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A B S T R A C T

The study investigates the problem of decentralized semi-active control of free vibration.
The control scheme is designed for implementation in a modular controller architecture,
where a collection of subcontrollers is employed, with each subcontroller being associated
with a subsystem that represents a component of the vibrating structure. Each subcontroller
uses state feedback from adjacent subsystem sensors to perform vibration suppression and
energy harvesting using a switching control law. Furthermore, the assumption is made that
neighbouring subcontrollers exchange information collaboratively to estimate the effects of
coupling forces, achieving control efficiency comparable to that of a centralized approach.
The effectiveness of the proposed approach is demonstrated on a modular suspension platform
equipped with semi-active dampers and electromagnetic energy harvesters. The approach is
evaluated under various free vibration scenarios, encompassing faulty measurement conditions,
and is compared to passive and heuristic state-feedback control strategies. The results confirm
that the proposed method attains a superior control performance, independent of the degree
of decentralization in the adopted controller architecture, rendering it a viable solution for
addressing large-scale semi-active control problems.

. Introduction

The ever-increasing need for dependable and accessible structures and machinery has prompted engineers to explore innovative
onstructional solutions. Modular design, one of the most notable trends in modern engineering [1–3], has gained popularity due
o its ease of assembly and maintenance, as well as its cost-effectiveness, making it highly desirable for wide range of applications.
odular structures are widely utilized in transportation systems, such as trains and trailers. Modularity is highly desirable in the

utomotive industry, as it provides synergies for multiple vehicle classes. Modular architectures are increasingly favoured in civil
ngineering, especially for slender buildings, temporary bridges, and tensegrity-based structures. Aerospace technology has also
mbraced modularity, particularly for satellites that require quick and uncomplicated assembly. Finally, modularity is a critical
eature of smart factories in the context of "Industry 4.0’’, applied to the architecture of machinery and robotic platforms involved.
he performance of a group of machines working together depends on their ability to engage in cooperative multitasking, which
an be facilitated through flexible structural reconfiguration. In a smart factory setting, a modular architecture is highly desirable
or conveyor belts, guideways, trolleys, and especially for robot manipulators that need to handle objects of varying sizes, shapes,
nd weights. To fully benefit from a modular structure, the integrated control system should have a similar modular architecture
nd operate in a decentralized manner.
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List of symbols

𝑆𝑘 Subsystem
𝐶𝑘 Subcontroller
𝑘 Inter-connectivity set
𝑔𝑘𝑗 Boolean parameter
𝑥𝑘 State vector
𝑦𝑘 Extended state vector
𝑢𝑘 Control input vector
𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥 Min and max admissible control value
𝑛𝑘 Size of the state vector
𝑚𝑘 Size of the control input vector
𝐴𝑘, 𝐵𝑘,1,… , 𝐵𝑘,𝑚𝑘

Subsystem matrices
𝐹𝑘,𝑗,𝑟 Interaction force
𝐷𝑘,𝑗,𝑟 Vector accommodating the interaction force
𝑟𝑘,𝑗 Total number of interaction forces acting on subsystem 𝑆𝑘 from subsystem 𝑆𝑗
𝑘, 𝑘,1,… ,𝑘,𝑚𝑘

Matrices of the extended subsystem
𝑄𝑘 Vibration damping/energy harvesting weighting matrix
𝑃 Solution to the Lyapunov equation
�̄�𝑘 Submatrix of 𝑄𝑘 collecting the entries corresponding to 𝑥𝑘
𝐸𝑘 Energy-related function
𝑇 Control time horizon
𝛥𝑡 Sampling time
ℎ− State measurement horizon
ℎ+ Control updating period
𝑡′ Selected time instant for updating the interaction forces and control
𝜏1,… , 𝜏𝑍 Sequence of time instants for updating the interaction forces and control
𝑍 Total number of time instants for updating the interaction forces and control
𝑚 Module mass
𝑘𝑏 Beam stiffness
𝑘𝑠 Spring stiffness
𝑘𝑢 Actuator stiffness coefficient
𝑏𝑢 Actuator damping coefficient
𝑅ℎ Harvester resistance
𝐿ℎ Harvester inductance
𝑘𝑡 Harvester mechanical–magnetic coupling constant
𝐸𝑚 Mechanical energy
𝐽𝑚 Mechanical energy integral
𝐸ℎ Harvested electrical energy

A decentralized, modular controller can be likened to a ‘‘plug-and-play’’ device that enables the smooth integration of a modular
tructure while maintaining its core features, such as ease of assembly, expansion, and reconfiguration. To ensure the modularity
f the controller’s architecture, the control algorithm implemented in subcontrollers associated with individual structural modules
ust meet two critical requirements. The first pertains to the quantity of state information utilized in the feedback control loops.
ach subcontroller (control module) uses only the state measurement of its corresponding structural module, with the option
o incorporate measurements from neighbouring modules that interact dynamically with the module in question. The second
equirement is to ensure that each subcontroller employs an identical computational procedure. With these requirements met,
dding or removing a subcontroller involves a straightforward plug-and-play action. Another significant advantage of the modular
ontroller is its capacity for parallel computing, facilitating online updates and execution of control decisions. Additionally, the
odular architecture of the controller is crucial for ensuring safety. In the event of a single computing unit malfunctioning or local
easurement failures, the impact on the decisions of other subcontrollers is minimal. This significantly decreases the likelihood of

he structure being driven to a hazardous state.
Decentralized controllers designed for structural control can be broadly categorized into two types [4]: those that use independent

ubcontrollers, often referred to as completely decentralized controllers, and those that incorporate a certain degree of collaboration
2

mong subcontrollers. The majority of the completely decentralized controllers have been developed based on the concept of isolated
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subsystems that correspond to the segments of a vibrating structure. These controllers involve designing a set of state-dependent
local control functions, where each subcontroller relies solely on the state information of its neighbouring subsystem. The concept
of decomposing a structure into isolated subsystems and formulating local control laws using the linear–quadratic Gaussian (LQG)
control methodology has been implemented for the purpose of active force control of large-scale slender buildings [5,6]. In this
approach, the coupling forces between the subsystems are treated as external random disturbances. The LQG control technique has
proven to be highly effective in scenarios where the building is subjected to earthquake excitation due to its ability to achieve
optimality in the presence of disturbances characterized as additive white Gaussian noise. An analogous approach was employed
to improve the positioning accuracy of a robotic manipulator [7]. The study presented in [8] introduced a decentralized control
function based on polynomials for output-feedback control. The control parameters were optimized using a genetic algorithm. The
efficacy of the proposed controller was examined through a case study involving a highway bridge under seismic excitations.
The concept of isolated subsystems has also been extensively investigated in the context of decentralized structural semi-active
control problems involving parametric control. Due to the nonlinearity introduced by the semi-active actuators and the size of
the state vector, which may encompass hundreds degrees of freedom, the optimal control problem can be highly complex. Thus,
rather than solving an intricate optimal control problem, it is often more practical to design heuristic local state-feedback functions
with appropriate tuning to achieve the desired control performance. A local state-feedback controller was devised to mitigate the
vibrations of cruise ships funnels [9]. This control system utilizes a set of semi-active dampers operating independently, with
each damper being controlled via the skyhook method [10]. A decentralized state-feedback control can be established utilizing
the prestress-accumulation release principle [11], with the aim of transferring vibrational energy from lightly-damped low-order
modes to high-frequency modes where it can be effectively dissipated by material damping mechanisms. This approach has been
validated on a frame structure equipped with semi-active lockable joints [12]. The development of decentralized state-feedback
control functions can also be achieved through a specially designed structural model [13]. In this approach, the authors proposed
discretizing the continuous problem described by the bilinear partial differential equation using the Galerkin method with a specially
selected subspace onto which the solution to the dynamical equation is projected. It was shown that the proper choice of the basis for
this subspace and the optimization of the resulting model’s mass and stiffness matrices ensure that the assumed switching control
law can operate using only local state information. The effectiveness of the proposed decentralized controller was demonstrated
through experiments conducted on a vibrating semi-active span structure equipped with a set of actuators with controlled damping
and stiffness parameters.

While fully decentralized controllers are commonly employed due to their practicality, their effectiveness may be limited in
omplex systems with broad frequency ranges of vibration. In these cases, the uncoordinated operation among subcontrollers aimed
t mitigating vibrations at the actuator positions within the structure may result in the constant transmission of vibration energy
etween different points of the structure, resulting in inadequate overall stabilizing performance. This phenomenon was thoroughly
nalysed in [14], where it was demonstrated that even for a relatively simple system comprising a cantilever structure with
emi-active elastomer-based actuators, isolating subcontrollers with limited state information may significantly reduce stabilizing
erformance when higher vibration modes are present. Collaborative decentralized controllers, in contrast to fully decentralized
ontrollers, employ a communication network to facilitate the exchange of information between subcontrollers regarding the state of
heir adjacent subsystems. The purpose of this cooperative control is to provide efficiency levels comparable to centralized controllers
hat rely on global state information. In [15], the authors investigated the effects of exchanging varying amounts of state information
n the stabilizing performance of decentralized controllers. To achieve this, they proposed partitioning a structure into a collection of
verlapping subsystems (see also [16]). Each subsystem was then operated by an individual subcontroller designed using the linear–
uadratic regulator (LQR) technique. The amount of state information exchanged between the subcontrollers was proportional to
he degree of overlap between the subsystems. Through extensive numerical experiments involving a high-rise building model, it
as validated that increasing the amount of exchanged state information resulted in the decentralized controller approaching the
erformance level of the centralized LQR controller. A similar finding was reported in [17], where the authors applied the concept
f overlapping subsystems and the LQG control design to mitigate vibration in a cable-stayed bridge. An alternative collaborative
ecentralized strategy for active structural control, utilizing LQR design, was proposed in [18]. The authors incorporated a sparsity
ost function, combined with an energy-related objective function, to achieve the desired structure for the stabilizing state-feedback
ontrol function, which is obtained by solving the Riccati equation. The effectiveness of this decentralized approach was evaluated
hrough a study on a multi-storey building. Collaborative decentralized controllers have also proven to be effective in semi-active
tructures. In [19], it was demonstrated that cooperative control can be effectively employed to enhance the trajectory of a load
raversing over a carrying structure supported by magneto-rheological supports. The author proposed utilizing a set of subcontrollers
hat operate based on energy-related vibration metrics. These metrics are estimated through a distributed averaging protocol,
hich necessitates a circular network for communication among the subcontrollers. The superior stabilizing performance of the

ollaborative decentralized controller was also confirmed for the cantilever beam structure equipped with semi-active damping
locks [20]. The study involved the development of a decentralized state-feedback switching control law based on the solution to
he finite horizon optimal control problem. One of the critical parameters of this control law is the matrix that provides the ability
o adjust the amount of state information employed by the local subcontrollers, following the assumed communication network
haracteristics.

Regardless of controller structuring, recent advancements in the development of active and semi-active control devices have
esulted in numerous innovative control methods, in particular those leveraging soft computing algorithms, facilitating efficient
djustment of control decisions in scenarios where the structural model is incomplete or the system operates under permanently
3

hanging excitation. In [21], a neural network based algorithm was developed to control flexible cantilever plates equipped
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with piezoelectric sensor–actuator pairs and subject to unknown periodic and random excitation. The neurocontroller employs
a set of emulator neural networks which are also trained to forecast the future response of the structure. The study presented
in [22] introduced the controller for a semi-active tuned liquid wall damper using an ensemble of recurrent neural networks. The
method confirmed high performance is stabilizing the vibration of a multi-storey building exposed to wind and seismic hazards. A
floating fuzzy logic based algorithm was developed for controlling structures equipped with magnetorheological dampers [23].
This algorithm enables the updating of control inputs to accommodate various types of loading and changes in the structural
model, including the incorporation of nonlinearities. A neuro-fuzzy logic controller was designed to control the parameters of
magnetorheological elastomers, aiming to mitigate the vibrations on offshore platforms [24]. This method enables the adaptation
of control decisions to address irregular wave-induced excitations. In the group of controllers that allows adapting the control
decision to changing environmental conditions, recent attention has been distinctly directed towards methodologies grounded in
reinforcement learning (RL) algorithms. In [25], three reinforcement learning (RL) algorithms – specifically, policy gradient actor-
critic, temporal-difference, and value function approximation – were investigated within the context of stabilizing a benchmark
cart–pole system, with no prior information regarding its parameters. The Q-learning RL algorithm was developed to tune a fuzzy-PD
controller to reduce the vibration of a high-rise building [26]. This method was successfully tested for seismic excitation. In [27], the
RL actor-critic algorithm was implemented to stabilize a swinging chain. This algorithm enabled the optimization of control decisions
using incomplete state information. The actor-only RL-based algorithm was developed to approximate the optimal switching pattern
for operating magnetorheological dampers [28]. The method was implemented on a simply supported beam subjected to unknown
periodic excitation.

In this paper, we propose a decentralized collaborative controller to control the free vibration of semi-active structures. The
pproach is predicated upon the partitioning of the structure in a manner that culminates in a collection of dynamically interacting
ubsystems, with each being operated by a dedicated subcontroller. Relative to prior research, the primary novel contribution of this
ork is rooted in the foundational presumption of the control system’s modularity. In light of this, our objective is to devise a novel

ontrol algorithm that ensures the uniform operation of each subcontroller within the controller’s network. In pursuit of suboptimal
erformance, the algorithm computes and incorporates the dynamical model of interactions among neighbouring subsystems, which
s actualized through the collaborative efforts of subcontrollers, who exchange essential state information. Additionally, given that
he control objective encompasses both vibration mitigation and energy reaping, the devised control law incorporates a tunable
arameter to attain the desired trade-off between these competing aims. The effectiveness of the control is evaluated through the
tilization of a purpose-built experimental setup featuring a modular suspension system. The study presents a comprehensive analysis
f the control performance evaluated through various decentralized controller architectures, while also drawing comparisons with
oth the centralized solution and the alternative decentralized strategy based on isolated subsystems [14].

The organization of the subsequent sections of this paper is as follows: Section 2 presents the fundamental concepts and
efinitions of the modular system that incorporates a decentralized collaborative controller. In Section 3, we formulate and solve
he problem of decentralized control, providing a comprehensive methodology for designing interaction forces and a computational
lgorithm for updating control decisions. Section 4 evaluates the performance of the designed controller through experiments
onducted on a modular suspension platform. Finally, in Section 5, we summarize the findings.

. The investigated system

This work studies a class of semi-actively controlled vibrating structures that can be represented as a set of dynamically
nteracting subsystems (see Fig. 1) 𝑆𝑘(𝑥𝑘), 𝑘 = 1,… , 𝐾, with the internal state vector 𝑥𝑘(𝑡) = [𝑥𝑘,1(𝑡),… , 𝑥𝑘,𝑛𝑘 (𝑡)]

𝑇 ∶ [0, 𝑇 ] →
R𝑛𝑘 defined for time 𝑡 ∈ [0, 𝑇 ], where 𝑇 > 0 refers to a considered control time. Each subsystem’s vector 𝑥𝑘 combines
structural state variables (generalized displacements and velocities) with variables that characterize integrated energy harvesting
devices (e.g. displacements, velocities, and electric currents in the case of electromagnetic devices [29]). The interactions between
subsystems are defined by the inter-connectivity sets:

𝑘 = {𝑗 ∶ 𝑔𝑘𝑗 = 1}, 𝑘 = 1,… , 𝐾, (1)

where 𝑔𝑘𝑗 is a Boolean parameter given by 𝑔𝑘𝑗 = 1 if the subsystem 𝑆𝑘 is dynamically coupled with the subsystem 𝑆𝑗 and 𝑔𝑘𝑗 = 0
therwise. For each subsystem 𝑆𝑘(𝑥𝑘) we associate a subcontroller 𝐶𝑘(𝑢𝑘) with the control input vector 𝑢𝑘(𝑡) = [𝑢𝑘,1(𝑡),… , 𝑢𝑘,𝑚𝑘

(𝑡)] ∶
[0, 𝑇 ] →  . The set of admissible controls is assumed to be bounded by the minimum and the maximum values 𝑢𝑚𝑖𝑛 < 𝑢𝑚𝑎𝑥 that
correspond to the physical constraints of a semi-active device (e.g. extreme voltages), i.e.,  = [𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥]𝑚𝑘 ⊂ R𝑚𝑘 . The dynamics
of each subsystem 𝑆𝑘(𝑥𝑘), 𝑘 = 1,… , 𝐾, is characterized by the ordinary bilinear differential equation:

�̇�𝑘(𝑡) = 𝐴𝑘 𝑥𝑘(𝑡) +
𝑚𝑘
∑

𝑖=1
𝑢𝑘,𝑖(𝑡)𝐵𝑘,𝑖 𝑥𝑘(𝑡) +

∑

𝑗∈𝑘

𝑟𝑘,𝑗
∑

𝑟=1
𝐷𝑘,𝑗,𝑟 𝐹𝑘,𝑗,𝑟(𝑡), 𝑥𝑘(0) = 𝑥0𝑘. (2)

In (2), the constant matrices 𝐴𝑘 and 𝐵𝑘,𝑖 with dimensions 𝑛𝑘 × 𝑛𝑘 define the internal subsystem’s dynamics (coupling the structural
states with the states of the integrated energy harvesting devices) and the influence of the 𝑖th semi-active device, respectively. The
constant vectors 𝐷𝑘,𝑗,𝑟 with dimensions 𝑛𝑘 × 1, 𝑗 ∈ 𝑘 and 𝑟 = 1,… , 𝑟𝑘,𝑗 (with 𝑟𝑘,𝑗 being the total number of interaction forces acting
on subsystem 𝑆𝑘 from subsystem 𝑆𝑗), accommodate the interaction forces 𝐹𝑘,𝑗,𝑟 into the system dynamics. They are constructed
based on the principle that 𝐷𝑘,𝑗,𝑟 has an entry equal to 1 in the row corresponding to the element of the vector 𝑥𝑘 subjected to force
𝐹𝑘,𝑗,𝑟, and all other entries are equal to 0. The interaction forces 𝐹𝑘,𝑗,𝑟 = 𝐹𝑘,𝑗,𝑟(𝑡) ∶ [0, 𝑇 ] → R, 𝑗 ∈ 𝑘, are assumed to be bounded
and piecewise continuous functions. The initial conditions are assumed to be 𝑥0 ≠ 0 for free-vibration scenarios.
4
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Fig. 1. Semi-active vibrating structure represented as a set of dynamically interacting subsystems. In the depicted arrangement, the inter-connectivity set for the
subsystem 𝑆1 is given by 1 = {2, 𝑘 + 1}.

The bilinear dynamical Eq. (2) can approximate the behaviour of diverse structural control systems incorporating various
types of semi-active devices. In addition to established solutions involving magnetorheological dampers – such as those employed
in vehicular suspensions [30] or span structures [31,32] – or tuned mass damper that are widely implemented in high-rise
buildings [33], the analysed dynamical system is also adaptable to new-emerging smart materials that enable efficient control of both
damping and stiffness parameters. In particular, magnetorheological elastomers, with their unique physical properties and structural
flexibility (allowing, for example, the construction of radial-chain [34] or X-shaped structures [35]), offer responsive control over
the viscoelastic parameters. Structural control problems have also stimulated the advancements in dielectric materials [36] and
magnetoactive elastomers [37]. The former facilitates effective stiffness control, while the latter enables controlled friction. Efficient
stiffness control can also be realized through the utilization of serial-stiffness-switch systems [38]. To achieve the effect of controlled
damping one can consider implementing electromagnetic devices of the motional type [39]. Recent developments of semi-active
inerters [40–42] have also enabled the real-time tuning of inertance.

3. Decentralized control design

For each subsystem 𝑆𝑘(𝑥𝑘) with associated subcontroller 𝐶𝑘(𝑢𝑘) the aim is to design control functions 𝑢𝑘,1(𝑡),… , 𝑢𝑘,𝑚𝑘
(𝑡) that

guarantee the following assumptions:

A1. The closed loop system given by Eq. (2) is asymptotically stable. This assumption establishes our primary control objective,
which is to ensure the effective attenuation of free vibrations.

A2. The control functions incorporate the parameters that can be tuned to achieve a desired compromise between the performance
in free vibration damping and efficiency in the energy harvesting. This assumption pertains to our secondary control objective,
which is to facilitate efficient energy harvesting.

A3. The controller 𝐶𝑘 uses only the state information of its local subsystem 𝑆𝑘 and subsystems 𝑆𝑗 , 𝑗 ∈ 𝑘, that are connected to
𝑆𝑘, i.e., it is assumed that the control functions are of the following state-feedback form:

𝑢𝑘,𝑖 = 𝑢𝑘,𝑖(𝑥𝑘, {𝑥𝑗}𝑗∈𝑘 ), 𝑖 = 1,… , 𝑚𝑘. (3)

This assumption defines the architecture of the decentralized state-feedback controller, considering the modular system arrangement
as introduced in Section 2. The selection of state-dependence in the control function, as in Eq. (3), will subsequently enable the
computation and integration of estimated interacting forces, a critical component for achieving a high level of control performance
concerning the objectives outlined in A1 and A2. It is noteworthy that for the majority of modular systems, where subsystems
are dynamically coupled with adjacent ones, any reconfiguration involving the addition or removal of modules does not require
supplementary programming efforts when implementing the control law as defined in Eq. (3).

To design the control that satisfies assumptions A1–A3, we will first develop a representation of the interacting forces
(Section 3.1). This will enable us to introduce extended state vectors and represent the dynamical Eq. (2) in the autonomous form,
which is necessary to derive a stabilizing control law that satisfies assumption A1 (Section 3.2). Next, we will choose parameters
that provide a balance between structural state convergence rates and amount of harvested energy as stated in assumption A2.
Eventually, we will validate the proposed control law based on the decentralized controller architecture defined in assumption A3.
5
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3.1. Dynamical model of the interaction forces

For each subsystem 𝑆𝑘, 𝑘 = 1,… , 𝐾, we aim at characterizing the interaction forces 𝐹𝑘,𝑗,𝑟, 𝑗 ∈ 𝑘, 𝑟 = 1,… , 𝑟𝑘,𝑗 , in the form of
the linear differential equations that can be integrated with the dynamical Eq. (2) by extending the state vector and system matrices
without violating its bilinear structuring. For that matter, we will employ dynamical autoregressive (AR) model that confirmed a
high performance in reproducing the characteristics of typical polyharmonic vibrations [43]. The model will be updated periodically
to capture rapid changes in the interaction forces’ characteristics, which are common in modern structures that have a high level
of responsiveness due to their reduced mass. For the sake of simplicity, the analysis will assume that 𝑟𝑘,𝑗 = 1, and will substitute
𝐹𝑘,𝑗,𝑟 with 𝐹𝑘,𝑗 .

It is assumed that each subcontroller 𝐶𝑘, 𝑘 = 1,… , 𝐾, continuously collects the state information of its local subsystem 𝑥𝑘 at a
sampling period 𝛥𝑡 > 0. Let ℎ− > 0 represent a past measurement horizon and consider a time instant 𝑡′ ∈ [ℎ−, 𝑇 ) when subcontroller
𝐶𝑘 receives from subcontrollers 𝐶𝑗 , 𝑗 ∈ 𝑘, the sequences of state information 𝑥𝑗 (𝑡′1),… , 𝑥𝑗 (𝑡′𝑝), where 𝑡′1 = 𝑡′ − ℎ−,… , 𝑡′𝑝 = 𝑡′ and
𝑝 = ℎ−∕𝛥𝑡 + 1. Using this information, subcontroller 𝐶𝑘 estimates the sequences of the interaction forces 𝐹𝑘,𝑗 (𝑡′1),… , 𝐹𝑘,𝑗 (𝑡′𝑝), 𝑗 ∈ 𝑘.

his estimation is, for example, based on the displacements between the adjacent subsystem elements if they are interconnected
ith springs. The next step is to construct autoregressive (AR) models to predict the interaction forces’ behaviour in a future time

nterval 𝑡 ∈ (𝑡′, 𝑡′ + ℎ+], where ℎ+ > 0 is the control updating period. The evolution of 𝐹𝑘,𝑗 in 𝑡 ∈ (𝑡′, 𝑡′ + ℎ+] can be characterized by
n AR model of order 𝑞:

𝐹𝑘,𝑗 (𝑡′ + 𝑙 𝛥𝑡) = 𝛼1𝑘,𝑗 𝐹𝑘,𝑗 (𝑡′ + (𝑙 − 1)𝛥𝑡) +⋯ + 𝛼𝑞𝑘,𝑗 𝐹𝑘,𝑗 (𝑡′ + (𝑙 − 𝑞)𝛥𝑡), 𝑙 = 1,… , 𝑙+ = ℎ+∕𝛥𝑡, (4)

sing previously estimated sequence 𝐹𝑘,𝑗 (𝑡′1),… , 𝐹𝑘,𝑗 (𝑡′𝑝) for the initial values. The weighting parameters 𝛼1𝑘,𝑗 ,… , 𝛼𝑞𝑘,𝑗 in (4) are
computed so that the AR model gives the best agreement (in some sense, such as least squares) with the samples 𝐹𝑘,𝑗 (𝑡′1),… , 𝐹𝑘,𝑗 (𝑡′𝑝).
or a thorough study on AR model calibration methods, see [44]. To write the iterative model (4) in the form of a dynamical system,
or each pair 𝑘, 𝑗 we define a 𝑞 × 1 vector 𝐹𝑘,𝑗 = [𝐹 1

𝑘,𝑗 ,… , 𝐹 𝑞
𝑘,𝑗 ]

𝑇 , with entries given by:

𝐹 1
𝑘,𝑗 (𝑡

′) = 𝐹𝑘,𝑗 (𝑡′),… , 𝐹 𝑞
𝑘,𝑗 (𝑡

′) = 𝐹𝑘,𝑗 (𝑡′ + (1 − 𝑞)𝛥𝑡). (5)

y introducing the matrix:

�̄�𝑘,𝑗 =
1
𝛥𝑡

⎡

⎢

⎢

⎢

⎢

⎣

𝛼1𝑘,𝑗 − 1 𝛼2𝑘,𝑗 ⋯ 𝛼𝑞𝑘,𝑗
1 −1

⋱ ⋱
1 −1

⎤

⎥

⎥

⎥

⎥

⎦

(6)

the AR model (4) can be represented by:

𝐹𝑘,𝑗 (𝑡′ + 𝑙 𝛥𝑡) = 𝐹𝑘,𝑗 (𝑡′ + (𝑙 − 1)𝛥𝑡) + 𝛥𝑡 �̄�𝑘,𝑗 𝐹𝑘,𝑗 (𝑡′ + (𝑙 − 1)𝛥𝑡). (7)

or a sufficiently small sampling period 𝛥𝑡, the following approximation can be used:

𝐹𝑘,𝑗 (𝑡′ + 𝑙 𝛥𝑡) = 𝐹𝑘,𝑗 (𝑡′ + (𝑙 − 1)𝛥𝑡) + 𝛥𝑡
d𝐹𝑘,𝑗

d𝑡
. (8)

Form (7) and (8), it follows that 𝐹𝑘,𝑗 for 𝑡 ∈ (𝑡′, 𝑡′ + ℎ+] can be evaluated by using the linear differential equation:

̇̄𝐹𝑘,𝑗 (𝑡) = �̄�𝑘,𝑗𝐹𝑘,𝑗 (𝑡), 𝐹𝑘,𝑗 (𝑡′) = 𝐹 𝑡′
𝑘,𝑗 , (9)

with the initial condition 𝐹 𝑡′
𝑘,𝑗 = [𝐹𝑘,𝑗 (𝑡′𝑝),… , 𝐹𝑘,𝑗 (𝑡′𝑝−𝑞+1)]

𝑇 . For the sake of the control algorithm that will be developed in Section 3.3
it is essential to guarantee that the dynamical system describing the interaction forces is asymptotically stable. To guarantee that,
each function 𝐹𝑘,𝑗 will be approximated by �̄�𝑘,𝑗 using the exponential decay function:

�̄�𝑘,𝑗 (𝑡) = exp−𝛽𝑘,𝑗 𝑡 𝐹𝑘,𝑗 (𝑡) , (10)

In (10), the decay parameter 𝛽𝑘,𝑗 is computed using the spectrum of the matrix �̄�𝑘,𝑗 :

𝛽𝑘,𝑗 =
{

0, if 𝜆𝑚𝑎𝑥(�̄�𝑘,𝑗 ) < 0,
𝜆𝑚𝑎𝑥(�̄�𝑘,𝑗 ) + 𝜖, otherwise, (11)

In (11), 𝜆𝑚𝑎𝑥(�̄�𝑘,𝑗 ) stands for the largest of the real parts of the eigenvalues of �̄�𝑘,𝑗 and 𝜖 > 0 is some small number. From (11), it
follows that �̄�𝑘,𝑗 − 𝛽𝑘,𝑗I (here I denotes 𝑞 × 𝑞 identity matrix) is a Hurwitz matrix and consequently the system:

̇̄𝑥𝑘,𝑗 (𝑡) = (�̄�𝑘,𝑗 − 𝛽𝑘,𝑗I) �̄�𝑘,𝑗 (𝑡) (12)

is asymptotically stable. To simplify the notation, for each 𝑘 = 1,… , 𝐾, we introduce the accumulated vector �̄�𝑘 = [{�̄�𝑘,𝑗}𝑗∈𝑘 ]
𝑇 and

matrix �̄�𝑘 = diag({�̄�𝑘,𝑗 − 𝛽𝑘,𝑗I}𝑗∈𝑘 ). Then, each subsystem 𝑆𝑘 in 𝑡 ∈ (𝑡′, 𝑡′ + ℎ+] is subjected to the interaction forces characterized
by the dynamical equation:

̇̄𝑥𝑘(𝑡) = �̄�𝑘 �̄�𝑘(𝑡), �̄�𝑘(𝑡′) = �̄�𝑡
′

𝑘 , (13)

where the initial condition is given by �̄�𝑡′𝑘 = [{𝐹 𝑡′
𝑘,𝑗}𝑗∈𝑘 ]

𝑇 . In the control algorithm (see Section 3.3), the matrix �̄�𝑘 in (13) will
be consecutively recomputed using a predefined updating time sequence 𝑡′ = {𝜏1,… , 𝜏𝑍}, 𝜏1 ≥ ℎ−, 𝜏𝑍 < 𝑇 , where the subsequent
6

values are defined by the assumed control updating period, i.e., 𝜏𝑧+1 − 𝜏𝑧 = ℎ+, 𝑧 = 1,… , 𝑍 − 1.
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3.2. Decentralized control functions

Incorporating the derived interaction forces model (13) into the structure’s dynamics (2) we obtain the following autonomous
inear differential equation:

[

�̇�𝑘(𝑡)
̇̄𝑥𝑘(𝑡)

]

=
[

𝐴𝑘 �̃�𝑘
0 �̄�𝑘

] [

𝑥𝑘(𝑡)
�̄�𝑘(𝑡)

]

+
𝑚𝑘
∑

𝑖=1
𝑢𝑘,𝑖(𝑡)

[

𝐵𝑘,𝑖 0
0 0

] [

𝑥𝑘(𝑡)
�̄�𝑘(𝑡)

]

,
[

𝑥𝑘(0)
�̄�𝑘(0)

]

=
[

𝑥0𝑘
�̄�0𝑘

]

. (14)

In (14), �̃�𝑘 is the matrix accommodating the interaction forces model and its composition relies on the structuring of the vectors
𝐷𝑘,𝑗 , 𝑗 ∈ 𝑘. For the sake of the further analysis, we introduce the extended state vector and matrices:

𝑦𝑘(𝑡) =
[

𝑥𝑘(𝑡)
�̄�𝑘(𝑡)

]

, 𝑘 =
[

𝐴𝑘 �̃�𝑘
0 �̄�𝑘

]

, 𝑘,𝑖 =
[

𝐵𝑘,𝑖 0
0 0

]

, (15)

and represent Eq. (14) in a compact form:

�̇�𝑘(𝑡) = 𝑘 𝑦𝑘(𝑡) +
𝑚𝑘
∑

𝑖=1
𝑢𝑘,𝑖(𝑡)𝑘,𝑖 𝑦𝑘(𝑡), 𝑦𝑘(0) = 𝑦0𝑘. (16)

Each subsystem 𝑆𝑘 governed by Eq. (16) will be operated with the following switching control law:

𝑢𝑘,𝑖(𝑡) =

{

𝑢𝑚𝑖𝑛, 𝑦𝑇𝑘 (𝑡)𝑃 𝑘,𝑖 𝑦𝑘(𝑡) ≥ 0,

𝑢𝑚𝑎𝑥, 𝑦𝑇𝑘 (𝑡)𝑃 𝑘,𝑖 𝑦𝑘(𝑡) < 0, 𝑖 = 1,… , 𝑚𝑘,
(17)

where 𝑃 is a symmetric matrix, which is computed by solving the Lyapunov equation:

(𝑇
𝑘 +

𝑚𝑘
∑

𝑖=1
𝑢𝑚𝑎𝑥 𝑇

𝑘,𝑖)𝑃 + 𝑃 (𝑘 +
𝑚𝑘
∑

𝑖=1
𝑢𝑚𝑎𝑥 𝑘,𝑖) = −𝑄𝑘. (18)

In (18), 𝑄𝑘 is a positive definite matrix and its composition will be studied in the sequel of this section. Firstly, we shall demonstrate
that the control function as in (17) guarantees the asymptotic stability of the system (16) around the equilibrium point 𝑦𝑘 = 0 as
required in the assumption A1. For this purpose we introduce the Lyapunov function 𝑉 = 𝑉 (𝑦𝑘) given by:

𝑉 (𝑦𝑘) = 𝑦𝑇𝑘 𝑃 𝑦𝑘. (19)

Computing the time derivative of 𝑉 we obtain:

�̇� = ̇𝑦𝑘
𝑇 𝑃𝑦𝑘 + 𝑦𝑇𝑘 𝑃 �̇�𝑘. (20)

The substitution of the dynamical Eq. (16) into (20) results in:

�̇� = 𝑦𝑇𝑘
𝑇
𝑘 𝑃𝑦𝑘 + 𝑦𝑇𝑘 𝑃𝑘𝑦𝑘 +

𝑚𝑘
∑

𝑖=1
𝑢𝑘,𝑖 𝑦

𝑇
𝑘

𝑇
𝑘,𝑖𝑃𝑥 +

𝑚𝑘
∑

𝑖=1
𝑢𝑘,𝑖 𝑦

𝑇
𝑘 𝑃𝑘,𝑖𝑦𝑘 (21)

which can be represented as follows:

�̇� = 𝑦𝑇𝑘 (
𝑇
𝑘 +

𝑚𝑘
∑

𝑖=1
𝑢𝑚𝑎𝑥 𝑇

𝑘,𝑖)𝑃𝑦𝑘 + 𝑦𝑇𝑘 𝑃 (𝑘 +
𝑚𝑘
∑

𝑖=1
𝑢𝑚𝑎𝑥 𝑘,𝑖)𝑦𝑘 +

𝑚𝑘
∑

𝑖=1
(𝑢𝑘,𝑖 − 𝑢𝑚𝑎𝑥) 𝑦𝑇𝑘 (

𝑇
𝑘,𝑖𝑃 + 𝑃𝑘,𝑖)𝑦𝑘. (22)

The insertion of the Lyapunov Eq. (18) and the symmetry of the matrix 𝑃 = 𝑃 𝑇 allows us to represent Eq. (22) in the following
form:

�̇� = −𝑦𝑇𝑘𝑄𝑘𝑦𝑘 + 2
𝑚𝑘
∑

𝑖=1
(𝑢𝑘,𝑖 − 𝑢𝑚𝑎𝑥) 𝑦𝑇𝑘 𝑃𝑘,𝑖𝑦𝑘. (23)

From 𝑄𝑘 ≻ 0, it follows that the first term in (23) is strictly negative for every 𝑦𝑘 ≠ 0. The switching control law defined in (17)
ensures that:

𝑚𝑘
∑

𝑖=1
(𝑢𝑘,𝑖 − 𝑢𝑚𝑎𝑥) 𝑦𝑇𝑘 𝑃𝑘,𝑖𝑦𝑘 ≤ 0. (24)

These two upper mentioned facts lead us to the conclusion that �̇� < 0 for every 𝑦𝑘, and therefore the asymptotic stability of the
closed-loop system (16) is guaranteed.

To define the structuring of the matrix 𝑄𝑘 used in the Lyapunov Eq. (18), we shall now investigate the stabilizing control function
(17) in the view of the quantitative performance. Since our aim is to find a consensus between efficient free vibration damping and
energy harvesting, it is convenient to analyse how the selection of 𝑄𝑘 can influence the rates of convergence of particular states of
the vector 𝑦𝑘. To complete that, firstly observe that the control (17) can be perceived as the solution to the following optimization
problem:

𝑇

7

𝑢𝑘,𝑖(𝑡) = argmin𝑢∈[𝑢𝑚𝑖𝑛 ,𝑢𝑚𝑎𝑥](𝑢 − 𝑢𝑚𝑎𝑥) 𝑦𝑘 𝑃𝑘,𝑖𝑦𝑘, for every 𝑡 . (25)
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Fig. 2. Block diagram of the combined feedforward–feedback control to be operated in subcontroller 𝐶𝑘.

Therefore, from Eq. (23), it follows that the control (17) also fulfils the equality:

𝑢𝑘,𝑖(𝑡) = argmin𝑢∈[𝑢𝑚𝑖𝑛 ,𝑢𝑚𝑎𝑥]{�̇� + 𝑦𝑇𝑘 (𝑡)𝑄𝑘𝑦𝑘(𝑡)}, for every 𝑡. (26)

Assume the diagonally structured matrix 𝑄𝑘 = diag({𝑞𝑙𝑘}𝑙=1,2,…) where 𝑞𝑙𝑘 = 1 if 𝑦𝑙𝑘 is a structure’s state variable, and 0 < 𝑞𝑙𝑘 ≪ 1, if
𝑦𝑙𝑘 is a harvester’s state variable. Then, Eq. (26) is of the form:

𝑢𝑘,𝑖(𝑡) = argmin𝑢∈[𝑢𝑚𝑖𝑛 ,𝑢𝑚𝑎𝑥]{�̇� + 𝑞1𝑘 (𝑦
1
𝑘(𝑡))

2 + 𝑞2𝑘 (𝑦
2
𝑘(𝑡))

2 +⋯}, for every 𝑡. (27)

According to Eq. (27), the control function (17) not only stabilizes the overall subsystem states, as shown in Eqs. (19)–(24), but
also tends to maintain higher amplitudes of the harvester device states through the selection of the entries of 𝑄𝑘. It is important to
note that (27) is an instantaneous optimization problem, thus the optimal consensus of vibration suppression and energy harvesting
may not be satisfied when considering a finite time horizon. However, the designed control can significantly increase the amount
of harvested energy, as confirmed by the experiments presented in Section 4.5, by choosing the appropriate parameters 𝑞1𝑘, 𝑞

2
𝑘,…

that refer to assumption A2.
To demonstrate that the control function (17) meets the decentralized state-feedback structuring as defined in the assumption A3,

firstly observe that the interaction forces 𝐹𝑘,𝑗 , 𝑗 ∈ 𝑘, can be determined using the information of the state vectors 𝑥𝑘 and 𝑥𝑗 , 𝑗 ∈ 𝑘.
Accordingly to the assumed interaction forces model (4) each subcontroller 𝐶𝑘 estimates the weighting parameters and composes the
dynamical system (13) to perform the computation of the subsequent values of the vector �̄�𝑘. From the composition of the extended
state vector 𝑦𝑘 = [𝑥𝑘, �̄�𝑘]𝑇 (see Eq. (15)), it follows that the control function (17) fulfils the condition 𝑢𝑘,𝑖(𝑡) = 𝑢𝑘,𝑖(𝑥𝑘, {𝑥𝑗}𝑗∈𝑘 ).

3.3. Computational algorithm of the decentralized controller

In the following, we summarize the methodology we developed by presenting a computational algorithm to be implemented in
the decentralized controller. The algorithm comprises ten major steps: Step 1 is acquiring the system matrices and control parameters.
Step 2 is initializing time and control. Step 3 is verifying the terminal condition. Step 4 is identifying the time instants for updating
the interaction forces and control. Steps 5 to 7 are determining the weighting parameters of the interaction forces AR model. Step
8 is solving the Lyapunov equation for updating the control law. Step 9 is computing the evolution of the interaction forces, and
Step 10 is implementing the updated control decision. The block diagram of the control to be implemented in each subcontroller
𝐶𝑘, 𝑘 = 1,… , 𝐾, is illustrated in Fig. 2.

Remarks.

R1. In Step 8, a unique solution to the Lyapunov Eq. (18) is guaranteed if the matrix 𝑘 +
∑𝑚𝑘

𝑖=1 𝑢𝑚𝑎𝑥 𝑘,𝑖 is Hurwitz (see, for
example [45]). Here, the stability of the matrix 𝑘 composed as in Eq. (15) follows from the stability of the assumed interaction
forces model’s matrix �̄�𝑘 (see (13)) and the stability of the structural model matrix 𝐴𝑘 (see Eq. (2)) which in the majority
of structures is provided by the presence of the material or air damping. In the case when 𝐴𝑘 does not fulfil the stability
condition, the stability of the matrix 𝑘 +

∑𝑚𝑘
𝑖=1 𝑢𝑚𝑎𝑥 𝑘,𝑖 can still be ensured by the contribution of its second term which is

concerned with inherently dissipative semi-active devices.

R2. In Steps 6 and 7, it is assumed that the number of interaction forces acting on subsystem 𝑆𝑘 from subsystem 𝑆𝑗 is 𝑟𝑘,𝑗 = 1. In
the case of 𝑟𝑘,𝑗 > 1, the computations are repeated for 𝐹𝑘,𝑗,𝑟, 𝑗 ∈ 𝑘, 𝑟 = 1,… , 𝑟𝑘,𝑗 , and the accumulated matrix �̄�𝑘 is built
with an appropriate size in analogy to the method described in Section 3.1.

3. Steps 1–10 are uniform for each subcontroller 𝐶𝑘, 𝑘 = 1,… , 𝐾, and therefore system reconfiguration or expansion only requires
8

redefining the interconnectivity sets and relevant subsystem matrices and vectors.
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Algorithm 1 Computational algorithm implemented in the decentralized controller

Step 1. Initialize the subsystem matrices and vectors:
𝐴𝑘, 𝐵𝑘, 𝐷𝑘,𝑗 , 𝑗 ∈ 𝑘, 𝑘 = 1, ..., 𝐾 (see Eq. (2)).
Build the matrices 𝑘,𝑖, 𝑖 = 1, ..., 𝑚𝑘, 𝑘 = 1, ..., 𝐾 (see Eq. (15)).
Select matrices 𝑄𝑘, 𝑘 = 1, ..., 𝐾 (see Section Section 3.2).
Assume the minimum and maximum admissible control values 𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥.
Select control time window [0, 𝑇 ].
Assume the measurement horizon ℎ− and control updating period ℎ+ (see Section 3.1).
Assume the set of time instants for updating the interaction forces and control:
𝜏1, ..., 𝜏𝑍 , 𝜏1 ≥ ℎ−, 𝜏𝑍 < 𝑇 , 𝜏𝑧+1 − 𝜏𝑧 = ℎ+, 𝑧 = 1, ..., 𝑍 − 1 (see Section 3.1).
Select the sampling time 𝛥𝑡
and compute the number of measured state samples 𝑝 = ℎ−∕𝛥𝑡 + 1.
Select the order 𝑞 for the AR model (see Eq. (4)).
Set the index of the updating time instants 𝑧 = 1.

Step 2. Initialize time 𝑡 = 0 and START control
by assuming the control functions 𝑢𝑘,𝑖(𝑡) = 𝑢𝑚𝑎𝑥, 𝑖 = 1, ..., 𝑚𝑘, 𝑘 = 1, ..., 𝐾.

tep 3. If 𝑡 < 𝑇 , then proceed to the next step.
Otherwise, STOP control.

tep 4. If 𝑡 = 𝜏𝑧, then proceed to the next step.
Otherwise, wait.

tep 5. Each subcontroller 𝐶𝑘, 𝑘 = 1, ..., 𝐾, exchanges the information
on the state samples 𝑥𝑘(𝑡′1), ..., 𝑥𝑘(𝑡

′
𝑝), 𝑡

′
1 = 𝜏𝑧 − ℎ−, ..., 𝑡′𝑝 = 𝜏𝑧,

with subcontrollers 𝐶𝑗 , 𝑗 ∈ 𝑘.
Step 6. Each subcontroller 𝐶𝑘, 𝑘 = 1, ..., 𝐾, estimates the sequences

of the interaction forces 𝐹𝑘,𝑗 (𝑡′1), ..., 𝐹𝑘,𝑗 (𝑡′𝑝), 𝑗 ∈ 𝑘.
Step 7. Each subcontroller 𝐶𝑘, 𝑘 = 1, ..., 𝐾, computes the parameters

𝛼1𝑘,𝑗 , ..., 𝛼
𝑞
𝑘,𝑗 , 𝑗 ∈ 𝑘, for the AR model (see Eq. (4))

and composes the accumulated matrix �̄�𝑘
for the dynamical system defined by Eq. (13).

Step 8. Each subcontroller 𝐶𝑘, 𝑘 = 1, ..., 𝐾, builds the matrix 𝑘 (see Eq. (15))
and solves the Lyapunov equation to obtain the matrix 𝑃 (18).

Step 9. Each subcontroller 𝐶𝑘, 𝑘 = 1, ..., 𝐾, computes the vector
�̄�𝑘(𝑡) for 𝑡 ∈ [𝜏𝑧, 𝜏𝑧 + ℎ+] using the dynamical equation (13).

Step 10. Each subcontroller 𝐶𝑘, 𝑘 = 1, ..., 𝐾, builds the extended state vector 𝑦𝑘(𝑡) (see Eq. (15))
employing currently measured state 𝑥𝑘(𝑡) and computed state �̄�𝑘(𝑡),
and applies the control functions 𝑢𝑘,𝑖(𝑡), 𝑖 = 1, ..., 𝑚𝑘,
using the control law given by Eq. (17).
Increment the index of the updating time instants 𝑧 = 𝑧 + 1 and go to Step 3.

4. Case study

4.1. The analysed structure

The developed control will be examined using a uniquely designed suspension platform as depicted in Figs. 3 (CAD model) and
(real view). The structure is composed of 12 identical modules (referred to as modules no. 1–12), each involving an aluminium

antilever beam (a) and a plastic plate mounted at the beam’s end (e). Every module is equipped with an electromagnetic device
ade of a base standing coil and a magnet attached to the bottom of the plate. Six electromagnetic devices – attached to modules
o. 1–6 – will be used to mimic the operation of semi-active actuators (d) with controllable stiffness 𝑘𝑢 and damping 𝑏𝑢, the remaining

six devices – attached to modules no. 7–12 – will be employed as passive energy harvesters (c) of resistance 𝑅ℎ and inductance 𝐿ℎ.
Each module of the total mass 𝑚 is interconnected with the adjacent modules (e.g. module no. 1 is interconnected with modules no. 2
and 7) using the springs (f) of the stiffness 𝑘𝑠. For the beams, we assume low speed motion with the first natural mode and represent
them as simple oscillators of stiffness 𝑘𝑏. Since the maximal deflection of the beam’s end is significantly lower than the beam’s length
(less than 3%), we neglect the plate’s rotation, and for the structural state variables, for each module, assume plate’s vertical position
and velocity. The structural state variables will be estimated using high-precision laser sensors (b). For the implementation of the
9

controller, we will use a workstation (h) equipped with PCI multichannel analog I/O cards. To control the semi-active actuators,
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Fig. 3. CAD model of the test rig involving the modular suspension platform.

Fig. 4. Real view of the modular suspension platform.

we will employ a set of specially manufactured highly responsive power amplifiers (g). The parameters of the investigated system
are listed in Table 1.

For the semi-active actuators – represented by the electromagnetic devices of modules no. 1–6 – it is assumed that the control
input 𝑢𝑘,𝑖 influences the stiffness 𝑘𝑢(𝑢𝑘,𝑖) and damping 𝑏𝑢(𝑢𝑘,𝑖) coefficients. Furthermore, each of these coefficients is assumed to
depend linearly on the control:

𝑘𝑢(𝑢𝑘,𝑖) = 𝑢𝑘,𝑖𝑘𝑢, 𝑏𝑢(𝑢𝑘,𝑖) = 𝑢𝑘,𝑖𝑏𝑢. (28)

In (28), 𝑘𝑢 and 𝑏𝑢 are assumed to be constant (see Table 1), and the control variable 𝑢𝑘,𝑖 is switched between the values 𝑢𝑚𝑖𝑛 = 0.1
and 𝑢𝑚𝑎𝑥 = 1. Let us consider the module no. 1 of the subsystem 𝑆𝑘, where the variables 𝑥𝑘,1, 𝑥𝑘,2 and 𝑢𝑘,1 stand for the plate’s
vertical position, velocity and control input, respectively. The force produced by the semi-active actuator 𝐹𝑢 is assumed as the sum
of the elastic and damping forces:

𝐹𝑢 = −𝑢𝑘,1𝑘𝑢𝑥𝑘,1 − 𝑢𝑘,1𝑏𝑢𝑥𝑘,2. (29)

The voltage applied from the power amplifier to the electromagnetic device is proportional to the force as in Eq. (29).
10
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Table 1
The parameters of the modular suspension platform.

Parameter Value

Module mass (𝑚) 0.48 [kg]
Beam stiffness (𝑘𝑏) 45 [N∕m]
Spring stiffness (𝑘𝑠) 22 [N∕m]
Actuator stiffness coefficient (𝑘𝑢) 50 [N∕m]
Actuator damping coefficient (𝑏𝑢) 0.5 [Ns∕m]
Harvester resistance (𝑅ℎ) 250 [Ω]
Harvester inductance (𝐿ℎ) 0.076 [H]
Harvester mechanical–magnetic coupling constant (𝑘𝑡) 14.512 [⋅]
Min./Max. control value (𝑢𝑚𝑖𝑛∕𝑢𝑚𝑎𝑥) 0.01∕1 [⋅]

For the energy harvesters – represented by the electromagnetic devices of modules no. 7–12 – we will use the standard model
f the coupled mechanical–magnetic system (see [29]) which constitutes that the Lorentz force on the harvester’s magnet is
roportional to the electric current in the coil, and the magnetic flux through the coil is composed by the self inducted flux and the
lux due to the magnet motion. For the module no. 7 of the subsystem 𝑆𝑘 assume the variables 𝑥𝑘,4 and 𝑥𝑘,5 denoting the magnet’s

velocity and electric current in the coil, respectively. According to the assumed mechanical–magnetic model, the Lorentz force acting
on the harvester’s magnet is as follows:

𝐹ℎ = −𝑘𝑡𝑥𝑘,5. (30)

In (29), 𝑘𝑡 is constant obtained experimentally (see Table 1). The dynamical equation for the harvester’s coil electric circuit is given
by:

�̇�𝑘,5 = 𝑘𝑡𝑥𝑘,4 −
𝑅ℎ
𝐿ℎ

𝑥𝑘,5. (31)

he complete dynamical equation for the subsystem aggregating modules no. 1 and 7 will be presented in the following section.

.2. Subsystems selection

Since the aim is to examine how the selection of the structure’s subsystems impacts on the performance of the developed
ecentralized control, three different architectures will be analysed. In the first case, referred to as the decentralized variant 2 (see
ig. 5a), the suspension platform is divided into six subsystems 𝑆1-𝑆6, where each collects two adjacent modules, one equipped with
he semi-active actuator and the other with the energy harvester (we assume modules no. 1 and 7 for subsystem 𝑆1, modules no. 2

and 8 for subsystem 𝑆2, and so forth). In this arrangement, the inter-connectivity sets defined as in Eq. (1) are defined as follows:

1 = {2}, 𝑘 = {𝑘 − 1, 𝑘 + 1}, 𝑘 = 2,… , 5, 6 = {5}. (32)

For subsystem 𝑆1(𝑥1), the state vector 𝑥1 = [𝑥1,1,… , 𝑥1,5]𝑇 contains respectively the position and velocity of module no. 1, the
position and velocity of module no. 7 and the electric current in the circuit of the harvester of module no. 7. Subcontroller 𝐶1(𝑢1)
ssociated to the subsystem 𝑆1(𝑥1) is operated with a single control input 𝑢1,1. Taking into consideration the assumptions stated for
he cantilever beams, semi-active actuator and energy harvester (see Eqs. (28)–(31)), and respecting the fact that the modules no. 1
nd 7 are dynamically coupled by the spring of stiffness 𝑘𝑠, the dynamical equation for subsystem 𝑆1 is of the following form:

�̇�1(𝑡) = 𝐴1 𝑥1(𝑡) + 𝑢1,1(𝑡)𝐵1,1 𝑥1(𝑡) +𝐷1,2,1 𝐹1,2,1(𝑡) +𝐷1,2,2 𝐹1,2,2(𝑡), 𝑥1(0) = 𝑥01, (33)

where the subsystem matrices are given by:

𝐴1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0 0
−(𝑘𝑏 + 𝑘𝑠)∕𝑚 0 𝑘𝑠∕𝑚 0 0

0 0 0 1 0
𝑘𝑠∕𝑚 0 −(𝑘𝑏 + 𝑘𝑠)∕𝑚 0 −𝑘𝑡∕𝑚
0 0 0 𝑘𝑡 −𝑅ℎ∕𝐿ℎ

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐵1,1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0
−𝑘𝑢∕𝑚 −𝑏𝑢∕𝑚 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (34)

Since the modules of the adjacent subsystems are interconnected with springs, in (33), the interaction force 𝐹1,2,1(𝑡) is computed by
using the relative displacement of the modules no. 1 and 2, and this information is acquired by exchanging the state information
between subcontroller 𝐶1 and 𝐶2. Similarly, to estimate 𝐹1,2,2(𝑡), subcontroller 𝐶1 uses the relative displacement of the modules no. 7
and 8. The vectors accommodating the interaction forces in the dynamical system (33) are defined as follows 𝐷1,2,1 = [0, 1, 0, 0, 0]𝑇 ,
𝐷1,2,2 = [0, 0, 0, 1, 0]𝑇 . The governing equations for the subsystems 𝑆2-𝑆6 are built in analogy to Eq. (33) and incorporate the
interaction forces established following the interconnectivity sets as defined in Eq. (32).

For the second controller’s architecture, referred to as the decentralized variant 1 (see Fig. 5b), the structure is assumed to be
partitioned into subsystems 𝑆 and 𝑆 , where 𝑆 collects the modules no. 1–3 and no. 7–9, and 𝑆 is composed of the modules
11
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Fig. 5. Subsystems selection in the case of decentralized architectures in variant 1 (a) and 2 (b). In the case of the variant 1, the subsystem 𝑆1 collects the
modules no. 1–3 and 7–9. In the case of the variant 2, the subsystem 𝑆1 is composed of the modules no. 1 and 7.

no. 4–6 and no. 10–12. Each subsystem relies on three control inputs and three energy harvesters. The dynamical equations and
interacting forces are determined by analogy to the variant 2.

Eventually, we shall examine the developed method for the centralized controller architecture, where the global system 𝑆 contains
all modules no. 1–12 and is operated with a single computing unit 𝐶 that controls six inputs. In this case, the interconnectivity set
is empty, and consequently the interaction forces vanish.

4.3. Selection of the control algorithm parameters

The experiments are conducted in the MATLAB environment. The main code is divided into separate sections, simulating the
collaboration of the subcontrollers in accordance with the assumed architectures (see Section 4.2). For each subcontroller, Algorithm
1 is implemented using the following settings. The entries in the matrices 𝑄𝑘, 𝑘 = 1,… , 𝐾, corresponding to the states of the
harvesters, are assumed to be equal to 0.00001. The control time window and the measurement horizon are assumed to be 𝑇 = 20[𝑠]
and ℎ− = 0.02[𝑠], respectively. The control algorithm’s sampling time is set to 𝛥𝑡 = 0.002[𝑠], resulting in 𝑝 = 11 state samples being
exchanged by the interconnected subcontrollers when predicting the evolution of the interaction forces. To reduce the measurement
noise generated by the laser sensors, the sampling time on the PCI I/O devices is set to 0.0005[𝑠], and four consecutive values are
averaged to obtain the actual state value used in the control algorithm, which operates with the sampling time 𝛥𝑡 = 0.002[𝑠].
During the time interval [0.02, 20][𝑠], the following set of time instants for updating the interaction forces and control are assumed:
𝜏1 = 0.02[𝑠],… , 𝜏𝑍 = 19.92[𝑠], with a constant update interval of ℎ+ = 0.1[𝑠]. The order of the AR model of the interaction forces is
assumed to be 𝑞 = 4, and this selection is made by trial and error, using the criterion of compromising the accuracy of the evolution
of the interaction forces with the computational time, which is limited to 10% of the update period ℎ+. To estimate the AR model
parameters (see Step 7), the MATLAB ‘‘arburg’’ function is used. The solution to the Lyapunov equation (see Step 8) is obtained
using the MATLAB ‘‘lyap’’ function. The integration of the interaction forces’ dynamic equations (see Step 9) is performed using the
Runge–Kutta fourth-order scheme with a time step equal to the algorithm’s sampling time 𝛥𝑡. For each of the considered cases, the
average total time required to compute the updated control (Step 3–Step 10) was below 0.016 [s] (the procedure was run using a
workstation with an Intel Xeon, 3.00 GHz, 16 GB, that operated on the Linux platform).

4.4. Comparative controls

To assess the performance of the developed control, it will be compared with an alternative decentralized control method, referred
to as the heuristic control, and the passive damping strategy.

The heuristic control is based on the principle of isolating each subsystem, which for the system as in Eq. (2) is equivalent to
assuming that interaction forces are negligible, i.e., 𝐹𝑘,𝑗 = 0, 𝑗 ∈ 𝑘. The control law is derived by maximizing the rate of energy
dissipation in each subsystem instantaneously (see [14]). Experiments have shown (see [46]) that this method is highly effective
in stabilizing the free vibrations of a structure equipped with semi-active elastomer-based blocks that generate controlled forces
as defined in Eq. (29). Additionally, the heuristic control can be implemented in the control architectures outlined in Section 4.2.
The main difference between the heuristic and developed methods lies in the amount of state information used in the feedback
loop, with the heuristic control excluding the state of adjacent subsystems. To derive the control function for the heuristic method
and ensure it is consistent with the assumptions made for the developed control, we define the energy-related function for each
subsystem 𝐶𝑘, 𝑘 = 1,… , 𝐾:

𝐸𝑘(𝑡) = 𝑥𝑇𝑘 (𝑡) �̄�𝑘 𝑥𝑘(𝑡), (35)

where �̄�𝑘 is a submatrix of 𝑄𝑘 (see Eq. (18)) that collects only those entries of 𝑄𝑘 that correspond to the structure’s state vector
𝑥𝑘. The heuristic control functions 𝑢ℎ𝑘,𝑖(𝑡), 𝑖 = 1,… , 𝑚𝑘, that guarantee the best instantaneous dissipation of the energy 𝐸𝑘 are given
as the solution to the following optimization problem:

𝑢ℎ (𝑡) = argmin �̇� (𝑡), 𝑖 = 1,… , 𝑚 . (36)
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Table 2
Comparison of the mechanical energy integral 𝐽𝑚, total harvested energy 𝐸ℎ(𝑇 ) and efficiency parameter 𝐸ℎ(𝑇 )∕𝐽𝑚
for the Case A. For each control method, the values are normalized to the passive damping strategy.

Passive Designed control Heuristic control

Centr. Decentr. v1 Decentr. v2 Centr. Decentr. v1 Decentr. v2

𝐽𝑚 1.0000 0.4146 0.4282 0.4309 0.4173 0.4634 0.5962
𝐸ℎ(𝑇 ) 1.0000 0.5516 0.5693 0.5740 0.5513 0.5811 0.7390
𝐸ℎ(𝑇 )∕𝐽𝑚 1.0000 1.3304 1.3295 1.3321 1.3211 1.2540 1.2395

The time derivative of the energy function can be computed as follows:

�̇�𝑘 = �̇�𝑇𝑘 �̄�𝑘𝑥𝑘 + 𝑥𝑇𝑘 �̄�𝑘�̇�𝑘. (37)

From the symmetry of the matrix �̄�𝑘 and the dynamical Eq. (2), it follows that:

𝑢ℎ𝑘,𝑖(𝑡) =

{

𝑢𝑚𝑖𝑛, 𝑥𝑇𝑘 (𝑡) �̄�𝑘𝐵𝑘,𝑖 𝑥𝑘(𝑡) ≥ 0,
𝑢𝑚𝑎𝑥, 𝑥𝑇𝑘 (𝑡) �̄�𝑘𝐵𝑘,𝑖 𝑥𝑘(𝑡) < 0, 𝑖 = 1,… , 𝑚𝑘.

(38)

The reader can verify that for Hurwitz matrix 𝐴𝑘 the control (38) guarantees �̇�𝑘 < 0 for 𝑥𝑘 ≠ 0, and thus ensures the asymptotic
stability of the closed-loop system given by Eq. (2) when 𝐹𝑘,𝑗 = 0, 𝑗 ∈ 𝑘.

For the passive damping strategy we assume constant control functions 𝑢𝑝𝑘,𝑖(𝑡), 𝑖 = 1,… , 𝑚𝑘, where each semi-active device
operates at the maximal admissible value, i.e., 𝑢𝑝𝑘,𝑖(𝑡) = 𝑢𝑚𝑎𝑥, 𝑖 = 1,… , 𝑚𝑘. In the vast majority of the semi-actively controlled
structures, this strategy is equivalent to the optimal passive damping (see, for example [47]).

4.5. Results and discussion

The present study evaluates the efficacy of the developed method for the analysis of free vibration, while considering two different
initial condition scenarios. In the first scenario, referred to as Case A, the initial configuration involves the placement of module
no. 1 at a displacement of 0.02 [m], whereas the remaining modules are set to their initial position of zero displacement. The second
scenario, referred to as Case B, focuses on validating the higher vibration mode of the system. This is accomplished by imposing
initial deflections of 0.01, 0.02, 0.01 and 0.02 [m] for modules no. 1, 3, 4 and 6, respectively.

In order to assess the efficacy of stabilizing control performance, we will analyse a measure defined as the time integral of the
mechanical energy over the control period 𝑇 :

𝐽𝑚 = ∫

𝑇

0
𝐸𝑚(𝑡)d𝑡. (39)

In (39), 𝐸𝑚(𝑡) represents the mechanical energy of the entire structure, calculated as the sum of potential and kinetic energies for
all 12 modules and interconnecting springs, without regard to subsystem selection. In addition, we will evaluate the total amount
of harvested electrical energy, which is given by:

𝐸ℎ(𝑡) = ∫

𝑡

0
𝑃𝑚(𝑡)d𝑡, (40)

where 𝑃𝑚(𝑡) represents the sum of the electrical power generated by the energy harvesting devices of modules no. 7 to 12. The
effectiveness of energy harvesting will be determined by comparing the total amount of harvested electrical energy to the total
mechanical energy, calculated as the ratio 𝐸ℎ(𝑇 )∕𝐽𝑚. In order to conduct a rigorous examination as expounded in Sections 4.5.1
and 4.5.2, we will determine each of the aforementioned metrics by computing the mean value resulting from three successive
experimental trials.

4.5.1. Case A
We commence our analysis by comparing the evolution of the mechanical energy 𝐸𝑚(𝑡) obtained through the passive damping

strategy and the designed and heuristic control techniques, while considering the subsystems selection of the decentralized variant
2. This comparison is depicted in Fig. 6a and confirms that the designed control exhibits a high stabilizing performance. Specifically,
the results indicate that after the first three seconds of the experiment the designed method resulted in mechanical energy that was
12.9% and 68.2% lower than that obtained with the heuristic control and passive strategy, respectively. The effectiveness of the
designed control in stabilizing the system can also be assessed through the analysis of the deflection of module no. 1, as illustrated in
Fig. 7a. The deflection trajectory resulting from the designed control demonstrated a decrease in peak amplitudes at approximately
𝑡 = 0.2 [s] and 𝑡 = 0.4 [s] by 9.5% and 19.4%, respectively, when compared to the heuristic control. When compared to the
passive damping strategy, these reductions were 19.9% and 42.4%. The high stabilizing performance of the developed control is
further confirmed by analysing the frequency responses of the deflection of module no. 1 (see Fig. 9a). The peak amplitude of this
characteristic at approximately 2.5 [Hz] was reduced by 46.0% and 17.7% when compared to passive damping and heuristic control,
respectively. Additionally, for both the designed and heuristic control, a slight shift of the peak amplitudes towards lower frequencies
13

is observed, resulting from temporary drops in stiffness when applying the assumed switched control laws (see Eqs. (17) and (38)).
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Fig. 6. The evolution of the mechanical energy 𝐸𝑚 (a) and harvested electrical energy 𝐸ℎ (b) for the passive strategy, developed control and heuristic control
in Case A assuming the architecture of decentralized variant 2.

Fig. 7. The trajectories of the deflection of module no. 1 (a) and electric current in module no. 7 for the passive strategy, developed control and heuristic control
in Case A assuming the architecture of decentralized variant 2.

The examination of the integral of mechanical energy 𝐽𝑚, as presented in Table 2, evidences that the developed control resulted in a
substantial 38.3% increase in overall stabilizing performance for the decentralized variant 2 as compared to the heuristic control. In
comparison to the passive method, this improvement was 132.1%. The obtained values of the integral of mechanical energy has also
revealed that the decentralization of controller architecture has marginal impact on the stabilizing performance of the developed
control. Specifically, when compared to the centralized architecture, the decentralized variants 1 and 2 resulted in an increase of
3.2% and 3.9% in the integral energy measure, respectively. In contrast, the heuristic control approach exhibited a considerably
larger increase, 11.0% and 42.8% for the respective decentralized architectures.

Our subsequent aim is to validate the efficacy of the proposed control methodology for electrical energy harvesting. Considering
that the designed control achieved superior stabilizing performance, leading to reduced vibration amplitudes and, consequently,
diminished electric current in the harvesting devices (as illustrated in Fig. 7a), it is anticipated that this control approach will
also result in the least amount of accumulated electrical energy. This can be confirmed by analysing the curves that represent the
electrical energy 𝐸ℎ(𝑡) (depicted in Fig. 6b) acquired by all six harvesting devices while assuming the subsystem selection of the
decentralized variant 2. Although we can identify time intervals when the developed control produces rapid increases in the electrical
energy, overall, for the given control time, the increment of this energy was slower than in the remaining cases. In terms of the
total harvested energy 𝐸ℎ(𝑇 ), the developed control exhibited inferior performance by 28.7% and 74.2% compared to the heuristic
and passive methods, respectively. However, considering the relative efficiency of energy harvesting, as measured by the fraction
𝐸ℎ(𝑇 )∕𝐽𝑚 (see Table 2), the developed control outperforms the heuristic method for all controller architectures. In particular, for
the decentralized variant 2, the designed control resulted in a 7.4% increase in the relative efficiency of energy harvesting. It is
noteworthy that the change in controller architecture does not significantly impact the value of 𝐸ℎ(𝑇 )∕𝐽𝑚 when implementing the
designed control. In contrast, for the heuristic control, decentralization resulted in a drop in the aforementioned value by 5.1% and
6.2% for decentralized variant 1 and 2, respectively.

Fig. 8 presents a comparison of the switching patterns obtained from the implementation of the developed control law (see (17))
across the assumed architectures for the module no. 1. It is noteworthy that despite significant differences in the capacity of state
14
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Fig. 8. The control functions of module no. 1 under the developed control for Case A, considering three different architectures: centralized (a), decentralized
variant 1 (b), and decentralized variant 2 (c).

Fig. 9. The amplitude–frequency characteristics of the deflection of module no. 1 for the passive strategy, developed control, and heuristic control in Case A (a)
and B (b), considering the architecture of the decentralized variant 2.

Table 3
Comparison of the mechanical energy integral 𝐽𝑚, total harvested energy 𝐸ℎ(𝑇 ) and efficiency parameter 𝐸ℎ(𝑇 )∕𝐽𝑚
for the Case B. For each control method, the values are normalized to the passive damping strategy.

Passive Designed control Heuristic control

Centr. Decentr. v1 Decentr. v2 Centr. Decentr. v1 Decentr. v2

𝐽𝑚 1.0000 0.4298 0.4472 0.4548 0.4363 0.5419 0.6126
𝐸ℎ(𝑇 ) 1.0000 0.5566 0.5798 0.5901 0.5368 0.6464 0.7275
𝐸ℎ(𝑇 )∕𝐽𝑚 1.0000 1.2950 1.2965 1.2975 1.2303 1.1928 1.1876

information utilized by the control functions, the overall switching pattern is similar in each case. Specifically, during the first two
seconds of the experiments, when the vibration amplitudes sustain at high levels, any deviation between the analysed switching
trajectories is negligible. During the remaining time, a gradual divergence of the switching points of the centralized and decentralized
controls is observed, whereas the controls of the decentralized architectures exhibit close alignment. These observations confirm that
the inclusion of interacting forces that replicate the structural coupling between subsystems facilitates the reduction of the effect of
decentralization degree on the control characteristics and its overall performance.

4.5.2. Case B
The following experiments were carried out to examine the effectiveness of the proposed approach for higher vibration mode.

Specifically, the investigation aimed to assess the impact of higher frequency vibrations on the accuracy of predicting the interaction
forces using the assumed autoregressive model and its consequent effect on the overall control performance. It should be emphasized
that the parameters of the autoregressive model employed in this study are identical to those utilized in Case A (see Section 4.3).

Upon analysing the mechanical energy curves demonstrated in Fig. 10a, it can be observed that the overall stabilizing
performance of the designed decentralized controller is maintained in this case. Furthermore, similar to Case A, the values of
the integral of mechanical energy resulting from the centralized and decentralized architectures nearly coincide for the developed
control, with a marginal increase of 4.0% and 5.8% as a result of decentralization into the architectures of variant 1 and 2,
respectively (see Table 3). It is noteworthy that the heuristic strategy resulted in a 24.0% increase in the integral of mechanical
15
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Fig. 10. The evolution of the mechanical energy 𝐸𝑚 (a) and harvested electrical energy 𝐸ℎ (b) for the passive strategy, developed control and heuristic control
in Case B assuming the architecture of decentralized variant 2.

Fig. 11. The trajectories of the deflection of module no. 1 (a) and electric current in module no. 7 for the passive strategy, developed control and heuristic
control in Case B assuming the architecture of decentralized variant 2.

Fig. 12. The control functions of module no. 1 under the developed control for Case B, considering three different architectures: centralized (a), decentralized
variant 1 (b), and decentralized variant 2 (c).

energy in variant 1 due to decentralization, which is 81.8% higher than that observed in Case A. The efficacy of the designed
control in stabilizing the system under higher vibration frequencies is also supported by the deflection characteristics of module
no. 1 (see Fig. 11a). A reduction in peak amplitudes by 10.6% and 19.8% is observed at approximately 𝑡 = 0.2 [s] and 𝑡 = 1.2
[s], respectively, when compared to the heuristic control. Moreover, these reductions were more significant when compared to
the passive damping strategy, with reductions of 23.6% and 34.5% observed at the same time instants, respectively. Examining the
frequency responses of the deflection of module no. 1, as depicted in Fig. 9b, we observe that the designed control leads to a decrease
in the dominant peak at approximately 2.5 [Hz] by 65.1% and 28.5% when compared to passive damping and heuristic control,
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Table 4
Comparison of the mechanical energy integral 𝐽𝑚, total harvested energy 𝐸ℎ(𝑇 ) and efficiency parameter 𝐸ℎ(𝑇 )∕𝐽𝑚
for the assumed measurement system failure. For each control method, the values are normalized to the passive
damping strategy.

Passive Designed control Heuristic control

Centr. Decentr. v1 Decentr. v2 Centr. Decentr. v1 Decentr. v2

𝐽𝑚 1.0000 0.5716 0.5879 0.5390 0.6391 0.6508 0.6135
𝐸ℎ(𝑇 ) 1.0000 0.7273 0.7486 0.7236 0.8056 0.8168 0.7821
𝐸ℎ(𝑇 )∕𝐽𝑚 1.0000 1.2724 1.2733 1.3425 1.2605 1.2551 1.2748

Fig. 13. The evolution of the mechanical energy 𝐸𝑚 (a) and harvested electrical energy 𝐸ℎ (b) for the developed control under various controller architectures
and measurement system failure.

respectively. Furthermore, the reductions of the two remaining peaks at approximately 1.7 [Hz] and 3.1 [Hz] were 32.6% and
60.8%, respectively, when compared to the damping strategy. Compared to the heuristic control, these reductions were 23.4% and
31.6%, respectively. As in the previous case, due to the temporary reduction in stiffness in the control devices, both the developed
and heuristic controls exhibited a minor shift in the peak amplitudes towards lower frequencies.

Analysing the trajectories of the harvested energy (Fig. 10b) and electric current (Fig. 11b) it can be concluded that the higher
vibration mode does not exert a significant influence on the efficacy of the developed methodology in terms of electric energy
storage. Similar to Case A, the significant reduction in vibration amplitudes resulted in a substantial decrease in the quantity of
harvested energy when compared to competitive control strategies. However, as evidenced by the results presented in Table 3, the
developed control still exhibits the highest relative efficiency of energy harvesting, as quantified by the ratio of total harvested
energy 𝐸ℎ(𝑇 ) to the integral of mechanical energy 𝐽𝑚. Specifically, the developed control outperforms the heuristic method by 8.7%
and 9.2% for the decentralized variant 1 and 2, respectively. Analogous to Case A, the alteration of controller architecture has a
negligible effect on the relative efficiency of energy harvesting when employing the developed control.

With regard to the controls obtained for module no. 1 (see Fig. 12), it can be observed that the switching patterns resulting from
the implementation of the decentralized architectures exhibit a slightly larger deviation from the centralized architecture compared
to Case A, which can be detected after two seconds of the experiments. However, the coincidence between the control function of
decentralized variant 1 and 2 remains intact.

4.6. Fault tolerance analysis

The final set of experiments was conducted to examine the designed method in the context of a potential control system failure.
In particular, our aim is to investigate whether the decentralization of the controller can mitigate the impact of local sensor failures,
ensuring both global stabilization and sustained energy harvesting performance. For that purpose, we considered the three previously
examined controller architectures and assumed initial deflections of 0.02, 0.01, 0.01 and 0.02 [m] for modules no. 1, 2, 4 and
6, respectively. Sensor failures are simulated according to the following scenario. For 𝑡 < 1 [s], all sensors transmit accurate
measurements. Subsequently, at 𝑡 = 1 [s], the sensor of module no. 2 begins malfunctioning, sending the controller values that
are equal to zero for both displacement and velocity. Subsequently, analogous malfunctioning is applied to the sensors of module
no. 4 and 6, starting from 𝑡 = 2 [s] and 𝑡 = 3 [s], respectively. The experiment is terminated at 𝑇 = 20 [s]. For comparison, the
same scenarios were repeated with the heuristic control and passive damping strategy.

Analysing the characteristics of the mechanical energy 𝐽𝑚 (see Fig. 13a), it is evident that in the case of proper functioning
of the measurement system (i.e., for 𝑡 < 1 [s]), the stabilizing performance of the designed control remains comparable across
different controller architectures, confirming the previous results. The malfunctioning of the sensor attached to module no. 2,
starting at 𝑡 = 1 [s], results in a slow divergence of the energy curves. Specifically, the decentralized variant 2, which divides
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the global system into six subsystems (see Fig. 5b), exhibits superior fault tolerance among the considered architectures. The
overall stabilizing performance of this controller is further confirmed by the total energy measure 𝐽𝑚, which accounts for the
malfunctioning of three sensors. It indicates a reduction of 6.8% and 8.4% compared to the centralized and decentralized variant 1,
respectively (see Table 4). The slightly lower robustness of the decentralized variant 1 (see Fig. 5a) is concerned with relatively low
level of decentralization in this architecture, where two malfunctioning sensors are included in a single subsystem 𝑆2. A similar
observation was made for the heuristic control, with a 4.1% and 5.8% reduction in the integral of the mechanical energy for
decentralized variant 2 compared to the centralized and decentralized variant 1, respectively. Under the assumed faulty conditions,
controller decentralization also allowed for substantial efficiency in electric energy harvesting (see Fig. 13a). Regarding the efficiency
parameter 𝐸ℎ(𝑇 )∕𝐽𝑚, decentralized variant 2 outperforms the centralized and decentralized variant 1 by 5.5% and 5.4%, respectively.
Analysing the overall performance of the developed control (see Table 4), it can be concluded that a faulty measurement system can
significantly impact the efficiency in both stabilization and energy harvesting. This is clearly reflected in a decrease in improvement
compared to the passive damping strategy. Nevertheless, the superiority of the proposed method over the heuristic control remains
consistent, irrespective of the controller architecture.

5. Conclusions

A decentralized method for semi-active control has been proposed for the purpose of mitigating structural vibrations and
harvesting energy. The method involves communication between neighbouring subcontrollers and periodic updates of the state-
feedback functions which incorporate a model characterizing the interaction forces between the subsystems of the structure.
The developed method is applicable to a broad class of bilinear systems and can be implemented in various types of structures
where modularity is an essential characteristic. The proposed control has been evaluated through experimentation on a modular
suspension platform, which was equipped with electromagnetic devices that functioned as both semi-active actuators and energy
harvesters. The efficacy of the decentralized controller has been investigated in the context of free vibration scenarios and compared
against a heuristic method that relies on the concept of isolated subsystems. The control developed has demonstrated a significant
improvement in terms of vibration mitigation for each scenario, leading to a reduction up to 28.7% in the assumed measure of
mechanical energy. In comparison to a standard passive damping approach, the proposed control technique achieved a reduction
in mechanical energy with a magnitude of 74.2%. Notably, the parametrization of the suggested control law facilitated the
identification of an optimal trade-off between state convergence and energy harvesting. As a result, the relative efficiency of energy
harvesting demonstrated an average enhancement of 6.2% and 31.3% when compared to the heuristic and passive damping methods,
respectively. An important finding of this investigation is that the performance of the developed control is only minimally affected
by alterations in the controller’s architecture, in contrast to the heuristic approach. Moreover, the proposed decentralized controller
demonstrated robustness in a faulty measurement scenario, delivering both vibration suppression and energy harvesting. Specifically,
in the case of the most decentralized architecture, the reduction in mechanical energy was 46.1% and 12.2% when compared to
the passive and heuristic control, respectively. The obtained results reinforce the idea that the effectiveness of decentralized control
relies on the subcontrollers’ ability to communicate and estimate interactions between subsystems. Moreover, the relatively low
computational cost required to implement the proposed control algorithm in decentralized architectures suggests its suitability for
large-scale structures.
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