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Role of electron-electron interactions in electron emission from nanotube materials
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Nanotubes and nanorods have been recently established as very good materials to work as electron sources
in a field emission (FE) process. These are one-dimensional materials and electron-electron interactions are
expected to play a crucial role in their physics. Here we study the influence of electron-electron interactions on
the field emission. We study the problem in the low energy regime; thus we need to abandon the antiadiabatic
approximation and derive tunneling amplitude for a finite duration of the tunneling process. In this work
we identified the parameters when exact analytic expression for tunneling current can be given. We obtained
formalism that enables one to capture at the same time the collective effects due to electron-electron interactions
and thermionic emission. Our results reveal that different types of nanotubes, and their minigap/compressibility
parameters, can be easily distinguished based on FE measurements on these materials.
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I. INTRODUCTION

Field emission (FE), a process of electron’s tunneling
through the barrier on materials’ surface due to the presence
of an external electric field, has several important applications,
both technological and fundamental and remains a very active
field of research [1]. From the technological point of view,
it enables us to create stable electron beam sources, critical
for electron microscopy [2,3] and vacuum electronics [4–6].
From the fundamental point of view, it enables one to diag-
nose a microstructure of the material in question. It is then no
surprise that many decades of research have been dedicated to
developing the theory of this process [7]. The situation when
the material can be described within a single particle frame-
work has been largely captured [8]. In this case, presently,
efforts are being focused on issues of how to describe best
the local electric field [9–11] and how to merge the formalism
with the ab initio methods that describe materials [12,13].

The situation is much less clear when interactions, and
correlations, play a substantial role. The questions of how
the electron-electron interactions affect the field emission, and
also how they conspire with thermal effect to produce the total
current in a real device, remained largely unanswered. Here
we identify one class of materials—the arrays of nanotubes—
where a fully analytic answer can be given to these questions.

Arrays of carbon nanotubes have been identified as a
promising material for field emission, especially due to their
large brightness already at low voltages [14], which is an
important aspect from the point of view of safety and en-
ergy efficiency [15–17]. These structures constitute many

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

one-dimensional (1D) systems that were grown in parallel
from the substrate, as shown in Fig. 1. Interactions are cru-
cial in 1D systems as the electrons in their motion cannot
avoid each other. This has later led to a proposal of a new
paradigm—a collective Tomonaga-Luttinger liquid (TLL), an
alternative to canonical Landau-Fermi liquid—an achieve-
ment that was later experimentally confirmed and for which
Haldane got a Nobel prize in physics. This collective nature
of basic excitations affects all observables. The effect of field
emission is no exception. Despite that, there have been only a
few past studies of field emission within the TLL framework
and they focused on a zero-temperature, infinitely long 1D
system that is suspended flat on the top of a surface [18,19].
This is quite different geometry than in the devices of cur-
rently common interest. Two developments of the theory are
necessary to achieve the aim of bringing theoretical descrip-
tion closer to the experimental setting. First, for a low energy
field emission the tunneling process cannot be considered
as instantaneous, so we need to abandon the antiadiabatic
approximation and consider the dynamics of the tunneling at
least in a saddle point approximation. Secondly, we need to
abandon the assumption of translational invariance—in order
to explore varying probabilities of tunneling along the nan-
otube we need to derive the local density of states along the
nanotube. Both of these developments are achieved in this
work.

So far a grand majority of works dedicated to field emission
from nanotubes and nanotubes’ arrays has focused on the area
at the tip of the nanotube [10,20–22]. As explained above, this
is because there is a hope that a single particle picture may
provide the dominant contribution in such processes, which
simplifies the theory substantially. There are very detailed
studies of electrostatic potential in this area and an in-depth
microscopic analysis on the single-particle picture, reaching a
level of material specific DFT calculations [23]. The argument
is that therein the electric field is the strongest. While we did
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FIG. 1. Schematic illustration of the problem we consider here:
an array of nanotubes that are vertically grown on the substrate.
The electron (black dot) is emitted from the nanotube and during
the propagation it still interacts with the hole inside of the nanotube
(white spot).

not disregard this argument, we wish to focus here on the
remaining side surface of the nanotube where the 1D collec-
tive effects will be the strongest. From the standard point of
a well-studied single-particle emission from the nanotubes’
tips this large emitting area will provide a so-called incoherent
background and the two signals will add up, as experimentally
shown in Ref. [1]. The importance of this side-area emission
has been recognized both experimentally [24] and theoreti-
cally [25], but that theory did not include electron-electron
interactions inside the nanotube. We shall obtain here exact
analytical expressions for the strongly correlated case and
show that this background is not just a small correction, quite
the opposite of that, and moreover that it can provide valuable
insight into many-body physics inside the nanotube.

The outline of the paper is as follows. In Sec. II we
present the theoretical framework that we use to describe the
1D correlated metal (Sec. II A) (from which the emission
takes place), the Tomonaga-Luttinger liquid, and the recently
obtained generalization of the canonical Fowler-Nordheim
(gFN) tunneling theory (Sec. II B). In Sec. III we describe
how the gFN can be applied to our problem. In Sec. IV we
present our results: first gFN with TLL parameters incor-
porated (Sec. IV A), then Fourier transforms of TLL local
density of states (LDOS) (Sec. IV B), and then we bring the
two together to obtain the tunneling current (Sec. IV C). In the
following Sec. V we apply the method to the nanotubes prob-
lem, where we tackle both gapless nanotubes and nanotubes
with minigaps. The work is concluded with a brief discussion
of its relevance in Sec. VI.

II. MODEL

A. Collective 1D liquid

TLL is a low energy state of collective excitations that
provides a highly nontrivial solution for a strongly correlated

1D system. While the fermionic system is strongly inter-
acting, upon bosonization we arrive at the solvable theory.
The fermionic field operators ψ (x) are rewritten in terms of
bosonic density φ(x) and momentum θ (x) fields:

ψ (x) = exp ıkF x exp ı

(
N∑
ν

φν (x) + θν (x)

)/√
N, (1)

where N is the number of bosonic fields in the model. The
bosonized Hamiltonian of the TLL state, i.e., written in terms
of fluctuations of these collective bosonic modes, is

H1D =
N∑
ν

∫
dx

2π

[
(vνKν )(π�ν )2 +

(
vν

Kν

)
(∂xφν )2

]
, (2)

where ∇φν (x) gives the local density of fluctuations, while vν

and Kν are respectively the velocity and the TLL parameter
(∼ compressibility) of a given bosonic mode ν that depend
on electron-electron interactions with small momentum ex-
change. In the simplest approximation, we assume Galilean
invariance, which implies vνKν ≈ vF , where vF is a Fermi
velocity which in turn is approximated by 	, an energy scale
associated with the UV cutoff of our theory (≡bandwidth
for a single band material, but more generally 	 spans the
energy range where dispersion is linear). When, as is the
case for carbon nanotubes (CNT), the gapless states can
be grouped into pairs existing in two valleys at K, K ′ points
of the Brillouin zone (BZ), there are two bands crossing the
Fermi level and a two-leg ladder description applies. Then
there are four bosonic modes ρ±, σ±, corresponding to the
spin and charge modes oscillating symmetrically or antisym-
metrically within the two legs of the ladder and referred to as
the total and transverse modes, respectively. The total mode
is a density fluctuation occurring simultaneously in both legs
(the valleys), while the transverse mode is a density fluctua-
tion propagating in the opposite direction in two adjacent legs
of the ladder.

The Kν parameters, proportional to compressibilities of
collective modes, incorporate all electron-electron interac-
tions with small momentum exchange WHart (q → 0)—the
so-called Hartree interactions. This is particularly useful for
materials such as CNTs with electron-electron Coulomb in-
teractions, where W (q) ∼ 1/q such that WHart (q → 0) indeed
dominates. Furthermore, if these interactions do not depend
on spin and valley degrees of freedom, then only the parame-
ters of the total charge mode ρ+ will be affected.

B. Tunneling barrier

The physics that we want to capture is that of an electron
tunneling through a barrier described by a potential V (x). The
lowest order approach to this problem is within the Wentzel-
Kramers-Brillouin (WKB) approximation. In the past studies,
when any attempt for exact analytical expression was made,
the V (x) had been given by the following expression:

V0(x) = h − eFx − e2

16πε0x
, (3)

where h = ω0 − ω (ω0 is the work function characteristic of
the given material and ω is the energy), the first term is an
unscreened external electric field, while the last term is an
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interaction with an “image” hole left behind in a metal. This
has led [26] to an expression for the tunneling probability in
terms of elliptic integrals, which was later rewritten [27] as a
solution of a hypergeometric equation, suggesting a possibil-
ity for further generalizations.

Looking for a description of a tunneling process from a
correlated electron liquid, we turn to the recently obtained
[28] generalization of this expression for the potential in the
following form:

V (x) = h − et̃tunFeff x
α − e2Geh

16πε0xα
, (4)

where we generalized the previous formula by admitting that
the driving term is an arbitrary power law with a prefactor
proportional to some effective tunneling times some effective
electric field, while the interaction term with nanotubes is
proportional to some electron-hole propagator Geh. The as-
sumption is that the functional dependence, the power law,
remains, which as we show below is indeed very likely for
the TLL environment. When α ≡ 1 Eq. (4) simplifies to the
previously considered Eq. (3). In our recent work [28], we
found that for the special case when the absolute value of
powers in the last two terms is equal the expression for the
tunneling probability can be expressed in a close analytic

form, i.e., in terms of a hypergeometric function; see Eq. (7)
below.

The transmission probability is in general equal to the
element of the density matrix that corresponds to the system
with an emitted carrier. This is equal to T = ρtun/Z , where
Z is a partition function of the system for which we take
Z = ρ0 + ρtun ≈ 1 + ρtun, where we assume that the tunnel-
ing process is so negligible that it does not affect the density
matrix of the rest of the system. Since ρtun = exp(−Stun ) and
anticipating the result Eq. (8) we obtain that T is expressed
by Kemble’s improved Jeffreys-Wentzel-Kramers-Brillouin
(JWKB) formula:

T (F, ω) = 1

1 + D(F, h = ω − ω0)
, (5)

where, including explicitly the elementary constants e, me, h̄P

(which we set to = 1 from now on),

D(F, h) = exp

[(
m

1
2
e

eh̄P

)(
h

3
2

F

)(
h

2eF

) 1−α
α

(
21− 1−α

α

α

)
I (F, h)

]
(6)

and the WKB integral I (F, h, x) = ∫ xout
xin

√
V (x) reads

I (F, h, x) = παx
1
α
− 3

2
{
2ζx2[(α − 1)ζ + 1] 2F1

(
1
2 , 3

2 − 1
α

; 1; 1 − ζ
) − α(ζ + 1)x2

2F1
(− 1

2 , 3
2 − 1

α
; 1; 1 − ζ

)}
(α2 − 4)

, (7)

where ζ = m/n, m = (
√

1 − F
(ω0−ω)2 + 1)1/α , and n = (1 −√

1 − F
(ω0−ω)2 )1/α .

We confirmed [28] that the expression above for α = 1
simplifies the previously obtained result in terms of elliptic
integrals [29,30] for single-particle case Eq. (3). Our aim in
the following section will be to build the connection between
the exponent α in the formula above and the correlation effects
in the nanotube.

III. TUNNELING PROCESS

As we have an array of nanotubes, the escaping mode of
the electron is confined and takes place in the quantum well
that is created by neighboring nanotubes (Fig. 1).

We consider dense array of nanotubes. The dense array
is defined as an array that supports quantum wells between
nanotubes and thus perpendicular confinement of an emitted
electron. They interact with each other through Coulomb in-
teractions which creates narrow wells of potential in between
them and can also affect the physics of the tubes. Fortunately,
this last phenomenon can be captured by an appropriate mod-
ification of the TLL parameters; to be precise for Coulomb
interactions this affects only the effective Kρ+ parameter [31].
Thus we have a problem of deep wells of potential in between
the tubes. Each tube is described by TLL with some effective
Kρ+ and one expects that emitted electrons propagate within
these potential minima. The issue that we want to address
here is a dynamics of an electron as it propagates along the
nanotube and in the process still can interact with the TLL

electrons inside the tube. The usual approximation is to com-
pute a saddle point (quasiclassical) configuration of the fields
for a tunneling event taking place in a negligibly short time—
the instanton gas approximation. However, the situation in the
nanotube array is different, as the tunneling electron has to
travel all the way up towards the top of the nanotube, in the
meantime experiencing the influence of TLL. To solve this
complicated case we decided to separate quasiclassical and
quantum degrees of freedom [32]: S = Sclas(q) + Squant (ψ ),
with the former ones describing the time extended tunnel-
ing process Sclas(q) ≡ Stun(q), where q(τ ) is a trajectory of
escaping the single electron which takes place in an effec-
tive, averaged potential determined by quantum fluctuations
Squant ≡ ∑

S1D, where ψ (x, t ) are wave functions inside the
nanotubes. In other words, the classical trajectory includes
the averaged TLL effect, as encoded in its known correlation
functions, in the potential experienced by the escaping carrier.
This may be thought of as a vertex correction to the tunneling
matrix (operator) elements, a quantity whose importance has
been emphasized before [33], where it has been accessed
using alternative diagrammatic methods.

Following the seminal result by Coleman [34], the Euler-
Lagrange equation for the instanton gives classical equation of
motion q̈ = Vsaddle[q(τ )], which admits a tunneling type solu-
tion; upon inserting it into the tunneling action one finds

Stun =
∫

dτ
√

Vsaddle[q(τ )], (8)
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where we expect that Vsaddle will have the form of Eq. (4).
Remarkably, for the simplest case of straightforward motion
perpendicular to the barrier, this becomes equivalent to the
quasiclassical WKB result; however, in more complicated
cases, such as ours, it will follow the trajectory of a particle
in a spirit similar to the path-integral formulation. Now the
q(τ ) is the saddle point trajectory and we assume that, due
to the geometry of the problem, the quantum well in between
nanotubes, a significant portion of the trajectory is such that
q(τ )||x. For the significance of time the emitted electron keeps
interacting with surrounding TLLs. Our task is then to average
out the quantum fluctuations, which can be done for TLL, in
order to obtain effective parameters inside Vsaddle(x).

In a realistic system, neighboring nanotubes may have a
different chirality and parameters, but the tube that is the most
metallic, i.e., has the smallest gap, will provide the largest
amount of screening. This justifies our approximation of a
single-tube dominated process.

Correlation functions in TLL

In Eq. (4) we see that there are two terms in the potential
that need to be overcome by the tunneling electron. The first
one is due to an interaction between the electron and the hole
that has been left behind in the nanodevice and the second
one is due to the screened external potential. The question is
what is the form of these terms in an environment defined by
surrounding 1D nanotubes—TLLs.

In TLL the fermionic correlation functions translate into a
bosonic form (here to lighten notation we drop the bosonic
field index ν; since bosonic modes are orthogonal, their cor-
relations factorize) which up to a prefactor reads

〈ψ†(x, t )ψ (0, 0)〉
≈ 〈exp[φ(x, t ) + θ (x, t )] − [φ(0, 0) + θ (0, 0)]〉. (9)

This can be evaluated as a Gaussian integral:

〈exp ıA[φ(x, t ) − φ(0, 0)]〉
= exp − 1

2 A2〈φ(x, t )φ(0, 0)〉 = exp
(− 1

2 A2K ln(r)
)
,

(10)

where A is some numerical constant and we used the Debye-
Waller relation for the average of an exponential. For the
dual θ field correlators the procedure is the same; the final
result can be recovered by substitution K → 1/K . This leads
to power laws with nonuniversal, interaction dependent expo-
nents ∼K .

In the example above we have obtained the Green’s
function for a single particle η (where A = 1/

√
N). The prob-

ability of electron-hole recombination at (x, t ) [after both
particles were created at the same point (0,0)] in the simplest
approximation will be given by a correlation function of two
distinguishable copropagating particles (one inside and one
on the surface of the nanotube). The entire reasoning goes the
same as before, just that in Eq. (9) we need to take two copies
of each bosonic field, ultimately producing A = 2/N . Thus the
electron-hole recombination, which is an analog of an image
potential, i.e., the last term in Eq. (4), is predicted to have the

following scaling:

Vimg(x) ∼ x−22η, (11)

with the single particle exponent known to be η = (
∑

ν Kν +
1/Kν )/2N .

The second term in Eq. (4) is due to an interaction with an
external potential that is pulling the electron away from the
nanodevice. By itself, the external electric field in the vicinity
of the 1D conductor has a very weak spatial dependence, due
to an underscreening property of 1D metal, which is known
to follow logarithmic dependence V0(x) ∼ ln(x). The spatial
dependence arises then due to extended quantum fluctuations
in TLL. Since seminal works by Furusaki [35] it is known
that in the limit of the strong potential (in our language work
function is equal to or greater than bandwidth) the tunneling
process can be described by instanton events which add the
following cosine perturbation term to the TLL Hamiltonian:

Htun = Fext

∫
dx cos(θρ+) cos(θρ−) cos(θσ+) cos(θσ−).

Here we took a full fermion tunneling; hence all bosonic fields
are involved. The spatial spread of the tunneling amplitude
ttun, the probability of these instanton events, is proportional
to correlation functions of the canonically conjugate momen-
tum θν fields. As the electron moves along the nanotube it
will endeavor a series of such tunneling events which can be
resummed into the final effective tunneling rate as a geometric
series [32]; an accuracy of such approximation has been con-
firmed by benchmarking with the numerics in our previous
work [28]. Thus an overall effect of the quantum fluctuations
produces the following spatial dependence t̃tun = F/(1 − ttun ),
which for sufficiently large tunneling probability produces the
following scaling relation:

t̃tun ∼ x2(
∑N 1/Kν )/N . (12)

In the presence of an entire array of nanotubes, the
electric field that is pulling the carrier is screened—a pro-
cess described by a dielectric constant: Feff = Fext/ε. From
Dzyaloshinskii-Larkin reasoning we know that inside each
TLL the random-phase approximation (RPA) holds and we
can also assume that intertube interactions are long range
(dilute limit for emitted electrons). Then the dielectric func-
tion of the array reads ε(q) = 1 + W (q)χ irr (q); thus, for
long range electron-electron interactions W (q), in the long-
wavelength limit the second term dominates. We take the
TLL susceptibility to be an irreducible part of susceptibility
and thus upon Fourier transform ε(x) ≈ χTLL(x). The static
charge susceptibility is proportional to the equal-time correla-
tion function:

χTLL(x) = 〈ÔCDW(x, t = 0)ÔCDW(0, 0)〉, (13)

with

ÔCDW(x, t = 0)

= cos[φρ+(x)] cos[φρ−(x)] cos[φσ+(x)] cos[φσ−(x)],
(14)

so its correlation function scales like ∼x2K . The only assump-
tion that we used here is that the action of the external electric
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field on the TLL is independent on spin and valley degrees of
freedom.

Overall this tunneling due to an external electric field in the
vicinity of TLL scales like

Vext (x) ∼ (
x

∑
ν 2/Kν x

∑
ν 2Kν

)1/Nν
. (15)

We see that both exponents of power laws in Eq. (11) and
Eq. (15) have the same absolute value, only the opposite sign.
Hence our generalized Fowler-Nordheim formalism applies
provided we make the following conjecture:

α → 2

(∑
ν

Kν + 1/Kν

)/
Nν . (16)

We can thus explore what the influence is of electron-
electron interactions on the tunneling current. To this end
we shall use a recently obtained generalization of Fowler-
Nordheim theory.

IV. RESULTS: GENERAL CASE

A. Current

The total tunneling current, the quantity that we are inter-
ested in, is equal to

J (ω, F ) = T (ω, F )ntube(ω, F ), (17)

where the first term comes from our generalized Fowler-
Nordheim theory, Eq. (7), and the second one is a density
of states that we shall derive in the following subsection.
While T (ω) determines what is the tunneling probability,
the ntube(ω) determines how many carriers are there, actually
available to tunnel, e.g., when one goes way above the Fermi
energy then the tunneling probability will be approaching one
(because emitted electrons are above the top of the barrier)
but, at the same time, the number of available carriers will go
down to zero.

Before we move on to study the effects of ntube(ω, F, x)
first we present the effect of gFN on T (ω) in particular in-
cluding the implications of electron-electron interactions. We
assume spin-rotational invariance Kσ = 1 and for density of
states (DOS) we take simply a step function, i.e., Fermi-Dirac
distribution at zero temperature in a metal with a constant dis-
persion. The result is shown in Fig. 2. Indeed we can see that
tunneling probability is an increasing function of frequency ω

(energy), but the effects of interactions are also important. The
growth is fastest for noninteracting carriers Kρ = 1, while the
presence of interactions (both repulsive Kρ < 1 and attractive
Kρ > 1) smooths the curve. This is a manifestation of the fact
that for any Kρ �= 1 single-particle states fractionalize into
collective bosonic states which need to be combined to emit
the electron out of the TLL.

Above we assumed a constant density of states along the
wire. If this does not hold the formula for the current needs to
be generalized:

J (ω, F ) =
∫

dx T (ω, F, x)ntube(ω, F, x), (18)

where we included the possibility that the tunneling proba-
bility may be also dependent on the position, through x =
xin, xout.

FIG. 2. 3D plots of field emission current J (Kρ, ω) as a function
of energy ω and TLL charge interaction parameter Kρ . J (Kρ, ω)
is plotted for a given constant value of external field F = 0.8V/m
keeping Kσ = 1.

B. Density of states

The second main ingredient that contributes to the tunnel-
ing current is a spectral function of electronic liquid along
the nanotube ntube. The DOS encodes the electronic proper-
ties of any material, determining its electrical conductivity,
thermal conductivity, and optical properties. This is because it
provides crucial information about the behavior of electrons,
including their occupation and how they propagate. Here we
wish to incorporate the effects of interactions since we know
that in 1D propagating electrons cannot avoid each other and
thus become strongly correlated.

Usually, evaluation of any correlation function in a strongly
correlated state is a prohibitively difficult task, let alone fi-
nite size and finite temperatures. Calculating spectral function
A(q, ω) for all values of energies in a 1D liquid at T = 0 can
be done by means of the Bethe ansatz, while for finite temper-
atures only by means of the most advanced numerical methods
such as time-dependent density matrix renormalization group
(tDMRG); both results were shown in Ref. [36]. Therein, for
the spin chain with characteristic energy J , it was found that
a linearized theory works up to energy scales of ≈1.5J . This
linearized theory is precisely the TLL framework introduced
in the previous section.

Fortunately, as described above, this is possible through
the TLL formalism; hence, in the following, we take
ntube(F, ω, x) = nTLL(F, ω, x). The Green’s function and thus
also DOS for an infinite TLL are well known [37]; actually,
we showed the way to obtain it in the previous section. Since
in field emission, we are interested in occupied states, we shall
work with the lesser Green’s function.

Thanks to the conformal invariance of the underlying field
theory, for infinite 1D wires the TLL correlation functions are
known also at finite temperatures. This enables a direct com-
parison with the experiments that are unavoidably performed
at finite temperatures. Remarkably, in Ref. [38], Mattsson and
co-workers have obtained finite-temperature LDOS also for a
finite size spin-full 1D system. Their result shows explicitly
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the LDOS dependence on a distance from the top of the
nanotube. Their solution is presented in the Appendix
[Eq. (A1)]. We see a product of two sinhai (x, vit ) functions,
each corresponding to a pole of a Green’s function character-
ized by a velocity vi.

In Ref. [38] the authors used a standard Dirichlet boundary
condition that assumes a hard wall boundary at the end of
the nanotube, which in turn results in a boundary condition
φν (x = 0) = 0. However, what is more appropriate for a nan-
otube in a finite electric field, constantly emitting a stream of
electrons, are the radiative boundary conditions as derived in
[39]. These are also consistent with a physical situation most
likely realized when the residue of metal catalysts rests on
each nanotube’s top: a small quantum dot in a double tunnel-
ing regime is present at the top of the nanotube. Assuming
continuity and no voltage drop, between the nanotube and
the quantum dot we arrive at the boundary condition for the
canonically conjugated field θρ±(x = 0) = cste. This can be
easily accommodated in Mattsson and co-workers’ formalism
provided that we make a substitution Kρ± → 1/Kρ .

The real space result of Ref. [38] has been written as a
product of powers of sine-hyperbolic functions. The difficulty
rests in the fact that for our purposes we need frequency
dependence of LDOS, which is obtained through partial
Fourier transform. Obviously, this can be done through a
direct numerical evaluation; however, already in Ref. [38]
the singularity of LDOS was pointed out, which needs to be
regularized. This is a nontrivial task to achieve for the numer-
ical integration, especially since we wish to use it as a basic
ingredient for later calculations. We then turned our attention
to possible analytic expressions, for specific cases when the
Fourier transform can be done exactly. We have identified
a case when an exact analytic solution can be derived. This
choice of −bc/2 = 1 and −bs/2 = 0 is the one, for which
analytic Fourier transformation is obtained by us (see the Ap-
pendixes for the formula). Anticipating results of the further
section we state that the case when −bc/2 = 1, −bs/2 = 0
corresponds to ac = 2.015, as = 1

4 . This implies Kρ+ = K∗ =
0.25 and we further take Kσ− = 1, which is used in further
calculations, while Kρ− and Kσ+ are kept as free parameters.
There is only one mode with velocity vc, the holon, and for
this pole, the value bc automatically determines Kρ+. If we
had focused on a simple spin-full fermionic chain, then bs = 0
would imply a “noninteracting” [i.e., SU(2) invariant] spin
degree of freedom with Ks = 1. For the case of the two leg
ladder (that we look at in this paper), the other pole has three
bosonic modes that contribute, see Eq. (19), and thus even
though we set bs = 0 we nevertheless have certain freedom
of choice of these TLL parameters. We emphasize that the
bs = 0 condition does not mean the complete absence of the
spin degree of freedom in the system, as as �= 0, but there is
no spatial dependence induced by the spin degree of freedom.

Thus our solution works for the physically relevant case
when Kρ ≈ 1/4 as measured experimentally [40]. This also
corresponds to a close vicinity of marginal RG flow for the
case of a half-filled band. Proximity of nanotubes to the Mott-
insulating phase has been identified in several earlier works
[41]. Here we assume that in the charge sector the system
can flow towards the Mott phase. The flow would be always
towards the critical value K∗ = 1/2. However, due to weak

incommensurability, for instance, due to codoping between
single-walled nanotube (SWNT) shells of multi-walled nan-
otube (MWNT), the system is in a Luther-Emery liquid with
the parameter K∗/2 = 1/4. If intratube repulsive interactions
are too weak to push the system towards these small values,
there are always intertube Coulomb interactions that can be
incorporated in our modeling and will further modify down-
wards the Kρ+ parameter [31]. This explains why such a value
is frequently observed in experiments done on single-walled
carbon nanotube (SWCNT). At absolute zero temperature,
it is established that DOS diminishes to zero at the Fermi
energy following a power law in ω—a so-called zero-bias
anomaly. Here we shall analyze the density of states (DOS)
for Tomonaga-Luttinger liquids under finite temperature
conditions.

Figure 3 illustrates the LDOS as a function of ω and r
at various temperatures, where ω is measured relative to the
Fermi energy and r is the distance from the boundary. At
ω = 0, the energy corresponds to the Fermi level, serving as
a critical reference point for energy levels. This dip at ω = 0
is a well-documented signature of 1D physics, known as the
“zero-bias anomaly” that has been observed experimentally
in various systems, for instance, carbon nanotubes [40] or
semiconductor gated wires [42,43] and quite recently even
in controlled two-dimensional (2D) to 1D crossover [44].
The figure shows LDOS below and above the Fermi energy,
providing valuable insights into the energy distribution char-
acteristics within the confined TLL of the nanotube. We see
a profound deep close to ω = 0 and a deep when r is going
down to 1. These features are sharper when the temperature
is lower; in this case, when β = 200, it is sharper than when
β = 50. Then, it increases to a maximum when r is a few
lattice spacing and then it goes down when we are going
deeper into the carbon nanotube. It is important to mention
that the double peak structure observed for values where ω >

0 may be probably related to the well-established 1D hallmark
known as spin-charge separation that was also experimentally
measured in several systems [42,43,45–47].

V. RESULTS FOR NANOTUBES

The results of the previous section can be used to obtain
electron emission spectra for arrays of nanotubes. Usually,
nanotubes are grown using chemical vapor deposition (CVD)
on a prearranged catalyst array and MWNT are obtained.
Although a multiwall system is obtained one can always
assume that among several (N > 3) layers there will be at
least one metallic. It is known that a rolled hexagonal lattice,
upon perpendicular quantization, may become either a metal
or a semiconductor. The first case, realized in approximately
one-third of all cases, is described as a two-leg-ladder system
that can develop minigaps in some of the bosonic modes.
The two legs are present due to two valleys K, K ′ present in
2D dispersion. This is valid and well established for carbon
nanotubes, but not limited to these since any rolled 2D analog
based on p orbitals (silicene, stanene, etc.) will share the same
general properties albeit with different values of parameters.

The two-leg ladder description is obviously much more
complicated than the spin-full chain that we considered so
far, as there are four ρ±, σ± instead of two bosonic modes.
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FIG. 3. TLL density of states as a function of energy ω and the
distance from the boundary r (tip of the carbon nanotube; unit of r
is 1/VF ), when (a) β = 50 and (b) β = 200. The β = 1

T is inverse
temperature with a unit set by the fact that the unit of energy was set
by vF = 1.

However, an extremely useful aspect of nanotubes dominated
by the long range interaction is that only the velocity of the
charge-full ρ+ mode, the vρ+, is strongly modified, while
for the remaining three modes the respective velocities stay
close to VF . Thanks to the fact that our original formulas
for space dependent spectral functions N (ω, r) can still be
applied, however, we need to take into account that now three
modes Kν will contribute to what was before as:

ãs = K2
σ+ + K−2

σ+ + K2
σ− + K−2

σ− + K2
ρ− + K−2

ρ−
8

(19)

and

b̃s = K2
σ+ + K−2

σ+ + K2
σ− + K−2

σ− + K2
ρ− + K−2

ρ−
8

. (20)

The advantage of this situation is that previously set-
ting bs = 0 determined the value Ks = 1, while what we
expect now is that, for the case with long-range interactions,
three neutral modes with nearly equal velocities Vσ+ ≈ Vρ− ≈
Vσ− = VF contribute to bs. We see that now, even if we
take our specific analytical solution for LDOS, the choice of
TLL parameters for the neutral modes is largely arbitrary;
thus also the value of α in the tunneling function becomes
a free parameter. The most likely situation [48] is that of slow
marginal flow due to curvature or spin-orbit driven so-called
“dimerization” terms [49] leading towards ultralow temper-
ature ordering of cos φσ+ and cos φρ− terms, keeping the
σ mode unaffected. Then K−1

ρ− > 1 will compensate for the
effect of Kσ+ < 1 and the two together with Kσ− ≈ 1 will
give at the same time bs = 0 and a nontrivial value for the
exponent of correlation function as as well as the exponent α

inside the tunneling barrier expression. The fact that the two
can precisely compensate each other in Ref. [50] was shown to
be related to the way SO(6) symmetry is broken, i.e., initially
all three neutral modes are degenerated and then assuming a
single, valley symmetric perturbation parameter, such as the
tubes’ curvature, leads to an even deviation of both modes’
TLL parameters. It is remarkable that such symmetry can be
related to the lack of spatial dependence due to these neu-
tral modes and gives physical meaning to the special Fourier
transform solution obtained here by us.

A. Entirely metallic tube

We begin with the simpler case, when the nanotube is
entirely metallic, which can happen when an achiral, armchair
or zigzag, tube is present among MWNT layers. In this case,
all the bosonic modes are massless, because high symmetry
prohibits the emergence of any symmetry breaking cosine
term (e.g., dimerization) and one can immediately apply the
results of the previous section with the substitutions described
above.

Figure 4 shows the tunneling current for entirely metallic
nanotubes when F is changing from 0.01 to 0.2 V/m. In
order to make the case when Kν parameters do matter, it is
best to focus on the small values of F and so we did in this
first picture. Here we can clearly see the difference between
the different values of Kρ−, which means that the values of
Kρ− are indeed meaningful quantities. In higher temperature
β = 50, panel (a)] we see a double peak structure, below
and above ω = 0; the second one contains both thermal and
interaction effects that are entangled. The case Kρ− = 1 would
correspond to a noninteracting system, the further one is from
this value, and the stronger is electron-electron interactions.
Thus the difference between red (Kρ− = 0.85, weaker interac-
tions) and green (Kρ− = 0.66, stronger interactions) allow one
to investigate their effect. We see that interactions do increase
the amplitude of field emission. Subfigure (b) shows that, for
this temperature (β = 200), there are no thermionic effects
and the entire emission is driven by the interactions. For the
smaller values of interactions, there is a very tiny emission and
for larger interactions the two emission peaks clearly appear.

Figures 5 and 6 illustrate the characteristics of the
tunneling current for entirely metallic nanotubes, each de-
scribed by specific parameters. The metallic nanotubes exhibit
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FIG. 4. Tunneling current J (ω, F ) plotted as a function of ex-
ternal electric field F and energy ω measured with respect to Fermi
level. The plots are for entirely metallic nanotubes described by the
following parameters: (a) β = 50 and (b) β = 200; green: Kσ− = 1,
Kσ+ = 1.51, Kρ− = 0.66, and Kρ+ = K∗; red: Kσ− = 1, Kσ+ = 1.17,
Kρ− = 0.85, and Kρ+ = 0.25. Here we focus on the lowest values of
external electric fields.

massless bosonic modes due to their high symmetry that
protects against backscattering, resulting in unique electron
emission properties. Both figures comprise two subfigures,
(a) and (b), corresponding to different values of temperature.
Subfigure (a) shows the tunneling current as a function of en-
ergy and electric field when the temperature is higher β = 50,
while subfigure (b) displays the same for lower temperature
β = 200. In these figures, we see that tunneling current is
increasing for negative ω (when ω is changing from −1 to
close to 0), the same behavior is visible in Fig. 2 (for the trans-
mission amplitude) and in TLL’s LDOS for larger values of x,
and hence the peak-like structure for the negative ω appears as
a product of both. Next, there is a deep at ω = 0 point, which
corresponds to the same feature—the deep visible in TLL’s

FIG. 5. Tunneling current J (ω, F ) plotted as a function of exter-
nal electric field F and energy ω measured with respect to Fermi
level. The plots are for entirely metallic nanotubes described by
the following parameters: Kσ− = 1, Kσ+ = 1.51, Kρ− = 0.66, and
Kρ+ = K∗, when (a) β = 50 and (b) β = 200. The β = 1/T is in-
verse temperature with a unit set by the fact that the unit of energy
was set by vF = 1. The color coding follows the J value on the
vertical axis.

LDOS in Fig. 3. Just like in Fig. 3 the deep is sharper for lower
temperatures. When ω > 0 there is a double peak structure, a
massive peak, and a smaller shoulder. The shoulder structure
is more visible when interactions are stronger Kρ− = 0.66
and it is smoother when Kρ− = 0.85. When the temperature
is higher, the ω > 0 structure has a larger amplitude which
is in agreement with an expectation for thermionic emission.
Furthermore, all figures show that, as the external electric
field F increases, the overall peaks height and area is growing
larger. Initially, for lower fields, the height grows fast, but
later we observe saturation especially for the thermionic peak
(ω > 0). For larger fields we also observe increased range of
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FIG. 6. Tunneling current for entirely metallic nanotubes de-
scribed by the following parameters: Kσ− = 1, Kσ+ = 1.17, Kρ− =
0.85, and Kρ+ = K∗ = 0.25, when (a) β = 50 and (b) β = 200.

contributing ω and the shoulder feature, which indicates that
we are beyond the single particle regime.

B. Case of gapped neutral modes

More complicated, but more likely is the situation that,
when the nanotube has lower symmetry, it is chiral, as then
the minigaps in some bosonic modes can open. Past research
indicates [48] that equal size gaps in φσ+ and φρ− modes are
most likely. One needs to add at least the following perturba-
tion to the TLL Hamiltonian:

Hcos = gU

∫
dx cos(φρ−) cos(φσ+), (21)

which results in two bosonic fields locking at the minimum
of the cosine. By construction the gaps of the two modes
are equal and entangled. There are also other cosine terms
in a two-leg ladder description, but they contain an equal
number of canonically conjugated cos φσ− and cos θσ− terms,

FIG. 7. Perpendicular quantization upon rolling the nanotube.
Dots show the position of the Dirac points crossed by the quan-
tized, quasimetallic band. Two cases are possible [51]. Zigzag-like
nanotubes: Dirac points collapse to the origin of the longitudinal
Brillouin zone, resulting in metallic behavior and armchair-like nan-
otubes: Dirac points are well separated in longitudinal momentum
space, giving rise to metallic behavior.

which implies that an ultrasmall gap is present only through
refermionization of this field. We also assumed that the tube is
not commensurate; hence umklapp terms, that would involve
a cos(φρ+) term, are not present.

What is remarkable is that for the many body problem
when the single particle electron emission gap is � = �σ+ +
�ρ− the two-particle probes like charge susceptibility or
electron-hole spectral function detect a gap of two times larger
size �2p = 2�. This implies that for energies � < ω < 2�

we shall have an intermediate regime where the modes σ+
and ρ− do not contribute to characteristic exponents and
certainly do not contribute to characteristic exponent α.

More information about this regime can be gathered from
several studies, for instance, by Essler and Tsvelik, where they
have computed spectral function for the sine-Gordon model
[52,53]. They showed that indeed while the spectral function
has a gap � below which any tunneling is impossible, the
characteristic double dispersion (spinon and holon) of TLL
is recovered only for energies above 2�. In the intermediate
regime, we observe the dispersion characteristic of the gapped
state [54,55]. From this we deduce the following ansatz: in
the intermediate regime we shall take also the as exponent
inside NTLL(ω, r) independent of bosonic modes σ+ and ρ−,
but also we assume that dielectric properties along the tube
are modulated with periodicity q0, which means that a sim-
ple integral for the current J (ω) is now becoming a Fourier
transform:

J (ω, F ; T ) =
∫

dr cos(q0r)N<
TLL(ω, r)T (ω, F ), (22)

where q0 is the distance between Fermi points, i.e., the dis-
tance between the two K, K ′ valleys measured along the
nanotube axis.

The intermediate regime postulated here can be noticed in
a two stage activation behavior of J (ω, F ; T ) as revealed in
the plots below. Depending on the details of the perpendicular
quantization condition we can distinguish [51] two types of
chiral tubes: zigzag-like and armchair-like; see Fig. 7.
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FIG. 8. Tunneling current for zigzag-like nanotubes described
by the following parameters: Kσ− = 1, Kσ+ = 1.51515, Kρ− = 0.66,
and Kρ+ = K∗ = 0.25, when (a) β = 50 and (b) β = 200.

1. Zigzag-like nanotubes

In this case q0 = 0 and Eq. (22) reduces to the previously
used formula, but with a different N (ω): N (|ω| < ω0) = 0 and
N (ω0 < |ω| < 2ω0) = N2TLL(ω), where N2TLL(ω) is LDOS
for TLL with only two free modes [and the α exponent in
T (ω) modified accordingly]. Figures 8 and 9 present the
tunneling current behavior in zigzag-like nanotubes with dif-
ferent interaction parameters. The top and bottom panels in
both figures show the tunneling current at different tempera-
tures (a) β = 50 and (b) β = 200. Here we choose ω0 = 0.1.
As it is shown in the figures, when |ω| < 0.1, the tunneling
current is equal to 0, there is no emission due to the presence
of minigaps in some bosonic modes, when 0.2 > |ω| > 0.1
there is anomalous tunneling, and when |ω| > 0.2 the behav-
ior of the tunneling current is similar to the previous case
(Figs. 5 and 6). In comparison with Figs. 5 and 8, we see
differences in the new intermediate regime. The emission peak
for ω < 0 now has a larger amplitude and we actually can

FIG. 9. Tunneling current for zigzag-like nanotubes described by
the following parameters: Kσ− = 1, Kσ+ = 1.17, Kρ− = 0.85, and
Kρ+ = K∗ = 0.25, when (a) β = 50 and (b) β = 200.

observe discontinuity at ω = −2ω0 that is due to the fact
that we have defined N (ω) in an unphysical, piecewise man-
ner; in reality one expects some crossover between two- and
four-mode TLLs (we postpone study of the right crossover
function to later study). The larger amplitude of emission
is probably due to the fact that two bosonic modes are not
mobile; hence they do not need to be captured when a sin-
gle fermion is reconstituted. The emission peak for ω > 0 is
growing faster as a function of F and reaches saturation for
smaller values of F . For the largest ω the shoulder peak is
even better pronounced especially at lower temperatures and
stronger interactions shown in Fig. 5(b).

2. Armchair-like nanotubes

In this case, q0 �= 0 (actually q0 can be as large as a third of
BZ) and Eq. (22) takes a more complicated Fourier-transform
form. In this case, the fact that we know the LDOS distribution
along the tube N<

TLL(ω, r) plays a vital role.
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FIG. 10. Tunneling current for armchair-like nanotubes de-
scribed by the following parameters: Kσ− = 1, Kσ+ = 1.51, Kρ− =
0.66, and Kρ+ = K∗ = 0.25, when (a) β = 50 and (b) β = 200.

Armchair-like nanotubes, unlike zigzag-like nanotubes,
exhibit a distinctive behavior: after initial saturation at the
same field F like for the zigzag-like tubes [but at a J (ω, F )
amplitude that is two times smaller] we observe that the
current starts increasing again at the largest values of F ,
ultimately reaching the same value of J (ω, F ) like in the
zigzag-like tubes. This is due to the periodic potential ap-
pearing along the length of the armchair-like nanotubes. This
periodicity potentially causes variations in energy landscapes
at differing nanotube sections, manifesting as this dual sat-
uration behavior. Figures 10 and 11 present the behavior of
the tunneling current in armchair-like nanotubes exhibiting
minigaps in bosonic modes, each described by specific pa-
rameters. The system is described within the framework of
a TLL model. For illustration proposes q0 is taken equal to
1/(3a). Notably, following an initial saturation, a pronounced
surge in the current becomes evident. This rapid rise in current
can be linked to the periodic potential effects, as these tubes

FIG. 11. Tunneling current for armchair-like nanotubes de-
scribed by the following parameters: Kσ− = 1, Kσ+ = 1.17, Kρ− =
0.85, and Kρ+ = K∗ = 0.25, when (a) β = 50 and (b) β = 200.

reach a value of Jmax = 0.4 only after showing further growth
at the highest F values. As seen in the figures, when ω is
changing from −1 to −0.2, the current gradually increases;
then at ω = −0.2 there is a sharp decrease (a discontinuity,
like before) and the current stays the same, constant up to the
point when ω = −0.1, in the region of ω changing from −0.1
to 0.1 where the current is forced to be 0. At ω = 0.1 there
is a sharp increase; in the region of 0.1 to 0.2, it decreases.
When ω > 0.2, the current behaves as in the previous case
(Figs. 8 and 9). We can now compare this with results for
zigzag-like tubes, namely Figs. 8 and 9 and Figs. 10 and 11,
respectively. We see that now, in the periodically modulated
case, the increase of J (F ) is actually delayed; for the case
of stronger interactions an intense growth is present only for
the largest electric fields F and no saturation is observed.
The amplitudes of all current peaks are smaller, as clearly
revealed by the discontinuity at ω = −0.2. The presence of
spatial modulation of the nanotube properties should be thus
visible, in this nontrivial way, in the (ω, F ) characteristics of
the material.
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VI. DISCUSSION AND CONCLUSIONS

The main outcome of this work is to show that the effects
of emission due to temperature and electron-electron inter-
actions can be simultaneously and nonperturbatively taken
into account in a closed analytic formula. We see that both
lead to potentially observable effects. Since in our work we
set the bandwidth as a unit of energy, the results are easily
transferable from one material to another, for instance from
carbon to silicon nanotubes. An open issue is the role of
many-body interactions when the emission takes place from
the tip of the nanotube. There were studies showing an emer-
gence of additional purely many-body peaks on the tip [55]
showing that a standard single-particle approach may be after
all insufficient also here. This will obviously depend on the
microscopic structure of the tip in a given system; we leave an
in-depth study of this effect for the future.

While the focus of this study is mainly on the linear regime
of low energy, there have been significant advances in the field
that tackle the nonlinear regime in carbon nanotubes. Notably,
recent works in Refs. [56] and [57] have explored nonlinear
Luttinger liquids in carbon nanotubes, giving deeper layers
of insight into these systems. Such advancements provide
exciting prospects for future study. In principle it is possible
to include curvature as a momentum/frequency dependent
velocity VF (q) (which holds for the neutral modes’ part of
LDOS); however, what remains to be established is how the
holon velocity vρ and TLL parameters Kν would be affected
by this change of the model and what momentum dependence
they would acquire. Thus extending our model to incorporate
these nonlinear effects is highly nontrivial and has to be left
as an intriguing direction for future research. Curvature is
equivalent to a mass term in the Hamiltonian and there were
experimental efforts to measure how this mass changes upon
1D to 2D crossover [44]. In the context of arrays of nanotubes
that would be a case when electrons start to hybridize in
between the tubes, i.e., the intertube distance of an angstrom
scale, that is also beyond the scope of this work and actually
beyond arrays that have been synthesized so far.

The UV cutoff within the Tomonaga-Luttinger liquid the-
ory in our approach is purely phenomenological, i.e., we
assume that at some energy scale the linear approxima-
tion of the spectrum will not be applicable any longer. For
SWCNT this can be related to the inverse lattice spacing,
but for MWCNT the characteristic length scale may be much
longer. Recent theoretical and experimental advances have
provided a more detailed understanding of it. Works such
as [58,59] have provided a deeper theoretical understand-
ing, while experimental studies [60] have substantiated these
observations.

Moreover, while discussing experimental techniques, it is
essential to differentiate between angle-resolved photoemis-
sion spectroscopy (ARPES) [61] and the FE method (which
is the focus of our study). In FE, the focus is on varying
the amplitude of the external electric field, adjusting fre-
quency through photon-assisted FE, or regulating back-gate
potential. In ARPES, which has also been done in CNTs
[62], we need to resolve problems of light wave interference
and light polarization (that determine dipole moments of the
transition)—everything under the assumption that the ampli-
tude of the dynamic external field is weak (within a linear

response regime). Though the two techniques differ in their
foundational principles, they complement each other, as seen
in the emergent research on photon assisted FE [63].

However, taking into account the geometrical smallness of
the tip, Coulomb-blockade effects should be always present.
This will in general decrease the current from the tip, thus
increasing the importance of the side-surface (background)
current studied here.

Another open issue is the experimental relevance of the
observed phenomena. Naturally, the temperature and the ex-
ternal field are parameters that can be varied in an experiment;
our formula offers a possibility to fit these characteristics.
Importantly, the TLL parameters can be also modified by
experimental means. For instance, the ways the Kσ+ can be
affected by an external magnetic field have been studied in
detail in the work of Egger et al. [64]. This parameter will
be also modified for nanotubes made out of heavier elements,
with stronger spin-orbit coupling. On the other hand, the Kρ−
parameter depends on the strength of the effective on-site
Hubbard parameter and on the strength of intervalley hy-
bridization. Both of these are largely unknown and can also
lead to a minigap in the spectrum whose effects we have been
investigated in the later part of this study.

This last remark, about unknown parameters in effective
low-energy physics of multiwall nanotubes, brings up another
relevant aspect of our work. In our plots we see clear, quali-
tative differences between various types of nanotubes. These
can be even quantified if the TLL parameters are sought after.
This implies that our results may serve as a tool to diagnose
arrays of MWNT in order to determine, through low energy
field emission, what fraction of nanotubes represents what
properties and also whether the fabrication method has any
influence on that. Although more crude, this may be a fast and
efficient alternative for Raman spectroscopy methods [65] that
are used now for this daunting task of distinguishing chirality
of nanotubes. It is worth emphasizing that the field mission
can also be used with microscopically small electrodes. We
should thus be able to obtain valuable space resolved infor-
mation about the many-body effects in arrays of nanotubes.

Our study will also have implications for the modeling of
nanotube arrays. Although we are focused on one specific
range of parameters, where our analytic formula works, the
advantage of our result is that it is an exact method with no
approximation involved. Thus it can serve as a benchmark
for numerical calculations. The fact that it is analytic means
that the formula may be easily transferred from one material
to the other, simply by modifying parameters. It can be also
applied for processes other than FE, where electron tunneling
in a large side surface of nanotube arrays plays a vital role,
for instance, in chemical and materials engineering processes
geared towards catalysis or hydrogen storage.
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APPENDIX A: FOURIER TRANSFORM OF LDOS

The finite temperature, real space (and real time) LDOS in
a 1D TLL has been obtained in Ref. [38]. In the following
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Mattsson, Eggert, and Johanesson have given the expression for frequency (energy) dependent LDOS as a regularized integral
(which they solved numerically):

N (ω, β, r) = 2
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where the exponents for space-independent as,c = Ks,c
2+K−2

s,c

4 and space-dependent bs,c = K−2
s,c −Ks,c

2

4 parts depend on TLL parame-
ters. In the past work [38] the two-modes TLL is considered and hence the dependence only on charge and spin parameters Ks,c,
with boundary condition set on cos φc,s fields (hence only Ks,c not 1/Ks,c enter their expression).

Here we have found that in a special case −bc/2 = 1 and −bs/2 = 0 the integral can be performed analytically, and the
resulting indefinite integral reads
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where 2F1() is a Gauss hypergeometric function. The Fourier transform of the second (T = 0) part of Eq. (A1) is simply a power
law and had been known before; it serves to regularize the singularity of the first term.
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FIG. 12. Tunneling current for nanotubes described by the following parameters: Kσ− = 1, Kσ+ = 1.17, Kρ− = 0.66, Kρ+ = K∗ = 0.25,
and β = 50, when (a) ω0 = 2 and (b) ω0 = 3.

APPENDIX B: CHEMICAL POTENTIAL VARIATION

1D metal can screen the external electric field only par-
tially; hence we can expect a finite slope of chemical potential
when the nanotube is subjected to a strong external electric
field. The problem of a chemical potential ν in a TLL under
external bias has been solved in [39]. Since in our case, by
taking Kρ+ ≈ 1/4, we deal with TLL in a vicinity of Mott
transition we extend that result by considering continuous
distribution of unitary scattering centers, λB, in the notation
of that paper. We can then use the exact analytical solution
obtained therein, or to be precise a derivative of it:

F = Im

[
ψ

(
0.5 + 0.5 + ı(2Ux − 1.5F )

2πT

)]
, (B1)

where we associated the four-voltage potential derivative with
an external electric field to which the nanotube is subjected.

A solution of this equation Ux is the desired slope of elec-
trochemical potential, a quantity that we include inside our
formulas.

APPENDIX C: DEPENDENCE ON WORK FUNCTION

Our formalism also enables us to directly modify the work
function of the material under consideration. We inspect this
additional feature here.

Figures 12 and 13 present the tunneling current in the case
of different work functions. Figure 12 is also compared with
Fig. 5(a) and Fig. 13 is compared with 5(b), where ω0 = 1. As
it is shown in the figures when we have a higher work function
the tunneling current is smaller, as the barrier that the election
has to overcome to go out is becoming much larger.

FIG. 13. Tunneling current for nanotubes described by the following parameters: Kσ− = 1, Kσ+ = 1.17, Kρ− = 0.66, Kρ+ = K∗ = 0.25,
and β = 200, when (a) ω0 = 2 and (b) ω0 = 3.
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