For this reason, we obtain 

(2.29)
2QhLw,xx + (1 − �)(w,xx − �,x) − 2q̃hw,x = −2q̃v,

(2.30)

2h3

3
�,xx − 2�QhL� − �(1 − �)�3 + (1 − �)(w,x − �) = 0.

(2.31)�,x(0) = �,x(L) = 0,

(2.32)𝜎x(L) = p̂L,

(2.33)w,x(0) = w0

x
, w,x(L) = wL

x
,

(2.34)u(0) = u0.

(2.35)
u(x) = u0 −

1

2 ∫
x

0

(
(w,x(s))

2 − ��2(s)
)
d s

+ ∫
L

x

q̃h(s) d s − p̃L.
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approximate numerical solutions in which all the char-
acteristic properties of the mathematical model are vis-
ible. Due to the better presentation of the properties 
and easier interpretation of the phenomena, the inertial 
forces M were added to the numerical model and the 
simulations were performed in the dynamic formula-
tion as a transient problem. Then the steady or static 
solutions were obtained as limits of large time. It should 
be noted here that we treat this dynamic problem as a 
sequence of static problems which, under the influence 
of dissipative forces, tend towards a static solution in 
the limit of large time. However, before reaching the 
limit and reducing the velocity to zero, an oscillatory 
motion takes place about the static equilibrium posi-
tion, which is a solution of the model.

The domain of the beam is partitioned into spatial 
finite elements, and the interval of a finite element is 
defined by

A linear interpolation N of the nodal values of the 
finite element is applied independently to the trans-
verse displacements w and the rotations �.

where

The virtual displacement w∗ and the angle of rotation 
�∗ , are given by

where

The discrete weak forms of equations (2.29) and 
(2.30) are

After integration by parts in (3.5) and (3.6), the sta-
tionarity condition yields a pair of equations

(3.1)Ω = {x ∶ 0 ≤ x ≤ b}.

(3.2)w(x) = Nw, �(x) = N�,

N =
[
1 −

x

b

x

b

]
, w� =

[
w1 w2

]
, �

� =
[
�1 �2

]
.

(3.3)w∗ =
(
N∗ w∗

)�
, �∗ =

(
N∗

�
∗
)�
,

(3.4)w∗ = 0 and �∗ = 0, for x = 0, b.

(3.5)
Π∗

w = ∫Ω
w∗{2QhLw,xx + (1 − �)(w,xx − �,x) − 2q̃hw,x + 2q̃v

}

d Ω,

(3.6)Π∗
� = ∫Ω

�∗
{

2h3
3

�,xx − 2�QhL� − �(1 − �)�3 + (1 − �)(w,x − �)
}

d Ω.

and

The stiffness matrix K of the finite beam element is 
then a sum of five components

Nodal degrees of freedom are organized in the 
sequence

The matrices in (3.9) are as follows

where �L and �R are the angles � at the left and right 
node of the finite element.

(3.7)

∫Ω

{
−2QhL(N

∗
,x
)�N,xw − (1 − �)

[
(N∗

,x
)�N,xw + (N∗)�N,x�

]

−2q̃h(N
∗)�N,xw + 2q̃v(N

∗)�
}
d Ω = 0,

(3.8)

∫Ω

{

−2h3
3

(N∗
,x)

�N,x� − 2�QhL (N∗)�N� − �(1 − �)

(N∗)�(N�)2N�
+(1 − �)

[

(N∗)�N,xw − (N∗)�N�
]}

d Ω.

(3.9)K = Ks +Kb +Kp +Kn +Kqh.

Q =
[
w1 �1 w2 �2

]�
.

Ks = (1 − �)

⎡⎢⎢⎢⎣

1∕b − 1∕2 − 1∕b 1∕2

[2mm]1∕2 b∕3 − 1∕2 b∕6

[2mm] − 1∕b − 1∕2 1∕b 1∕2

[2mm]1∕2 b∕6 − 1∕2 b∕3

⎤⎥⎥⎥⎦
,

Kb =
2h3

3

⎡⎢⎢⎢⎣

0 0 0 0

[2mm]0 1∕b 0 − 1∕b

[2mm]0 0 0 0

[2mm]0 − 1∕b 0 1∕b

⎤⎥⎥⎥⎦
,

Kp = QhL

⎡⎢⎢⎢⎣

2∕b 0 − 2∕b 0

[2mm]0 �b∕3 0 �b∕6

[2mm] − 2∕b 0 2∕b 0

[2mm]0 �b∕6 0 �b∕3

⎤⎥⎥⎥⎦
,

Kn =
�(1 − �)b

60

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0

[2mm]0 12�2L + 6�L�R + 2�2R 0 3�2L + 4�L�R + 3�2R
[2mm]0 0 0 0

[2mm]0 3�2L + 4�L�R + 3�2R 0 2�2L + 10�L�R + 12�2R

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,
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Finally,

The matrix Ks contains the shear factors, Kb rep-
resents the bending of the element, K� contains the 
force p, and Kn includes nonlinear terms in �.

Moreover, the inertia matrix M of the beam ele-
ment and the moment of the cross-section are

These allow us to use the scheme of integration for 
the equation of motion. The time integration was per-
formed with the scheme described for the space-time 
finite element method in [23, 24]. Then, the formulas 
joining two successive velocity vectors are

is coupled energetically with

This numerical model of vibrating beam (3.10)-(3.11) 
with matrices (3.9) consists of a nonlinear system of 
algebraic equations, providing the numerical solution 
at each time step.

4 � Results

Generally, as was noted above, Model 2.1 does not 
have any closed form, analytical or even semi-ana-
lytical solutions. Therefore, we present numerical 
approximate solutions, in which the main character-
istic properties of the mathematical model are pre-
served and can be clearly seen.

The following data were used in the computations 
of (2.22):

Kqh = q̃h

⎡⎢⎢⎢⎣

−1 0 1 0

[2mm]0 0 0 0

[2mm] − 1 0 1 0

[2mm]0 0 0 0

⎤⎥⎥⎥⎦
, F = q̃vb

⎡⎢⎢⎢⎣

1

[2mm]0

[2mm]1

[2mm]0

⎤⎥⎥⎥⎦
.

M = �
b

6

⎡⎢⎢⎢⎣

4h 0 2h 0

[2mm]0 2Ix 0 Ix
[2mm]2h 0 4h 0

[2mm]0 Ix 0 2Ix

⎤⎥⎥⎥⎦
, Ix = ∬A

y2 dA.

(3.10)

[(
� −

1

2
�2

)
ΔtK −

1

h
M

]
Q̇

t

+
[
1

2
�2ΔtK +

1

h
M

]
Q̇

t+Δt
+KQt = F,

(3.11)Qt+Δt = Qt + Δt
(
�Q̇

t
+ (1 − �)Q̇

t+Δt
)
.

beam’s length: L=100 cm,
beam’s thickness: 2h=8.50 cm,
cross sectional area: A=68.0 cm2,
second moment of a cross section: Ix=409.4 cm4,
mass density: �=7.7 g/cm3,
Young modulus: E=207 GPa,
Poisson ratio: �=0.3,
volume loads: qh=0, qv=0,
G=E/2/(1+�),
damping coefficient: c = 20 Ns/m (unless another 
value is specified),
p = p̂L : axial traction at x = L , positive when com-
pressive.
Initial conditions: ẇ(x, 0) = 0 , 
w(x, 0) = w0 sin(�x∕l).

Although these quantities can be reduced to 
dimensionless parameters, we keep them dimen-
sional for the sake of simplicity of the simulations 
interpretation.

We turn to the simulations results. We start 
with Fig.  3, which shows the transverse displace-
ments of the beam’s mid-point ( x = 50 cm) over 
time, with an initial deflection w0 = 0.1 cm, and 
compressive force p = 1 MN. It is found numeri-
cally that there are two stable equilibrium positions, 
namely w(50) = ±3.093  cm, and the system vibra-
tions, because of the damping, end up about one of 
them. Indeed, the deflections in the initial phase 
occur according to three different scenarios. At low 
damping values ( c = 0 Ns/cm, 0.05 Ns/cm), the 
motion is oscillatory, crosses both equilibria, and 
the unsteady w = 0 state, while gradually damping 
dissipates the energy and the system ends oscillat-
ing about w = 3.093 cm. With slightly higher damp-
ing ( c = 0.15 Ns/cm), the oscillatory motion shifts 
to negative ranges and the oscillations are about 
w = −3.093 cm. With even higher damping ( c = 1 
Ns/cm, 5 Ns/cm), significant dissipation prevents the 
mid-point from crossing the zero and very quickly 
approaches w = 3.093 cm.

Next, Fig. 4 depicts the amplitudes of the midpoint 
of the beam over time, as the end traction changed. 
The contour lines that represent points with the same 
constant deflection values have been overlaid. The 
changing frequency bands along the time axis in the 
lower part of the figure illustrate the vibrations cen-
tered at the zero displacement point, which is stable 
when the value of p = p̂L is below the buckling point. 
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Indeed, the the zero displacement point is a stable 
state of static equilibrium, and the vibrations occur 
about it at a low compressive force p = p̂L , which is 
below the critical value pcr . In the upper part of the 
figure with a higher force, p > pcr , the free vibra-
tions are centered on an equilibrium state with w ≠ 0 . 
For p = 100 kN in Fig. 4 the equilibrium state is at 
the deflection w = 0.34 cm, and for p = 120 kN it 
is at w = 0.46 cm. At higher values of p = 1000 kN 
when higher deflection ranges occur, this fact can be 
observed in Fig. 3.

Between these two regions, i.e., the lower and 
upper regions in the Fig.  4, a horizontal line of con-
stant deflection without oscillations, at w = 0.1 cm, is 
visible. This occurs at the critical compressive force 
value of pcr = 65 kN.

Figure 5 also shows the displacements over time at 
different axial force values, when the initial deflection 
was five times greater, w0 = 0.5 cm. We observe here, 
too, that the lower region of the graph is where oscil-
lations are around the zero displacement point. The 
amplitudes in this case are small and correspond to 
the range of the initial displacements w0 . The upper 
part of the graph illustrates vibrations with signifi-
cantly larger amplitudes, obtained at higher axial 
force values exceeding the critical force, which in 
this case is approximately pcr = 494 kN. Similarly 
to the previous case, both regions are separated by a 
line representing the critical force pcr in the absence 
of vibrations. The slight reduction in amplitudes, par-
ticularly noticeable at the upper edges of both maps 
(Figs.  4 and 5), is due to the application of small 
damping.

The problem is highly nonlinear and the initial 
deflection that is five times greater, depicted in Fig. 5, 
results in a thirty fold larger vibration amplitudes. 
Therefore, when using the model to calculate the dis-
placements of real beams, all the necessary data must 
be entered very precisely. Indeed, since the prob-
lem is strongly nonlinear, different data would yield 
results that may differ significantly from those pre-
sented here. The following examples should therefore 
just reflect the our choice of the data. It is found that 
the relationship between displacements and the asso-
ciated deformations is significant, and to better cap-
ture the phenomena in a real setting, material nonlin-
earity as well as other geometric nonlinearities should 
also be considered. However, this is beyond the scope 
of the current study.

Fig. 3   Deflection in time of the mid-point w(50, t) of the beam 
for various damping coefficient c, with p = 1 MN. The buckled 
steady states are w = ±3.093 and the vibrations are about two 
stable equilibrium states

Fig. 4   Deflection, in time, of the mid-point of the beam for 
various axial forces p̂L ; the initial deflection is w0 = 0.1 cm

Fig. 5   Deflection, in time, of the mid-point of the beam for 
various axial forces p̂L ; the initial deflection w0 = 0.5 cm
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Fig. 6 shows an important phenomenon, presenting 
the total energy of the system, which in this case is 
the sum of potential and kinetic energy over time, for 
different values of axial force p̂L and different initial 
deflections w0 , ranging from 0.1 cm to 0.6 cm. It is 
worth emphasizing, as is depicted in Fig. 7, that the 
system’s energy depends solely on the square of the 
initial value w0.

Fig.  8 depicts the deflections of the mid-point 
of the beam over time for zero axial force and an 
axial force p = 575 kN. The initial displacement of 
the mid-point was 0.2 cm. The free vibrations are 
depicted with zero axial force with the specified ini-
tial kinematic conditions. The amplitudes remain con-
stant, while our current Timoshenko-like beam exhib-
its a slightly longer period in accordance with the 

theory. Figure 8b compares the two Gao beams based 
on the Bernoulli-Euler and the Timoshenko theories. 

Fig. 6   Total energy for the initial deflections w0 = 0.1, ..., 0.6 cm and forces p̂L : a – p = 10 kN, b – p = 20 kN, c – p = 100 kN, d – 
p = 200 kN

Fig. 7   Total energy
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The applied damping ensures the small decay of the 
vibrations. Both curves are illustrative as both models 
are highly nonlinear and can not be simply compared. 
Quantitative estimation of the influence of individual 
material constants, initial conditions, and loading 
on displacements requires further research, and the 
results will be presented in future studies.

5 � Conclusions and future studies

This work presents a unified extension of both the 
Timoshenko and the Gao beam models. It results in a 

system of two highly nonlinear equations for the dis-
placements of the central axis of the beam, and the 
rotation of its cross sections. The steady equations are 
derived from the principle of minimum or stationar-
ity of the potential energy. To describe the system 
behavior, we use computer simulations of the related 
dynamic problems, which exhibit the various types of 
beam’s behavior, and in particular, vibrations about 
the buckled states. A FEM algorithm is constructed 
and implemented for the computer simulations, which 
indicate the following characteristics of the model.

Fig. 8   Comparison of a 
thin (Bernoulli-Euler-like) 
and a thick (Timoshenko-
like) models of Gao beam 
in the case of free vibration 
with p = 0 kN, c = 2 Ns/m 
(a) and compressed with a 
force p = 575 kN, c = 50 
Ns/m (b)
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The total energy of the system does not depend on 
the axial force p = ph , only on the initial deflection of 
the beam axis w0(x).

The responses of vibrating beams based on the 
Bernoulli-Euler and Timoshenko models are found to 
be qualitatively similar, however, they differ quanti-
tatively. The new beam model exhibits slightly lower 
stiffness as compared to the Gao beam.

It is found that there exists a critical force pcr , 
dependent on the initial conditions, at which no vibra-
tions occur, and the problem becomes fully static. The 
critical value of the force increases with an increase 
in the initial dynamic deflection w0 . There are either 
one or three equilibrium states. The zero equilibrium 
state, where vibrations occur around w = 0 with a 
small axial force p < pcr is unique, and it is conjec-
tured to be stable and attracting. When p > pcr , the 
zero equilibrium seems to loose its stability and two 
stable equilibrium states ±wst appear, around which 
vibrations occur. The amplitudes of the transverse 
vibrations are significantly higher for p > pcr as com-
pared with p < pcr.

When damping is included, the position of the 
deformed axis stabilizes into one of the two stable 
equilibrium positions, which supports our conjecture 
that these are stable and attracting (asymptotically 
stable). With an axial force p > pcr , vibrations may 
occur alternately around the equilibrium positions 
±wst , switching to the opposite side of the zero axis 
from the +wst to the −wst state under small perturba-
tions, after several or several dozen cycles.

The equilibrium displacement values depend on 
the magnitude of the axial force p.

Next, to show the usefulness of the new model, we 
suggest some future directions to continue this line of 
study.

The dynamic and quasistatic versions of the 
model are of interest, both theoretically and in sim-
ulations, as was done above for the dynamic case, 
to depict the wide range of the model solutions. As 
was noted above, a thorough investigation of the dif-
ferences between the Bernoulli-Euler-like and the 
Timoshenko-like Gao beams is of interest. It may pro-
vide insight into when using the new model may lead 
to improved predictions accuracy.

Theoretically, the model system is highly nonlin-
ear and the existence of solutions needs to be estab-
lished, as well as the model’s analysis. In particular, 
the conjectures on the stability of the one or three 

steady states are of practical and well as theoretical 
importance. Finally, the analysis of the dynamic and 
quasistatic versions of the model is of interest.
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