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Abstract: The wide use of multi-component cement of highly reduced Portland clinker factor is
largely impeded by detrimental changes in the rheological properties of concrete mixes, a substantial
reduction in the early rate of cement hardening, and sometimes the insufficient strength of mature
concrete. Therefore, major changes are needed in traditional concrete-production technologies if
low-clinker cement is to gain wider acceptance. This review’s goal is to summarize the impacts of
using non-ionizing radiation methods to improve the dispersion of concrete mix constituents, cement
setting, and early hardening. The potential impacts of such interactions on the permeability and
strength of concrete are also highlighted and investigated. Their intriguing potential for delivering
additional energy to cementitious mixtures is analyzed for batch water, solid non-clinker constituents
of cement (mainly supplementary cementitious materials), and their mixtures with aggregates. The
advantages of adopting these non-traditional methods are found to be highly alluring to the greener
preparation techniques used in the construction materials sector.

Keywords: concrete mixing technology; early-age properties; low-clinker multi-component cement;
magnetized water; microwave treatment; non-clinker constituents; ultrasound treatment

1. Introduction

Current developments in construction material technologies are associated with a
widespread trend to reduce harmful environmental impacts during the production of
materials and their use in buildings and structures. The life cycle analysis of materials in
construction elements also covers the issues of the durability of materials—by extending the
durability and the service life of structures, the desired effect of reducing the consumption
of primary mineral resources can be achieved. Due to the massive use of Portland cement
(PC) concrete in construction, the issue of the emissivity of PC cement production has
become of great importance. With a simple reduction in the Portland clinker content in
cement, whose carbon footprint is estimated at 0.98 kg CO2/kg clinker (the sum of process,
fuel and electricity-related emissions), Gawlicki [1] allows for a substantial reduction in
its carbon footprint. Therefore, technologies for the use of cement binders with a highly
reduced clinker factor are being developed, using a variety of mineral components or
industrial by-products as non-clinker cement constituents [2–5]. In accordance with the
European standard EN 197-5 [6], the family of general-purpose cement has recently been
expanded to include CEM II/C-M and CEM VI multi-component cement, allowing for an
increased proportion of non-clinker main constituents, 36–50% and 51–65%, respectively. In
many countries, the range of applicability of new types of cement has not been established
yet, and their use is marginal [7,8]. Proske et al. [9] and Chen et al. [10] separately suggested
more extreme proposals to limit the content of Portland clinker in cement to 20–35% or
even 5%.

The main challenges preventing the greater use of multi-component cement with a
low proportion of Portland clinker are related to detrimental changes in the rheological
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characteristics of concrete mix, a considerable decline in the early rate of cement hardening,
and occasionally insufficient strength of mature concrete. The vulnerability of concrete to
variations in ambient temperature and humidity, plastic shrinkage, the phenomenon of
bleeding, and increased pressure of the concrete mix on the formwork are all increased by
a delayed setting and very slow early hardening of the cement [1–5,11,12].

Moreover, a too-slow increase in concrete strength during the first day following
casting restricts, if not outright prevents, the use of the slip-form construction technique;
slows the removal and replacement of formwork at the construction site; extends the curing
time; and delays other construction tasks that are carried out on already at least partially
hardened concrete. Chemical admixtures are a very effective approach to adjusting the
workability of the mix and expediting concrete’s hardening when used with conventional
cement. However, new multi-component cement formulations require the development of
specific admixtures for efficient control of the rheological properties of innovative concrete
mixtures and their rate of early hardening [1–5,11,12].

Non-clinker constituents of multi-component cement basically consist of supplemen-
tary cementitious materials (SCMs) [13,14] that need to be selected and processed properly
for their optimal efficiency. The SCMs’ fineness, level of clinker replacement, water-to-
cementitious-materials ratio, and cement and SCM chemistry (the pozzolanic or hydraulic
activity) are only a few of the variables that affect how reactive SCMs are in the cementi-
tious system [13–15]. By modifying the rheological characteristics for a specific application,
SCMs, such as granulated blast furnace slag (GGBFS) [16–19], Silica Fume (SF) [16,17,19,20],
fly ash (FA) [16,17,21,22], bottom ash [21,23], copper slag [24], volcanic ash (VA) [18], and
pulverized fuel ash (PFA) [18], can also increase rheological properties in addition to the
mechanical properties and durability of concrete. SCMs may improve concrete characteris-
tics primarily in two ways: by reacting with cement hydration products in the first instance
and by improving particle packing efficiency in the second [13–15,25]. Nonetheless, the
search for alternative SCMs has significantly intensified in recent years.

In order to use low-clinker cement more widely, significant changes are needed in
traditional concrete-production technologies. For the objective of accelerating the early
hardening of concrete in precast settings, there are further options to apply hygro-thermal
treatment and even gamma irradiation [26,27] (only within radiation-controlled areas).
When it comes to multi-component cement with a low clinker content, transmitting heat
energy or gamma-ray energy to hardening concrete can also be a method to drive the
hardening processes.

Interactions with non-ionizing radiation, such as magnetic interactions, microwaves,
and ultrasonic waves, offer exciting possibilities for adding extra energy to concrete mix-
tures [28]. The potential of ultrasonic waves to carry out detailed diagnostics on the features
of hardened concrete and even to demolish concrete is well recognized. Research on con-
crete constituents and mixtures has occasionally focused on the effects of microwaves,
ultrasonic waves, and magnetic interactions. There has not been any published research on
the effectiveness of such energy-transmission methods. This study examines non-ionizing
radiation technologies to enhance the dispersion of concrete mix components and promote
the setting and early hardening processes of cement in concrete. The review also analyses
how these interactions affect concrete’s early and late strengths, microstructural features,
and durability indices that have already been recognized. The applications of low-clinker
factor multi-component cement in concrete may be promoted by a clearer grasp of how a
non-ionizing radiation field affects constituents of the concrete mix.

2. Ultrasound Treatment (US-T) Methodology

Power ultrasound with a frequency spectrum of 20 kHz–100 kHz finds numerous ap-
plications in chemistry and material processing due to its unique properties, which include
cavitation, acoustic streaming, and sonochemistry [29–31]. US-T can initiate and accelerate
chemical reactions through a phenomenon called acoustic cavitation. The rapid formation
and collapse of small bubbles in a liquid (Figure 1) create localized high temperatures
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and pressures, leading to enhanced reaction rates and yield. Ultrasonic waves can also
disperse and de-agglomerate particles in suspensions, emulsions, and colloidal systems.
The cavitation forces break down larger particles into smaller ones, leading to improved
stability and homogeneity of the material [29–31].

Cavitational collapse produces deeply felt local heating (5000 ◦C), high pressures
(1000 atm), and heating/cooling rates (>1010 ◦C s−1), thus creating individual conditions
for different types of chemical and physical changes [32–37]. The acoustic power, frequency,
hydrostatic pressure, the gas used, and reactor shape are only a few variables that may im-
pact acoustic cavitation [32–37]. An intermediate-frequency ultrasound (between 100 and
1 MHz) encourages the production of hydroxyl radicals through regional hot spots caused
by cavitation [32–37]. US-T can control crystal size distribution and reduce particle agglom-
eration due to more stable particles. It can help to direct the course of rapid crystallization
processes in which the nuclei are produced due to acoustic cavitation process [33,38,39].
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US-T of Cementitious Materials/Concrete and SCMs

In concrete construction engineering, US-T waves are conventionally employed for
the nondestructive diagnostics of structural conditions, including flaw detection or damage
development [40–45]; for early-age hardening monitoring to aid technological processes like
formwork removal, aggregate exposure, etc. [45–52]; and also for concrete demolition works.
Applications of power US-T in construction material processing include the sonochemical
activation of natural pozzolans [53].

Power US-T has proven highly beneficial in crystallization procedures, playing roles
in seeding, crystal formation, and growth. Cavitation bubbles act as building blocks for
crystal development while disrupting the medium and releasing more seeds and nuclei into
the solution. Studies involving synthetic calcium silicate hydrate (C-S-H) or nanomaterials
in cementitious systems have explored these effects [54,55]. Investigations on CaCO3
precipitation by Nishida [56] found that US-T enhanced the speed of calcium carbonate
precipitation in a supersaturated solution. The most important consideration in these
events was macrostreaming, rather than microstreaming, which is typically associated
with cavitation. The presence of SCMs agglomerates led to the formation of C-S-H, with
a significantly higher calcium-to-silicate (Ca/Si) molar ratio than typical cementitious
composites due to microstructural and chemical reactions [57].

US-T application can overcome challenges in the particle hydration of PC and SCMs in
concrete technology and cement chemistry, including aggregation/agglomeration, packing
density control, and hydration rate control. Hydration mechanisms in PC systems are com-
plex [58], and pore structure has a significant impact on the mechanical characteristics and
durability of hardened cement materials [58,59]. The penetration/dissolution of anhydrous
phases during hydration plays a crucial role in controlling cementitious materials’ early
age and long-term properties [58–60]. US-T accelerates the heat release rate during the
hydration acceleration phase but does not affect the total heat release [30] (Figure 2). The
accelerated strength development in sonicated cement suspensions, observed for the first
16 h, is likely due to rapid cement hydration [30].
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Figure 2. Isothermal heat release rate, reference total heat, and suspension of sonicated cement during
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Vaitkevicius et al. [61] introduced a novel method for 3D concrete printing composition
using a US-T dispersion apparatus (ultrasonic processor with water-cooled transducer,
Figure 3). This method achieved an fc of 1 MPa at 20 min of hydration and 50 MPa after
28 days, with the freshly prepared mixture transported to the ultrasonic dispersion device
within 5 min to avoid premature setting. Ultrasonic dispersion equipment accelerates
hydration, making shorter transport times acceptable.
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stainless steel frame, chain and pulley drive system, and the printing head), (b) schematic diagram
of the mixing process and the controlling method for the setting time (with the permission of and
recreated using data published in [61]).

Rodríguez et al. [62] showed that after 60 days of curing, mortar containing sonicated
Silica Fume (SSF) (a mineral admixture for the PC system) exhibited a significantly higher
fc (over 38.9 MPa compared to non-sonicated SF) and a more than 20% reduction in total
capillary porosity with diameters larger than 10 µm. Ultrasonic processing altered the
particle size distribution, favoring smaller sizes, resulting in SSF with an average particle
size of 3.85 µm, volume content of sub-micrometric particles of 56.9%, and a d50 of 0.72 µm.
The particle size that corresponds to a 50% cumulative frequency is known as the d50. SSF
also demonstrated enhanced pozzolanic reactivity, as evidenced by increased consumption
of portlandite during paste hardening. Pastes containing SSF exhibited 68% consumption
of portlandite after 28 days of curing, compared to 28% for pastes containing Densified
Silica Fume (DSF). The presence of agglomerated SF leads to the production of a calcium
silicate hydrate (C-S-H)-type product with a longer chain length structure, higher silicon
substitution by aluminum, and a lower Ca/Si ratio after US-T.
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A C-S-H phase with a significantly higher Ca/Si ratio than high-performance concrete
was observed when SF agglomerates were present [57]. The reflections associated with
C-S-H for SSF showed higher intensity, particularly in materials cured for 60 days [63].
Ultrasonic irradiation increased the number of nanometric particles in SSF (up to 90% com-
pared to 22% without US-T), decreased its mean size to reach 57 nm, increased dispersibility,
and significantly enhanced the fc after 28 days of curing (up to 20% with 1% nano-SF).
SSF demonstrated higher zeta potential values after 15 min of sonication, indicating high
stability and a low propensity to aggregate.

SF can enhance concrete strength, reduce porosity, and extend the usable life of concrete
structures. The filler effect of SF impacts the physical but not chemical processes [64,65].
Sonicated SF exhibits higher pozzolanic activity, generating more C-S-H phase [66,67] due
to its higher specific surface area.

Another method to increase SF reactivity in PC mortars was described in [68]. The
fc of SSF mortar increased up to 15 MPa after 28 days of curing, especially with longer
sonication times (20–25 min) and higher sonication power levels (141 W). SSF showed
pozzolanic activity following ultrasonic treatment, resulting in the development of new
calcium silicate hydrate (C-S-H, calcium aluminate hydrates, ettringite, etc.) products.
Cement paste with SSF exhibited up to 43% less Ca(OH)2 than with non-sonicated SF after
28 days of curing [69], and SSF was uniformly disseminated into the cement paste (Figure 4).
Table 1 indicates the efficiency of the US-T on the reactivity of DSF (DSF-1, DSF-2, and
DSF-3) with varying chemical compositions, which are equivalent to sonicated SF (SSF-1,
SSF-2, and SSF-3, respectively).
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Table 1. Effectiveness of reduction in the content of Ca(OH)2 through sonication treatment (with
permission from [69]).

Reduction of the Content of Ca(OH)2 by the Sonication Treatment (%)

SF-1

3 days 22.3
7 days 28.6

14 days 43.9
28 days 35.7

SF-2

3 days 13.9
7 days 14.7

14 days 32.9
28 days 34.1

SF-3

3 days 13.7
7 days 25.6

14 days 23.1
28 days 42.6
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Pastes produced with SSF showed up to 43% lower CH content compared to pastes
made from untreated SF. Sonication treatment significantly increased SF reactivity, resulting
in stronger pozzolanic activity when used as a mineral additive in PC systems. At the
early curing stages, SSF-2 and SSF-3 exhibited 14% higher reactivity than untreated SF
(DSF-2 and DSF-3), and their reactivity with CH increased with the curing age. After
28 days, pastes with SSF-1, SSF-2, and SSF-3 had 36%, 34%, and 43% lower portlandite
content compared to pastes with DSF (DSF-1, DSF-2, and DSF-3, respectively) [69]. Adding
SF improves early concrete strength and lowers permeability, serving as both a filler and
pozzolan [69]. The hydrated paste with SSF showed an atomic Ca/Si ratio in the range of
1.64–1.83, which is attributed to uniform SSF dispersion and C-S-H formation. The zeta
potential of SSF increased significantly (up to 71%) with longer sonication times (up to
8 min), indicating improved suspension stability and SSF de-agglomeration.

The optimization of the sonication time and the solid-to-liquid ratio of nano-silica
cement mortars have been proposed by Sharobim et al. [70]. Five minutes of sonication
at a solid-to-liquid ratio of 1:10 produced the ideal specific surface area and particle size
distribution, leading to a 39% increase in the fc of nano-silica cement mortar after 7 days
and 25% after 28 days compared to the reference material. Nano-silica also enhanced
the homogeneity of the cement paste microstructure during sonication and triggered a
secondary reaction between SiO2 and Ca(OH)2 crystals, resulting in a denser C-S-H phase.

Martinez-Velandia et al. [71] used sonication to alter CSF densification, creating a finer
specimen with better granulometric distribution. Commercial SF with an average diameter
of 59.6 µm was transformed into samples with an average diameter of about 5 µm and a
higher volume percentage of sub-micrometric particles with a diameter of less than 1 µm
(over 50%) with longer sonication time (up to 20 min) and higher sonication power level
(168 W).

It is important to note that US-T can change the particle size distribution in favor of
smaller particle sizes, increase the specific surface area, improve pozzolanic reactivity due
to increased consumption of portlandite during paste hardening, achieve a high dispersion
(particles uniformly dispersed into cement paste) and degree of de-agglomeration (particles
become more stable and have a lower propensity to agglomerate). Additionally, US-T can
speed up the heat-release rate during the hydration-acceleration phase. It was also revealed
that the rapid cement hydration was what presumably produced the increased strength
growth of the sonicated cement suspension, which was only observed for the first 16 h.
Especially for SSF treated for longer sonication intervals (20–25 min) and higher sonication
power levels (141 W), the fc of SSF mortar increased up to 15 MPa after 28 days of curing
compared to SF prepared without the impact of ultrasound.

3. Magnetic Field Treatment (MF-T) Methodology

Magnetic Field Treatment (MF-T) can improve water’s properties by causing the sepa-
ration of hydrogen nuclei (protons) and water “clusters” into single or smaller molecules
due to strong magnetic forces [72–75]. The effectiveness of MF-T depends on the duration
of exposure to the MF-T (water flow velocity), magnetic flux density, and volume of water
exposed to the field [73,74]. Magnetized water (M-Water) is formed when water passes
through a permanent MF-T, leading to molecular structural changes and new characteris-
tics [72,74]. The M-Water layer surrounding cement particles becomes thinner, reducing
the need for water during mixing and modifying the physical and chemical properties of
M-Water, including surface tension, conductivity, pH, density, volatility, and the ability to
alter dissolved substances [73–75]. M-Water also exhibits a lower viscosity than tap water
due to a decreased bond angle (from 104.5◦ to 103◦) [72,74,76].

The relationship between MF-T and the surface tension coefficient (σ) of M-Water is
not monotonic, as shown in Figure 5 [77]. The optimal MF-T is 300 mT, and both higher
and lower intensities lead to an increase in the σ of M-Water, indicating an enhanced mag-
netization effect. The duration of magnetization varies with the MF-T intensity; stronger
MF-T requires shorter treatment times, such as 3 min at 1000 mT and 20 s at 1500 mT [77].
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Obtaining M-Water with lower ST is challenging at very high MF-T, and excessive magneti-
zation may even lead to an increase in σ, as reported in Iino and Fujimura’s research [78].
The σ of tap water decreases considerably as the treatment duration increases, reaching a
minimum of a 9% decline at 13 min with an MF-T of 1000 mT [79].
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3.1. MF-T of Cementitious Materials/Concrete and SCMs

Ramalingam et al. [72] examined the effects of magnetic water on concrete properties
under various magnetic field exposure durations. SEM images reveal the presence of
calcium hydroxide (Ca(OH)2) crystals in cement paste with tap water (Figure 6a) and
M-Water (Figure 6b) after 28 days of curing. Specimens prepared with tap water (Figure 6a)
included larger CH crystal particles. This is due to the structure of the packing in the
transition zone, followed by the cement reaction, which creates clusters of water molecules.
The small M-Water molecules react with cement, resulting in the formation of single or
smaller molecules. As a result, water activity has improved. At the same time, the hydration
process benefits magnetic-field-treated water in a more direct way, which improves concrete
efficiency and strength.
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The microstructure images of the specimens revealed the presence of CH crystals and
fractional voids, while concrete prepared with tap water exhibited larger voids and a lack
of CH crystals [72]. Nevertheless, the concrete with M-Water exhibited a higher dispersion
of CH crystals and negligible fractional voids, resulting in enhanced structural strength
and crack resistance. When M-Water is used in a concrete mix, it allows well water to
pass through the cement particles, enhancing the hydration mechanism [72]. The qualities
of the concrete mix benefit from improved hydration. It has been discovered that using
M-Water in the concrete mix can achieve a high degree of cement hydration and increase
concrete strength. The improvement in workability with increasing magnetic field exposure
could potentially be related to an increase in Lorentz forces. In this situation, the molecules
connected with hydrogen bonds become separated, indicating orbital motion caused by
electrons covering the nucleus of water molecules. Subsequently, the O2

− and H+ ions are
spontaneously expelled from the chemical bond and therefore serving as the primary cause
for the heightened activation of the M-Water in a solitary operation. The applied magnetic
field exclusively modifies the physical structure of water molecules by changing their shape
without impacting individual molecules or smaller entities. Due to the decreased size
of water molecules, the layer of water around the cement becomes thinner than usual,
leading to a decrease in the amount of water needed to prepare concrete. Simultaneously,
the M-Water molecules possess the capability to infiltrate the cement grains, leading to
enhanced concrete strength [72].

Recent studies [73–75] indicate that altering the concrete mixing water with M-Water
can improve fresh and hardened concrete properties, including water absorption; flexural,
compressive, and splitting tensile strength (fst); workability; bleeding characteristics; and
resistance to freezing and thawing. The physiochemical and mechanical characteristics
of concrete are influenced by solid constituents and the type and quantity of water used
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during production [72–75]. Water plays a crucial role in cement setting and concrete hard-
ening through hydrolysis, hydration, and curing stages [75]. Concrete mixed with M-Water
exhibits a higher packing density, improving its properties and potentially reducing the im-
pact of chemical additives on cement hydration [72]. M-Water also enhances cement particle
dispersion and hydration, leading to higher quality and density in concrete [76,80–82].

Mixing water with cement initiates the hydration process on cement particle surfaces,
resulting in the formation of a thin layer of hydration products that hinder further hydra-
tion and slow down strength development [79,82,83]. In contrast, utilizing the M-Water
system (Figure 7) reduces cement particle agglomeration and enhances the interaction
between water molecules and cement particles, leading to efficient hydration and improved
mechanical characteristics of concrete [84,85]. Additionally, Wang et al. [86] reported that
M-Water penetrates cement granules more easily due to the loose bond between water
molecules and single polar molecules (O2

− and H+), allowing electrically charged cement
particles to move faster. This breaks up cement clusters, making trapped mixing water
flow more efficiently and increasing the ST of concrete. The preparation cost of M-Water is
low compared to concrete additives, and the mixing procedure is streamlined [74,75]. The
impact’s main conclusions from different non-conventional methods on the preparation of
low-clinker constituents of cement can be outlined as follows and are shown in Table 2.

Ibrahim et al. [73] observed beneficial effects on the mechanical properties (compres-
sive, flexural, and split tensile strength) of fresh and hardened concrete when using M-Water.
Ghorbani et al. [87] found that M-Water significantly improved the microstructure of foam
concrete with a 0.75 m s−1 magnetizing flow speed. The mechanical properties of concrete
were enhanced by M-Water, as evidenced by increases in compressive strength (fc) of 12.2%,
10.2%, and 8.6% after 7, 28, and 90 days, respectively, and increases in flexural strength of
11.9%, 10.5%, and 9.7% at the same ages, along with increases in split tensile strength (fst)
of 10.9%, 9.8%, and 8.5% at the same ages. Ahmed [88] observed a 20% increase in the fc
of concrete mixed with M-Water, which was achieved by carefully selecting parameters
such as water flow velocity (0.71 m s−1) and treatment duration (4.5 s per liter). Ghorbani
et al. [89] studied the effects of M-Water on self-compacting concrete (S-CC) reinforced
with steel fibers. The mixing water was passed via a permanent MF-T (0.65 T) once and
15 times. The steel-fiber-reinforced SCC showed significant improvement in workability, fc,
and fst (50% relative increase after 28 days) compared to control specimens when mixed
with M-Water.

Table 2. Summary of effects on hardened concrete properties—the microstructural features, mechani-
cal properties, permeability, and durability indicators (US-T: power ultrasound treatment, M-Water:
magnetized water).

Aggregates (F-Fine,
C-Coarse)

SCMs/Replacement
Levels (%) Main Findings Treatment

Refs.

Microstructural features, porosity

F: nonreactive sand DSF/(5, 10, 20)

- US-T processing altered the particle size distribution, favoring
smaller sizes, resulting in SSF with an average particle size of
3.85 µm, a volume content of sub-micrometric particles of
56.9%, and a d50 of 0.72 µm.

US-T
[62]

C: crushed limestone
F: nonreactive sand SF/(1, 5, 10)

- US-T can increase the number of nanometric particles in SSF
(up to 90% in contrast to the initial SF), decrease its mean size to
reach 57 nm, and increase its dispersibility.
- SSF’s zeta potential values after 15 min of US-T were
significantly higher than those of initial SF, indicating that the
particles were highly stable and had a low propensity to
aggregate.

US-T
[63]

- DSF/(10)
NDSF/(10)

- In comparison to NDSF, the particle size distribution of SSF
was found to be less variable, indicating the efficiency of US-T.
- The use of US-T to densify SF increases its reactivity through a
de-agglomeration mechanism.

US-T
[69]
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Table 2. Cont.

Aggregates (F-Fine,
C-Coarse)

SCMs/Replacement
Levels (%) Main Findings Treatment

Refs.

F: nonreactive sand SF/(20)
NSF/(1, 2, 3)

- Five minutes of US-T at a solid-to-liquid ratio of 1:10 produces
the ideal specific surface area and particle size distribution.

US-T
[70]

- SF/(8, 10)
NSF/(2)

- The combined US-T of SF and NS leads to a higher porosity
decrease and a higher refinement of the large capillary pores in
ternary pastes (cement + SF + NSF).

US-T
[71]

F: river sand
C: crushed limestone

Granite Waste Dust
(GWD)/(5, 10, 15, 20)

- The difference in acid resistance between specimens produced
with M-Water and those produced with tap water was
attributable to the denser structure, which consequently had a
lower number of pores and lower porosity.

M-Water [90]

28 days strength, elastic modulus

F: nonreactive sand DSF/(5, 10, 20) - The addition of 10% of DSF results in increases in the fc of up
to 36 and 22% compared to the reference specimen.

US-T
[62]

- DSF/(5, 10, 15) - The fc of SSF mortars is found to be increased by 10 to 15% as
a result of US-T in contrast with the control mortar.

US-T
[68]

F: nonreactive sand SF/(20)
NSF/(1, 2, 3)

- The fc increased by 39% and 25% after 7 and 28 days,
respectively, due to indirect US-T for 5 min at a concentration of
1:10.

US-T
[70]

Indigenous C and F
aggregates

GGBFS/
(5, 15, 25)

- The fc of mortar specimens mixed with M-Water (0.8–1.35 T)
increased by 9–19% compared to those mixed with tap water. M-Water [83]

Indigenous C and F
aggregates

FA/
(5, 10, 15)

- The fc of the mortar specimens improved from 15% to 20%
when the MF-T was 0.8 or 1.2 T. M-Water [84]

F: river sand
C: crushed gravel

SF, metakaolin,
rice husk ash,
FA/(10, 20)

- After 28 days, fc and fst increased up to 49% and 41%,
respectively, while the water-absorption value decreased up to
55%; an SCC combination including M-Water and 20% SF can
be regarded as an optimum mix design.

M-Water [85]

F: river sand
C: crushed limestone

GWD
/(5, 10, 15, 20)

- After 28 days, the fc of specimens prepared with M-Water and
0%, 5%, 10%, 15%, and 20% GWD improved by 7%, 8%, 8%,
10%, and 11%, respectively, compared to specimens prepared
with tap water.

M-Water [90]

Indigenous C and F
aggregates

Limestone powder
(10)

- Compressive, bending, and tensile strengths of the concrete
produced increased by up to 34.1%, 52.4%, and 74.2%,
respectively.

M-Water [91]

F: river sand
Marble waste dust

(MWD)
/(10, 20, 30, 40)

- After 28 days of curing, mortar mixes containing M-Water and
0%, 10%, 20%, 30%, and 40% MWD showed, respectively,
significant fc improvements of 32%, 21%, 17%, 26%, and 6% in
the CS of the mortar mixes.
- The 28-day tensile strength test of mortar specimens with 10%,
20%, 30%, and 40% MWD was enhanced, respectively, by using
M-Water by about 11%, 5.5%, 16%, 3%, and 5%.

M-Water [92]

F: siliceous natural
sand

C: crushed stone

Egyptian
nano-Al2O3

(EN-Al)
/(1, 2, 3)

- When 0, 1, 2, or 3% of EN-Al replacement levels were used,
there was an increase of about 8, 12, or 16% in the 28-day fc of
specimens made with M-Water compared to specimens made
with tap water.

M-Water [93]

F: volcanic particles
C: volcanic rock

VA
(0, 5, 10, 15, 20)

- The fc of concrete is increased by 24% after 7 days when 5% of
VA and tap water are added. M-Water [94]

F: river sand
C: lightweight
expanded clay

SF/(5, 10)
GGBFS/(10, 20)

- The fc of concrete is increased by 24% after 7 days when 5% of
VA and tap water are added. M-Water [95]



Appl. Sci. 2024, 14, 899 11 of 28

Table 2. Cont.

Aggregates (F-Fine,
C-Coarse)

SCMs/Replacement
Levels (%) Main Findings Treatment

Refs.
Permeability, durability indicators

F: nonreactive sand DSF/(5, 10, 20)

- SSF prepared using US-T demonstrated enhanced pozzolanic
reactivity, as evidenced by increased consumption of
portlandite during paste hardening. Pastes containing SSF
exhibited 68% consumption of portlandite after 28 days of
curing, compared to 28% for pastes containing DSF.

US-T
[62]

- DSF/(10)
NDSF/(10)

- After 28 days of curing, SSF had up to 43% less Ca(OH)2 than
non-sonicated SF.

US-T
[69]

- SF/(8, 10)
NSF/(2)

- The C-S-H Ca/Si ratio is noticeably reduced using the US-T of
SF and NS in the ternary paste (cement + SF + NSF), while the
C-S-H MCL is increased, which in turn can improve the
durability of the prepared specimens.
- After 28 days of hydration, the synergistic effects of ternary
paste may help to accelerate the pozzolanic response (lowest
CH index).

US-T
[71]

F: river sand
C: crushed gravel

SF, metakaolin,
rice husk ash,
FA/(10, 20)

- The amount of high-range water needed for SCC can be
decreased by up to 45% with M-Water.
- M-Water can reduce SCC’s water absorption by up to 10%
when compared to the SCC control mix prepared with tap
water. Additionally, this value can be decreased by up to 55%
for SCC containing 20% SF and M-Water.

M-Water [85]

F: river sand
C: crushed limestone

GWD
/(5, 10, 15, 20)

- In comparison to specimens prepared with tap water, those
prepared with M-Water showed lower water absorption, lower
mass loss, and higher resistance to aggressive environments (5%
by weight NaCl and H2SO4 solutions).

M-Water [90]

Indigenous C and F
aggregates

Limestone powder
(10)

- The most beneficial benefits of M-Water were seen for
electromagnetic field intensity of 1.2 T and a water flow rate of
9 L min−1, resulting in a reduction of up to 34.1% in
superplasticizer use.

M-Water [91]

F: nonreactive sand MWD
/(10, 20, 30, 40)

- When using 0%, 10%, 20%, 30%, and 40% MWD in
comparison to mortar mixes prepared with tap water,
respectively, mortar mixes made with M-Water showed lower
mass losses of 26%, 36%, 22%, 28%, and 28%.
- In comparison to the mortar specimens prepared with tap
water, M-Water reduced the water absorption of the mortar
specimens by roughly 15%, 14%, 3%, 9%, and 9.5%, respectively.
- In comparison to cement pastes prepared with tap water at the
same replacing ratios, the initial setting times of cement pastes
prepared with M-Water and 0%, 10%, 20%, 30%, and 40% MWD
were, respectively, around 8.70%, 7.85, 2.85, 4.25%, and 4.40%
longer.

M-Water [92]

F: river sand
C: lightweight
expanded clay

SF/(5, 10)
GGBFS/(10, 20)

- M-Water decreased the slump flow time by an average of 17%
while increasing the final slump flow diameter of all the mixes
by roughly 9%.

M-Water [95]

F: silica sand
C: siliceous
aggregate

SF/(5, 15)

- When M-Water is used instead of tap water, the binding
strength is increased at the 7- and 28-day curing ages with
various bar diameters.
- The bond strength of specimens with SF combined with
M-Water is greater than that of specimens with the same SF
content mixed with tap water.

M-Water [96]

“-“ denotes no aggregate present, i.e., cement paste.
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The influence of M-Water as mixing water on the fc, workability, and required cement
content was studied by Al-Maliki et al. [97]. Water treated with a 1.3 T MF-T intensity
showed the greatest increase in concrete fc. Ahmed and Manar [98] conducted experimental
studies on static MF-T on prepared mix concrete (Figure 8), showing slump increases
ranging from 7% to 26%, with the best slump increase for fresh concrete corresponding to
400 mT of MF-T (26% higher).
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Figure 8. Water-reduction potential due to static MF-T on fresh concrete (open access status) [98].

M-Water mixed concrete showed 30% and 16% increased compressive and splitting
strengths, respectively, with enhancement directly influenced by MF-T length. The pene-
tration of M-Water into cement particles during hydration improved activity and resulted
in more crystalline hydration products, denser microstructure, and improved concrete
performance, including shrinkage cracking resistance. Ebrahimi Jouzdani and Reisi [91]
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observed that M-Water in S-CC reduced the use of superplasticizer by up to 34.1% and
improved compressive, bending, and tensile strengths by up to 34.1%, 52.4%, and 74.2%,
respectively (Figure 9).
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The strength development of concrete under various curing conditions was compared
by Ngene et al. [99] using M-Water and untreated water. M-Water resulted in concrete with
a 10% higher fc than regular concrete after 28 days. Wei et al. [100] studied the early-age
shrinkage cracking resistance of M-Water mixed concrete, finding optimal performance at
260 mT MF-T, 280 mm MF-T length, 0.8 m s−1 water flow, and a 72.2% reduction in total
cracking area per unit specimen area.

3.2. MF-T of Mineral Admixtures

Su et al. [83] demonstrated that M-Water increased the fc of concrete and mortar
containing GGBFS by 9–19% depending on the MF-T intensity used for M-Water (0.8,
1.2, or 1.35 T). A similar study by Su et al. [84] revealed an improved fc in concrete
and mortar containing FA mixed with M-Water, with the best results at 0.8–1.2 T MF-T.
Gholhaki et al. [85] found that M-Water, combined with 10 or 20% pozzolanic materials
(SF, metakaolin, rice husk ash, and FA), enhanced the flowability and viscosity of S-CC. At
the age of 28 days, when fc and fst had increased by 49% and 41%, respectively, the water
absorption had decreased by 55%.

In another study, Ghorbani et al. [90] examined the use of GWD as a partial cement
substitute in concrete. Up to 10% GWD replacement increased concrete strength, but higher
percentages reduced strength and durability. Regardless of the GWD ratio, M-Water led to
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reduced water absorption compared to tap water. The effect of M-Water on mortar mixes
containing MWD as a partial cement substitute was investigated by Ghorbani et al. [92].
The best performance was observed with 10% marble dust replacement, while higher
amounts resulted in reduced strength and durability due to increased porosity.

Ahmed [93] studied the use of EN-Al as a cement substitute in concrete and found
that M-Water improved the strength (13%) and reduced the capillary porosity (27%) for
specimens with 1% EN-Al. The properties of concrete with VA and M-Water were evaluated
by Keshta et al. [94]. M-Water improved the workability and increased the fc by 43% at
7 days and 36% at 28 days without VA and by 22% at 7 days and 33% at 28 days with 5%
VA. The addition of M-Water improved both the workability and the strength, allowing for
more environmentally friendly concrete using less cement.

Salehi and Mazloom [95] presented the fracture behavior of self-compacting lightweight
concrete (S-CLC) with different cement replacement materials. M-Water improved the
fracture energy, fracture toughness, tensile strength, and fc. Barham et al. [96] examined
the impact of M-Water and SF content on concrete’s fc and bond strength. A 5% SF level
resulted in the highest fc and bond strength, while higher SF levels led to strength loss.
M-Water increased bond strength with different bar diameters by enhancing the concrete
fluidity and reducing the void content.

4. Microwave Treatment (MW-T) Methodology

Microwave treatment (MW-T) is the term for non-ionizing electromagnetic radiation
with wavelengths between 1 mm and 1 m and spatial frequencies between 300 MHz
(100 cm) and 300 GHz (0.1 cm) [101–104]. By rapidly attenuating MW-T through the intense
vibration of polar molecules, it can increase the temperature of the material and accelerate
chemical reactions. The entire specimen becomes heated as a consequence of the movement
and friction this causes between molecules [104–109]. The frequencies of 915 MHz and
2450 MHz are currently mostly used on cement and concrete for industrial and scientific
objectives [110]. Microwaves interact with matter more sensitively than ultrasonic and elec-
tromagnetism, which can penetrate dielectric materials and convert electromagnetic energy
into heat energy without needing to first warm up a heating cavity. Microwave-absorbing
materials generate volumetric heat as a result of the interaction between propagating
waves [111–113]. Short reaction times, easy control, improved reaction kinetics, reduced
heat loss, clean heating processes, good energy efficiency, and environmental protection
are only a few advantages of MW-T over conventional heating techniques [48,109,114,115].
These heating qualities make it possible to cure concrete in an eco-friendly way.

Precast concrete, in particular, has undergone heat curing to expedite the development
of strength [48,116]. The skin effect, which is produced by conventional heating methods
and is more efficient for surface heating [101], is the fast evaporation of water from treated
materials’ exterior surfaces. It is difficult to accomplish consistent heating because of the
steep temperature gradient, and heated materials lose a large amount of energy through
heat conduction and convection.

In contrast, MW-T may promote a temperature rise as a consequence of the polar
molecules’ ability to absorb heat and form localized heating spots that are independent of
position, which is beneficial to generating uniform volumetric heating [104–107,117]. The
utilization of MW-T is based on the internal energy loss associated with the stimulation of
molecular ions and dipoles under electromagnetic fields [118]. The specimens’ microwave
heating characteristics can be varied by the secondary material’s propensity to absorb, trans-
mit, or reflect MW-T [119]. It has been proven that microwave-assisted heating can cut pro-
cessing times and lower the expenses of additive manufacturing [104–108,120,121]. Com-
bining these approaches for the best materials processing could be plausible (Figure 10), and
it would follow the properties of power ultrasound, microwave, and magnetic processing
stated in the preceding chapters.
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hanced early strength.

4.1. MW-T of Cementitious Materials/Concrete and SCMs

Because of its significant benefits of non-contact heating, volumetric and selective
heating, user-friendly control, clean heating processes, and no formation of secondary
waste, MW-T has recently received much attention [104–108,120,121]. Unfortunately, this
may significantly impede the implementation and advancement of such technology in the
pavement engineering of the typical cement concrete’s low microwave absorption efficiency,
which may reduce the microwave heating speed [104–109,122]. According to research on
the electrical field curing approach, C-S-H products’ electroosmotic swelling occurs, and
pore connectivity decreases in a DC field [123,124].

Most of the studies mentioned concentrated on using microwave absorbents and
absorption aggregate to increase the MW-T efficiency of cement and concrete. This makes
it possible to increase the effectiveness of microwave heating of cement concrete in ap-
plications like accelerated concrete curing [125], road de-icing [122,125], asphalt concrete
repair [125], and the high-performance nondestructive testing of cement and concrete
structures [119] with a low cost, a wide range of sources, and excellent performance.

Microwaves can be partially absorbed by dielectric components contained in concrete,
boosting temperature and hastening cement hydration. Additionally, mixed water that
has been bound in cement hydrates is microwave-resistant. In contrast to heat curing, the
hydrates are less easily decomposable. Because it is prone to MW-T, water is necessary
for the heating process [126–128]. In turn, concrete quality might improve. As a result,
microwave energy is suitable for accelerating the early hardening of concrete and mor-
tar mixes. Because it employs electrical energy rather than combustion, which requires
more time and energy, it might be called an environmentally beneficial, green, and clean
technology [111,112].

Microwave curing may modestly increase the total porosity of mortar [129] when
compared with normal curing and steam curing at 80 ◦C (under different curing regimes
at the age of 28 days). To better understand mortar pore size distribution under various
curing regimes, Figure 11 shows four size ranges [129]: large capillary pores (>100 nm),
middle capillary pores (50–100 nm), mesopores (4.5–50 nm), and gel micropores (<4.5 nm).
It can be stated that MW-T curing may reduce the pores in the range of >100 nm.
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Different power dissipations are produced by the microwave electromagnetic field’s
interactions with the constituents of concrete in the MW-T of concrete [119]. Due to varying
scales, porosity, aggregates with different mineral compositions, and moisture migration,
the distribution of dielectric losses is uneven as microwave radiation is transformed into
heat energy inside concrete [103,111,112]. Additionally, rather than only being a thermal-
mechanical coupling problem, the MW-T of concrete is a multi-field coupling and multi-
phase mixed nonlinear problem. Compared to traditional steam heating, MW-T can speed
up the curing process and boost the early strength of concrete [120,128,130]. When exposed
to such an electromagnetic field, the dielectric components of concrete vibrate and resonate
with the applied field. These interactions prevent the vibration that microwaves cause,
which leads to internal friction heating the concrete [130,131].

Xiao et al. [132] investigated the temperature distribution for concrete structures under
different heating parameters of MW-T in the diagonal direction (Figure 12). The electric
field concentration in the center and surface heat loss from convective heat transfer between
the air and the surface are responsible for the observed trends of the lowest temperature at
the edge and the highest temperature near the center. A small variation might be ascribed
to the unequal composition of the concrete in the cross-section for various specimens.
Furthermore, as opposed to rapid MW-T, the delay in heat conduction also increases the
temperature differential between the center and the surface. The overall temperature
was higher in the heating scheme with the higher maximum temperature. In light of
this, a higher temperature of the concrete structure on average will arise from a higher
maximum temperature.

Because of the wide variances in their dielectric constants, which cause differences
in their thermal responses, the microwave heating sensitivity of aggregate and cement
paste are likewise highly different from one another. Separating the aggregates and mortar
in concrete happens instantly once the microwave power reaches a particular level. This
feature can be very useful for the beneficiation of the recycled concrete aggregate because
its adverse effects on the ST of concrete can be attributed to the excessive content of the
attached mortar [133]. Concrete mortar–aggregate separation using MW-T outperforms
conventional heat treatment techniques [119,128–131]. Since it can increase the amount
of electromagnetic energy converted to thermal energy, the temperature difference at the
mortar–aggregate interfaces can increase the microwave input power [104–108,128–131].
When MW-T is applied to freshly laid concrete, water is removed, capillary pores close, and
the material becomes denser. Although most microwave radiation is used to cure concrete,
the radiation period is typically lengthy (more than 1 h with high power) [134]. In terms
of effective temperature control, the occurrence of cracks owing to shrinkage, the surface
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condition of concrete after curing, economic efficiency, and CO2 emissions, microwave heat
curing performed superiorly to traditional steam curing [135]. However, verification and
augmentation based on actual data are required to produce environments suitable for the
varied sizes and shapes of forms.
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In their investigation of the impact of MW-T as a substitute for steam curing on the
preparation of concrete, Choi et al. [135] found that using microwaves can result in excellent
performance in terms of preventing concrete bleeding, preventing surface separation after
MW-T, reducing CO2 emissions, and saving energy costs when compared with conventional
preparation systems (Figure 13).
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The effect of MW-T on the production of concrete and mortar was studied by Leung
and Pheeraphan [136]. They developed an effective process for concrete (w/c = 0.33) that
produced unexpected results in terms of 4.5 h fc reaching 35.4 MPa and the 7-day strength
being 57.0 MPa (in the case of w/c = 0.40, the strength reached 29.5 MPa at 4.5 h and
48.0 MPa at 7 days).

Applying a microwave could remove free water while the slurry is still in its plastic
state, reducing the water–cement ratio of the mixture, which can make up for the strength
loss during the heating process [136–138]. Microwave pre-curing may also reduce the
porosity of mortar and increase its fc. MW-T can potentially be used in various building
processes, such as concrete pre-casting and repair, to obtain extraordinarily high early
strengths while conserving much energy.

The number of CH crystals, the size of the CH face (001), and the preferred orientation
of CH all decreased as a consequence of microwave curing, as found by Gao et al. [139].
Microwave curing developed a granular C-S-H gel with a high Ca/Si atomic ratio (nearly
3.5) in hydrated PC. Microwave curing and steam curing increased the polymerization of
C-S-H gel compared to conventional curing. In addition, MW-T curing for 45 min resulted
in a greater hydration of PC than steam curing at 80 ◦C for 4 h or conventional curing for
12 h. Microwave and steam curing hastened the hydration of C3S and C2S, respectively.
Compared to steam curing and normal curing, microwave curing substantially expedited
cement hydration while also increasing the content of medium capillary pores in the
hardened paste.

In order to determine microwave curing’s impact on the development of fc in mortar
made with the cement–GGBFS evolution of temperature and the water-to-binder ratio,
as well as the composite binder and its underlying process during curing, the hydration
products and the microstructure of the composite system were studied [140]. The findings
demonstrate that the highest microwave-curing temperature is slightly lower, and the
final water-to-binder ratios are slightly lower as GGBFS content increases. Due to its
long reaction time with water, GGBS is referred to as a latent hydraulic substance [141].
The ST test tangentially demonstrates the microwave’s non-thermal action on composite
systems. Steam curing is less effective than microwaves at carbonating composite binders.
Together with the acceleration of hydration at early ages, a key element in improving
the fc of composed with the cement-mortar–GGBFS composite binder is the reduction in
detrimental pores. The microwave’s drying effect can greatly reduce mortar’s porosity by
lowering the water-to-binder ratio. Moreover, the hydration of composite systems can be
accelerated by the thermal and non-thermal effects of microwaves, and microwave curing
can enhance and homogenize the pore structure of mortar.

The characteristics of magnesium phosphate cement were affected by using a mi-
crowave oven in the calcination of MgO by Ribeiro et al. [142]. Microwave radiation
preferentially links particles with larger dielectric loss during this calcination process,
which differs from conventional calcination. If the dopant has a low dielectric loss, a doped
powder that can be successfully and quickly calcined in a normal oven may not necessarily
show the same results when calcined in a microwave. The microwave calcination was
effective in the process of decreasing the MgO surface area and, as a result, in increasing the
cement’s setting time. This allowed for greater control of the reactions during the setting,
producing specimens with a low open porosity and high mechanical strength, but it also
increased the tendency to exudate certain volumes of water.

To create conductive gratings using a carbon nanotube (CNT), Wang et al. [143]
combined a cement composite with aluminum silicate ceramic fiberboard as the dielectric
layer, resulting in a unique and practical cementitious metastructure. The microwave
absorption of prepared specimens was greatly enhanced by an absorbing metastructure
based on CNT gratings. The metastructure (24 mm) periodicity gratings demonstrated
multi-band absorption capabilities with five peaks less than −20 dB. The metastructure
(14/24 filling fraction gratings) demonstrated excellent broadband absorption performance
with a reflectance peak of −38.7 dB and bandwidth of −15 dB at 13.0 GHz.
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The temperature distribution, structural compactness, and strength development of the
Cemented Tailings Backfill (CTB) can all be significantly impacted by MW-T, according to Sun
et al. [144]. Underground mined-out sections are filled with CTB, typically made by combining
tailings, a binder, and water. To ensure safe and effective mining production, the CTB should
soon reach sufficient strength when buried. With varied curing ages, solid contents, and
binder-to-tailings ratios when the same MW-T is applied, the CTB exhibits different thermal
and mechanical behavior. According to the current investigation, the microwave approach
may increase the stability and durability of the prepared CTB structures. The timing of the
MW-T implementation is also crucial; therefore, the interval between the implantation of
the CTB and microwave heating is considered. In the CTB at an early age, a shorter delay
time is linked to greater mechanical performance. At a curing age of 7 days, microwave
heating (for 7 min) with a 0 h delay period can also boost the CTB’s strength [145]. To ensure
safe and effective mining, the CTB strength and gain rate should also be ensured. The CTB
heated with MW-T is described in work by Sun et al. [146] as using a coupled electromagnetic
heat transfer model. This suggested model considers the processes of heat conduction and
convection, as well as pertinent temperature variation. Energy is converted from electrical to
electromagnetic and then thermal. The practical application of the microwave approach to the
CTB technology can thus advance, thanks in part to the findings of this investigation. This
work is anticipated to contribute to the practical implementation of microwave technology in
mine backfill operations. A summary of the major effects of microwave treatment MW-T on
concrete curing effectiveness is given in Table 3.

Table 3. Summary of the effects of microwave treatment (MW-T) on concrete curing effectiveness.

Aggregates (F-Fine,
C-Coarse)

SCMs/Replacement
Levels (%) Main Findings Treatment

Refs.

F: quartz sand
Limestone

powder/(21.1)
SF/(16.7)

- In comparison to the reference specimens, the fc displays increments
of 30 MPa, 53 MPa, 74 MPa, and 89 MPa with microwave exposure
times of 60 s, 120 s, 180 s, and 240 s at the age of 8 h. Here, microwave
pre-curing for 240 s results in the highest fc of 105 MPa.

MW-T
[137]

F: quartz sand SF, FA

- Due to MW-T curing, it is possible to generate materials with very
high early strength up to 420 MPa after just one day and a total
microwave-curing time of two hours.
- The hydration and pozzolanic reactions were accelerated at the same
time by MW-T curing and the application of very reactive pozzolanic
additives.

MW-T
[138]

- GGBFS/(15, 30, 45)

- The carbonation of composite binders can be promoted more quickly
with MW-T curing than with steam curing. Along with the acceleration
of hydration at early ages, an important factor in improving the fc of
composed with cement mortar-GGBFS composite binder is the decrease
in the number of harmful pores.

MW-T
[140]

F: quartz sand SF/(25.9)
- Aluminosilicate chain length for C-S-H phase with more branches and
cross-linking are created during hydration at a high output energy of
MW-T curing.

MW-T
[147]

-
Graphene-oxide (GO)

doping/
(0.05, 0.1, 0.5)

- The synergetic effect of combining GO-doping and MW-T curing
resulted in the maximum fc (32.4 MPa), which is about 126.6% more
than what would have been possible without GO-doping and MW-T
curing.

MW-T
[148]

- FA/(50)

- In contrast to the very low early-age strength of the cement-FA
blended paste under air curing (11 MPa at 1 day), cement–FA blended
paste gained 51.5 MPa under MW-T curing for 5.29 h.
- Low energy low-carbon concrete can be produced via MW-T curing.

MW-T
[149]

F: river sand Coal gangue/(30)

- The optimal MW-T curing temperature range was 600 ◦C–700 ◦C, and
microwaves can stimulate the activity of coal gangue powder.
- The high temperature of MW-T curing also led coal gangue powder to
dissolve, which resulted in the particles becoming fine and moist.

MW-T
[150]

F: nonreactive sand Bamboo culms/
(1, 1.5)

- Alkaline treatment with MW-T increased the ductility and toughness
of prepared composites.

MW-T
[151]

“-“ denotes no aggregate present, i.e., cement paste.
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4.2. MW-T for Recycled Aggregates

The MW-T of concrete has the potential to provide a brand-new, extremely effective,
and energy-efficient method of recycling aggregates. Microwave-assisted aggregate re-
covery from saturated concrete can be more effective and efficient, with significantly less
performance loss [152]. Increasing the water content of crushed concrete could produce
better aggregate recycling outcomes for industrial applications. Better recycling results can
be obtained by watering or purling on crushed concrete first, then moving it to microwave
heating equipment to begin the separating process (Figure 14). In comparison to the tradi-
tional mechanical separation procedure or the microwave heating method, the approach
was more practical and convenient for the environment.
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For concrete, temperature-gradient-induced cracks began in the specimen’s middle
region and spread to the specimen surface, and the beginning and growth of cracks induced
by temperature gradients were dependent on the temperature difference [103]. Due to
the differences in properties between aggregate and mortar, cracks were formed along the
interface between the mortar matrix and the aggregates. Based on the outcomes of the
experiment, higher microwave input does not result in a larger temperature difference
between mortar and aggregates; however, it results in more severe interface damage
(Figure 14). The size and strength of the concrete will also impact the outcome of the
aggregate recovery. The microwave heating cavity’s feature can be more suitable for
concrete with particular proportions. It still needs to be clarified how to choose the most
efficient heating parameters when other concrete and aggregate qualities are considered.
The proper heating conditions are required to achieve a better separation effect while
minimizing aggregate property damage.

The effectiveness of MW-T for the surface modification of recycled aggregates was
studied by Choi et al. [153]. The surface-modified coarse aggregate (SMCA) and the
aggregate interface were heated differently to over 100 ◦C thanks to MW-T (Figure 15),
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which enables selective heating. Based on this finding, it was revealed that microwave
heating successfully heated the iron oxide blended with the SMCA. The temperature of
SMCA concrete containing iron oxide, a dielectric substance, increased higher than it did
for original coarse aggregate (OCA) concrete when heated with microwaves. The concrete
started to microcrack, particularly when it was heated for longer than 180 s, and the highest
temperature was over 400 ◦C.
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This was accompanied by an increase in void size distribution brought on by a dehy-
dration reaction of the hydrates. This, in turn, led to the Ca(OH)2 and CaCO3 decomposing,
weakening and decreasing the strength of the cement paste. The recycled coarse aggregate
(RCA) that was recovered with microwave heating for 180 s had around 2–3% paste and fine
aggregate. The recovered RCA was extremely comparable to the recovered RCA from OCA
concrete, suggesting the potential for recovering high-quality RCA. It has been discovered
that microwave heating weakens the binder that includes a dielectric substance, enabling
the effective recovery of RCA.

5. Concluding Remarks and Future Perspectives

A rising range of cementitious materials and concrete are being produced at the
laboratory scale using non-ionizing radiation. Many of these materials can now be created
by employing microwaves, sonication, and magnetic fields, as well as by moving beyond
the restrictions of standard preparation procedures, as illustrated by the recent selection
of innovative constituents and concrete mixture formulations. The following features of
cementitious mixtures are affected by power ultrasound treatment US-T and Magnetic
Field Treatment (MF-T):

- Particle dispersion in the mixes,
- Rheological properties of the mixes,
- The setting time and the heat of hydration of cement,
- The early and the late strength,
- The capillary porosity,
- Concrete durability indicators.

On the other hand, the microwave treatment MW-T is found to be beneficial for re-
cycled aggregate preparation and the effective curing of concrete. However, at present,
the applicability of these techniques for low-clinker cement materials has not been demon-
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strated convincingly. In particular, the effects of increased temperature during US-T have
not been clearly distinguished from the actual effects of power during US-T. The semi-
industrial trials are also lacking.

The beneficiation of constituents and their more effective dispersion in concrete mix-
tures still need a better explanation. From the standpoint of material science, further
research is needed to identify the specific effects of these novel preparation methods on the
fundamental physicochemical processes determining the properties of early-age concrete.
Rahimi-Aghdam et al.’s model [56] identified the principal phenomena that control the
early hydration kinetics of cement, including the dissolution of clinker phases, the initiation
of the precipitation of solid products either homogeneously in solution or heterogeneously
on a solid surface, the diffusion of solution components through the pore volume of cement
paste, and the growth of hydration products. The identification of the diffusive properties
of low-clinker cementitious materials, such as CEM II/C-M [6], developed utilizing inno-
vative preparation procedures, will be intriguing. It is still important to create applicable,
thorough hydration models for low-clinker cement types with high slag and limestone
content. Then, the model’s parameters could be discovered. Therefore, an empirical study
can currently be undertaken to determine the benefits of the suggested material-preparation
techniques for low-carbon-footprint materials. But this might also involve more advanced
research on combining these techniques. It is anticipated that new improvements in ad-
vanced material preparation, which will eventually replace simple constituent mixing, will
have a considerable impact on the creation of highly engineered concrete mixtures for the
green construction industry.
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CTB Cemented Tailings Backfill
DSF Densified Silica Fume
EN-Al Egyptian nano-Al2O3
FA Fly Ash
fc Compressive Strength
fst Splitting Tensile Strength
GWD Granite Waste Dust
GO Graphene-oxide
GGBFS Ground Granulated Blast Furnace Slag
HGM Hollow Glass Microspheres
MF-T Magnetic Field Treatment
M-Water Magnetized Water
MWD Marble waste dust
MW-T Microwave Treatment
NSF Nano-silica Fume
NDSF Non-Densified Silica Fume
OCA Original coarse aggregate
PC Portland Cement
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PFA Pulverized Fuel Ash
RCA Recycled Coarse Aggregate
SF Silica Fume
SSF Sonicated Silica Fume
S-CC Self-Compacting Concrete
S-CLC Self-Compacting Lightweight Concrete
SCMs Supplementary Cementitious Materials
SMCA Surface-Modified Coarse Aggregate
US-T Ultrasound Treatment
UCFA Untreated Coal Fine Aggregate
VA Volcanic Ash
σ Surface Tension Coefficient
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27. Dąbrowski, M.; Glinicki, M.A.; Dziedzic, K.; Jóźwiak-Niedźwiedzka, D.; Sikorin, S.; Fateev, V.S.; Povalansky, E.I. Early Age Hard-
ening of Concrete with Heavy Aggregate in Gamma Radiation Source—Impact on the Modulus of Elasticity and Microstructural
Features. J. Adv. Concr. Technol. 2021, 19, 555–570. [CrossRef]

28. De Schutter, G.; Lesage, K. Active Control of Properties of Concrete: A (p)Review. Mater. Struct. 2018, 51, 123. [CrossRef]
29. Lott, M.; Remillieux, M.C.; Garnier, V.; Ulrich, T.J.; Le Bas, P.Y.; Deraemaeker, A.; Dumoulin, C.; Payan, C. Fracture Processes

Imaging in Concrete Using Nonlinear Ultrasound. NDT E Int. 2021, 120, 102432. [CrossRef]
30. Ganjian, E.; Ehsani, A.; Mason, T.J.; Tyrer, M. Application of Power Ultrasound to Cementitious Materials: Advances, Issues and

Perspectives. Mater. Des. 2018, 160, 503–513. [CrossRef]
31. Ehsani, A.; Ganjian, E.; Mason, T.J.; Tyrer, M.; Bateman, M. Insights into the Positive Effects of Power Ultrasound on the Pore

Solution of Portland Cement Pastes. Cem. Concr. Compos. 2022, 125, 104302. [CrossRef]
32. Colmenares, J.C. Sonication-Induced Pathways in the Synthesis of Light-Active Catalysts for Photocatalytic Oxidation of Organic

Contaminants. ChemSusChem 2014, 7, 1512–1527. [CrossRef] [PubMed]
33. Hangxun, X.; Zeiger, B.W.; Suslick, K.S. Sonochemical Synthesis of Nanomaterials. Chem. Soc. Rev. 2013, 42, 2555–2567. [CrossRef]
34. Lisowski, P.; Colmenares, J.C.; Mašek, O.; Lisowski, W.; Lisovytskiy, D.; Grzonka, J.; Kurzydłowski, K. Design and Fabrication

of TiO2/Lignocellulosic Carbon Materials: Relevance of Low-Temperature Sonocrystallization to Photocatalysts Performance.
ChemCatChem 2018, 10, 3469–3480. [CrossRef]

35. Lisowski, P.; Colmenares, J.C.; Mašek, O.; Lisowski, W.; Lisovytskiy, D.; Kamińska, A.; Łomot, D. Dual Functionality of
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