
Citation: Rudnicka, Z.; Szczepanski,

J.; Pregowska, A. Artificial

Intelligence-Based Algorithms in

Medical Image Scan Segmentation

and Intelligent Visual Content

Generation—A Concise Overview.

Electronics 2024, 13, 746. https://

doi.org/10.3390/electronics13040746

Academic Editor: Juan M. Corchado

Received: 8 January 2024

Revised: 7 February 2024

Accepted: 8 February 2024

Published: 13 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Systematic Review

Artificial Intelligence-Based Algorithms in Medical Image Scan
Segmentation and Intelligent Visual Content Generation—A
Concise Overview
Zofia Rudnicka, Janusz Szczepanski and Agnieszka Pregowska *

Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B,
02-106 Warsaw, Poland; zrudnick@ippt.pan.pl (Z.R.); jszczepa@ippt.pan.pl (J.S.)
* Correspondence: aprego@ippt.pan.pl; Tel.: +48-22-826-1281 (ext. 412)

Abstract: Recently, artificial intelligence (AI)-based algorithms have revolutionized the medical
image segmentation processes. Thus, the precise segmentation of organs and their lesions may
contribute to an efficient diagnostics process and a more effective selection of targeted therapies,
as well as increasing the effectiveness of the training process. In this context, AI may contribute to
the automatization of the image scan segmentation process and increase the quality of the resulting
3D objects, which may lead to the generation of more realistic virtual objects. In this paper, we
focus on the AI-based solutions applied in medical image scan segmentation and intelligent visual
content generation, i.e., computer-generated three-dimensional (3D) images in the context of extended
reality (XR). We consider different types of neural networks used with a special emphasis on the
learning rules applied, taking into account algorithm accuracy and performance, as well as open data
availability. This paper attempts to summarize the current development of AI-based segmentation
methods in medical imaging and intelligent visual content generation that are applied in XR. It
concludes with possible developments and open challenges in AI applications in extended reality-
based solutions. Finally, future lines of research and development directions of artificial intelligence
applications, both in medical image segmentation and extended reality-based medical solutions,
are discussed.

Keywords: artificial intelligence; extended reality; medical image scan segmentation

1. Introduction

The human brain, a paramount example of evolutionary biological sophistication,
transcends its anatomical categorization. Constituted by an estimated 86 billion neurons
linked through an intricate web of synapses (ranging in the trillions), it is the epicenter of
our cognitive, emotional, and consciousness-related functions [1]. This masterful structure
of the central nervous system represents a nexus of myriad neurobiological processes,
intricately overseeing sensory input conversion, motor responses, and advanced cognitive
functionalities. As a product of relentless evolutionary adaptations spanning millions of
years, the brain epitomizes the apex of neurobiological optimization, synergizing complex
neural circuitry with higher-order cognitive undertakings such as cognitive reasoning,
emotional homeostasis, and the intricate processes of memory encoding, storage, and
retrieval [1–3]. Thus, the human brain is a super-complex system whose functioning
and intelligence depend rather on the type of neurons (depending on their role in the
brain), their connections, and the way of supplying energy to neurons than the number
of neurons [2]. It is an ideal reference model for the foundations of Artificial Intelligence
(AI) [3,4]. Despite many advances, we are unsure of human brain complexity. Thus, the
study of the foundations of natural intelligence may contribute to both the understanding
of the general mechanics of intelligence regarding pervasive brain-inspired systems [5,6],
and the formulation of intelligent entities. At the moment, artificial intelligence is far
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from replicating the entire human brain. Certain aspects of neural networks and cognitive
functions have played a key role in developing AI models. First, the structure of the
neural network reflects the interconnections of neurons in the brain. Consequently, the
AI-based model can process information in a hierarchical and interconnected way (pattern
recognition and decision-making). Also, the process of training neural networks itself
is inspired by the adaptive nature of human cognition. With the development of AI,
including deep learning, algorithms are becoming more precise, faster, and able to faithfully
reproduce the processes taking place in the human brain. Indeed, AI is thus rapidly
permeating virtually all aspects of everyday life. However, it may also be responsible for
the introduction of errors in decision-making processes such as those related to bias in
algorithms, deriving in particular from disproportionate and overrepresentation of certain
data in electronic databases. A ready-made dataset may include built-in biases or biases
introduced by the data scientist in the prefiltering step [7]. In turn, storing information and
recalling information in networks is based on the model of human memory [8]. Another
important aspect of AI-based models is their computational efficiency. The human brain can
perform multiple tasks simultaneously, which has led to parallel processing architectures
in AI systems to reduce the amount of resources needed for computation [9]. However, all
of the above aspects of artificial intelligence are still at an early stage of development and
require improvement.

Thus, processing and analysis of biomedical data for diagnostic purposes is a multi-
disciplinary field that combines AI, machine learning (ML), biostatistics, and time series
analysis, as well as statistical physics and algebra (e.g., graph theory) [3]. Variables derived
from biomedical phenomena can be described in several ways and in different domains
(time, frequency, spectral values, spaces of states describing the biological system), depend-
ing on the characteristics and type of signal. Effective diagnosis of the early stages of the
disease, as well as the determination of disease development trends, is a very difficult
issue that requires taking into account many factors and parameters. Therefore, the state
spaces of biomedical signals are huge and impossible to fully search, analyze, and classify
even with the use of powerful computational resources. Therefore, it is necessary to use
artificial intelligence, in particular bio-inspired AI methods, to limit research to a smaller
but significant part of the state space.

Recently, computer-generated three-dimensional (3D) images have become increas-
ingly important in medical diagnostics [10,11]. The applications of 3D imaging in medical
diagnostics enable increased spatial awareness of users. Traditional images can flatten or
distort anatomical features, which can make accurate assessment of relationships between
structures much more difficult, thus making an accurate diagnosis. For example, it allows
one to plan the course of surgery based on 3D reconstruction of the patient’s body or its
parts. Such preoperative knowledge can significantly improve the precision and success of
surgery, reducing the risk of complications. Additionally, 3D imaging of complex diseases
and pathologies allows for better visualization of complex structures. It can also have an
educational function for both students and patients. In particular, the so-called extended
reality (XR) Metaverse is increasingly used in health care and medical education, while it
enables a deeper experience of the virtual world, especially through the development of
depth perception, including the rendering of several modalities like vision, touch, and hear-
ing [12]. In fact, medical images have different modalities, and their accurate classification
at the pixel level enables the accurate identification of disorders and abnormalities [13,14].
However, creating a 3D model of organs and/or their abnormalities is time-consuming
and is often done manually or semiautomatically [15]. AI can automate this process and
also contribute to increasing the quality of the resulting 3D objects [16,17] as well as visual
content in the metaverse [4,18]. To give the users a real sense of visual immersion, the devel-
opers should implement virtual objects of high quality [19]. In the context of medicine, it is
combined with good-quality medical data and their classification/segmentation algorithms
with high accuracy to faithfully reproduce the content in virtual three dimensions.
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In this study, we aim to determine existing research gaps in the area of broadly
understood medicine, including clinical trials in the application of explainable artificial in-
telligence. For that reason, this paper focuses on an overview of artificial intelligence-based
algorithms in medical image scan segmentation and intelligent visual content generation
in extended reality, including different types of neural networks used and learning rules,
taking into account mathematical/theoretical foundations, algorithm accuracy, and perfor-
mance, as well as open data availability. Specifically, we aim to answer the following re-
search questions. Can AI-based algorithms be used for the accurate segmentation of medical
data? How can AI-based algorithms be beneficial in extended reality-based technologies?

2. Materials and Methods

The methodology of the systematic review was based on the PRISMA statement,
which was published in several journals [20], and its extension—PRISMA-S [21]. We
considered recent publications, reports, protocols, and review papers from Scopus and
Web of Science databases. The keywords were artificial intelligence, machine learning,
extended reality, mixed reality (MR), virtual reality (VR), metaverse, learning algorithms,
learning rules, signal classification, signal segmentation, medical image scan segmentation,
segmentation algorithms, classification algorithms, and their variations. The selected
sources were analyzed in terms of compliance with the analyzed topic, and then their
contribution to medical image scan segmentation. First, the obtained title and abstract
were independently evaluated by the authors. The duplicated records have been removed.
Moreover, we have considered the inclusion of criteria-like publications in the form of
journal papers, books, and proceedings, as well as technical reports. The search was
limited to full-text articles in English, including electronic publications before printing.
Also, exclusion criteria like PhD theses and materials not related to medical image scan
segmentation and artificial intelligence-based algorithms have been adopted. Subsequently,
articles meeting the criteria were retrieved and analyzed. The documents used in this study
were selected based on the procedure presented in Figure 1. In the first step, duplicate
records and resources not relevant to the topic of the conducted study have been removed.
Next, the resources whose titles and abstracts were not relevant to the topic have been
excluded. Then, the resources that were not retrieved were removed from the study. In
the end, conference papers, reviews of predominant areas outside the study topic, and
sources that do not contain information about the learning algorithms used have been
excluded. Finally, 213 documents were taken into account. The current study has the
following limitations: (1) the exclusion of resources without information concerning critical
information like neural networks, neuron models, information details in datasets, input,
and output parameters, and learning rules; (2) the sources included were designed mainly
retrospectively, and most of the research is laboratory-based in nature and has not entered
clinical practice; (3) the study takes into account Scopus and Web of Science databases
(however, this ensures the integrity of the dataset); and (4) potential language bias (i.e.,
conducted of comprehensive search, only English-language resources).

In this study, we concentrate on the theoretical foundation of neural communication,
the model of neurons, the type of neural networks, and learning rules, with a special empha-
sis on their application in medical image scan segmentation and intelligent visual content
generation. We analyzed artificial neural networks (ANNs), convolutional neural networks
(CNNs), recurrent neural networks (RNNs), spiking neural networks (SNNs), generative
adversarial networks (GANs), graph neural networks (GNNs), and “transformers.” The
first one is the simplest neuron model (i.e., perceptions) and can process the information
only in one direction. The second one consists of multilayer perceptrons and contains one
or more convolutional layers that are responsible for the creation of feature maps, which
are subjected to nonlinear processing. RNNs save the output to the processing nodes and
feed the result back into the network (bidirectional information processing). The last type
is closest to the real nervous system. SNNs transmit the information when the membrane
potential of a neuron does not reach the threshold in every cycle of propagation like other
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listed neural networks. Another field that we analyzed in the context of medicine is learn-
ing rules, including backpropagation (i.e., in which the weight of the network is calculated
according to the chain rule of the partial derivatives of the error function), ANN–SNN
conversion (i.e., transforming SNNs into ANNs and application of the learning rules that
are efficient in ANNs), supervised Hebbian learning (i.e., the postulate based on the rule
that when the human brain is learning, the neurons activate), reinforcement learning with
supervised models (i.e., it enables monitoring of the reaction on the learning rule), the
chronotron (i.e., learning rules that take into account both spiking neuron and the time of
spiking), and biologically inspired network learning algorithms.
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3. Neural Communication

Neurons, which are basic brain building blocks, function as the core computational
units of the brain, underpinning the vast expanse of conscious and subconscious processes,
and defining our neural identity with each electrochemical interaction [16]. Neurons com-
municate with other neurons and non-neuronal cells like muscles and glands by biological
connections called “chemical synapses”, which are the communication points, by which
sending nerve cells called presynaptic neurons transmit the message to receiving nerve
cells called the postsynaptic neurons. The presynaptic neurons release neurotransmitters,
a diverse group of chemicals, into the synaptic cleft (i.e., the small gap at which neurons
communicate). Following the release, these compounds traverse the synaptic gap, interact
with receptors on the postsynaptic membrane, and elicit a series of intracellular events,
potentially leading to the generation of an action potential, a transient depolarizing event
propagated along the neuronal membrane.

Since the famous experiments of Adrian [22–24], it is assumed that in the nervous
systems (including the brain), information is transmitted through weak electric currents
(in the order of 100 mV), in particular employing action potentials (spikes) that are a
transient, sudden (1–2 millisecond) change in the membrane potential of the cell/neuron
associated with the transmission of information [25]. The stimulus for the creation of an
action potential is a change in the electric potential in the cell’s external environment. A
wandering action potential is called a nerve impulse. In the literature [26,27], it is assumed
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that the sequences of such action potentials, called spike trains, play a key role in the
transmission of information, and the times of appearance of these action potentials play a
significant role. Mathematically, such time sequences can be and are modeled in particular
after digitalization as trajectories (or their variants) of certain stochastic processes (Bernoulli,
Markov, Poisson, . . .) [26–33].

4. Taxonomy of Neural Network Applied in the Medical Image Segmentation Process

The artificial neural networks (ANNs) are constructed with the perceptron neuron
model [34] that is based on the binary decision rule. If the linear weights wi of the sum of
the input signals (input vector xi) exceed the threshold thr, the neuron fires (i.e., the output
is equal to 1) or if not, the output is equal to 0.

The basic input function is described as follows

f (x) =
{

1, if w1x1 + w2x2 + · · ·+ wnxn ≥ thr
0, otherwise

(1)

The output vector of all neurons in the l-th layer can be expressed, as well as the combination
of the linear transformation and nonlinear mapping (i.e., ANN activation values) [29]:

al = h
(

W lal−1
)

, i = 1, . . . , M (2)

where W l is the weight matrix between layer l and l − 1, and h(·) denotes the activation
function, in this case, the rectified linear unit (ReLU) h(x) = x+ = max(0, x) and the
vector al denotes the output of all neurons in the l-th layer. Formula (2) has been quoted
following the designations in [35]. Neuron models from the integrate-and-fire family are
among the simplest; however, they are also the most frequently used. They are classified
as spiking models. From a biophysical point of view, action potentials are the result of
currents flowing through ion channels in the membrane of nerve cells. The integrate-
and-fire neuron model [36,37] focuses on the dynamics of these currents and the resulting
changes in membrane potential. Therefore, despite numerous simplifications, these models
can capture the essence of neuronal behavior in terms of dynamic systems.

The concept of integrate-and-fire neurons is the following. The input ion stream
depolarizes the neuron’s cell membrane, increasing its electrical potential. An increase
in potential above a certain threshold value Uthr produces an action potential (i.e., an
impulse in the form of Dirac’s delta), and then the membrane potential is reset to the resting
level. The leaky integrate-and-fire (LIF) neuron model [36,37] is an extended model of
the integrate-and-fire neuron, in which the issue of time-independent memory is solved
by equipping the cell membrane with a so-called leak. This mechanism causes ions to
diffuse in the direction of lowering the potential to the resting level or another level
U0 → Uleak < Uthr . Thus, the third generation of neural networks, i.e., the spiking neural
networks (SNNs) [38], are mostly based on the LIF, where the membrane potential U(t) is
determined by the equation

τm
dU
dt

= −[U(t)− Urest] + Rm I(t) (3)

where τm is the membrane time constant of the neuron, Rm is total membrane resistance,
and I(t) is the electric current passing through the electrode. The spiking events are not
explicitly modeled in the LIF model. Instead, when the membrane potential U(t) reaches a
certain threshold Uth (spiking threshold), it is instantaneously reset to a lower value Urest
(reset potential) and the leaky integration process starts a new one with the initial value
Ur. To mention just a little bit of realism regarding the dynamics of the LIF model, it is
possible to add an absolute refractory period ∆absimmediately after U(t) hits Uth. During
the absolute refractory period, U(t) might be clamped to Ur, and the leaky integration
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process is reinitiated following a delay of ∆abs after the spike. More generally, the membrane
potential (3) can be presented as

U(t) = ∑N
i=1 ωi∑ti<t u(t − ti) (4)

where u(t) is a fixed causal temporal kernel that is an operation that allows scale covariance
and scale invariance in a causal–temporal and recursive system over time [39] and ωi, i =
1, . . . , N denotes the strength of neuron synapses. Following Equation (2), the neuron’s
output ml(t) (membrane potential after the neuron firing) can be described as follows [29]

ml(t) = vl(t − 1) + W l xl−1(t) l = 1, . . . , N (5)

where vl denotes the membrane potential before the neuron fires, W l is the weight in the
l-th layer (l denoted layer index), and xl−1(t) is the input from the last layer. Thus, to avoid
the loss of information, the “reset-by-subtraction” mechanism was introduced [40]

vl(t)− vl(t − 1) = W l xl−1(t)− (H(ml(t)− θl)θl) (6)

where vl(t) is membrane potential after firing, ml(t)—membrane potential before firing,
H(ml(t) − θl) refers to the output spikes of all neurons, and θl is a vector of the firing
threshold θl . There are also some applications of the concepts of the meta-neuron model
in SNNs [41]. The main differences between the LIF neuron and meta-neurons stay in the
integration process, where meta-neurons use a second-order ordinary differential equation
and an additional hidden variable. The basic differences between ANNs and SNNs (taking
into account the type of neuron models) are presented in Figure 2. Thus, the crucial
difference between ANNs and SNNs is the fact that ANNs use continuous activation
functions and represent information with continuous values, while SNNs use a spiking
model, conveying information through discrete spikes in time.
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4.1. Convolutional Neural Network

The most commonly used deep neural network (DNN) in medical image classification
is the two-dimensional (2D) convolutional neural network (CNN) [42,43]. In Figure 3,
the basic scheme of the CNN is presented. It consists of three layers: input, output, and
hidden. The principle of CNN operation is based on linear algebra, in particular matrix
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multiplication. CNNs consist of three types of layers: a convolutional layer, a pooling layer,
and a fully connected layer. In fact, most computations are performed in the convolutional
layer or layers. The image (pixels) is converted into binary values and patterns are searched.
Every convolutional layer operates a dot product between two matrices, i.e., one matrix is a
set of learnable parameters (kernel), and the second matrix is a limited part of the receptive
field. Each subsequent layer contains a filter/kernel that allows one to classify features
with greater efficiency. A pooling layer reduces the number of parameters in the input,
which causes the loss of part of the information calculated in the common layer/layers;
however, it allows for improvement in the efficiency of the CNN network. This operation is
performed by sliding windows [44]. Next, the output of these two layers is transformed into
a one-dimensional vector, i.e., input to the fully connected layer. In this last type of layer,
image classification based on the features extracted in the previous layers is performed,
i.e., the object in the image is recognized. The output y(k)i,j from CNNs can be described
as follows

y(k)i,j = σ(∑L
l=1 ∑M

m=1 x(l)i+l−1,j+m−1w(k)
l.m + b(k)) (7)

where x(l)i,j denotes input to the network at the spatial location (i, j), σ is the activation

function, w(k)
l.m is the weight of the mth kernel at the lth channel producing the kth feature

map, and b(k) is the bias for the kth feature map.
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In the case of large datasets, CNN achieves high efficiency and is resistant to noise [45].
The crucial disadvantages of CNNs in image processing are high computational require-
ments and difficulties in achieving high efficiency in the case of small datasets (i.e., if
the dataset is too small, the network may overfit to training data and poorly recognize
new data).

4.2. Recurrent Neural Network

Another neural network commonly applied in medical data analysis is the recurrent
neural network [46]. In Figure 4, the basic scheme of the RNN is presented. This type of
network contains at least one feedback connection. The network presented in Figure 3
consists of three layers—input, output, and hidden—as well as a feedback connection. The
output of RNN can be expressed as [47]

yi = Why H(Whhhi−1 + Wxhxi + bh)hi + by (8)

where xi, i = 1, . . . , T is the input sequence of T states (xi, . . . , xT) with xi ∈ Rd, Wxh , Why ,
Whh denotes weight matrices, bh, by are bias vectors, and H is the nonlinear activation
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function, for example, ReLU, sigmoid f (x) = 1
1+e−x , Tanh function (hyperbolic tangent)

f (x) = ex−e−x

ex+e−x . The network operation is recursive since the hidden layer state depends on
the current input and the previous state of the network. Thus, the hidden state hi−1 is the
memory of past inputs.
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Thus, the RNN can operate on the sequential dataset and has an internal memory.
It may have many inputs. However, RNNs exhibit learning-related problems, namely,
vanishing gradients (i.e., in the case of small gradients, the updates of parameters are
irrelevant) or exploding gradients (i.e., superposition of large error gradients leading to
large parameter updates). These contribute to the long training process, low level of
accuracy, and low network performance.

4.3. Spiking Neural Networks

Besides the artificial neural networks, i.e., CNNs, and RNNs, one can also be applied to
the medical signals’ bio-inspired neural networks, such as spiking neural networks [47,48].
In Figure 5, the basic scheme of the SNN is presented. It consists of three layers: input, out-
put, and hidden. SNNs encode information taking into account spike signals, and shells are
promising in effectuating more complicated tasks, while more spatiotemporal information
is encoded with spike patterns [49]. They are mostly based on the LIF neuron model. SNNs
were formulated to map organic neurons, i.e., the appearance of the presynaptic spike at
synapse triggers the input signal i(t) (the value of the current) that in simplified cases can
be written as follows

i(t) =
∫ ∞

0
Sj(s − t) exp(

−s
τs

)ds (9)

where τs denotes synaptic time constant, Sj is a presynaptic spike train, and t is time [50].
In contrast, the majority of DNNs do not take into account temporal dynamics [51]. In fact,
SNNs show promising capability in playing a similar role as living brains. Moreover, the bi-
nary activation in SNNs enables the development of dedicated hardware for neuromorphic
computing [52]. The potential benefits are low energy usage and greater parallelizability
due to the local interactions.
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5. Learning Algorithms

The heart of artificial intelligence is its learning algorithms. At their core, they strive
to automate the learning process, enabling machines to recognize patterns, make decisions,
and predict outcomes based on data. Their design is often a balance between theoretical
rigor and practical applicability. While mathematics and statistics provide the foundation,
translating these into algorithms that can operate on vast and diverse datasets requires
creative programming skills [28]. One can distinguish many types of network training
algorithms [53]. Below, we briefly discuss the most important of them, taking into account
the theoretical foundations.

5.1. Backpropagation Algorithm

The most commonly used learning algorithm is the backpropagation (BP) algorithm.
It overweights optimizations via error propagation in the neural networks. BP plays a
pivotal role in enabling neural networks to recognize complex and nonlinear patterns from
large datasets [29,54,55]. From the mathematical point of view, it is a calculation of the cost
function, which minimizes the calculated error of the output using gradient descent or the
delta rule [56]. It can be split into three stages: forward calculation, backward calculation,
and computing the updated biases and weights. The input to the hidden layer Hj is the
weighted sum of the outputs of the input neurons and can be described as [57]

Hj = bin + ∑n
i=1 xiwij (10)

where xi is the input to the network (input layer), n is the number of neurons in the input
layer, bin is the bias input layer, and wij denotes the weight associated with the i-th input
neuron and the j-th hidden neuron. The output yk is as follows

yk = bh + ∑m
j=1 wjkF(H(j)) (11)

where F(H(j)) is a transfer function, k is the number of neurons in the hidden layer, and bh
is the bias of the hidden layer. The most commonly used transfer function is the sigmoid
transfer function F(H(j)) = 1

1+e−(H(j)) . The backpropagation algorithm is especially effective
when used in multilayered neural architectures such as feed-forward neural networks,
convolutional neural networks, and recurrent neural networks [32]. In image recognition,
CNNs, energized by BP, can independently identify hierarchical features, from basic edges
to detailed structures. Similarly, RNNs, amplified by BP, are adept at sequence-driven
tasks like machine translation or speech recognition, as they incorporate previous data to
influence present outputs. It is one of the most effective deep learning methods. However,
BP requires large amounts of data and enormous computational resources.
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5.2. ANN–SNN Conversion

Artificial neural networks and spiking neural networks are both computational models
inspired by biological neural networks. While ANNs have been the mainstream for most
deep learning applications due to their simplicity and effectiveness, SNNs are gaining
traction because they mimic the behavior of real neurons more closely by using spikes or
binary events for communication. To obtain similar accuracy for the SNN-based algorithm
as the algorithm using ANN, for example, the BP-type training rule consumes a lot of
hardware resources. The already existing platforms have limited optimization possibilities.
Thus, the conversion of ANNs to SNNs seeks to harness the energy efficiency and bio-
realism of SNNs without reinventing the training methodologies [34], while it is based
on the ReLU activation function and LIF neuron model [58]. The basic principle of the
conversion of ANNs to SNNs is mapping the activation value of the ANN neuron to the
average postsynaptic potential (in fact, firing rate) of SNN neurons, and the change in
membrane potential (i.e., the basic function of spiking neurons) can be expressed by the
combination of Equations (2) and (6) [35]

vl(t)− vl(t − 1) = Wlxl−1(t)− sl(t)θl (12)

Here, sl(t) refers to the output spikes of all neurons in layer l at time t.
Tuning the right thresholds is paramount for the SNN to effectively and accurately

represent information. Incorrectly set thresholds could lead to spiking that is either too
frequent or too rare, potentially affecting the accuracy of the SNN post-conversion [41].
On the other hand, the neuromorphic hardware platforms that support SNNs natively
can primarily offer energy efficiency benefits by converting ANNs to SNNs. Due to their
event-driven nature, SNNs can be more computationally efficient [42]. However, the
challenge lies in maintaining accuracy post-conversion. Some information might be lost
during the transition, and not all ANN architectures and layers neatly convert to their
SNN equivalents. The conversion from ANNs to SNNs is a promising direction, merging
the advanced training methodologies of ANNs with the energy efficiency of SNNs. As
we delve deeper into the realm of neuromorphic computing, this conversion process
will play a pivotal role in bridging traditional deep learning with biologically inspired
neural models [43,44].

5.3. Supervised Hebbian Learning (SHL)

Taking into account artificial intelligence, supervised Hebbian learning (SHL) can
be described as a general methodology for weight changes [58]. Thus, this weight in-
creases when two neurons fire at the same time, while it decreases when two neurons fire
independently. According to this rule, the change in weight can be written as

∆w = η(tout − td) (13)

where η is the learning rate (in fact, the small scalar that may vary with time, η > 0),
tout the actual time of the postsynaptic spike, while td is the time of firing of the second
presynaptic spike [59,60]. The crucial disadvantage of Hebbian learning is the fact that
when the number of hidden layers increases, the efficiency decreases, while in the case of
four layers, it is still competitive [52].

5.4. Reinforcement Learning with Supervised Models

According to the additional constraints in the SHL rule, reinforcement learning with
supervised models (ReSuMe) was proposed [60]. ReSuMe is a dynamic hybrid learning
paradigm. It effectively combines the resilience of reinforcement learning (RL) with the
precision of supervised learning (SL). This fusion empowers ReSuMe to leverage feedback-
driven mechanisms inherent in RL and take advantage of labeled guidance typical of
SL [43–45]. The difference with SHL is that the learning signal is expected not to have or
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have a marginal direct effect on the value of the postsynaptic somatic membrane poten-
tial [61–63], and thus the synaptic weights are modified as follows

d
dt

wji(t) = a[Sd(t)− Sj(t)]Si(t) (14)

where a denotes learning rate, Sd is desired/targeted spike train, Sj(t) is the output of the
network (spike train), and Si(t) expresses the low-pass filtered input spike train. ReSuMe
guides one of its most salient features of exploration. By leveraging labeled data via SL,
ReSuMe can effectively steer RL exploration, ensuring agents avoid falling into the trap
of suboptimal policies. The hybrid nature of ReSuMe also grants it a unique resilience,
especially in the face of noisy data or in reward-scarce environments. Moreover, its adapt-
ability is noteworthy, making it an ideal choice for tasks that combine immediate feedback
(through SL) with long-term strategic maneuvers (through RL). However, like all things,
ReSuMe is not without challenges. A potential bottleneck in ReSuMe is computational
complexity, as managing both RL and SL can sometimes strain computational resources.
Another challenge is the precise tuning of the a coefficient. The key is to find a balance
where neither RL nor SL overly dominates the learning process. By melding immediate
feedback from supervised learning with a deep reinforcement learning strategy, ReSuMe
establishes itself as a formidable tool in machine learning [55,56,58].

5.5. Chronotron

The chronotron, by its essence, challenges and reshapes our understanding of how
information can be encoded and processed in neural structures [56,61]. Traditional neural
models have predominantly focused on the spatial domain, emphasizing the architecture
and interconnections between neurons. While this spatial component is undeniably critical,
it offers only a part of the full informational symphony that the brain plays. Just as the
rhythm and cadence of a song contribute as much to its essence as its melody, in the
vast theater of the brain, timing is not just a factor; it is a storyteller in its own right.
The brilliance of the chronotron lies in its ability to discern and respond to this temporal
narrative. Unlike its counterparts, which often treat time as a secondary parameter, the
chronotron places it center stage. As a consequence, it acknowledges and leverages the
intricate interplay of spatial and temporal dynamics in neural computation. This means
that it not only considers which neurons are firing but also pays meticulous attention to
when they fire relating to one another. Thus, the membrane potential is

u(t) = η(t) + ∑j wj∑tf
j≤t

εj(t, tf
j) (15)

where the η model’s refractoriness is caused by the past presynaptic spikes, wj is the

synaptic efficacy, tf
j is the time of appearance of the f-th presynaptic spike on the j synapse,

and εj

(
t, tf

j

)
denotes a normalized kernel [64]. When u(t) reaches the threshold level, a

spike is fired, and u(t) is reset to the value of the reset potential. In this approach, it is
crucial to find the appropriate error functions, i.e., such an error function that enables
minimization with a gradient descent method [65]. The advantage of this learning rule is
the fact that it uses the same coding for inputs and outputs. The chronotron’s hallmark,
its granularity, can sometimes cause a surge in computational demands, especially during
intense training. Like many cutting-edge neural frameworks, harnessing the chronotron’s
full potential can be intricate, necessitating fine-tuned parameters and rich, well-timed data.

5.6. Bio-Inspired Learning Algorithms

Brain-inspired artificial intelligence approaches—in particular, spiking neural
networks—are becoming a promising energy-efficient alternative to traditional artificial
neural networks [66]. However, the performance gap between SNNs and ANNs has been a
significant obstacle to wild SNN applications (applicable SNNs). To fully use the potential
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of SNNs, including the detection of irregularities in biomedical signals and designing more
specific networks, the mechanisms of their training should be improved, and one of the
possible directions of development is bio-inspired learning algorithms. Below, we briefly
discuss the most important of them.

5.6.1. Spike Timing Dependent Plasticity

Spike timing-dependent plasticity (STDP) is rooted in the idea that the precise timing of
neural spikes critically affects changes in synaptic strength [61,67]. This principle highlights
the intricate dance between time and neural activity, showcasing the dynamics of our neural
circuits. This biologically plausible learning rule is a timing-dependent specialization of
Hebbian learning (13) [68]. STDP sheds light on the intricate interplay between timing and
synaptic modification. It is based on the change in synaptic weight function

∆W = η(1 + ζ)H(W; tpre − tpost) (16)

where η denotes the learning speed, ζ is Gaussian white noise with zero mean, while
H(W; tpre − tpost) is the function that determines the long-term potentiation (LTP, i.e., presy-
naptic and postsynaptic neurons emit a high rate) and depression (LTD, i.e., presynaptic
neurons emit a high rate) in the time window tpre − tpost [69]

H(W; tpre − tpost)

 a+(W)exp (−|tpre−tpost|
τ+

) for tpre − tpost < 0

−a−(W)exp (−|tpre−tpost|
τ−

) for tpre − tpost > 0
(17)

where a(W) is a scaling function that determines the weight dependence, while τ denotes
the time constant for depression [66–69]. STDP’s significance is underpinned by its numer-
ous advantages. Chiefly, it offers a biologically authentic model by mimicking the temporal
dynamics observed in real neural systems. Furthermore, its event-centric nature promotes
unsupervised learning, enabling networks to autonomously adjust based on the temporal
patterns present in input data. This time-based sensitivity equips STDP to adeptly process
data with spatiotemporal attributes and detect intricate temporal relationships within
neuronal signals [70,71]. However, STDP is not without its complexities. A prominent
challenge is the fine-tuning of parameters. The exact values assigned to constants like
a(w) and τ can substantially dictate the behavior and efficacy of STDP-informed networks.
Balancing these values requires a meticulous approach. Moreover, the precision demanded
by STDP’s time-centric nature often calls for higher computational rigor, especially within
simulation contexts. STDP stands as a testament to the elegance and intricacy of neural
systems. By emphasizing the role of spike timing, STDP offers a vivid depiction of how
synaptic interactions evolve [72,73].

5.6.2. Spike-Driven Synaptic Plasticity

Spike-driven synaptic plasticity (SDSP) offers the ability to elucidate the causality in
neural communication. It operates on a fundamental principle: the sequence and timing of
spikes determine whether a synapse strengthens or weakens. If a neuron consistently fires
just before its downstream counterpart, it is a strong indication of its influential role in the
latter’s activity. This “pre-before-post” firing often leads to synaptic strengthening, cement-
ing the relationship between the two neurons. Conversely, if the sequence is reversed, with
the downstream neuron firing before its predecessor, the connection may weaken, reflecting
a lack of causal influence [74,75]. This causative aspect of SDSP provides valuable insights
into the learning mechanisms of the brain. It suggests that our neural circuits are continu-
ally evolving, adjusting their connections based on the flow of spike-based information.
Such adaptability ensures that our brains remain receptive to new information, enabling
us to learn and adjust to ever-changing environments. Moreover, SDSP emphasizes the
significance of precise spike timing. In the realm of neural computation, milliseconds
matter. Small shifts in spike timing can change a synapse’s fate, showcasing the brain’s
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precision and sensitivity. This meticulousness in spike-driven modifications underscores
the importance of timing in neural computations, hinting at the brain’s capacity to encode
and process temporal patterns with remarkable accuracy [76–79]. In this learning rule, the
changes in synaptic weights can be expressed as [70]

∆w =

 η+ + e
−|∆t|
τ+ if ∆t > 0

η− + e
−|∆t|
τ− , otherwise

(18)

where η+ > 0 and η− < 0 denote the learning parameters, τ+ and τ− are time constraints,
and ∆t is the difference between post- and presynaptic spikes. This representation, while
streamlined, encapsulates the principle that the mere presence of a spike can induce
modifications in the synaptic weight, either strengthening or weakening the connection
based on the specific neural context and the directionality of the spike’s influence [76].

The appeal of spike-driven synaptic plasticity is manifold. Its primary virtue is its
biological relevance. Focusing on individual spike occurrences mirrors the granular events
that take place in real neural systems. Such an approach facilitates the modeling of neural
networks in scenarios where individual spike occurrences are of paramount importance.
Furthermore, by anchoring plasticity on singular events, this model is inherently suitable
for real-time learning and rapid adaptability in dynamic environments [80].

A crucial challenge lies in the accurate capture and interpretation of individual spikes,
especially in densely firing neural environments. Moreover, the plasticity model’s sensitiv-
ity to single events means that it can be susceptible to noise, requiring sophisticated filtering
mechanisms to discern genuine learning events from spurious spikes. SDS elucidates the
profound influence of singular neuronal events on the grand tapestry of neural learning
and adaptation [81].

5.6.3. Tempotron Learning Rule

One of the most interesting biologically inspired learning algorithms is the tempotron
principle [66,81–83]. It is designed to adapt synaptic weights based on the temporally
precise patterns of incoming spikes, rather than only the frequency of such spikes. While
traditional neural models might emphasize synaptic weights or connection topologies, tem-
potron underscores that the “when” of a neural event can be as informative, if not more so,
than the “where” or “how often” [84–86]. The tempotron learning rule is based on the LIF
neuron model. It fires when the membrane potential described by Equation (4) exceeds the
threshold (binary decision). Thus, one can define the potential of the neuron’s membrane
as a weighted sum of postsynaptic potentials (PSPs) from all appearance spikes [83]

v(t) = ∑i ωi∑ti
K(t − ti) + Vrest (19)

where ωi denotes synaptic efficacy, ti is the firing time of the ith afferents, Vrest is resting
potential, and K is the normalized PSP kernel

K(t − ti) = V0(exp
(
−(t − ti)

τm

)
− exp(

−(t − ti)

τs
)) (20)

where τm is the decay time constant of membrane integration, while τs denotes the decay
time constant of synaptic currents, while V0 normalizes the PSP such that the maximum
kernel value is equal to 1. The neuron is fired when the value of the potential of the neuron’s
membrane described by Equation (19) is greater than the value of the firing threshold. Next,
the potential of the neuron’s membrane described by Equation (19) smoothly decreases to
the value of Vrest. In the case of a segmentation/classification task, the input to the neuron
may belong to one of two classes, namely, P+ when a stimulus occurs (i.e., the pattern
is presented, the neuron should fire), and P− when the pattern is presented, the neuron
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should not fired. Each input consists of N spike trains. In turn, the tempotron learning
rules are as follows

∆ωi = λ∑ti<tmax
K(tmax − ti) (21)

where tmax is the time when the potential of the neuron’s membrane (19) reaches a maxi-
mum value, while λ is the constant that is greater than zero in the case of P+ and smaller
than zero in the case P−. In this operation, tempotron introduces gradient-descent dynam-
ics, i.e., minimizing the cost function for each input pattern and measuring the maximum
voltage that is generated by the erroneous patterns. In comparison to the STDP learning
rule, tempotron can make the appropriate decision under a supervisory signal by tuning
fewer parameters than STDP. Thus, tempotron uses LTP and LTD mechanisms like STDP.
The advantage of the tempotron learning rule is the speed of learning.

6. Neural Networks and Learning Algorithms in the Medical Image
Segmentation Process

Image segmentation plays a crucial role in various applications, including medical
diagnosis supported by image analysis and the creation of virtual objects such as medical
digital twins (DTs) of organs [72,73], holograms of human organs [87,88], and virtual
medical simulators [74,89]. The image segmentation process can be categorized into
semantic segmentation, which involves assigning a label or category to each pixel, instance
segmentation, which entails identifying and separating individual objects in an image and
assigning a label to each, and panoptic segmentation, which encompasses more complex
tasks combining both semantic and instance segmentation methods [83,84]. The application
of AI enables increased efficiency and speed of these processes [90]. In Table 1, a comparison
of the AI-based algorithms applied in medical image scan segmentation, taking into account
the neuron model, the type of neural network, learning rule, and biological plausibility, is
shown. It turned out that the most commonly used in image segmentation are CNNs—in
particular, Unet architecture and its variations [77,78,80,81,91]. In [79], the authors modified
this neural network structure by adding dense and nested skip connections (UNet++),
while [92] added the residual blocks and attention modules to enable the network to learn
deeper features and increase the effectiveness of segmentation. To connect the efficiency of
segmentation with access to global semantic information, often CNNs are combined with
transformer blocks [91–94]. Another CNN-based algorithm commonly used in medical
image segmentation is “you only look once” (YOLO), which is open-source software used
under the GNU General Public License v3.0 [95,96]. It uses one fully connected layer,
the number (depending on the version) of convolution layers that are pretrained with
the CNN (YOLO v1 ImageNet, YOLO v2 Darknet-19, YOLO v3 Darknet-53, YOLO v4
CSPNet, YOLO v5 EfficientNet, YOLO v6 EfficientNet-L2, YOLO v7 ResNET, YOLO v8
RestNet), and a pooling layer. The algorithm divides the input in the form of a photo
into specific segmentations and then uses CNN to generate bounding boxes and class
predictions. Recently, in image classification, SNN has become more popular [84,85] due to
its low power consumption. However, SNN training rules require refinement to achieve
ANN accuracy. The development of an efficient, automatic segmentation procedure is of
high importance [97].

Recently, transformer networks that were designed for machine translation (natural
language processing tasks) have been applied in the field of image processing, including
medical image processing [98]. This architecture is based on a network normalization
feed-forward network and residual structures (namely, multi-head attention (MHA) and
position-wise feed-forward networks), while it does not contain any convolutions [99].
Such an architecture enables these to achieve a powerful ability to represent long-term
receivables. Thus, the architecture of transformers in the field of computer vision contains
only vision transformers (ViTs) and Swin transformers [100,101]. The MHA has multiple
attention modules that learn different features in different subspaces. In [102], it was shown
that transformers may have a higher level of efficiency in the field of image processing
compared to CNNs, taking into account learning that is applied to large datasets. To
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increase the applicability and accuracy of transformers in the area of image processing,
data augmentation and regularization strategies are used, among others [103]. On the other
hand, vision transformers do not contain inductive biases. Also, the combination of CNNs
and transformers was applied to image processing [104], which contributed to reducing the
consumption of computing resources and training time [105,106]. The main disadvantages
of transformers are the need for commitment of large amounts of computational resources
and the requirements of the long training time.

Generative adversarial networks are applied to medical image fusion [107]. This type
of approach divides the neural networks into two parts. First, generators learn to generate
reliable data. The generated instances become negative examples for training the second
part of the network. Second, discriminators are binary classifiers that learn to distinguish
generators from real data (Figure 6). These consist of two neural networks, a generator,
and a discriminator, engaged in a game-like scenario. The discriminator presents a penalty
for generating meaningful results. The output of the generator is connected directly to the
input of the discriminator. In backpropagation, the discrimination classification determines
the signal that the generator uses to update the weights. In fact, GANs are the parts of
CNNs that are connected in an adversarial fashion. The difference between them is their
approach to getting results. For example, in [108,109], a GAN was successively applied
to the segmentation of retinal and coronary blood vessels with high accuracy. However,
centralized training algorithms can potentially mishandle sensitive information, such as
medical data. Additionally, GANs have significant security issues, such as vulnerabilities
that exploit the real-time nature of the learning process to generate prototype samples
of private training sets [110]. Also, the use of deep neural networks such as CNNs and
GANs is limited by the need to have large annotated datasets, which is quite a challenge,
especially in medicine [111].
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All the above solutions are based on Euclidean space data that have fixed dimensions.
However, data can also be presented in non-Euclidean space (i.e., graphs, namely, a set
of objects (vertices) and relationships between these objects (edges)) [112]. This kind of
dataset has dynamical dimensions, i.e., the input data do not have to be in any particular
order, as in the case of Euclidean space data [113]. Thus, in the field of medical data
processing irregular spatial patterns also occur that may be important from the diagnostics
point of view. The analysis of these patterns is a challenge that has been proposed to be
solved by applying graph neural networks [114–116]. GNNs are based on the convolution
operation in graphs (Figure 7). They consist of three layers: input, output, and two hidden
layers. One disadvantage of GNNs is the fact that they are strongly dependent on the
geometry of the graph. Consequently, the neural network must be trained every time data
are added. In the context of large-image diagnostics, this can make for a less practical
approach. Also, the low computational speed of GNNs, taking into account medical
data processing, contributes to the fact that GNNs need further development for practice
applications. As a solution to improved calculation efficiency, a framework for inductive
representation learning on large graphs, i.e., GraphSAGE, was proposed [117]. Thus, GNNs
can expand the possibilities of training CNNs on non-grid data [118]. In the field of medical
image segmentation, GNNs find particular applications in tissue semantic segmentation in
histopathology images [119–121]. In the case of tumor segmentation, the application of a
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CNN leads to a number of parameters that contribute to the high computational complexity.
Here, the combination of a CNN and GNN is a very promising solution, as in [121]. First, a
two-layer CNN was applied to the creation of the feature maps, and then two GNN layers
were used to selectively filter out the discriminative features.
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Recently, sinusoidal representation networks (SIRENs) were applied to image segmen-
tation. The essence of this approach is based on periodic activation functions for implicit
neural representations. In fact, this AI solution mostly applied a sine periodic activation
function. In [122], they were proposed for the analysis of images, and in [123,124] to seg-
ment medical images (cardiac MRI). However, this approach in the field of medical image
segmentation still requires improvement.

Another interesting algorithm for natural image segmentation that was recently de-
veloped (April 2023) by Meta is the segmentation anything model (SAM) [125,126]. This
AI-based algorithm enables cutting out any object from the image with a single click.
It uses CNNs and transformer-based architectures for image processing. In particular,
transformer-based architectures are applied to extract the features, compute the embedding,
and prompt the encoder. The first attempt has been made to apply it in the field of medical
imaging; however, in medical segmentation, it is still not so accurate in comparison to
other application fields [127,128]. The imperfections of the SAM algorithm in the field of
medical image segmentation are mainly connected to insufficient training data. In [129],
the authors proposed applying the Med SAM Adapter to overcome the above limitations.
Pretraining methods such as masked autoencoder (MAE), contrastive embedding mix-up
(e-Mix), and shuffled embedding prediction (ShED), were applied. There is a lot of work
in the area of medical image segmentation using machine learning, but relatively little
addresses the issue related to the network learning process itself (along with data, a key
element in achieving high accuracy of the process) [130].

Table 1 contains a comparison of neural network architectures, learning algorithms,
and datasets utilized in medical image segmentation. It turned out that the most commonly
used (taking into account the accuracy of prediction) in these areas are still ANNs and
CNNs constructed with perceptrons LIF neuron models and BP learning rules. Thus, the
most commonly used learning algorithms in medical image segmentation are still at a low
level of biological plausibility. On the other hand, in other image segmentation, in particular,
biologically plausible learning algorithms are applied, for example, in the field of images of
handwritten digits [83]. Thus, Table 1 presents works that contain information about the
neuron model, architecture and type of neural network, input and output parameters of
the network, and type of learning algorithm.
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Table 1. Comparison of the AI-based algorithms applied in medical image scan segmentation.

Network Type Neuron Model Average Accuracy (%) Datasets—Training/Testing/Validation
Sets (%) or Training/Testing Sets (%)

Input Parameters Learning Rule Biological Plausibility Ref.

ANN Perceptron 99.10 Mammography images
lack of information

Mammography
images—33 features extracted by
region of interest (ROI)

BP low [131]

CNN Perceptron 98.70 Brain tumor, MRI color images
70/15/15

MRI image scan, 12 features
(mean, standard deviation (SD),
entropy, energy, contract,
homogeneity, correlation, variance,
covariance, root mean square
(RMS), skewness, kurtosis)

BP low [132]

CNN Perceptron 96.00 Echocardiograms
60/40

Disease classification, cardiac
chamber segmentation, viewpoint
classification in echocardiograms

lack of information low [133]

CNN Perceptron 94.58 Brain tumor images
50/25/25

Brain tumor images lack of information low [134]

CNN Perceptron 91.10 Simultaneous IVUS and OCT images IVUS and OCT images lack of information low [135]

CNN Perceptron 98.00 2D ultrasound
49/49/2

Classification of the cardiac view
into 7 classes

lack of information low [136]

CNN Perceptron 93.30 Coronary cross-sectional images
80/20

Detection of motion artifacts in
coronary CCTA, classification of
coronary cross-sectional images

lack of information low [137]

CNN Perceptron 99.00 MRI image scan
60/40

Bounding box localization of LV in
short-axis MRI slices

lack of information low [138]

CNN and doc2vec Perceptron 96.00 Continuous wave Doppler cardiac
valve images
94/4/2

Automatic generation of text for
continuous wave Doppler cardiac
valve images

lack of information low [139]

Deep CNN + complex
data preparation

Perceptron 97.00 Vessel segmentation
lack of information

Proposing a supervised
segmentation technique that uses
a deep neural network and
structured prediction

lack of information low [140]

CNN and
transformer encoders

Perceptron 90.70 Automated cardiac diagnosis challenge
(ACDC), CT image scans from synapse
60/40

CT image scans BP low [141]

CNN and
transformer encoders

Multilayer
perceptron

77.48 (Dice coefficient) Multiorgan segmentation
lack of information

CT image scans—synapse
multiorgan segmentation dataset

BP low [142]
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Table 1. Cont.

Network Type Neuron Model Average Accuracy (%) Datasets—Training/Testing/Validation
Sets (%) or Training/Testing Sets (%)

Input Parameters Learning Rule Biological Plausibility Ref.

CNN and
transformer encoders

Perception 78.41 (Dice coefficient) Multiorgan segmentation
lack of information

CT image scans BP low [99]

CNN and RNN Perceptron 95.24 (REs-Net50)
97.18(IncepnetV3)
98.03 (Dense-Net)

MRI image scan of the brain
80/20

MRI image scan of the brain,
modality, mask images

BP low [143]

CNN and RNN Perceptron 95.74 (REs-Net50)
97.14(DarkNet-53)

Skin image
lack of information

Skin image BP low [144]

SNN LIF 81.95 Baseline T1-weighted whole-brain MRI
image scan
lack of information

Hippocampus section of MRI
image scan

ANN–SNN
conversion

low [145]

SNN LIF 92.89 Burn images
lack of information

256 × 256 burn image encoded
into 24 × 256 × 256 feature maps

BP low [146]

SNN LIF 89.57 Skin images (melanoma and
non-melanoma)
lack of information

Skin images converted into spikes
using Poisson distribution

surrogated
gradient descent

low [147]

SNN LIF 99.60 MRI scan of brain tumors
80/10/10

2D MRI scan of brain tumors YO-LO-2-based
transfer learning

low [148]

SNN LIF 95.17 Microscopic images of breast tumor
lack of information

Microscopic images of breast
tumor

SpikeProp low [149]

GAN Perceptron 83.70 (Dice coefficient)
DRIVE dataset
82.70 (Dice coefficient)
STARE dataset

Segmentation of retinal vessels
lack of information

Dataset for retinal vessel
segmentation: DRIVE dataset and
STARE dataset

BP low [109]

GAN Perceptron 94.60 Segmentation of the blood vessels of the
retinal and the coronary and for the
knee cartilage
lack of information

Datasets for retinal vessel
segmentation: DRIVE dataset and
coronary dataset

BP low [110]

GAN Perceptron 90.71 (Dice coefficient) Brain segmentation
Brain data—MRI dataset
80/20

Brain MRI image scan BP low [109]

Legend: BP—backpropagation, ANN—artificial neural network, SNN—spiking neural network, YOLO—you only look once (algorithm), SpikeProp—supervised learning rule akin to
traditional error backpropagation for a network of spiking neurons with reasonable postsynaptic potentials, MRI—magnetic resonance imaging, OCT—optical coherence tomography,
IVUS—intravascular ultrasound, CCTA—coronary computed tomography angiography, LV—left ventricle, CT—computer tomography, T1-weighted image—the basic pulse sequence in
MRI, it shows the differences in the T1 relaxation times of tissue (T1 relaxation measures of how quickly the net magnetization vector recovers to its ground state), GAN—generative
adversarial network.
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The segmented structures (in this case, organs and their disorders) may be next applied
to the development of the 3D virtual environment [141]. These 3D objects may be imple-
mented through, for example, holograms displayed in a head-mounted display (HDM),
such as mixed-reality glasses in medical diagnostics [150], preoperative imaging [151], sur-
gical assistance [152,153], robotics surgery [154], and medical education [87,88]. However,
the crucial issue is connected with the quality of the obtained segmented structures, and this
process can be significantly accelerated and improved by the use of artificial intelligence.

The crucial issue when an AI-based system is developed is connected to the accuracy
and performance of algorithms. Many metrics have been introduced in image segmen-
tation that enable the evaluation of algorithms. They can be split into two metric types:
binary, which takes into account two types of classification, and multiclass classification, in
which the number of classes is more than two. These metrics have been widely described
in [155,156]. The most commonly used metrics in medical image segmentation is the binary
classifier F-measure or so-called F1 score (also called Dice coefficient) [157], mean absolute
error (MAE) [158], mean-squared error (MSE), root-mean-squared error (RMSE), area under
receiver-operating curve (AUROC) [159], and index of union (IoU) [160].

7. Data Availability

One of the key issues in the development of AI algorithms in the field of medicine is
the availability and quality of data, i.e., access to electronic health records (EHRs) [161,162].
Thus, the medical data should be anonymized. In Table 2, a summary of publicly available
retrospective image scan medical databases is presented. Some authors also provide
anonymized data upon request. It is worth stressing that data, including medical image
scans, are subject to various types of biases [163]. The databases listed in Table 2 do
not contain precise information regarding, for example, the ethnic composition of the
study participants. Their age ranges and gender are usually disclosed. Moreover, another
important issue concerning medical data is connected with internet segmentation errors,
as was pointed out in [164]. The authors discovered that the publicly available dataset
contained duplicate records, which may contribute to the overlearning of some patterns in
AI and ML models, as well as result in false predictions. Also, the random procedure of
splitting the database into training and tasting sets will then influence the results obtained.
As a consequence, this may lead to inflated classification.

Table 2. A summary of publicly available retrospective image scan medical databases.

Database Data Source Data Type Amount of Data Availability

PhysioNet [165] EEG, X-ray images,
polysomnography

Auditory evoked potential EEG biometric
dataset—240 measurements from 20 subjects
Brno University of Technology Smartphone PPG
database (BUT PPG)—12 polysomnographic
recordings
CAP Sleep Database—108 polysomnographic
recordings
CheXmask Database: a large-scale dataset of
anatomical segmentation masks for chest X-ray
images—676,803 chest radiographs
Electroencephalogram and eye-gaze datasets for
robot-assisted surgery performance
evaluation—EEG from 25 subjects
Siena Scalp EEG Database—EEG from
14 subjects

Public
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Table 2. Cont.

Database Data Source Data Type Amount of Data Availability

PhysioNet [165] EEG, X-ray images,
polysomnography

Computed tomography images for intracranial
hemorrhage detection and segmentation—82 CT
after traumatic brain injury (TBI)
A multimodal dental dataset facilitating
machine learning research and clinic
service—574 CBCT images from 389 patients
KURIAS-ECG: a 12-lead electrocardiogram
database with standardized diagnosis
ontology—EEG from 147 subjects
VinDr-PCXR: an open, large-scale pediatric
chest X-ray dataset for interpretation of
common thoracic diseases—adult chest
radiography (CXR) from 9125 subjects
VinDr-SpineXR: A large annotated medical
image dataset for spinal lesions detection and
classification from radiographs—10,466 spine
X-ray images from 5000 studies

Restricted access

National Sleep
Research Resource

[166] Polysomnography Apnea Positive Pressure Long-Term Efficacy
Study—1516 subject
Efficacy Assessment of NOP Agonists in
Non-Human Primates—5 subjects
Maternal Sleep in Pregnancy and the
Fetus—106 subjects
Apnea, Bariatric Surgery, and CPAP
Study—49 subjects
Best Apnea Interventions in
Research—169 subjects
Childhood Adenotonsillectomy
Trial—1243 subjects
Cleveland Children’s Sleep and Health
Study—517 subjects
Cleveland Family Study—735 subjects
Cox and Fell (2020) Sleep Medicine
Reviews—3 subjects
Heart Biomarker Evaluation in Apnea
Treatment—318 subjects
Hispanic Community Health Study/Study of
Latinos—16,415 subjects
Home Positive Airway Pressure—373 subjects
Honolulu-Asia Aging Study of Sleep
Apnea—718 subjects
Learn—3 subjects
Mignot Nature Communications—3000 subjects
MrOS Sleep Study—2237 subjects
NCH Sleep DataBank—3673 subjects
Nulliparous Pregnancy Outcomes Study
monitoring mothers to be—3012 subjects
Sleep Heart Health Study—5804 subjects
Stanford Technology Analytics and Genomics in
Sleep—1881 subjects
Study of Osteoporotic Fractures—461 subjects
Wisconsin Sleep Cohort—1123 subjects

Public on request
(no commercial use)

Open Access Series
of Imaging
Studies—OASIS
Brain

[167] MRI, Alzheimer’s
disease

OASIS-1—416 subjects
OASIS-2—150 subjects
OASIS-3—1379 subjects
OASIS-4—663 subjects

Public on request
(no commercial use)

OpenNeuro [168] MRI, PET, MEG,
EEG, and iEEG
data (various types
of disorders,
depending on the
database)

595 MRI public datasets—23 304 subjects
8 PET public datasets—19 subjects
161 EEG public dataset—6790 subjects
23 iEEG public dataset—550 subjects
32 MEG public dataset—590 subjects

Public
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Table 2. Cont.

Database Data Source Data Type Amount of Data Availability

Brain Tumor
Dataset

[169] MRI, brain tumor MRI—233 subjects Public

Cancer Imaging
Archive (TCIA)

[170] MR, CT, positron
emission
tomography,
computed
radiography,
digital radiography,
nuclear medicine,
other (a category
used in DICOM for
images that do not
fit into the standard
modality
categories),
structured
reporting,
pathology, various

HNSCC-mIF-mIHC-comparison—8 subjects
CT-Phantom4Radiomics—1 subject
Breast-MRI-NACT-Pilot—64 subjects
Adrenal-ACC-Ki67-Seg—53 subjects
CT Lymph Nodes—176 subjects
UCSF-PDGM—495 subjects
UPENN-GBM—630 subjects
Hungarian-Colorectal-Screening—200 subjects
Duke-Breast-Cancer-MRI—922 subjects
Pancreatic-CT-CBCT-SEG—40 subjects
HCC-TACE-Seg—105 subjects
Vestibular-Schwannoma-SEG—242 subjects
ACRIN 6698/I-SPY2 Breast DWI—385 subjects
I-SPY2 Trial—719 subjects
HER2 tumor ROIs—273 subjects
DLBCL-Morphology—209 subjects
CDD-CESM—326 subjects
COVID-19-NY-SBU—1384 subjects
Prostate-Diagnosis—92 subjects
NSCLC-Radiogenomics—211 subjects
CT Images in COVID-19—661 subjects
QIBA-CT-Liver-Phantom—3 subjects
Lung-PET-CT-Dx—363 subjects
QIN-PROSTATE-Repeatability—15 subjects
NSCLC-Radiomics—422 subjects
Prostate-MRI-US-Biopsy—1151 subjects
CRC_FFPE-CODEX_CellNeighs—35 subjects
TCGA-BRCA—139 subjects
TCGA-LIHC—97 subjects
TCGA-LUAD—69 subjects
TCGA-OV—143 subjects
TCGA-KIRC—267 subjects
Lung-Fused-CT-Pathology—6 subjects
AML-Cytomorphology_LMU—200 subjects
Pelvic-Reference-Data—58 subjects
CC-Radiomics-Phantom-3—95 subjects
MiMM_SBILab—5 subjects
LCTSC—60 subjects
QIN Breast DCE-MRI—10 subjects
Osteosarcoma Tumor Assessment—4 subjects
CBIS-DDSM—1566 subjects
QIN LUNG CT—47 subjects
CC-Radiomics-Phantom—17 subjects
PROSTATEx—346 subjects
Prostate Fused-MRI-Pathology—28 subjects
SPIE-AAPM Lung CT Challenge—70 subjects
ISPY1 (ACRIN 6657)—222 subjects
Pancreas-CT—82 subjects
4D-Lung—20 subjects
Soft-tissue-Sarcoma—51 subjects
LungCT-Diagnosis—61 subjects
Lung Phantom—1 subject
Prostate-3T—64 subjects
LIDC-IDRI—1010 subjects
RIDER Phantom PET-CT—20 subjects
RIDER Lung CT—32 subjects
BREAST-diagnosis—88 subjects
CT colonography (ACRIN 6664)—825 subjects

Public (free access,
registration
required)

LUNA16 [171] CT, lung nodules LUNA16- 888 CT scans Public (free access
to all users)

MICCAI 2012
Prostate Challenge

[172] MRI, prostate
imaging

Prostate segmentation in transversal
T2-weighted MR images—50 training cases

Public (free access
to all users)
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Table 2. Cont.

Database Data Source Data Type Amount of Data Availability

IEEE Dataport [173] Ultrasound images,
brain MRI,
ultrawide-field
fluorescein
angiography
images, chest
X-rays,
mammograms, CT,
Lung Image
Database
Consortium, and
thermal images

CNN-based image reconstruction method for
ultrafast ultrasound imaging: 31,000 images
OpenBHB: a multisite brain MRI Dataset for age
prediction and debiasing: >5000—Brain MRI
Benign Breast Tumor Dataset:
83 patients—mammograms
X-ray bone shadow suppression: 4080 images
STROKE: CT series of patients with M1
thrombus before thrombectomy: 88 patients
Automatic lung segmentation results: NextMED
project—718 of the 1012 LIDC-IDRI scans
PRIME-FP20: ultrawide-field fundus
photography vessel segmentation
dataset—15 images
Plantar Thermogram Database for the Study of
Diabetic Foot Complications—122 subjects (DM
group) and 45 subjects (control group)

Part public and
part restricted
(subscription)

AIMI [174] Brain MRI studies,
chest X-rays,
echocardiograms,
CT

BrainMetShare: 156 subjects
CheXlocalize: 700 subjects
BrainMetShare: 156 subjects
COCA—coronary calcium and chest CTs:
not specified
CT pulmonary angiography: not specified
CheXlocalize: 700 subjects
CheXpert: 65,240 subjects
CheXphoto: 3700 subjects
CheXplanation: not specified
DDI—Diverse Dermatology Images:
not specified
EchoNet-Dynamic: 10,030 subjects
EchoNet-LVH: 12,000 subjects
EchoNet-Pediatric: 7643 subjects
LERA—Lower Extremity Radiographs:
182 subjects
MRNet: 1370 subjects
MURA: 14,863 studies
Multimodal Pulmonary Embolism Dataset:
1794 subjects
SKM-TEA: not specified
Thyroid Ultrasound Cine-clip: 167 subjects
CheXpert: 224,316 chest radiographs of
65,240 subjects

Public (free access)

Fast MRI [175] MRI Knee: 1500+ subjects
Brain: 6970 subjects
Prostate: 312 subjects

Public (free access,
registration
required)

ADNI [176] MRI, PET Scans related to Alzheimer’s disease Public (free access,
registration
required)

Pediatric Brain
Imaging Dataset

[177] MRI Over 500 pediatric brain MRI scans Public (free access
to all users

ChestX-ray8 [178] Chest X-ray images NIH Clinical Center Chest X-Ray Dataset—over
100,000 images from more than 30,000 subjects

Public (free access
to all users)

Breast Cancer
Digital Repository

[179] MLO and
CC images

BCDR-FM (film mammography repository):
1010 subjects
BCDR-DM (full-field digital mammography
repository): 724 subjects

Public (free access,
registration
required

Brain-CODE [180] Neuroimaging High-resolution magnetic resonance imaging of
mouse model related to autism: 839 subjects

Restricted
(application for
access is required
and open data
releases)
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Table 2. Cont.

Database Data Source Data Type Amount of Data Availability

RadImageNet [181] PET, CT,
ultrasound, MRI
with DICOM tags

5 million images from over 1 million studies
across 500,000 subjects

Public subset
available; full
dataset licensable;
academic access
with restrictions

EyePACS [182] Retinal fundus
images for diabetic
retinopathy
screening

Images for training and validation
set—57,146 images, test set—8790 images

Available through
the Kaggle
competition

Medical
Segmentation
Decathlon

[183] mp-MRI, MRI, CT

10 datasets Cases (Train/Test)

Open source
license, available
for research use

Brain 484/266
Heart 20/10
Hippocampus 263/131
Liver 131/70
Lung 64/32
Pancreas 282/139
Prostate 32/16
Colon 126/64
Hepatic Vessels 303/140
Spleen 41/20

DDSM [184] Mammography
images

2500 studies with images, subject
info—2620 cases in 43 volumes categorized by
case type

Public (free access)

LIDC-IDRI [185] CT images with
annotations

1018 cases with XML and DICOM files—images
(DICOM, 125GB), DICOM Metadata Digest
(CSV, 314 kB), radiologist
annotations/segmentations (XML format,
8.62 MB), nodule counts by patient (XLS),
patient diagnoses (XLS)

Images and
annotations are
available for
download with
NBIA Data
Retriever, usage
under CC BY 3.0

synapse [186] CT scans, Zip files
for raw data,
registration data

CT scans—50 scans with variable volume sizes
and resolutions
Labeled organ data—13 abdominal organs were
manually labeled
Zip files for raw data—raw data:
30 training + 20 testing
Registration data: 870 training–training +
600 training–testing pairs

Under IRB
supervision,
available for
participants

Mini-MIAS [187] Mammographic
images

322 digitized films on 2.3 GB 8 mm
tape—images derived from the UK National
Breast Screening Programme and digitized with
Joyce-Loebl scanning microdensitometer to
50 microns, reduced to 200 microns and
standardized to 1024 × 1024 pixels for
the database

Free for scientific
research under a
license agreement

Breast Cancer
Histopathological
Database
(BreakHis)

[188] Microscopic images
of breast tumor

9109 microscopic images of breast tumor tissue
collected from 82 subjects

Free for scientific
research under a
license agreement

Messidor [189] Eye fundus color
numerical images

1200 eye fundus color numerical images of the
posterior pole

Free for scientific
research under a
license agreement

8. Discussion

The most commonly used neural networks in the field of medicine are CNNs and
ANNs (Table 1). Moreover, the combination of transformers and CNNs, as well as GANs,
allows users to achieve increasingly more accurate results, though these methods require
refinement. It is also worth noting that diagnostic processes require the interpretation
of visual scenes, and here GNN-based solutions like scene graphs [190] and knowledge
graphs [191] may be beneficial. It is also important to remember that GNNs are designed
to perform tasks that neural networks like CNNs cannot perform. SIRENs also seem to be
an interesting solution. What was surprising was the fact that many works on the use of
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machine learning do not contain a detailed description of the neural network architecture
or the description of learning, and even the description of the datasets is very general (i.e.,
treating AI as a “black box”), which are key issues responsible for the accuracy and relia-
bility of the approach used. The effectiveness of learning algorithms is compared, among
other variables, in terms of the number of learning cycles, number of objective function
calculations, number of floating-point multiplications, computation time, and sensitivity to
local minima. In addition to the selection of appropriate parameters and network structure,
the selection of an appropriate (effective) network learning algorithm is of key importance.
It is also worth stressing that the lack of transparency, treating AI as a black box, may pose
significant challenges to the accuracy and reliability of these approaches.

The most commonly applied learning algorithm in ANNs is backpropagation; how-
ever, it has a rather slow convergence rate; and as a consequence, ANNs have more
redundancy [192]. On the other hand, the training of SNNs remains a challenge, due to
quite complicated dynamics and the non-differentiable nature of the spike activity [193].
The three types of ANN and SNN learning rules can be distinguished: unsupervised
learning, indirect, supervised learning, and direct supervised learning. Thus, a commonly
used learning algorithm in SNNs is the arithmetic rule SpikePropo, which is similar in
concept to the backpropagation (BP) algorithm, in which network parameters are itera-
tively updated in a direction to minimize the difference between the final outputs of the
network and target labels [194,195]. The main difference between SNNs and ANNs is
output dynamics. However, arithmetic-based learning rules are not a good choice for
building biologically efficient networks. Other learning methods have been proposed
for this purpose, including bio-inspired algorithms like spike-timing-dependent plastic-
ity [196], spike-driven synaptic plasticity [197], and the tempotron learning rule [71,82,93].
STDP is unsupervised learning, which characterizes synaptic changes solely in terms of the
temporal contiguity of presynaptic spikes and postsynaptic potentials or spikes [197], while
spike-driven synaptic plasticity is supervised learning and uses rate coding. However, still,
ANNs with BP learning achieve a better classification performance than SNNs trained with
STDP. To obtain better performance, a combination of layer-wise STDP-based unsupervised
and supervised spike-based BP was proposed [198,199]. Other commonly used learning
algorithms are ReSuMe [63], and chronotron [64]. The tempotron learning rule implements
gradient-descent dynamics, which minimizes a cost function that measures the amount
by which the maximum voltage generated by erroneous patterns deviates from the firing
threshold. Tempotron learning is efficient in learning spiking patterns where information is
embedded in precise timing spikes (temporal coding). Instead, [200] proposed a neuron
normalization technique and an explicitly iterative neuron model, which resulted in a
significant increase in the SNNs’ learning rate. However, training the network still requires
a lot of labeled samples (input data). Another learning algorithm is indirect. It firstly trains
an ANN (created with perceptrons) and thereupon transforms it into its SNN version with
the same network structure (i.e., ANN–SNN conversion) [201]. The disadvantage of such
learning is the fact that reliably estimating frequencies requires a nontrivial passage of time,
and this learning rule fails to capture the temporal dynamics of a spiking system. The most
popular direct supervised learning is gradient descent, which uses the first-spike time to
encode input [202]. It uses the first-spike time to encode input signals and minimizes the
difference between the network output and desired signals, the whole process of which
is similar to traditional BP. Thus, the application of the temporal coding-based learning
rule, which could potentially carry the same information efficiently using fewer spikes
than the rate coding, can help to increase the speed of calculations. On the other hand,
active learning methods, including bio-inspired active learning (BAL), bio-inspired active
learning on firing rate (BAL-FR), and bio-inspired active learning on membrane potential
(BAL-M) have been proposed to reduce the size of the input dataset [203]. During the
learning procedure, labeled datasets are used to train the empirical behaviors of patterns,
while the generalization behavior of patterns is extracted from unlabeled datasets. This
leverages the difference between empirical and generalization behavior patterns to select
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the samples unmatched by the known patterns. This approach is based on the behavioral
pattern differences of neurons in SNNs for active sample selection, and can effectively
reduce the sample size required for SNN training.

The impact of a bio-inspired AI-based system in clinical practice has significant poten-
tial for clinicians and medical experts. As can be clearly observed, further directions of the
development of artificial intelligence are leaning towards the elaboration of not treating it
as a black box and the development of biological artificial intelligence, i.e., using neuron
models that accurately reproduce experimentally measured values, understanding how
information is transmitted, encoded, and processed in the brain, and mapping it in learning
algorithms. The main issue is how to replicate the architecture of the human brain and the
mechanisms governing it. Biologically realistic large-scale brain models require a huge
number of neurons as well as connections between them. Estimation of the behavior of a
neuron network requires accurate models of the individual neurons along with accurate
characterizations of the connections among them. In general, these models should contain
all essential qualitative mechanisms and should provide results consistent with experi-
mental physiological data. To fully characterize and predict the behavior of an identified
network, one would need to know this architecture as well as any external currents or
driving forces, and afferent input, applied to this network. Thus, information transmission
efficiency essentially depends on how neurons cooperate in the transfer process. The spe-
cific network architecture i.e., the presence and distribution of long-range connections and
the influence of inhibitor neurons, in particular the appropriate balance between excitatory
and inhibitory neurons, makes information transmission more effective [204]. Taking all
these factors into account will give us insight into the understanding of what factors con-
tribute to the fact that the human brain is such a perfect computing machine. Then, these
mechanisms can be translated into the improvement of AI methods [205]. Moreover, this
will provide insight into the development of next-generation AI, including autonomous
AI (AAI), as well as the development of brain simulators that balance computational
complexity, energy efficiency, biological plausibility, and intellectual competence.

The second issue is connected with the so-called open-data policy [206]. However,
the publicly available datasets are not numerous, very often not labeled, described very
generally, subject to bias, and additionally burdened with segmentation errors.

Another trend that can also be observed is connected with the compliance of artificial
intelligence with human rights, bioethics principles, and universal human values, which are
especially important in medicine. For example, in Germany, a patient must give informed
consent to the use of AI in the process of his diagnosis and treatment, which we believe
is a good practice. Also, rules that should be fulfilled by the AI-based system, like the
Assessment List for Trustworthy Artificial Intelligence (ALTAI) [207–210], have been for-
mulated. In [211,212], 10 ethical risk points (ERPs) important to institutions, policymakers,
teachers, students, and patients, including potential impacts on design, content, delivery,
and AI–human communication in the field of AI and metaverse-based medical education,
were defined. Moreover, links between technical risks and ethical risks have been made.
Now, procedures need to be developed to enable their practical enforcement.

9. Limitations of the Study

The main limitation of the present study was the fact that the field of medical image
segmentation has a lack of theoretical principles in the papers considered, and lacked critical
information concerning development algorithms based on artificial intelligence, such as
type of neural network, neuron model, information concerning details in datasets, input
and output parameters, and learning rules (treating AI-based systems like a black box).

10. Conclusions

The integration of AI and metaverse is a fact and suggests that AI may become the
dominant approach for image scan segmentation and intelligent visual content generation
in the whole virtual world, not just medical applications [11,205]. As can be seen from
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the summary of the current implementation of AI-based algorithms in medical image seg-
mentation presented in Table 1, this approach enables effective and accurate segmentation
of lesions of medical images. Also, the argument related to the length of analysis time
compared to manual segmentation is key here. Additionally, intensive development of
computer hardware and algorithms can significantly reduce the time needed for analysis.
For example, recently, the “segment anything” model (SAM) based on AI was introduced
for natural images [125], and in [213] it was proposed to be applied to medical images with
a high level of accuracy. Better image segmentation contributes to higher-quality virtual
objects. AI application in the context of the Metaverse (Extended Reality) is connected
with the identification and categorization of Metaverse virtual items [212]. Moreover, AI
may lead to more efficient cybersecurity solutions in the virtual world [213]. However, this
is closely related to the accuracy of AI-based algorithms and consequently the accuracy
of their training. Thus, the artificial intelligence algorithm in the context of the meta-
verse can already be considered an integral component of the virtual world that enables
a more faithful representation of the real world, which is particularly important in the
medical sector.

11. Future Research Directions

One of the critical future research lines is understanding, particularly at the level
of mathematical formulas and the principles of artificial intelligence, i.e., understanding
how the nervous system encodes and decodes information, processes it, and controls its
transmission. This is strictly connected with the understanding of intelligence and its
application in the neuro-computational system. In this context, taking into account current
developments in biology, physics, mathematics, and computer science, it seems that human-
ity is on the brink of a scientific revolution, and one of the important directions in research
on the brain, intelligence, and consciousness. This ties in naturally with the development
of explainable artificial intelligence, which will provide clinicians with insight into how
artificial intelligence-based algorithms achieve specific medical image segmentation results.

Another research line is connected with the architecture/topology of neural networks
and mechanisms to be replicated. Biologically realistic large-scale brain models require a
huge number of neurons as well as connections between them. Estimation of the behavior
of a neuronal network requires accurate models of the individual neurons along with
accurate characterizations of the connections among them. In general, these models should
contain all essential qualitative mechanisms and should provide results consistent with
experimental physiological data.

In the context of biomedical image segmentation, an important research direction is
that future research may focus on the development of algorithms capable of processing
volumetric data. This would enable a more complete insight into the anatomical structures
of organs and their abnormalities.

Another line of research may also concern the development of methods for efficiently
learning neural networks from partially or even unannotated data, thus reducing the
dependence on large annotated datasets. This involves the development of effective transfer
learning techniques that can leverage pre-trained models on large datasets and fine-tune
them on smaller, domain-specific medical datasets to improve segmentation performance.
Future research may also focus on developing algorithms capable of effectively combining
multimodal data to achieve more comprehensive and precise medical image analysis.

Future research may aim to develop artificial intelligence-based algorithms that can
perform real-time segmentation during medical image acquisition.
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Abbreviations

3D three-dimensional
XR extended reality
VR virtual reality
MR mixed reality
AR augmented reality
HDM head-mounted display
AI artificial intelligence
ML machine learning
ANN artificial neural network
SNN spiking neural network
CNN convolutional neural network
RNN recurrent neural network
GAN generative adversarial network
GNN graphical neural network
BP backpropagation
ReSuMe reinforcement learning with supervised models
SHL supervised Hebbian learning
STDP spike timing-dependent plasticity
SDSP spike-driven synaptic plasticity
SAM segment anything model
YOLO you only look once (algorithm)

spike-prop
supervised learning rule akin to traditional error backpropagation for a
network of spiking neurons with reasonable postsynaptic potentials

ReLu rectified linear unit activation function
MAE mean absolute error
MSE mean squared error
RMSE root-mean-squared error
AUROC area under receiver-operating curve
IoU index of union
EHR electronic health record
MRI magnetic resonance imaging
CT computer tomography
OCT optical coherence tomography
IVUS intravascular ultrasound
CCTA coronary computed tomography angiography
LV left ventricle

T1-weighted image
the basic pulse sequence in MRI, it shows the differences in the T1 relaxation
times of tissue (T1 relaxation measures of how quickly the net magnetization
vector recovers to its ground state)

ALTAI Assessment List for Trustworthy Artificial Intelligence
ERPs ethical risk points

References
1. Herculano-Houzel, S. The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost.

Proc. Natl. Acad. Sci. USA 2012, 109, 10661–10668. [CrossRef]
2. Shao, F.; Shen, Z. How can artificial neural networks approximate the brain? Front. Psychol. 2023, 13, 970214. [CrossRef]
3. Moscato, V.; Napolano, G.; Postiglione, M.; Sperlì, G. Multi-task learning for few-shot biomedical relation extraction. Artif. Intell.

Rev. 2023, online ahead of print. [CrossRef]
4. Van Gerven, M. Computational Foundations of Natural Intelligence. Front. Comput. Neurosci. 2017, 11. [CrossRef]

https://doi.org/10.1073/pnas.1201895109
https://doi.org/10.3389/fpsyg.2022.970214
https://doi.org/10.1007/s10462-023-10484-6
https://doi.org/10.3389/fncom.2017.00112


Electronics 2024, 13, 746 28 of 35

5. Wang, Y.; Lu, J.; Gavrilova, M.; Rodolfo, F.; Kacprzyk, J. Brain-inspired systems (BIS): Cognitive foundations and applications. In
Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC) 2018, Miyazaki, Japan, 7–10 October
2018; pp. 991–996.

6. Zhao, L.; Zhang, L.; Wu, Z.; Chen, Y.; Dai, H.; Yu, X.; Liu, Z.; Zhang, T.; Hu, X.; Jiang, X.; et al. When brain-inspired AI meets AGI.
Meta-Radiology 2023, 1, 100005. [CrossRef]

7. Díaz-Rodríguez, N.; Del Ser, J.; Coeckelbergh, M.; López de Prado, M.; Herrera-Viedma, E.; Herrera, F. Connecting the dots in
trustworthy Artificial Intelligence: From AI principles, ethics, and key requirements to responsible AI systems and regulation. Inf.
Fusion 2023, 99, 101896. [CrossRef]

8. Hu, Y.-C.; Lin, Y.-H.; Lin, C.-H. Artificial Intelligence, Accelerated in Parallel Computing and Applied to Nonintrusive Appliance
Load Monitoring for Residential Demand-Side Management in a Smart Grid: A Comparative Study. Appl. Sci. 2020, 10, 8114.
[CrossRef]

9. Hassan, N.; Miah, A.S.M.; Shin, J. A Deep Bidirectional LSTM Model Enhanced by Transfer-Learning-Based Feature Extraction
for Dynamic Human Activity Recognition. Appl. Sci. 2024, 14, 603. [CrossRef]

10. López-Ojeda, W.; Hurley, R.A. Digital Innovation in Neuroanatomy: Three-Dimensional (3D) Image Processing and Printing for
Medical Curricula and Health Care. J. Neuropsychiatry Clin. Neurosci. 2023, 35, 206–209. [CrossRef] [PubMed]

11. Kim, E.J.; Kim, J.Y. The Metaverse for Healthcare: Trends, Applications, and Future Directions of Digital Therapeutics for Urology.
Int. Neurourol. J. 2023, 27, S3–S12. [CrossRef] [PubMed]

12. Lin, H.; Wan, S.; Gan, W.; Chen, J.; Chao, H.-C. Metaverse in Education: Vision, Opportunities, and Challenges. In Proceedings of
the 2022 IEEE International Conference on Big Data (Big Data), Osaka, Japan, 17–20 December 2022; pp. 2857–2866. [CrossRef]

13. Sun, Q.; Fang, N.; Liu, Z.; Zhao, L.; Wen, Y.; Lin, H. HybridCTrm: Bridging CNN and Transformer for Multimodal Brain Image
Segmentation. J. Healthc. Eng. 2021, 2021, 7467261. [CrossRef] [PubMed]

14. Mazurowski, M.A.; Dong, H.; Gu, H.; Yang, J.; Konz, N.; Zhang, Y. Segment anything model form medical image analysis: An
experimental study. Med. Image Anal. 2023, 89, 102918. [CrossRef] [PubMed]

15. Sakshi, S.; Kukreja, V. Image Segmentation Techniques: Statistical, Comprehensive, Semi-Automated Analysis and an Application
Perspective Analysis of Mathematical Expressions. Arch. Computat. Methods Eng. 2023, 30, 457–495. [CrossRef]

16. Moztarzadeh, O.; Jamshidi, M.; Sargolzaei, S.; Keikhaee, F.; Jamshidi, A.; Shadroo, S.; Hauer, L. Metaverse and Medical Diagnosis:
A Blockchain-Based Digital Twinning Approach Based on MobileNetV2 Algorithm for Cervical Vertebral Maturation. Diagnostics
2023, 13, 1485. [CrossRef] [PubMed]

17. Huynh-The, T.; Pham, Q.-V.; Pham, M.-T.; Banh, T.-N.; Nguyen, G.-P.; Kim, D.-S. Efficient Real-Time Object Tracking in the
Metaverse Using Edge Computing with Temporal and Spatial Consistency. Comput. Mater. Contin. 2023, 71, 341–356.

18. Huang, H.; Zhang, C.; Zhao, L.; Ding, S.; Wang, H.; Wu, H. Self-Supervised Medical Image Denoising Based on WISTA-Net for
Human Healthcare in Metaverse. IEEE J. Biomed. Health Inform. 2023, 1–9. [CrossRef]

19. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews (Published in Several Journals). 2021.
Available online: http://www.prisma-statement.org/PRISMAStatement/PRISMAStatement (accessed on 8 January 2024).

20. Rethlefsen, M.L.; Kirtley, S.; Waffenschmidt, S.; Ayala, A.P.; Moher, D.; Page, M.J.; Koffel, J.B. PRISMA-S: An Extension to the
PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Syst. Rev. 2021, 10, 39. [CrossRef]

21. Adrian, E.D.; Zotterman, Y. The Impulses Produced by Sensory Nerve Endings. J. Physiol. 1926, 61, 465–483. [CrossRef]
22. Adrian, E.D. The impulses produced by sensory nerve endings: Part I. J. Physiol. 1926, 61, 49. [CrossRef]
23. Gerstner, W.; Kistler, W.M.; Naud, R.; Paninski, L. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition;

Cambridge University Press: Cambridge, UK, 2014.
24. Rieke, F.; Warland, D.; de Ruyter van Steveninck, R.; Bialek, W. Spikes: Exploring the Neural Code; The MIT Press: Cambridge, MA,

USA, 1997.
25. van Hemmen, J.L.; Sejnowski, T.J. 23 Problems in Systems Neuroscience; Oxford University Press: Oxford, UK, 2006.
26. Teich, M.C.; Khanna, S.M. Pulse-Number distribution for the neural spike train in the cat’s auditory nerve. J. Acoust. Soc. Am.

1985, 77, 1110–1128. [CrossRef]
27. Werner, G.; Mountcastle, V.B. Neural activity in mechanoreceptive cutaneous afferents: Stimulus-response relations, Weber

Functions, and Information Transmission. J. Neurophysiol. 1965, 28, 359–397. [CrossRef] [PubMed]
28. Tolhurst, D.J.; Movshon, J.A.; Thompson, I.D. The dependence of Response amplitude and variance of cat visual cortical neurons

on stimulus contrast. Exp. Brain Res. 1981, 41, 414–419.
29. Radons, G.; Becker, J.D.; Dülfer, B.; Krüger, J. Analysis, classification, and coding of multielectrode spike trains with hidden

Markov models. Biol. Cybern. 1994, 71, 359–373. [CrossRef]
30. de Ruyter van Steveninck, R.R.; Lewen, G.D.; Strong, S.P.; Koberle, R.; Bialek, W. Reproducibility and variability in neural spike

trains. Science 1997, 275, 1805–1808. [CrossRef] [PubMed]
31. Kass, R.E.; Ventura, V. A spike-train probability model. Neural Comput. 2001, 13, 1713–1720. [CrossRef] [PubMed]
32. Wójcik, D. The kinematics of the spike trains. Acta Phys. Pol. B 2018, 49, 2127–2138. [CrossRef]
33. Rosenblatt, F. Principles of Neurodynamics. Perceptrons and the Theory of Bbain Mechanisms; Technical Report; Cornell Aeronautical

Lab Inc.: Buffalo, NY, USA, 1961.
34. Bu, T.; Fang, W.; Ding, J.; Dai, P.L.; Yu, Z.; Huang, T. Optimal ANN-SNN Conversion for High-Accuracy and Ultra-Low-Latency

Spiking Neural Networks. arXiv 2023, arXiv:2303.04347. [CrossRef]

https://doi.org/10.1016/j.metrad.2023.100005
https://doi.org/10.1016/j.inffus.2023.101896
https://doi.org/10.3390/app10228114
https://doi.org/10.3390/app14020603
https://doi.org/10.1176/appi.neuropsych.20230072
https://www.ncbi.nlm.nih.gov/pubmed/37448309
https://doi.org/10.5213/inj.2346108.054
https://www.ncbi.nlm.nih.gov/pubmed/37280754
https://doi.org/10.1109/BigData55660.2022.10021004
https://doi.org/10.1155/2021/7467261
https://www.ncbi.nlm.nih.gov/pubmed/34630994
https://doi.org/10.1016/j.media.2023.102918
https://www.ncbi.nlm.nih.gov/pubmed/37595404
https://doi.org/10.1007/s11831-022-09805-9
https://doi.org/10.3390/diagnostics13081485
https://www.ncbi.nlm.nih.gov/pubmed/37189587
https://doi.org/10.1109/JBHI.2023.3278538
http://www.prisma-statement.org/PRISMAStatement/PRISMAStatement
https://doi.org/10.1186/s13643-020-01542-z
https://doi.org/10.1113/jphysiol.1926.sp002308
https://doi.org/10.1113/jphysiol.1926.sp002273
https://doi.org/10.1121/1.392176
https://doi.org/10.1152/jn.1965.28.2.359
https://www.ncbi.nlm.nih.gov/pubmed/14283062
https://doi.org/10.1007/BF00239623
https://doi.org/10.1126/science.275.5307.1805
https://www.ncbi.nlm.nih.gov/pubmed/9065407
https://doi.org/10.1162/08997660152469314
https://www.ncbi.nlm.nih.gov/pubmed/11506667
https://doi.org/10.5506/APhysPolB.49.2127
https://doi.org/10.48550/arXiv.2303.04347


Electronics 2024, 13, 746 29 of 35

35. Abbott, L.F.; Dayan, P. Theoretical Neuroscience Computational and Mathematical Modeling of Neural Systems; The MIT Press:
Cambridge, MA, USA, 2000.

36. Yuan, Y.; Gao, R.; Wu, Q.; Fang, S.; Bu, X.; Cui, Y.; Han, C.; Hu, L.; Li, X.; Wang, X.; et al. Artificial Leaky Integrate-and-Fire
Sensory Neuron for In-Sensor Computing Neuromorphic Perception at the Edge. ACS Sens. 2023, 8, 2646–2655. [CrossRef]

37. Ghosh-Dastidar, S.; Adeli, H. Third Generation Neural Networks. In Advances in Computational Intelligence; Yu, W., Sanchez, E.N.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 116.

38. Lindeberg, T. A time-causal and time-recursive scale-covariant scale-space representation of temporal signals and past time. Biol.
Cybern. 2023, 117, 21–59. [CrossRef]

39. Rueckauer, B.; Lungu, I.A.; Hu, Y.; Pfeiffer, M.; Liu, S.C. Conversion of Continuous-Valued Deep Networks To Efficient Event-
Driven Neuromorphic Hardware. Front. Neurosci. 2017, 11, 682. [CrossRef]

40. Cheng, X.; Zhang, T.; Jia, S.; Xu, B. Meta neurons improve spiking neural networks for efficient spatio-temporal learning.
Neurocomputing 2023, 531, 217–225. [CrossRef]

41. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,
2278–2324. [CrossRef]

42. Mehrish, A.; Majumder, N.; Bharadwaj, R.; Mihalcea, R.; Poria, S. A review of deep learning techniques for speech processing. Inf.
Fusion 2023, 99, 101869. [CrossRef]

43. Nielsen, M.A. Neural Networks and Deep Learning. 2015. Available online: http://neuralnetworksanddeeplearning.com/
(accessed on 8 January 2024).

44. Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology.
Insights Imaging 2018, 9, 611–629. [CrossRef]

45. Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Phys. D
Nonlinear Phenom. 2020, 404, 132306. [CrossRef]

46. Ghosh-Dastidar, S.; Adeli, H. Spiking neural networks. Int. J. Neural Syst. 2009, 19, 295–308. [CrossRef] [PubMed]
47. Yamazaki, K.; Vo-Ho, V.K.; Bulsara, D.; Le, N. Spiking Neural Networks and Their Applications: A Review. Brain Sci. 2022, 12b,

863. [CrossRef]
48. Dampfhoffer, M.; Mesquida, T.; Valentian, A.; Anghel, L. Backpropagation-Based Learning Techniques for Deep Spiking Neural

Networks: A Survey. IEEE Trans. Neural Netw. Learn. Syst. 2023, 1–16. [CrossRef]
49. Ponulak, F.; Kasinski, A. Introduction to spiking neural networks: Information processing, learning and applications. Acta

Neurobiol. Exp. 2011, 71, 409–433. [CrossRef]
50. Wu, Y.; Deng, L.; Li, G.; Zhu, J.; Shi, L. Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural

Networks. Front Neurosci. 2018, 12, 331. [CrossRef]
51. Pei, J.; Deng, L.; Song, S.; Zhao, M.; Zhang, Y.; Wu, S.; Wang, G.; Zou, Z.; Wu, Z.; He, W.; et al. Towards artificial general

intelligence with hybrid Tianjic chip architecture. Nature 2019, 572, 106–111. [CrossRef] [PubMed]
52. Rathi, N.; Chakraborty, I.; Kosta, A.; Sengupta, A.; Ankit, A.; Panda, P.; Roy, K. Exploring Neuromorphic Computing Based on

Spiking Neural Networks: Algorithms to Hardware. ACM Comput. Surv. 2023, 55, 243. [CrossRef]
53. Rojas, R. The Backpropagation Algorithm. In Neural Networks; Springer: Berlin/Heidelberg, Germany, 1996; pp. 1–50.
54. Singh, A.; Kushwaha, S.; Alarfaj, M.; Singh, M. Comprehensive Overview of Backpropagation Algorithm for Digital Image

Denoising. Electronics 2022, 11, 1590. [CrossRef]
55. Kaur, J.; Khehra, B.S.; Singh, A. Back propagation artificial neural network for diagnosis of heart disease. J. Reliab. Intell. Environ.

2023, 9, 57–85. [CrossRef]
56. Hameed, A.A.; Karlik, B.; Salman, M.S. Back-propagation algorithm with variable adaptive momentum. Knowl.-Based Syst. 2016,

114, 79–87. [CrossRef]
57. Cao, Y.; Chen, Y.; Khosla, D. Spiking Deep Convolutional Neural Networks for Energy-Efficient Object Recognition. Int. J. Comput.

Vis. 2015, 113, 54–66. [CrossRef]
58. Alemanno, F.; Aquaro, M.; Kanter, I.; Barra, A.; Agliari, E. Supervised Hebbian Learning. Europhys. Lett. 2023, 141, 11001.

[CrossRef]
59. Ponulak, F. ReSuMe—New Supervised Learning Method for Spiking Neural Networks; Technical Report; Poznań University of
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