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Abstract: Recently, significant efforts have been made to create Health Digital Twins (HDTs), Digital
Twins for clinical applications. Heart modeling is one of the fastest-growing fields, which favors
the effective application of HDTs. The clinical application of HDTs will be increasingly widespread
in the future of healthcare services and has huge potential to form part of mainstream medicine.
However, it requires the development of both models and algorithms for the analysis of medical
data, and advances in Artificial Intelligence (AI)-based algorithms have already revolutionized image
segmentation processes. Precise segmentation of lesions may contribute to an efficient diagnostics
process and a more effective selection of targeted therapy. In this systematic review, a brief overview
of recent achievements in HDT technologies in the field of cardiology, including interventional
cardiology, was conducted. HDTs were studied taking into account the application of Extended
Reality (XR) and AI, as well as data security, technical risks, and ethics-related issues. Special
emphasis was put on automatic segmentation issues. In this study, 253 literature sources were taken
into account. It appears that improvements in data processing will focus on automatic segmentation
of medical imaging in addition to three-dimensional (3D) pictures to reconstruct the anatomy of the
heart and torso that can be displayed in XR-based devices. This will contribute to the development of
effective heart diagnostics. The combination of AI, XR, and an HDT-based solution will help to avoid
technical errors and serve as a universal methodology in the development of personalized cardiology.
Additionally, we describe potential applications, limitations, and further research directions.

Keywords: Artificial Intelligence; Machine Learning; Metaverse; Virtual Reality; Extended Reality;
Augmented Reality; Digital Twin; Health Digital Twin; personalized medicine; cardiology

1. Introduction

A Digital Twin (DT) is a digital replica of its corresponding physical object or process.
It is a virtual model with special features that combine the physical and digital worlds [1].
Since modern medicine needs to move from being a wait-and-response therapeutic disci-
pline to an interdisciplinary preventive science, interest in the application of DT technology
in medicine is rapidly growing. DTs enable human physical characteristics, including
changes and disorders in the body, to be transferred to the digital environment. Thus, DT
technology also opens up the possibility of delivering personalized medicine in the form of
providing an individual patient with their very own diagnosis, optimization path, health
forecast, and treatment plan [2]. Thus, Health Digital Twins (HDTs) may represent a specific
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organ modeled from high-resolution medical imaging and structural and physiological
functional data across multiple scales [3]. The technology can be applied to the develop-
ment of drug delivery processes, selection of targeted therapies, and design of clinical
trials. HDTs fit perfectly into the Healthcare 4.0 concept that assumes the introduction of a
publicly available system of effective personalized healthcare [4].

One of the technologies that are applied in the implementation of DTs is Extended
Reality (XR). This enables users to experience the feeling of immersion in the real world on
various levels through head-mounted displays (HMDs) [5]. This approach provides a new
level of quality in the three-dimensional (3D) visualization of complex structures such as
organs and their abnormalities as well as touch-free interfaces [6]. XR is increasingly used
in preoperative planning, and recently even during surgery [7,8]. Immersive solutions are
also starting to play an important role in medical education [9], particularly in the context
of distance education [10]. Thus, in the case of a virtual environment and virtual models,
the key issue is the development of an environment and/or scene and a model that reflects
reality as closely as possible. In this field, Artificial Intelligence (AI)-based algorithms, in
particular, Deep Neural Networks (DNNs), have recently revolutionized image creation [11].
Precise segmentation of lesions may contribute to an efficient diagnostics process and a
more effective selection of targeted therapy. For example, an AI-based algorithm for the
segmentation of pigmented skin lesions has been developed, which enables diagnosis in the
earlier stages of the disease, without invasive medical procedures [12,13]. With flexibility
and scalability, AI can be also considered an efficient tool for cancer diagnosis, particularly
in the early stages of the disease [14,15]. On the other hand, in this context, the provision of
a stable internet connection is extremely important. However, different XR-based solutions
have varying requirements for optimal connectivity. Thus, intelligent DTs combined with
AI-based algorithms and XR devices have huge potential to revolutionize medicine and
public health. A basic model of such connections is presented in Figure 1.
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Figure 1. Health Digital Twin supported by AI and XR: a basic workflow.

In this paper, we present a brief overview of the recent achievements (2020–2024)
in Health Digital Twin technologies in the field of cardiology, taking into account the
application of Extended Reality and Artificial Intelligence. Specifically, we aim to answer
the following research questions (RQs).

RQ1: Can AI-based algorithms be used for the accurate segmentation of human organs
based on medical data, in particular in the case of the heart?

RQ2: How do AI-based algorithms be beneficial in the Health Digital Twin technologies?
RQ3: How can Extended Reality be used in Health Digital Twin-based solutions?
RQ4: What ethical threats does a world based on the Metaverse and Artificial Intelli-

gence pose to us?
To address the above research questions, a systematic literature review was conducted.
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2. Materials and Methods

In this paper, a systematic review was undertaken based on the PRISMA Statement
which has been published in several journals, and its extensions, including PRISMA-S [16],
formed to accommodate the wide question concerning the application of Digital Twin
technology supported by Artificial intelligence and Extended Reality-based solutions in
the field of cardiology. Eligible materials, including publications, reports, protocols, and
papers from peer-reviewed literature, were identified from the Scopus, Web of Science, and
PubMed databases. The keywords Artificial Intelligence, Machine Learning, Digital Twin,
Digital Twin in medicine, Digital Twin in cardiology, Extended Reality, Mixed Reality, Vir-
tual Reality, Augmented Reality, Metaverse, digital heart, cardiology, signal segmentation,
medical image scan segmentation, segmentation algorithms, and classification algorithms
and their variations were used. The inclusion criteria set to select the resources were as
follows: resource language: English; type of resource: publications in the form of journal
papers, books, and proceedings as well as technical reports; a publishing time frame be-
tween 2020 and 2024. This choice of publication dates is based on the fact that areas such
as Artificial Intelligence, the Metaverse, and Health Digital Twins have developed very
dynamically in recent years, and we wanted to focus only on the latest developments in the
field of the Metaverse and Digital Twins taking into account a medical context, in particular
cardiology. The literature search was conducted as follows.

(1) Duplicate and non-relevant records were removed;
(2) Resources whose titles and abstracts were not relevant to the topic were excluded;
(3) Non-retrieved resources were removed;
(4) Conference papers, reviews, Ph.D. theses, and sources that did not contain information

about the Metaverse, AI, and XR in the context of cardiology used were excluded.

In addition, resources that were deemed unnecessary during the search were elimi-
nated from consideration. Thus, all documents considered needed to be peer-reviewed and
to include answers to research questions. Finally, 253 documents were taken into account.

3. Digital Twins in Cardiology—The Heart Digital Twin

A Digital Twin contains three parts: a physical model of the organ in the body, its
virtual counterparts, and their mutual interactions. Outside medicine, this approach works
well in industrial solutions such as the battery industry, for example [17], where a pro-
ecological approach to batteries already at the design stage is allowed. In turn, in the area of
medicine, DTs offer opportunities ranging from research on mechanisms related to various
diseases and isolating disease predictors to optimization of health outcomes [18]. However,
the human body and its parts are considered to be more complex than objects in engineer-
ing and manufacturing [19,20]. For example, it has also been shown on the individual
level that mathematical models can be calibrated based on patient-specific data to predict
tumor response dynamics [21–24]. These models can be applied in the development of a
Digital Twin of the patient. In recent years, early attempts to apply DTs in medicine have
been made [25]. Thus, in cardiology, DTs solve the inverse problem of electrocardiography,
relating electrical signals to the anatomy of the heart [26,27], connected with the develop-
ment of a heart model that involves the parameterization of its elements [28]. This enables
non-invasive functional cardiac modeling imaging methods to be used in a clinical setting.
For this to become a clinical reality 3D thorax information should result in well-defined
heart models inside the thorax, for which currently no algorithms are available due to the
large variability in body build and underlying heart disease. However, the solution to the
inverse problem is subject to technical errors [29]. For further development of this DT, a
model of the patient’s heart and torso derived from medical imaging based on Magnetic
Resonance Imaging/Computed Tomography (MRI/CT) is required [30]. Medical image
processing is time consuming, especially when the image is of poor quality. Moreover,
the participation of humans is needed. Thus, the development of efficient and accurate
segmentation algorithms is of high importance [31].
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4. Extended Reality in Cardiology

Amongst other things, XR in medicine provides the ability to overlay computer-
developed elements and structures onto real-world data and develop touch-free human–
computer interfaces (controlled by voice, eye movements, and hand gestures) that can be
applied in a sterile environment [32]. Moreover, Schöne et al. [33] have shown that the cur-
rent configuration of XR-based devices contributes to the experience of a feeling of reality,
although this depends on the quality of the scenes and objects presented. Extended Reality
can be divided into Virtual Reality (VR) (a completely virtual experience), Augmented
Reality (AR) (combining real-world elements with computer-generated elements), and
Mixed Reality (MR) (computer-generated elements that can actively interact with the real
world) [3]. All these types of XR-based technologies can be very helpful in the field of car-
diology [34–36] (also see Table 1). Marvin et al. [37] have shown that this approach is quite
popular in European cardiology, although it has not led to routine practice. For example,
VMersive (VR-Learning, Poland) is an automated tool dedicated to the reconstruction of
CT and MRI image scenes. It can be applied to procedure planning as in congenital heart
disease treatment [38]. Another study [39] concentrates on the evaluation of a VR-based
solution for baffle planning in CHD. The proposed approach enables a medical doctor to
simulate different baffle configurations and analyze their impact on blood flow, which
is under practical conditions impossible. The knowledge gained may be beneficial in
operational planning [40]. In turn, Ghosh et al. [41] applied VR to the creation of a 3D view
based on cardiac MRI to visualize multiple ventricular septal defects, an approach that
uses commercial software to segment heart areas. This procedure made it possible to reveal
what would normally be invisible, the ventricular septal defect of the heart. Another case
of XR’s practical application in cardiology is cardiac catheterization which is a commonly
used procedure, although it is quite risky. Battal et al. [42] proposed VR as a support for this
procedure. As shown by Eves et al. [43] and Chahine et al. [44] techniques such as AR may
shorten the operation time. When we consider cardiac surgery, even the simplest types, we
must take into account the patient’s recovery after such an operation. Very little attention
is paid to this issue. This creates a very interesting area of potential XR-based technology
application [45]. Additionally, three-dimensional cardiac imaging is also important in
veterinary medicine [46].

Table 1. Comparison of recent (2020–2024) developments in the application of XR in cardiology and
interventional cardiology.

XR Technology Type HDM Type AI Support Perception of Real
Surrounding Application Field References

MR HoloLens 2 No Yes Visualization of ultrasound-guided
femoral arterial cannulations [47]

MR HoloLens 2 No Yes USG visualization [48]
MR HoloLens 2 No Yes Visualization of heart structures [49]
MR HoloLens 2 No Yes Operation planning [50]
MR HoloLens No Yes Operation planning [51]
MR HoloLens 2 No Yes Visualization of heart structures [52]
MR HoloLens 2 No Yes Visualization of heart structures [53]
AR mobile phone No Yes Diagnosis of the heart [54]

AR none No Yes Virtual pathology
stethoscope detection [55]

AR none Yes Yes Eye-tracking system [56]

AR none Yes Yes Detection of semi-opaque markers
in fluoroscopy [57]

VR Simulator Stanford
Virtual Heart No No Visualization of heart structures [58]

VR Simulator Stanford
Virtual Heart No No Visualization of heart structures [59]

VR Meta-CathLab (concept) No No Merging interventional cardiology
with the Metaverse [60]

VR VR glasses Yes No Sleep stage classification—concept [61]

VR Virtualcpr: mobile
application Yes No Training in cardiopulmonary

resuscitation techniques [62]

VR none Yes No Diagnostic of cardiovascular
diseases—visualization [63]

VR none No No Cardiovascular education [61]
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Another XR application field in cardiology is connected with rehabilitation. Mocan
et al. [64] proposed a combination of home cardiac telerehabilitation based on a virtual
environment with a monitoring system. The idea presented allows the continuation of
rehabilitation at home. AR may also be helpful in home monitoring as in an application
that allows the correct placement of ECG electrodes to be checked using photos taken with
a mobile phone [65]. Here, it was found that an AR-based solution enables at least eighty
percent of the measurements to be obtained correctly.

Recently, attention has also been paid to pain management for surgical procedures as
in cases of advanced heart failure, where VR can also be beneficial [66]. Another approach
to VR in cardiology is to use the sensors and cameras found in HDMs to determine heart
rate (HR) [67]. HR was estimated based on the central portion of the face by application of
remote photo plethysmograph, Eulerian Video Magnification (EVM), and Convolutional
Neural Networks (CNNs). According to research results, it is only possible to predict
HR based on facial regions. An interesting solution in the field of VR-supported surgical
procedures was proposed by Sainsbury et al. [68]. A three-dimensional model of the renal
system was developed based on the patient’s preoperative CT scans. Then, the surgeon
planned the course of the operation. It turned out that the combination of VR and tactile
feedback strongly influences decision making during surgery.

A further important area of XR-based technology consists of the education (broadly
understood) of both future medical staff and patients [69–71], as in the case of teaching heart
anatomy [37]. For example, VR-based simulators provide an effective tool for determining
the heart’s mechanical and electrical activities [72]. Additionally, the proposed solution
is equipped with a VR catheter module that allows the movement of the catheter to be
tracked. In research by Patel et al. [73], traditional learning using 2D imaging and learning
using XR and 3D imaging were compared. The objective of the study was to understand
congenital heart disease. Although there were no differences in teaching effectiveness
from a statistical point of view, participants who used XR in the learning process reported
a better understanding of the content. On top of that, Lim et al. [74] found VR to be a
very helpful tool for residents participating in pediatric cardiology rotations. O’Sullivan
et al. [75] also found that more than eighty percent of participants believed that VR is
a good teaching tool for acquiring knowledge about echocardiography, and over sixty
percent of them rated VR higher than traditional teaching methods. Then, Choi et al. [76]
found that AR glass increases the level of understanding of left ventricular ejection fraction.
Additionally, García Fierros et al. [62] made a comparison of VR and fluoroscopic guidance
for transseptal puncture. It turned out that VR may have the potential to shorten training.
Gladding et al. [77] and Kieu et al. [58] also found that such an approach is helpful.

5. Artificial Intelligence-Based Support in Cardiology

Computer-assisted medicine in general, and cardiac modeling in particular, is by no
means an exception from the successful application of continuous advancements in bioelec-
tricity and biomagnetism [78]. Along with enhancements in ECG measuring techniques
and a constant increase in computational resources, these advances have provoked the
development of many different heart models that can support an automatic and accurate
diagnosis of the heart, beat by beat. Knowledge of the anatomical heart structure is an
important part of the evaluation of cardiac functionality. Thus, cardiac images are one
of the significant techniques applied in the assessment of patient health. At present, the
image segmentation procedure is usually performed manually, with an expert sitting in
front of a monitor moving a pointer, and not only does this require time and resources
to accomplish, but it is also subject to error depending on the experience of the expert.
In sum, this procedure is time consuming, inefficient, very often error prone, and highly
user dependent [79]. Therefore, the development of an efficient, automatic segmentation
procedure is of great importance [80]. However, certain limitations mean that the automatic
segmentation of cardiac images is still an open and difficult task. For example, in the case
of 2D echocardiographic images, a low signal-to-noise ratio, speckles, and low-quality
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images form some of the difficulties in determining the contour of the ventricles. Moreover,
significant variability in the shape of heart structures makes it difficult to develop universal
automated algorithms. Thus, medical image segmentation has become a significant area of
AI application in medicine. An image can be segmented in several ways, including semantic
segmentation (the assignment of each pixel or voxel of an image to one of the classes) [81],
instance segmentation (pixels of an image are assigned to the instances of the object) [82],
and panoptic segmentation (the connection of the semantic and instance segmentation) [83].
The main disadvantage of semantic segmentation is the poor definition of the problem
(sometimes multiple instances can be abstracted into a single class), which translates into in-
adequate recognition of image details. As said, in the case of medical images, segmentation
is often performed manually, making it a time-consuming and error-based process. Many
algorithms have been proposed to support the automatic segmentation of medical images.
It is also worth stressing that imaging methods in cardiology have particular characteristics
that can affect their reproducibility and reliability. These include spatial, temporal, and
contrast resolution as well as tissue penetration and artifact susceptibility. The ultimate
goal is to enable fully automatic segmentation of any clinically acquired CT or MRI. Indeed,
MRI offers higher resolution in comparison to ultrasound and spatial resolutions impact the
ability to visualize tiny structures in the heart and blood vessels. In turn, echocardiography
can provide higher temporal resolution compared to MRI or CT processes, which affects
the ability to capture dynamic changes in heart function. Thus, different modalities have
different capabilities in distinguishing between different tissue types and contrast agents.
MRI often excels in contrast resolution compared to other diagnostics methods. Therefore,
for medical image segmentation (mostly semantic segmentation), different types of neural
networks are applied [84], see also Table 2. The basic concept of AI application in cardiology
is presented in Figure 2.

Table 2. Top list of used AI models in cardiology, including interventional cardiology.

AI/ML Model Application Fields (In General) Application Fields (In Cardiology) References

ANNs

classification, pattern recognition,
image recognition, natural
language processing (NLP),

speech recognition,
recommendation systems,

prediction, cybersecurity, object
manipulation, path planning,

sensor fusion

prediction of atrial fibrillation, acute myocardial
infarctions, and dilated cardiomyopathy detection of

the structural abnormalities in heart tissues

[85]
[86]

RNNs

ordinal or temporal problems
(language translation, speech

recognition, NLP image
captioning), time series prediction,
music generation, video analysis,

patient monitoring, disease
progression prediction

segmentation of the heart and subtle
structural changes

cardiac MRI segmentation

[87]
[88]

LSTMs

ordinal or temporal problems
(language translation, speech

recognition, NLP, image
captioning), time series prediction,
music generation, video analysis,

patient monitoring, disease
progression prediction

segmentation and classification of 2D echo images
segmentation and classification of 3D Doppler images

segmentation and classification of video graphics
images and detection of the AMI in echocardiography

[89]
[90]
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Table 2. Cont.

AI/ML Model Application Fields (In General) Application Fields (In Cardiology) References

CNNs

pattern recognition,
segmentation/classification,

object detection, semantic
segmentation, facial recognition,

medical imaging, gesture
recognition, video analysis

cardiac image segmentation to diagnose CAD
cardiac image segmentation to diagnose Tetralogy

of Fallot
localization of the coronary artery atherosclerosis

detection of cardiovascular abnormalities
detection of arrhythmia

detection of coronary artery disease
prediction of the survival status of heart

failure patients
prediction of cardiovascular disease

LV dysfunction screening
prediction of premature ventricular

contraction detection

[91,92]
[93]
[94]
[95]

[96–107]
[108]
[109]
[110]

[111,112]

Transformers

NLP, speech processing, computer
vision, graph-based tasks,

electronic health records, building
conversational AI systems

and chatbots

coronary artery labeling
prediction of incident heart failure

arrhythmia classification
cardiac abnormality detection

segmentation of MRI in case of cardiac infarction
classification of aortic stenosis severity

LV segmentation
heart murmur detection

myocardial fibrosis segmentation
ECG classification

[113,114]
[115]

[116–119]
[120]
[121]

[122,123]
[118,124,125]

[126]
[118]
[127]

SNNs

pattern recognition, cognitive
robotics, SNN hardware,
brain–machine interfaces,
neuromorphic computing

ECG classification
detection of arrhythmia

extraction of ECG features

[128–130]
[131–133]

[134]

GANs

image-to-image translation,
image synthesis and generation,

data generation for training, data
augmentation, creating

realistic scenes

CVD diagnosis
segmentation of the LA and atrial scars in LGE

CMR images
segmentation of ventricles based on MRI scans

left ventricle segmentation in pediatric MRI scans
generation of synthetic cardiac MRI images for

congenital heart disease research

[135]
[136]
[137]
[138]
[139]

GNNs

graph/node classification, link
prediction, graph generation,

social/biological network
analysis, fraud detection,
recommendation systems

classification of polar maps in cardiac
perfusion imaging

analysis of CT/MRI scans
prediction of ventricular arrhythmia

segmentation of cardiac fibrosis
diagnosis of cardiac condition: LV motion in cardiac

MR cine images
automated anatomical labeling of coronary arteries

prediction of CAD
automation of coronary artery analysis using CCTA

screening of cardio, thoracic, and pulmonary
conditions in chest radiograph

[140,141]
[142]
[141]
[141]
[143]
[144]
[145]
[146]
[147]

QNNs optimization of hardware
operations, user interfaces classification of ischemic heart disease [97]

GA
optimization techniques, risk

prediction, gene therapies,
medicine development

classification of heart disease [148]
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5.1. Application of the You-Only-Look-Once (YOLO) Algorithm

The You-Only-Look-Once (YOLO) algorithm is an approach that is based on deep
learning for object detection [149,150]. It depends on the idea that images pass only once
through the neural network, and hence the name. This is performed by dividing the input
image into a grid and predicting for each grid cell the bounding box and the probability
of that class. The algorithm predicts different values related to the object, such as the
coordinates of the center of the bounding box around the object, the height and width
of the bounding box, the class of the object, and the probability, or the confidence of the
prediction. This way of working may cause the algorithm to detect the object multiple
times. To avoid duplicate detections of the same object the algorithm uses non-maximum
suppression (NMS), which works by calculating a metric called Intersection over Union or
(IOU) between the boxes. If the IOU between two boxes is larger than a certain threshold,
the box with a higher confidence score is chosen and the other box is ignored. There have
been many improvements to the YOLO algorithm that provide higher accuracy, faster
performance, improved scalability, and greater flexibility for customization.

In advancing the diagnosis of cardiovascular diseases (CVDs), the YOLOv3 algorithm
was developed for the precise segmentation of the left ventricle (LV) in echocardiography.
This method leverages YOLOv3’s powerful feature extraction capabilities to accurately
locate key areas of the LV, including the apex and bottom, facilitating the acquisition of
detailed LV subimages. Employing the Markov random field (MRF) model for initial
identification and processing, the method then applies sophisticated techniques including
non-linear least-squares curve fitting for exact LV endocardium segmentation. YOLOv3’s
role is pivotal in ensuring the accuracy and efficiency of this process, highlighting its
significance in the early detection and analysis of CVD [151]. On the other hand, in
the realm of cardiac health monitoring and medical image processing, the Lion-Based
Butterfly Optimization model with Improved YOLOv4 was introduced as described by
Alamelu and Thilagamani, [152]. When applied in the prediction of heart disease based
on echocardiography, it was found that a refined version of the segmentation algorithm
significantly improves (with an average of 99% accuracy) the analysis of echocardiographic
images, offering more accurate and thorough insights into cardiac health, thus marking
a substantial advancement in cardiac diagnostics technology. Lee et al. [153] applied
the YOLOv5 algorithm to cardiac detection. Based on cardiovascular CT images from
Soonchunhyang University Hospital in Korea, the critical role of data preprocessing in deep
learning, especially when dealing with limited medical datasets, was presented. The study
highlights the advanced capabilities of YOLO-v5, including its efficiency in processing and
analyzing complex medical images, in particular in the field of cardiology. The approach
presented significantly contributes to the precision and speed of cardiac disease detection,
underscoring the impact of deep learning techniques in improving medical diagnostics.
Moreover, by combining the capabilities of YOLOv7 with a U-Net Convolutional Neural
Network the precise segmentation of left heart structures from echocardiographic images
was subsequently developed [154]. This approach efficiently delineates complex anatomical
structures, including the left atrium, endocardium, and epicardium. Thus, the integration of
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YOLOv7 with U-Net significantly improves the accuracy and efficiency of the segmentation
process, proving to be a valuable asset in cardiac diagnosis, Animesh Tandontics, and
clinical practice.

The proposed YOLO-based approach for image segmentation is fast and efficient. It is
also quite efficient in terms of the use of computing resources, which is of key importance
considering the huge amounts of cardiological data that need to be processed. However,
this may reduce its level of accuracy compared to more complex segmentation algorithms,
which is crucial in the case of cardiac images. YOLO-based image segmentation may also
lead to a reduction in spatial resolution in segmentation masks, especially for small or
complex structures in radiological images. Additionally, to ensure a satisfactory level of
accuracy, a large amount of high-quality labeled training data is required. Collecting labeled
data for radiological images can be difficult and time consuming due to the need for expert
annotation. The algorithm is also very sensitive to class imbalance, which often occurs
with radiological data. In the field of cardiology, YOLO is used largely on a black-box basis,
which can make it difficult to reliably interpret results.

5.2. Genetic Algorithms

The analysis of medical data can also be approached using metaheuristic methods such
as Genetic Algorithms (GAs), Evolutionary Algorithms (EAs) in particular, and Artificial
Immune Systems (AISs) that search the possible solution space based on mechanisms
taken from the theory of evolution and natural immune systems. GAs can also be used to
improve diagnosis as well as the selection of targeted therapy in the field of cardiology.
Reddy et al. [148] applied GAs to the diagnostics of early-stage heart disease, which
has crucial implications in the selection of further therapy methods. For example, GAs
allowed for the optimization of classification rules. As a consequence, the level of accuracy
increased and the computational cost was reduced (due to the simplification of the selection
process). GAs can also be applied to the determination of personalized parameters of the
cardiomyocyte electrophysiology model [155]. Here, the Cauchy mutation was applied. In
most cases, GAs were used to limit the number of parameters that are then used as input to
another AI-based algorithm, such as a Support Vector Machine (SVM) [156,157]. Genetic
Algorithms can effectively search for optimal segmentation solutions in the case of heart
image segmentation, where anatomical structures may have different shapes. However,
GAs may exhibit difficulties with complex limitations or domain-specific knowledge in
cardiac image segmentation tasks. On the other hand, GAs can also be effective in the
optimization of the input parameters to neural networks. They are inherently robust
concerning noise and local optima. This is an important feature taking into account motion
artifacts or imaging noise in cardiac image segmentation. A huge disadvantage of GAs
is the cost of computing large search spaces or high-dimensional feature spaces, which is
crucial, especially for real-time computations or in clinical settings (such as may occur in
cardiology applications). Thus, finding the optimal parameter can be difficult and time
consuming. However, GAs can be parallelized in a relatively affordable way which can
help eliminate this disadvantage. Another issue is that this approach may converge slowly
and therefore require long computation times, which is not desirable in clinical practice.

5.3. Artificial Neural Networks

Artificial Neural Networks (ANNs) are networks whose structure and principle of
operation are to some extent modeled on the functioning of fragments of the real nervous
system (the brain) [158,159]. This computational invention contributes to the development
of medical imaging, especially in cardiology, where their design, inspired by the human
brain, enables them to interpret complex patterns within medical data effectively. ANNs
consist of layers composed of several neurons, which apply specific weights and biases to
the inputs. These neurons utilize non-linear activation functions that enable the network to
detect complex patterns and relationships that linear functions might overlook. The output
layer plays a pivotal role in making predictions or classifications based on the analysis, such
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as identifying signs of heart disease, classifying different cardiac conditions, or determining
the severity of a disorder [160,161]. In cardiology, the ability to detect conditions accurately
and at an early stage is of paramount importance, and the application of ANNs for the
analysis of medical images is an important development in this area. Considering the
high global prevalence of cardiovascular diseases, the application of ANNs in cardiac
imaging may substantially improve diagnostic techniques [162]. ANNs provide an efficient
computational tool to detect structural abnormalities in heart tissues. They also play a vital
role in assessing cardiac function, evaluating important metrics such as ejection fraction,
and analysis of blood flow patterns, essential for diagnosing heart failure or valvular heart
disease. Their ability to analyze historical and current medical images aids in predicting
the progression of cardiac diseases. This could positively impact patient outcomes, meeting
an essential requirement in contemporary healthcare. Based on ANNs, Salte et al. [163]
proposed automating the measurement of global longitudinal strain (GLS), a vital metric
for assessing left ventricular function in cardiology. Echocardiographic cine-loops were
analyzed and the approach developed demonstrates superior accuracy and efficiency
compared to conventional speckle-tracking software. A further study by Nithyakalyani
et al. [164] also shows ANN potential in the CVD diagnostic process.

ANNs can automatically learn hierarchical features from raw image data without the
need to manually extract features, which is beneficial for segmenting complex organs such
as the heart. However, ANN application in the field of medical image processing requires
converting two-dimensional images to one-dimensional vectors. This increases the number
of parameters and increases the cost of calculation. However, as in the case of YOLO-based
segmentation algorithms, an ANN-based approach also requires large and good-quality
training data to provide high accuracy. Additionally, finding the right combination of
hyperparameters can be time consuming and require extensive experimentation involving
significant computational resources. Moreover, ANNs are prone to overfitting, especially
when trained on limited or noisy data. To prevent overfitting, regularization techniques
and data augmentation strategies are often used.

5.4. Convolutional Neural Networks

Another neural network that has been applied to medical image processing is the
Convolutional Neural Network (CNN). As opposed to traditional neural networks such
as ANNs, which typically process data in a straightforward, sequential manner, CNNs
can discern spatial relationships within datasets. This is due to the way they are designed
and constructed, intended as they are to maintain and interpret the spatial structure of
input data, an attribute that is vital for the accurate assessment of medical images. For
example, Roy et al. [91] applied CNNs to cardiac image segmentation to diagnose coronary
artery disease (CAD). CNNs were used to analyze 2D X-ray images, significantly enhancing
image segmentation accuracy and setting new standards in medical image analysis. Simi-
larly, as in Gao et al. [165], Galea et al. [166] proposed combining U-Net and DeepLabV3+
CNN architectures for the segmentation of cardiac images from smaller datasets. Tandon
et al. [167] applied CNNs in cardiology with a specific focus on cardiovascular imaging
for patients with Repaired Tetralogy of Fallot (RTOF). A CNN originally designed for ven-
tricular contouring was retrained and adapted to the complexities of RTOF. This enabled
an increase in algorithm accuracy. In turn, Stough et al. [168] developed a fully automatic
method for segmenting heart substructures in 2D echocardiography images using CNNs
that was validated against a robust dataset, and Sander and Išgum [169] focused on en-
hancing the segmentation of cardiac structures in cardiac MRI. This method integrates
automatic segmentation with an assessment of segmentation uncertainty to identify po-
tential local failures. The measures of predictive uncertainty were calculated and trained
by another CNN to detect local segmentation errors for potential expert correction. This
approach combining automatic segmentation with manual correction of detected errors
could significantly reduce the time required for expert segmentation. Masutani et al. [170]
considered the lengthy acquisition times and reduced spatial detail in cardiac MRI. Here,
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CNNs were applied for deep learning super-resolution. It turned out that CNNs consider-
ably outperformed traditional image upscaling methods, recovering high-frequency spatial
details and providing accurate left ventricular volumes. Then, Liu et al. [142] focused on
creating interpretable deep-learning models for cardiac MRI segmentation, particularly of
the left ventricle with the use of CNNs. A deep CNN was also applied to classify Coronary
Computed Tomography Angiography (CCTA) scans using the Coronary Artery Disease
Reporting and Data System (CAD-RADS) categories [86]. Indeed, one of the advantages of
this approach is the reduction in the analysis time compared to manual readings, demon-
strating its efficiency and accuracy in automating the classification process for coronary
artery disease. For example, O’Brien et al. [171] proposed automated detection of ischemic
scars in the left ventricle from routine CTA imaging. The CNN exhibited high accuracy in
detecting scar slices, performing better than manual readings and showing the potential of
this method in enhancing cardiac imaging and diagnostics at minimal additional costs. Sim-
ilarly, Candemir et al. [94] employed a deep learning algorithm using a three-dimensional
CNN to detect and localize coronary artery atherosclerosis in CCTA scans.

In the context of cardiology, fully connected layers of CNNs are responsible for synthe-
sizing information to perform critical analytical tasks. These include classifying different
cardiac conditions, detecting anomalies such as irregularities in heart size or shape, and
making predictive assessments based on a comprehensive analysis of cardiac structure and
function. CNNs are particularly good at handling complex datasets from various imaging
modalities in cardiology, including MRI, CT scans, and ultrasound [172]. The strength
of CNNs lies in their ability to handle high-dimensional data and to effectively capture
the spatial structures within medical images in cardiology. This leads to more precise
and comprehensive analyses of cardiac health. However, in the case of sparse or partial
input data, their use is difficult and does not provide high prediction accuracy, while high
segmentation accuracy is associated with high computational costs. Nor do CNNs take
into account spatial relations in images which is important in the case of cardiology. To
overcome this limitation, Capsule Networks (CNs) were introduced [173]. Their output is
in the form of vectors that enable some spatial relations to be saved. The disadvantage of
this approach is the lack of verification on a large dataset.

5.5. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are known for their ability to model long-term
dependencies and are crucial for capturing the intricate details of cardiac structures. Unlike
traditional feedforward neural networks that process inputs in a one-directional manner,
RNNs are designed to handle sequences of data. This is achieved through their internal
memory, which allows them to retain information from previous inputs and use it in the
processing of new data [174]. In the case of medical data in the form of echocardiography,
and cardiac MRI segmentation, RNNs have shown promising performance [88]. They also
excel in handling the sequential and temporal aspects of both MRI and CT data, crucial for
monitoring dynamic changes in cardiac tissues over time [136]. In turn, Wahlang et al. [89]
combined RNNs and their variations in Long Short-Term Memory (LSTM) successfully
in the segmentation and classification of 2D echo images, 3D Doppler images, and video
graphic images. Wang and Zhang [116] also considered the segmentation of the left ventricle
wall in four-chamber view cardiac sequential images. RNN was applied to provide detailed
information for the initial image, while LSTM to generate the segmentation result: this
approach increases accuracy. Another RRN application in the field of cardiology was
presented by Muraki et al. [90]. Here, simple RNNs, LSTM, and other RNN variations
(such as Gated Recurrent Units (GRU)) were successfully used to detect acute myocardial
infarction (AMI) in echocardiography. Another cardiology-connected RNN application field
was developed by Fischer et al. [175] to detect coronary artery calcium (CAC) from Coronary
Computed Tomography Angiography (CCTA) data. Here, the automatic detection and
labeling of heart and coronary artery centerlines based on the RNN-LSTM algorithm was
considered. Then, Lyu et al. [176] put forward a recurrent Generative Adversarial Network
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model for cine cardiac Magnetic Resonance Imaging. This model utilizes bi-directional
convolutional LSTM and multi-scale convolutions, adept at managing long-range temporal
features and capturing both local and global features, thereby enhancing the network’s
performance. The method showcases significant improvements in cine cardiac MRI image
quality and an ability to generate missing intermediate frames, thus improving the temporal
resolution of cine cardiac MRI sequences. A similar approach can be found in the work
of Ammar et al. [177]. Additionally, the method shows strong correlation coefficients and
limits of agreement for clinical indices when compared to their ground truth counterparts,
highlighting its potential effectiveness and efficiency in cardiac cine MRI analysis.

RNNs have proven to be well suited to managing the sequential and temporal charac-
teristics inherent in MRI and CT data, a capability that is essential for accurately tracking the
dynamic alterations in cardiac tissues due to the possibility of effective capturing of long-
range non-linear dependencies, such as modeling the risk trajectory of heart failure [178].
However, one limitation of RNNs is connected with vanishing or exploding gradients.

5.6. Spiking Neural Networks

Calculations related to the analysis of cardiac data are very time consuming and
involve a great deal of computing resources. One alternative that can potentially reduce
computational cost could be Spiking Neural Networks (SNNs). Currently, SNNs are not
yet as accurate in comparison to traditional neural networks: they have characteristics that
are more similar to biological neurons [179]. They may also be advantageous in wearable
and implantable devices for their energy efficiency and real-time processing capabilities.
This makes them ideal for continuous cardiac monitoring, as they require less frequent
recharging or battery replacement, a significant benefit for devices like cardiac monitors
and pacemakers. For example, Rana and Kim [180] modify the synaptic weights such
as to be binary. This operation provides a reduction in computational complexity and
power consumption. This is crucial, especially in the context of wearable monitors where
continuous monitoring is key but the constraints of power and computational resources are
limiting factors. Their binarized SNN model may be a highly efficient alternative for ECG
classification, setting a new standard in continuous cardiac health monitoring technologies.
Shekhawat et al. [181] propose a Binarized Spiking Neural Network (BSNN) optimized
with a Momentum Search Algorithm (MSA) for fetal arrhythmia detection. Another study
in the field of arrhythmia detection introduces a Memristive Spike-Based Computing in
Memory (MSB-CIM) system using a Memristive Spike-Based Computing Engine with
Adaptive Neuron (MSPAN). Then, a multi-layer deep integrative Spiking Neural Network
(DiSNN) in edge computing environments was developed by Jiang et al. [182]. This system
efficiently manages ECG classification tasks, greatly reducing computational complex-
ity without compromising accuracy. Furthermore, Banerjee et al. [96] optimized SNNs
for ECG classification in wearable and implantable devices such as smartwatches and
pacemakers. Their approach in designing both reservoir-based and feed-forward SNNs,
and integrating a new peak-based spike encoder, has led to significant enhancements in
network efficiency. Yan et al. [183] proposed training the SNN model on diverse patient
data and then adeptly applied it to classify ECG patterns from new, untrained individuals.
This approach addresses the balance between low power consumption and high accuracy
effectively, making it a highly suitable choice for continuous, real-time heart monitoring in
everyday wearable technology. Similarly, Kovács and Samiee [131] introduced a hybrid
neural network architecture that merges the strengths of Variable Projections (VP) with the
capabilities of SNNs. An interesting solution in ECG classification has also been presented
by Feng et al. [129]. Their approach involves building a structure analogous to a deep ANN,
transferring the trained parameters to this new structure, and utilizing leaky integrate-and-
fire (LiF) neurons for activation. This method not only matches but in some cases, exceeds
the accuracy of the original ANN model. This may lead to more efficient, accurate, and
reliable systems for continuous cardiac health monitoring, potentially revolutionizing the
way heart diseases are detected and monitored.
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SNNs, however, are more computationally efficient (connected to the high level of
computational speed and real-time performance). As a consequence, SNNs consume less
energy, which translates into better use of hardware resources. However, their learning
algorithms require improvement (in terms of accuracy gains), in comparison, for example,
to the accuracies achieved by the application of CNNs [184]. In the case of SNNs, the
requirement of increasingly powerful hardware is also of high importance. SNNs also have
a significant limitation in practical applications due to the smaller number of available tools,
libraries, and structures in comparison to other neural network types. SNNs also provide
worse results in terms of accuracy compared to traditional approaches. To fully exploit the
potential of SNNs, including detecting anomalies in biomedical signals and designing more
detailed networks, the SNNs’ learning mechanisms/rules need to be improved. Another
issue is connected to scalability, especially for large-scale heart image segmentation tasks.

5.7. Generative Adversarial Networks

Generative Adversarial Networks (GANs) are network architectures that consist of
two core components: the generator and the discriminator. The generator shoulders the
responsibility of creating data that faithfully emulates specific data (artificial data identical
to real data) to cheat the discriminator. It initiates the process with an input of random
noise, meticulously refining it through multiple layers of neural network architecture. Each
layer integrated within the generator network fulfills a distinct role, harnessing techniques
such as convolutional or fully connected layers. These layers operate cohesively to pro-
gressively metamorphose the initial noise input into an output that becomes increasingly
indistinguishable from the target data. A discriminator is designed to distinguish arti-
ficial data (produced by a generator) from real data based on small nuances. Thus, the
core concept of this solution is to train two networks that compete with each other. As
a consequence, they are expected to produce more authentic data [185]. GANs seem to
be promising computational tools to elevate patient care and improve clinical outcomes,
in particular in the field of cardiology. First, the most important GAN application field
is CVD diagnosis [135]. Retinal fundus images were used as input to the network. This
approach led to the analysis of microstructural alterations within retinal blood vessels
to pinpoint pivotal risk factors associated with CVD, such as Hypertensive Retinopathy
(HR) and Cholesterol-Embolization Syndrome (CES). Moreover, the incorporation of a
retrained ImageNet model for customized image classification further bolstered predictive
accuracy. Furthermore, Chen et al. [136] demonstrated the potential of GAN in automating
precise segmentation of the left atrium (LA) and atrial scars in late gadolinium-enhanced
cardiac magnetic resonance (LGE CMR) images. The quantification of atrial scars, dis-
tinguished by substantial volume disparities, necessitated a departure from traditional
two-phase segmentation methods. To surmount this hurdle, JAS-GAN was introduced, an
intercascade Generative Adversarial Network, to autonomously and accurately segment
unbalanced atrial targets within LGE CMR images. Thus, an adaptive attention cascade
and adversarial regularization culminate in simultaneous and precise segmentation of both
LA and atrial scars. This solution provides some insight into clinical applications in the
treatment of patients with atrial fibrillation (AF), underscoring the indispensable role of
GANs in the realm of medical imaging tasks. The transformative potential of GANs to
enhance dynamic CT angiography derived from CT perfusion data has been shown in
studies by Wu et al. [186]. Vessel-GAN, characterized as an explainable Generative Adver-
sarial Network, allows for standalone coronary CT angiography. Additionally, automated
atherosclerosis screening from coronary CT angiography (CCTA) by harnessing the capa-
bilities of Generative Adversarial Networks (GANs) was developed by Laidi et al. [187].
GANs help to address the conundrum of limited positive images within the test dataset.
Zhang et al. [137] concentrated on the precise segmentation of ventricles within MRI scans.
Their work recognized the difficulties posed by unclear contrast, blurred boundaries, and
noise inherent in these images. Pushing development further, Decourt and Duong [138]
addressed the essential task of left ventricle segmentation in pediatric MRI scans. They
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introduced DT-GAN, a GAN approach that uses semi-supervised semantic segmentation
to reduce the reliance on large annotated datasets. Their innovative GAN loss function and
methodology enhanced segmentation accuracy, particularly for boundary pixels, showing
promise for automated left ventricle segmentation in cardiac MRI scans. Diller et al. [139]
explored the potential application of Progressive Generative Adversarial Networks (PG-
GAN) to generate synthetic cardiac MRI images for congenital heart disease research. This
approach enables both data privacy concerns to be addressed and yields segmentation
results comparable to those achieved with direct patient data, showcasing the potential of
PG-GANs in generating realistic cardiac MRI images for rare cardiac conditions.

GANs have shown exceptional proficiency in handling complex and varied cardiac
datasets. They generate highly realistic images, aiding training and research, particularly
where access to real patient data is limited. GANs are instrumental in enlarging existing
datasets and creating diverse and extensive data for training more accurate and robust
diagnostic models. In addition to image generation, GANs are adept at image-to-image
translation tasks, a significant feature in medical imaging [188]. They can transform MRI
images into CT scans, offering different perspectives of the same anatomical structure
without needing multiple imaging modalities. This is particularly beneficial in scenarios
where certain imaging equipment might be unavailable. However, the main disadvantages
of GANs are the complex training needed that does not necessarily lead to hoped-for
results, a tendency to overfit, and high computational costs. Moreover, GANs are difficult
to interpret, which is of key importance in medicine, especially in cardiology.

5.8. Graph Neural Networks

If the data format is approached differently, as in non-Euclidean space in the form
of graphs, it can be understood in terms of vertices (i.e., objects). Then, the concept of
Graph Neural Networks (GNNs) can be applied [189]. All relations in this type of neural
network are expressed as those between nodes and edges of the graph. These networks are
designed to handle graph data that form a critical aspect in medical fields, especially when
the intricate relationships and connections between data points are essential for accurate
diagnosis and health condition analysis. This principle of operation is useful in medical
imaging, especially in neuroimaging and molecular imaging, where understanding com-
plex relationships is crucial [128,190]. In the field of cardiology, GNNs have been effectively
employed in several key areas. They have been used in the classification of polar maps
in cardiac perfusion imaging, a critical technique for assessing heart muscle activity and
blood flow. Another significant application of GNNs in cardiology is the estimation of left
ventricular ejection fraction in echocardiography. This measurement is vital for evaluating
heart health, specifically in assessing the volume of blood the left ventricle pumps out with
each contraction [140]. This allows for more accurate analyses through an understanding
of the intricate graph structures of the heart’s imagery. GNNs are also being utilized in
analyzing CT/MRI scans. This approach can also be used to interpret the relationships and
structures within the scan, providing detailed insights into various conditions and helping
in diagnosis and treatment planning [142]. A further application of GNNs in cardiology is
connected with cardiac perfusion imaging. This task covers the classification of the polar
maps which is necessary for the evaluation of heart muscle activity and blood flow. These
maps also play an important role in echocardiography, particularly in the estimation of the
left ventricular ejection fraction, an important indicator of heart function. GNNs have also
been applied in predicting ventricular arrhythmia and segmenting cardiac fibrosis based
on MRI data [191], a two-stage deep learning network for segmenting the left ventricle
myocardium and fibrosis in Late Gadolinium Enhanced (LGE) CMR images, achieving
high dice scores and surpassing previous methods. This approach may provide potential
improvements in ventricular arrhythmia treatment and SCD risk assessment. Lu et al. [143]
proposed Spatio-Temporal Graph Convolutional Networks (ST-GCNs) to diagnose cardiac
conditions, namely by understanding and quantifying left ventricular (LV) motion in car-
diac MR cine images. Another GNN application field is that of the automated anatomical
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labeling of coronary arteries, which addresses the variability of human anatomy [144].
This approach was based on a Conditional Partial-Residual Graph Convolutional Network
(CPR-GCN). This is a combination of 3D CNNs AND LSTM. Fan Huang et al. [145] focused
on predicting coronary artery disease (CAD) from CT scans using vascular biomarkers
derived from fundus photographs through a GNN. This method showed that specific reti-
nal vascular biomarkers, such as arterial width and fractal dimensions, were significantly
associated with adverse CAD-RADS scores. Simultaneously, Gao et al. [146] tackled the au-
tomation of coronary artery analysis using Coronary Computed Tomography Angiography
(CCTA). This crucial analysis assists clinicians in diagnosing and evaluating CAD. Deep
learning models are used for centerline extraction and lumen segmentation of coronary
arteries. One of the components, a CNNTracker, traced the coronary artery centerline, while
a Vascular Graph Convolutional Network (VGCN) achieved precise lumen segmentation.
This method included an iterative refinement process alternating between the CNNTracker
and GCN. It resulted in providing a high level of accuracy in CCTA data analysis from
patients, particularly in key arteries such as the right coronary artery (RCA), left coronary
artery (LCA), and X-ray coronary angiography (XCA). In another study, a GNN-based
method for comorbidity-aware chest radiograph screening was developed [147]. It allows
the screening of cardio, thoracic, and pulmonary conditions to be enhanced, and in this way
significantly improves screening performance over standard ensemble techniques. Another
interesting study introduced the Non-linear Regression Convolutional Encoder-Decoder
(NRCED), a framework designed to map multivariate inputs to multivariate output [192].
This framework was specifically applied to the reconstruction of 12-lead surface ECG from
intracardiac electrograms (EGMs) and vice versa. The study analyzed the features learned
by the model, utilizing them to create a diagnostic tool for identifying atypical and diseased
heartbeats. A high Receiver Operating Characteristic (ROC) curve is produced with an
associated area under the curve (AUC) value of 0.98, indicating excellent discrimination
between the two classes. This approach may have a significant potential for improving
cardiac patient monitoring and diagnostics, ultimately enhancing healthcare outcomes.

GNNs provide a powerful tool for understanding and interpreting complex data
structures, such as those found in medical image processing. One of the key strengths of
GNNs is their adaptability to varying input sizes and structures, an essential feature in
medical imaging where patient data can greatly differ. The architecture of GNNs is tailored
to process and interpret graph-structured data, making it a powerful tool in areas such
as medical image processing where data often forms complex networks. This specialized
structure of GNNs sets them apart in their ability to handle data that is inherently intercon-
nected, such as neurological networks or molecular structures. It is also worth stressing that
GNNs were created for tasks that cannot be effectively solved by other types of networks
based on input data in Euclidean space. However, GNNs are difficult to interpret. On the
other hand, computational cost is also a crucial parameter. Here, QNNs may provide some
insight, while the GA can effectively help in the optimization of the input parameters to
neural networks.

5.9. Transformers

One further type of neural network that has recently come into focus in the field of
medicine concerns transformers. These learn rules based on the context and tracking the
relations between the data. Originally, they were networks used for natural language
processing (NLP). Their effectiveness in these tasks resulted in the development of trans-
formers such as the Detection Transformer (DETR) for tasks related to vision analysis [193],
the Swin-Transformer [61], the Vision Transformer (ViT) [194], and the Data-Efficient Image
Transformer (DeiT) [194]. The DETR is dedicated to object detection which also includes
manual analytical processes, and it uses CNN to learn 2D representations of the input
data (images). In turn, the ViT converts input to a series of fixed-size non-overlapping
patches and treats them as a token. Each of them encodes the spatial position of each part
of the image to provide spatial information, while the spatial information of the pixels
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is lost during tokenization. However, ViTs require large training datasets. On the other
hand, DeiTs also provide high accuracy in the case of small training datasets, while Swin-
Transformers allow the cost of calculations to be reduced. They process an image divided
into overlapping areas showing tokens at multiple scales with a hierarchical structure using
a shifted window (local self-attention). The transformer principle of operation is based on
the self-attention mechanism. This enables the network to decide on the importance of
different parts of the input data for future prediction (i.e., weight). This may be beneficial
for the evaluation of the relationships between different regions in medical images. For
example, the majority of AI-based MRI analysis is performed employing CNNs. However,
this introduces the lack of long-range dependency as a limitation.

The application of transformer networks allows for a deeper understanding of cardiac
function, which aids in refining diagnostic methods and improving treatment strategies.
For example, Jungiewicz et al. focused on stenosis detection in coronary arteries, compar-
ing different variants of the Inception Network with the ViT [113]. They analyzed small
fragments from coronary angiography videos, highlighting the role of dataset configuration
in model performance. A key innovation in their approach is the use of Sharpness-Aware
Minimization (SAM) alongside Vision Transformers (VTs), which enhances the accuracy
and reliability of stenosis detection. They also employed Explainable AI techniques to un-
derstand the differences in classification performance between the models. Their findings
indicate that while Convolutional Neural Networks generally outperform transformer-
based architectures, the gap narrows significantly with the addition of SAM to VTs. In
some measures, the SAM-VT model even surpasses other models. It turned out that ViT
can effectively be applied to diagnose coronary angiography. Zhang et al. [114] present a
Topological Transformer Network (TTN) for automated coronary artery branch labeling
in Cardiac CT Angiography (CCTA). The TTN, inspired by the success of transformers
in sequence data analysis, treats vessel branch labeling as a sequence labeling learning
problem. It introduces a unique topological encoding to represent spatial positions of
vessel segments within the arterial tree, enhancing classification accuracy. The network also
includes a segment-depth loss function to address the class imbalance between primary
and secondary branches. The effectiveness of a TTN is demonstrated in CCTA scans,
where it achieves unprecedented results, outperforming existing methods in overall branch
labeling and side branch identification. TTNs mark a departure from traditional methods,
representing the first transformer-based vessel branch labeling method in the field. The in-
tegration of this method into computer-aided diagnosis systems can enhance the generation
of cardiovascular disease diagnosis reports, thereby improving patient outcomes in cardiac
care. Additionally, Minqi Liao et al. [195] proposed a novel approach for left ventricle (LV)
segmentation in echocardiography using pure transformer models. They proposed two
models: one combining the Swin transformer with K-Net and another utilizing Segformer,
evaluated on the EchoNet-Dynamic dataset. These models excel in segmenting challenging
cardiac regions, such as the valve area, and separating the left ventricle from the left atrium,
particularly in difficult samples. This work fully utilizes the capabilities of the transformer
architecture for LV segmentation, moving beyond traditional methods and showcasing
the potential of transformers in clinical applications. While the study currently focuses on
static frames without including automated LVEF calculation, the researchers plan to extend
these models to echocardiographic videos in future work. This represents a significant
advancement in medical imaging, particularly in cardiac echocardiography, demonstrating
the powerful applications of TNNs in healthcare technology. Going further, Ahn et al. [196]
introduced the Co-Attention Spatial Transformer Network (CA-STN) for unsupervised
motion tracking in 3D echocardiography.

This approach significantly enhances the detection and analysis of myocardial is-
chemia and infarction by tracking wall-motion abnormalities in the left ventricle. The core
innovation is the integration of a co-attention mechanism within the Spatial Transformer
Network (STN), which improves feature extraction between frames for smoother motion
fields and enhanced interpretability in noisy 3D echocardiography images. Additionally,
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a novel temporal regularization term guides the motion of the left ventricle, producing
smooth and realistic cardiac displacement paths. The CA-STN outperforms traditional
methods that rely on heavy regularization functions, marking a new standard in cardiac
motion tracking. Strain analysis using the Co-Attention STNs aligns with matched SPECT
perfusion maps, illustrating the clinical utility of 3D echocardiography for localizing and
quantifying myocardial strain following ischemic injury. This study contributes a novel
tool for cardiac imaging and opens new possibilities for early detection and interventions
in myocardial injuries. In another advancement, Lhuqita Fazry et al. [197] developed a
groundbreaking approach using hierarchical Vision Transformers to estimate cardiac ejec-
tion fraction from echocardiogram videos. Addressing the variability in ejection fraction
assessment among different observers, this method does not require prior segmentation
of the left ventricle, making it a more efficient process. The team’s evaluations on the
EchoNet-Dynamic dataset show enhanced accuracy and efficiency compared to state-of-
the-art methods, demonstrating the potential of TNNs in revolutionizing cardiac function
assessment. The public availability of their source code fosters further innovation in the
field. Yang Ning et al. [124] proposed Efficient Multi-Scale Vision Transformers (EMVTs)
for coronary artery calcium (CAC) segmentation (CAC-EMVT). This approach addresses
the segmentation of CAC, which often has fuzzy boundaries and inconsistent appearances.
The CAC-EMVT effectively models both short and long-range dependencies using a combi-
nation of local and global branches. Its three distinct modules, Key Factor Sampling (KFS),
Non-Local Sparse Context Fusion (NSCF), and Non-Local Multi-Scale Context Aggregation
(NMCA), enhance segmentation accuracy. Tested on CT scans from CVD patients, the CAC-
EMVT shows significant improvements over existing methods in accuracy and reliability,
representing a significant step forward in the detection and analysis of coronary artery
calcium. On the other hand, Han et al. [123] developed a method for detecting coronary
artery stenosis in X-ray angiography (XRA) images. Their hybrid architecture, integrat-
ing transformer neural networks with Convolutional Neural Networks (CNNs), captures
the spatio-temporal nuances of XRA sequences. The Proposal-Shifted Spatio-Temporal
Tokenization (PSSTT) within the transformer module tokenizes spatio-temporal elements
of XRA sequences processed through the transformer-based feature aggregation (TFA)
network. Erwan et al. [121] introduced a new method for segmenting cardiac infarction in
delayed-enhancement MRI, tackling the challenge of differentiating between healthy and
infarcted myocardial tissues. Their approach, aimed at enhancing the quantitative evalua-
tion of myocardial infarction using Late Gadolinium Enhancement cardiac MRI (LGE-MRI),
employs a dual-approach methodology. Initially, a dedicated 2D U-Net generates a proba-
bility map of the healthy myocardium, which guides the accurate localization of infarcted
areas. Then, a U-Net transformer network refines this segmentation by combining the
probability map with the original image. An adapted loss function addresses the limitations
of U-Net in segmenting infarcted regions, significantly improving accuracy. Similarly, Ding
et al. [118] developed a transformative approach for segmenting and classifying myocardial
fibrosis in DE-MRI scans. Addressing the complex process of categorizing fibrotic tissue,
their self-supervised myocardial histology segmentation algorithm employs a Siamese
system for multi-scale representation. The integration of an end-to-end method using a
transformer model for detecting myocardial fibrosis tissue is a key feature. This model
combines a Pre-LN Transformer with a Multi-Scale Transformer (MST) backbone and a
joint regression cost to accurately determine distances between forecast blocks and labels.
The method significantly improves performance metrics, establishing its effectiveness and
reliability in segmenting and classifying myocardial fibrosis. In turn, Upendra et al. [198]
proposed a hybrid architecture combining ViT for deformable image registration of 3D
cine cardiac MRI images. This approach consistently estimates cardiac motion by cap-
turing the optical flow representation between consecutive 3D volumes from a 4D cine
cardiac MRI dataset. Experiments on The Heart Disease UCI Dataset, hosted on Kaggle,
demonstrate superior results in deformable image registration compared to traditional
methods. This advancement showcases the potential of Vision Transformers in enhancing
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the accuracy and reliability of cardiac function assessment, representing a major stride in
cardiac imaging technology.

Thus, an approach based on transformers in cardiological data segmentations offers
advantages such as global context modeling, parallel processing, attention mechanisms,
transfer learning, and interpretability for cardiac image segmentation. However, transform-
ers process the input data sequentially, which may cause some important information to be
missed and the segmentation performed (especially for tasks requiring precise localization
of anatomical structures in heart images) to be inaccurate. Like CNN and the YOLO algo-
rithm, this approach requires a large amount of good-quality data and the involvement of
significant computational resources. Careful hyperparameter tuning and regularization
techniques can overcome this disadvantage, but potentially increase the complexity of the
training process.

5.10. Quantum Neural Networks

Recently, some work has also been devoted to the development of quantum neural
networks (QNNs) that are based on the idea of quantum mechanics [199,200]. These may
have huge potential to speed up calculations and reduce the computational costs associated
with them. This approach can be developed in two ways related to the segmentation of
medical images. The first is the use of quantum circuits to train classical neural networks,
and the second is the design and training of quantum networks, as proposed by Mathur
et al. [160]. Indeed, Shahwar et al. [201] showed the potential of QNNs in the classification
of Alzheimer’s detection, and Ullah et al. [97] proposed a quantum version of the Fully
Convolutional Neural Network (FCNN) as applied to a challenge that concerned the
classification of ischemic heart disease. This allowed for a prediction accuracy of over
80 percent. However, the approach based on quantum neural networks requires further
improvement. When it comes to interventional practice, QNNs have the potential for
stenosis detection in X-ray coronary angiography [202], and they can be also applied
to selecting medicines for patients with high accuracy [203,204]. Thus, QNNs may also
provide some insight into the reduction in computational cost.

5.11. Evaluation Metrics in Medical Image Segmentation

Artificial Intelligence has the chance to become a high-precision tool in medicine.
However, there are certain technical risks (TERs) connected with the application of AI in
clinical and educational practice, including algorithm performance, legal regulation, and
safety. For example, it is known that small, even imperceptible changes in the training
dataset can drastically change the results of predictions, which in medicine can have very
serious consequences and influence learning. The key to the evaluation of AI adaptability
is to use an appropriate metric to assess the correctness and accuracy of different kinds
of forecasts including clinical prognoses and for this to be understood by users [205]. For
example, overfitting between training and testing datasets will reduce the accuracy of the
algorithm. Other crucial factors that influence the qualitative efficiency of the AI-based
algorithm’s dataset include data availability issues. However, even if developers do not
have sufficient quantity and quality of data, cross-validation can be applied [206]. This
procedure helps avoid overfitting by the selection of a subset. Thus, the choice of a proper
evaluation metric depends on the specific task type. The binary classifier Dice coefficient
(also called the Sørensen–Dice index) and the Index of Union (IoU) are most commonly
used in medical image segmentation metrics. However, in the field of cardiology, accuracy
is of particular concern (see Table 3).
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Table 3. Comparison of AI models applied to cardiology, including interventional cardiology.

Network Type Evaluation Metrics Input Output Xr Connection Dt Contention Reference

ANN

accuracy 94.32% ECG recordings binary classification of normal and
ventricular ectopic beats No No [131]

ROI 89.00% Echocardiography Automatic measurement of left
ventricular strain No No [163]

accuracy 91.00% Electronic
health records

classification and prediction of
cardiovascular diseases No No [162]

RNN-LSTM

accuracy 80.00%
F1 score 84.00% 3D Doppler images heart abnormalities classification No No [89]

accuracy 97.00%
F1 score 97.00% 2D echo images heart abnormalities classification No No [89]

(1) accuracy 85.10%
(2) accuracy 83.20%

echocardiography
images

automated classification of acute
myocardial infarction:

(1) classification of the left
ventricular long-axis view;

(2) classification of short-axis view
(papillary muscle level)

No No [90]

accuracy 93.10%
coronary computed

tomography
angiography

diagnostic of the coronary
artery calcium No No [175]

accuracy 90.67% ECG recordings prediction of the arrhythmia No No [98]

RNN IoU factor 92.13% MRI cardiac images
estimation of the cardiac state:

sequential four-chamber view left
ventricle wall segmentation

No No [116]

CNN

accuracy 95.92% ECG recordings binary classification of normal and
ventricular ectopic beats No No [131]

IoU factor 61.75% MRI cardiac images
estimation of the cardiac state:

sequential four-chamber view left
ventricle wall segmentation

No No [116]

accuracy 94.00%
F1 score 95.00% 2D echo images heart abnormalities classification No No [89]

accuracy 98.00%
F1 score 98.00% 3D Doppler images heart abnormalities classification No No [89]

accuracy 92.00% ECG recordings ECG classification No No [183]

accuracy 88.00% Electronic
health records heart disease prediction No No [135]

accuracy 98.82% ECG recordings prediction of heart failure and
arrhythmia No No [102]

accuracy 95.13% Electronic
health records

prediction of the survival status of
heart failure patients No No [108]

accuracy 99.60% ECG recordings estimation of the fetal heart rate No No [207]

accuracy 99.10% heart audio
recordings heart disease classification No No [208]

accuracy 97.00% heart sound signals classification of heart murmur No No [209]

accuracy 98.95% heart sound signals classification of heart
sound signals No No [210]

ROC curve 0.834 heart sound signals prediction of obstructive coronary
artery disease No No [211]

accuracy 85.25% MRI image scans chronic disease prediction No No [212]

accuracy 99.10% heart sound signals diagnosis of cardiovascular disease No No [213]

CNN-LSTM

accuracy 99.52%
Dice coef. 0.989

ROC curve 0.999
ECG recordings prediction of congestive

heart failure No No [214]

accuracy 96.66%
Heart disease

Cleveland
UCI dataset

prediction of the heart disease No No [215]

accuracy 99.00% ECG recordings prediction of the heart failure No No [106]
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Table 3. Cont.

Network Type Evaluation Metrics Input Output Xr Connection Dt Contention Reference

SNN

ROC curve 0.99 ECG recordings ECG classification No No [181]

accuracy 97.16% ECG recordings binary classification of normal and
ventricular ectopic beats No No [131]

accuracy 93.60% ECG recordings ECG classification No No [182]

accuracy 85.00% ECG recordings ECG classification No No [180]

accuracy 84.41% ECG recordings ECG classification No No [129]

accuracy 91.00% ECG recordings ECG classification No No [183]

GNN

Dice coef. 0.82 cardiac MRI images prediction diverticular arrhythmia No No [141]

ROC curve 0.739 CT image scan prediction of coronary
artery disease No No [145]

AUC 0.821 chest radiographs screening of cardio, thoracic, and
pulmonary conditions No No [147]

ROC area 0.98 12-lead ECG record remote monitoring of
surface electrocardiograms No No [192]

GAN

accuracy 99.08%
Dice coef. 0.987 CT image scan cardiac fat segmentation No No [52]

accuracy 98.00% ECG recordings ECG classification No No [216]

accuracy 95.40% ECG recordings ECG classification No No [217]

accuracy 68.07% CTG signal dataset fetal heart rate signal classification No No [218]

Dice coef. 0.880 MRI image scans segmentation of the left ventricle No No [138]

Transformers

accuracy 96.51% Cleveland dataset prediction of
cardiovascular diseases No No [219]

accuracy 98.70%

heart sound signals—
Mel-spectrogram,

bispectral
analysis, and

Phonocardiogram

heart sound classification No No [220]

Dice coef. 0.861 12-lead ECG record arrhythmia classification No No [221]

Dice coef. 0.0004 ECG recordings arrhythmia classification No No [222]

Dice coef. 0.980 ECG recordings arrhythmia classification No No [223]

Dice coef. 0.911 ECG recordings classification of ECG recordings No No [134]

GA -

laboratory data,
patient medical

history, ECG,
physical

examinations, and
echocardiogram

(Z-Alizadeh
Sani dataset)

determination of the parameters to
prediction of the coronary artery

disease (next SVM-based classifier
was applied)

No No [157]

QNN

accuracy 84.60% Electronic
health records

classification of
ischemic cardiopathy No No [97]

accuracy 91.80%
Dice coef. 0.918

X-ray coronary
angiography stenosis detection No No [202]

6. Data and Data Security Issues Connected with the Metaverse and
Artificial Intelligence

One of the key issues in algorithm development is data. It is known that the accuracy
of AI-supported diagnosis depends largely on the quality and quantity of the input data.
Thus, the errors in predictions made by AI in the field of medicine may be caused by biased
input data. Providing diverse and representative inputs can help mitigate bias by providing
a more balanced reconstruction of different demographic groups, medical conditions, and
health practices. In the medical field, there are many public databases available containing
sample medical input data. For example, the databases concerning cardiological data
include Physionet (such as the PTB Diagnostic ECG Database), the MIMIC Database, the
Automated Cardiac Diagnosis Challenge (ACDC) Dataset, the Heart Disease UCI Dataset,
the European Society of Cardiology (ESC) Heart Failure Registry, the ISCHEMIA Dataset,
the CATCH Database, and the UK Biobank CMR Imaging Dataset. However, since many
publicly available medical databases contain errors [224], results based on them may be
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of low reliability and new verified medical databases have been prepared [225]. Another
data-related issue concerns imbalanced data [226,227]. To eliminate the problem of data im-
balance, which may be particularly important in cardiology, techniques such as resampling
(oversampling or undersampling techniques), cost-sensitive approaches (assigning differ-
ent weights to class classification), transfer learning (applications of pre-trained models
on large, balanced datasets), ensemble methods (combining multiple models trained on
different data or with different weights to improve overall accuracy), and data augmen-
tation have been proposed [226,227]. Also, the type of AI-based algorithms chosen may
influence imbalances in datasets. For example, decision trees and Support Vector Machines
(SVMs) are less sensitive to imbalanced data than other algorithms. However, imbalanced
data remains still a challenge in cardiology as well as other fields of medicine. In addition
to improving the medical data collection process by taking into account the imbalance of
certain classes, it is also important to develop more effective techniques tailored specifically
to address the complexity of unbalanced medical datasets. One interesting solution for
efficient and remote receiving, describing, and verifying data by clinicians is the general
cloud annotation system proposed by Pawłowska et al. [225].

In the era of rapid development of Artificial Intelligence, the Metaverse, and Digital
Twins, a natural question that arises concerns the field of data security and this is particu-
larly crucial in medicine. Given this, new approaches such as AI Trust, Risk, and Security
Management (AI TRiSM) have been developed [228]. This framework enables an AI-based
system to be evaluated according to certain criteria such as compliance, fairness, reliability,
and preserving data privacy. Data security in an AI-based system is quite complicated. It
includes security of systems design, model testing, applications, regulatory compliance,
infrastructure, auditing, and an ethics review. Thus, medical data can become subject to
attacks, both passive and active. The way medical systems such as implantable medical
devices and internet wearable devices are implemented makes them more vulnerable to
attacks than other systems. As many as half of all attacks may be carried out in this sec-
tor [229]. Given that human health or even life is at stake, these systems must be specially
protected. Data must be subject to authentication, availability, integrity, non-repudiation,
and confidentiality. To minimize the leakage of sensitive information about the patient, a
process of anonymization is intended to prevent such information about the patient from
being read again based on his or her medical record including patient identification. To
this end, the most common method involves the use of pseudonymization techniques
such as replacing direct identifiers with pseudonymous codes. When it comes to the se-
curity of medical information systems many solutions involve blockchain technologies
involving robust encryption and authentication methods [230]. Also, the idea of storage
and distribution of sensitive information among the number of cloud nodes combined
with encryption has been introduced [231], based on quantum Deep Neural Networks. It
has turned out that this approach provides a better detection rate than other commonly
applied methods. Moreover, all medical systems that process and store sensitive personal
information must be developed and used with the compliance of the European General
Data Protection Regulation (GDPR) and the American California Consumer Privacy Act
(CCPA) [232]. However, differences between regulations in Europe and the USA have
effectively hampered the exchange of sensitive patient information without appropriate
institutional safeguards [233]. In the case of patient privacy, XR-based systems also pro-
vide good solutions [234]. Furthermore, AI can also be applied to tracking attacks and
their location.

7. Ethical Issues Connected with the Metaverse and Artificial Intelligence

Within medicine as a whole, the Metaverse is conceived as a general space where the
behavior of medical practitioners in their use of technologies such as XR, VR, AR, and MR
could be subject to the same ethical issues and open to the same ethical threats as found in
other virtual landscapes such as online gaming [235] and as a specific space where such
technologies are used to develop and deploy treatment practices for specific diseases such
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as those covered by cardiology. In the former, ethical issues such as moral equivalence arise.
For example, Grinbaum [236] asks whether behavior in the Metaverse should be judged
according to real-world values, or whether there are aspects of virtual behavior that are
new or overlapping: how should actors who assume different personae be treated when
those personae act badly in different ways? Then, Radovanović and Tomić [237] point out
that actors entering the Metaverse may come with a set of religious beliefs that may color
their judgments and actions, such as how they set up a virtual church. These beliefs will
likely also develop as the actor’s life in the virtual world unfolds, and very general codes
of conduct have been proposed in this case. Indeed, early attempts have been made to
establish ethical codes of conduct as practical guidelines for humans operating avatars in
the Metaverse. The practical code of ethics proposed by Heider [238] is aimed at humans
operating in the Metaverse through their avatar(s). The code has seven points: show respect,
tell the truth, do no harm, show concern, work for good, demonstrate tolerance, and respect
privacy. However, only the first two of these seven specifically deal with behavior that
is qualitatively different from that found in the physical world: the others have general
applicability. They highlight two important aspects of difference: a human may evoke or
create more than one avatar with different appearances, and those may assume different
roles. In the latter conception of the Metaverse as a specific space, physicians will use
particular Metaverse technologies to deal with certain diseases and conditions, where
there is a contrast between a tool or suite of tools designed to do a job [239] and a general
environment in which virtual agents may live [240,241]. However, in both conceptions
of the Metaverse, similar ethical issues are found: human characteristics inform behavior,
attitudes, and usage. The application of Digital Twins (DTs) has become central in medical
practice overall. Applications are found in areas ranging from clinical trials to treatment
interventions, medical education, and scenario modeling [242]. In all of these cases, the
two basic notions of the Metaverse are core: an environment and a set of tools along with
issues of representation. Indeed, Braun [243], raises the difficult issue of how a person is to
be represented by their DT in terms of accuracy (in the various types of representation) and
control (who will have the authority to control the DT and how?). Safeguarding issues also
arise with regard to children [243] and, by extension, vulnerable groups of people.

Clinical DTs in cardiology provide the opportunity for the generation of abundant
quantities of data. Armeni [242] points out that DTs comprise virtual modeling of qualita-
tively different types of real-world objects and phenomena ranging from people to devices,
environmental features, and institutions (such as clinics) connected by means of data
streams used not only during treatment interventions but also in clinical trial design and
medical education. All these are relevant to cardiology. For example, the production of data
during treatment (whether rapid (emergency interventions) or slow (cardiac monitoring)
might be used not only to inform patient choice but also to make financial decisions and
even set insurance premiums: heart issues comprise an important part of any medical
insurance form. However, the very notion of a clearly defined dataset comes into question
when the data journey is considered: data travels from one location to another and may be
adapted along the way [244]. Thus, the identification and description of cardiac-related
data may prove ethically contentious. Moreover, issues such as security and privacy, data
characteristics (selection, collection, categorization, and use), ownership, and rights of
use and access all come into play and all comprise risk points. Unless they are carefully
defined, the ability to make insurance or even liability claims (in case of potential clinical
malpractice) may be limited and problematic. Overall, DT models will become progres-
sively more detailed and accurate, such as those of the human heart described by Viola
et al. [239] and those reviewed by Coorey et al. [245,246]. However, ethical dimensions are
currently lacking in such models. These increasingly important dimensions include not
only ownership and control of data but also the human side of the influence of the DT on
the human and the rights of stakeholders. A truly effective DT will need four parts: the
physical, the virtual, the data connection, and the ethical. Indeed, neglect of the ethical side
could be said to be the biggest threat to the development of DT technology, especially in the
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vital area of cardiology. In this perspective, there is a clear need for DTs to be explainable
through a framework of Explainable AI (XAI) and trustworthy through one of Trustworthy
AI (TAI) [246]. If development in these areas is lacking, progress on the technical side will
be held up due to a series of multiple ethical objections. These factors can be accounted for
at some level, whether as integrated into specific systems, in local policies, or in national
and international regulations [247].

8. Discussion and Conclusions

Extended Reality provides a tool for 3D representation of the structures of the heart [53].
Although HDMs offer great opportunities in clinical cardiology, they are not without
drawbacks. Some users complain of health problems after long-term use of HDMs, in-
cluding dizziness, nausea, and even blurred vision (symptoms accompanying motion
sickness) [248], although this cybersickness may not be experienced by some users [249].
Also, the application of AI-based algorithms to six degrees of freedom motion support in
a VR simulator may help alleviate cybersickness [250]. Hardware improvements such as
frame rates and headset tracking have made it possible to partially counteract symptoms,
but further development of HDMs is needed. On the other hand, Daling et al. [251] showed
that XR-based training is not necessarily better, but at least as good as traditional methods.
Another significant limitation of HDMs is the size of the field of view, much smaller than
the field of view of a human. In turn, the implementation of XR-based solutions in clinical
practice is also limited due to their high cost, in particular in lower–middle-income coun-
tries (LMICs) [252]. In Figure 3, the percentage share of the latest published research by
territory (2020–2024) in AI, XR, and DTs is presented. It can be seen that LMICs have a low
participation level. However, the spread of XR as a tool seems to be inevitable, especially in
medical practice.
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Since HDTs can generate specific data, they can also predict the outcome of a surgical
procedure, disease progression, or the performance of an implanted device. HDTs combined
with AI and XR-based technology also unlock the potential for sustainable development
of the healthcare ecosystem. In cardiology, a personalized, computational model of the
heart is crucial in better understanding patient-specific pathophysiology and supporting
clinical decision-making processes, but the development of the heart DT requires the fitting
of various types of parameters, including cardiac electromechanics and cardiovascular
hemodynamics parameters [253]. Indeed, the implementation of the heart Digital Twin
is a complex process, which has not yet been fully accomplished [239]. Thus, further
research activity should be concentrated on issues of applying an electrical cardiac modeling
approach in combination with Artificial Intelligence-based algorithms to build a Digital
Twin of the heart for different clinical applications, ranging from those used by the general
practitioner to the highly specialized electrophysiologist.

Furthermore, AI-based algorithms have been successfully used in recent medical
imaging, in particular in the field of cardiology. Consequently, a list of AI models used
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in cardiology, including interventional cardiology, according to the application field is
presented in Table 2, and it has been shown that CNNs and transformers are the most
frequently used solutions in the field of cardiology, while GA is commonly used to optimize
the parameter space. Table 3 provides a summary of the types of neural networks used in
cardiology, taking into account their accuracy and application area, and it also includes
information on the relationship between the neural network and XR and DT-based technol-
ogy. It became evident that only a few studies combine these fields, and then regarding
certain concepts and perspectives [27].

While there have been and continue to be great technical advances in the specific tech-
nologies of HDTs, ethical concerns are not generally systematically connected to the same.
Rather, the ethical discussion tends to take place in parallel with the technical, whereas
a more robust model would integrate the two. Ethical issues ranging from control and
ownership of data to social values embedded in technical decisions and human behavior in
the Metaverse need to be addressed at every step along the way. If this does not happen,
progress may be delayed and even blocked in some cases by ethical disputes, thus holding
back valuable DT applications in cardiology and other areas of medicine.

The development of HDTs in pre-clinical imaging gives numerous benefits, including
improved outcomes, shorter development timelines, and lower costs. The application
of HDTs will be increasingly popular in the future of healthcare service and has huge
potential to become central in mainstream medicine. However, it requires the development
of both models and algorithms for the analysis of medical data. On the other hand, in
cardiology, the interpretation of ECGs currently relies on experts and requires training and
clinical expertise and is thus subject to considerable inter and intra-clinician variability.
Additionally, the diagnostic value of the standard 12-lead ECG is limited by the difficulty
of linking the ECG data directly to cardiac anatomy and also due to the prevalence of
technical errors such as electrode positioning. Therefore, the combination of AI, XR, and
HDT technology in cardiology with the potential of avoiding technical errors can serve as a
universal methodology to predict health status and improve outcome quality.

Moreover, an important element in improving the effectiveness of cardiology data
segmentation is the collection of as much reliable, good-quality data as possible while
keeping class balance in mind. This procedure should take into account input data diversity
that helps AI models better generalize unseen cases while their reliability is improved.
It is also necessary to provide diverse and representative input data whenever possible,
which can help mitigate bias in AI-based algorithms. Another issue related to data is the
application of the open data policy following UNESCO guidelines (especially for scientific
applications, and research) so that more efficient AI algorithms can be developed in the area
of cardiology. Moreover, compliance with ethical and bioethical standards in the collection,
storage, and use of medical data is essential for the development of reliable AI systems
in cardiology. As a consequence, the establishment of standards for the quality, integrity,
and interoperability of cardiology data used in AI applications in cardiology as well as the
development of the protocols for the validation and regulation of AI-based algorithms is of
high importance. It is also necessary to develop guidelines on how to integrate Artificial
Intelligence technologies into cardiology workflows as well as strategies for managing
risks associated with the implementation of AI-based technologies in cardiology. Finally, it
should be the responsibility of the cardiology community to ensure the control of results
and feedback loops in the implementation of mechanisms for monitoring the performance
of AI algorithms in cardiology and the collection of feedback from clinicians and patients.
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38. Gałeczka, M.; Smerdziński, S.; Tyc, F.; Fiszer, R. Virtual Reality for Transcatheter Procedure Planning in Congenital Heart Disease.
Kardiol. Pol. 2023, 81, 1026–1027. [CrossRef] [PubMed]

39. Priya, S.; La Russa, D.; Walling, A.; Goetz, S.; Hartig, T.; Khayat, A.; Gupta, P.; Nagpal, P.; Ashwath, R. “From Vision to Reality:
Virtual Reality’s Impact on Baffle Planning in Congenital Heart Disease”. Pediatr. Cardiol. 2023, 45, 165–174. [CrossRef]

40. Stepanenko, A.; Perez, L.M.; Ferre, J.C.; Ybarra Falcón, C.; Pérez de la Sota, E.; San Roman, J.A.; Redondo Diéguez, A.; Baladron,
C. 3D Virtual Modelling, 3D Printing and Extended Reality for Planning of Implant Procedure of Short-Term and Long-Term
Mechanical Circulatory Support Devices and Heart Transplantation. Front. Cardiovasc. Med. 2023, 10, 1191705. [CrossRef]

41. Ghosh, R.M.; Mascio, C.E.; Rome, J.J.; Jolley, M.A.; Whitehead, K.K. Use of Virtual Reality for Hybrid Closure of Multiple
Ventricular Septal Defects. JACC Case Rep. 2021, 3, 1579–1583. [CrossRef] [PubMed]
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