
Engineering Applications of Artificial Intelligence 133 (2024) 108055

0

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

MAgNET: A graph U-Net architecture for mesh-based simulations
Saurabh Deshpande a, Stéphane P.A. Bordas a,∗, Jakub Lengiewicz a,b

a Department of Engineering; Faculty of Science, Technology and Medicine; University of Luxembourg, Luxembourg
b Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland

A R T I C L E I N F O

Dataset link: https://github.com/saurabhdeshp
ande93/MAgNET, https://doi.org/10.5281/ze
nodo.7784804

Keywords:
Geometric deep learning
Mesh based simulations
Finite element method
Graph U-Net
Surrogate modeling

A B S T R A C T

In many cutting-edge applications, high-fidelity computational models prove to be too slow for practical
use and are therefore replaced by much faster surrogate models. Recently, deep learning techniques have
increasingly been utilized to accelerate such predictions. To enable learning on large-dimensional and
complex data, specific neural network architectures have been developed, including convolutional and graph
neural networks. In this work, we present a novel encoder–decoder geometric deep learning framework
called MAgNET, which extends the well-known convolutional neural networks to accommodate arbitrary
graph-structured data. MAgNET consists of innovative Multichannel Aggregation (MAg) layers and graph
pooling/unpooling layers, forming a graph U-Net architecture that is analogous to convolutional U-Nets.
We demonstrate the predictive capabilities of MAgNET in surrogate modeling for non-linear finite element
simulations in the mechanics of solids.
1. Introduction

Computational models are essential tools for studying, designing,
and controlling complex systems in many fields, including engineering,
physics, biology, economics, and social networks. These models are
often based on physical laws and mathematical equations, with partial
differential equations (PDEs) being a common tool for describing how
quantities change over space and time. In mechanics and physics, the
PDEs are most commonly solved with numerical methods upon earlier
space- and time- discretization, and a large number of domain-specific
computational models have been developed so far, with the finite
element method (FEM) and the finite volume method (FVM) being
the most commonly used approaches in solid- and fluid mechanics,
respectively. However, despite significant advances in computational
performance over the last decade, such high-fidelity numerical simula-
tions remain prohibitively expensive for many important applications,
including emerging areas such as real-time feedback/control in the
computer-assisted surgery (Johnsen et al., 2015; Bui et al., 2018) or soft
robotics (Rus and Tolley, 2015; Goury and Duriez, 2018). Speeding up
such models whilst maintaining the desired accuracy is an active area
of research, and one of the main motivations of the present work.

Recently, deep learning (DL) techniques have taken a center stage
across many disciplines. The DL models have proven to be accurate
and efficient in predicting non-trivial nonlinear relationships in data.
As such, they have been used for a variety of applications, including
surrogate modeling in mechanics (Mendizabal et al., 2019; Nikolopou-
los et al., 2022; Deshpande et al., 2022; Krokos et al., 2022; Zhang

∗ Corresponding author.
E-mail address: stephane.bordas@alum.northwestern.edu (S.P.A. Bordas).

et al., 2023; Šarkić Glumac et al., 2023), or model discovery and
calibration (Huang et al., 2020; Thakolkaran et al., 2022). The deep
neural network approaches can be categorized with respect to how
they use the data and a priori knowledge about the modeled system.
In purely data-driven approaches, DL models rely on performing su-
pervised learning on either experimental or numerically generated data
and are agnostic to the underlying physics or model. As such, they are
able to reproduce the physics-based relationship by implicitly learning
on a relatively large amount of data (Runge et al., 2017; Aydin et al.,
2019; Daniel et al., 2020; Kochkov et al., 2021; Hoq et al., 2023). If the
a priori information about the modeled system is introduced, such net-
works are termed as Physics Informed Neural Networks (PINNs) (Raissi
et al., 2019; Samaniego et al., 2020; Henkes et al., 2022; Nguyen et al.,
2022; Roy and Guha, 2023). With respect to the purely data-driven
approaches, PINNs are generally more accurate, require less data for
training, and possess better generalization capabilities. The framework
presented in the present work is generally applicable to both cases,
however, for the sake of clarity, we will later only focus on purely data-
driven types of networks. In any case, once trained, the DL models can
be used as fast surrogates for computationally expensive high-fidelity
numerical methods.

The focus of the present work is on high-dimensional relationships
in which the sizes of inputs and/or outputs are large. Examples of
such relationships can be found, for instance, in experimental full-field
measurement data, such as our recent work on medical imaging (Lav-
igne et al., 2022), or in synthetic mesh data generated from finite
952-1976/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.engappai.2024.108055
Received 9 May 2023; Received in revised form 23 December 2023; Accepted 5 Fe
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
bruary 2024

https://www.elsevier.com/locate/engappai
https://www.elsevier.com/locate/engappai
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
https://doi.org/10.5281/zenodo.7784804
mailto:stephane.bordas@alum.northwestern.edu
https://doi.org/10.1016/j.engappai.2024.108055
https://doi.org/10.1016/j.engappai.2024.108055
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2024.108055&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Engineering Applications of Artificial Intelligence 133 (2024) 108055S. Deshpande et al.
element simulations, Lorente et al. (2017) and Pellicer-Valero et al.
(2020). Although DL techniques have generally shown great success as
efficient surrogates to computationally expensive numerical methods
in scientific computing, some of the popular existing machine learning
approaches are still based on fully-connected deep networks which are
not suitable for high-dimensional inputs/outputs. As an alternative,
the application of Convolutional Neural Networks (CNNs) has proven
a promising performance in a wide variety of applications, also in-
cluding accelerating non-linear finite element/volume/difference sim-
ulations (Obiols-Sales et al., 2020; Rao and Liu, 2020; Deshpande
et al., 2022; Zhao et al., 2023). CNNs are designed to learn a set
of fixed-size trainable local filters (convolutions), thus reducing the
parameter space while being capable to capture non-linearities. In the
context of computational mechanics, local convolutions leverage the
natural local correlation of nearby nodes, which leads to more efficient
neural network architectures, both in terms of training- and prediction
times. Moreover, one can observe that the CNN architectures have a
close analogy to some iterative solution schemes known in scientific
computing (Wang et al., 2020; Brenner and Scott, 2008). This provides
them with an additional interpretation of being trainable iterative
computational schemes to solve sets of non-linear equations, rather
than general-purpose black-box approximators.

However, there is one important limitation that prevents CNNs from
being of general purpose. The problem is that they only work well with
grid-like structure data, such as images or structured meshes, which
greatly hinders their use for many real-world applications where data
is structured differently. Although there are some attempts to alleviate
that problem in the context of FEM data, for instance, combining finite
elements with an immersed-boundary method (Brunet et al., 2019),
or embedding a precomputed coordinate mapping into the classic
grid (Gao et al., 2021), the effectiveness of those methods is limited
to simple irregular domains and remains challenging for complex ge-
ometries in general. A definitive solution to that problem has only
been brought by Graph Neural Networks (GNNs)–architectures that di-
rectly handle arbitrarily-structured inputs/outputs. They belong to the
recently emerged family of Geometric Deep Learning (GDL) methods
which focus on neural networks that can learn from non-Euclidean
input such as graphs and, more generally, manifolds (Bronstein et al.,
2017; Wu et al., 2021). Because of their ability to handle more general
structured data, GNNs are gaining increasing importance also in surro-
gate modeling in scientific computing (Sanchez-Gonzalez et al., 2020;
Vlassis et al., 2020; Pfaff et al., 2021; Gao et al., 2022; Shivaditya et al.,
2022; Seo and Min, 2023; Jiang and Chen, 2023; Krokos et al., 2024).
However, these approaches are based on relatively simple message
passing schemes, which are sub-optimal for learning on high non-linear
regression tasks. In this work, we propose a novel local aggregation
technique, which we denote as Multichannel Aggregation layer, MAg,
which performs multichannel localized weighted aggregations, that
can be seen as a direct extension of the traditional convolution layer
in CNNs. Thanks to that, we are able to directly adapt some of the
mechanisms/layers developed for CNNs to create efficient graph neural
network architectures.

One mechanism that can improve the efficiency and predictive ca-
pabilities of convolutional and graph neural networks is the application
of down-sampling (coarsening) and up-sampling (refinement) layers.
In the context of CNNs, the focus is on encoder–decoder architecture
frameworks, such as U-Net, which has been successfully implemented
in various applications, including computer vision (Ronneberger et al.,
2015; Çiçek et al., 2016), signal processing (Hennequin et al., 2020;
Ren et al., 2021), and scientific machine learning (Mendizabal et al.,
2019; Wang et al., 2020; Pant et al., 2021; Le et al., 2022; Nikolopoulos
et al., 2022; Fernández-León et al., 2023). While the CNN-based U-
Net approaches are limited to grid data, their graph-based version,
known as graph U-Net, can provide the desired generality. Recently,
various graph coarsening approaches have been proposed (Bianchi
2

et al., 2019; Lee et al., 2019; Gao and Ji, 2019; Cai et al., 2021), which
serve the same function as pooling layers in CNNs, helping to reduce
the size of a graph while maintaining essential properties of the pro-
cessed data. In this work, we propose a novel graph pooling/unpooling
operation (coarsening/refinement), that enables us to create a graph
U-Net architecture, MAgNET, that can operate on arbitrary graphs.
Our pooling layers are directly inspired by CNNs, where we extend
the concept of pooling over local patches in regular grids to variable
size non-overlapping cliques in graphs. This allows us to precompute
coarsened graphs that are only based on the input graph topology,
which is independent of data (i.e., node features). In the context of
GNN-accelerated FEM simulations, a similar concept has been proposed
by Black and Najafi (2022), however, their implementation is limited
to regular meshes for simple two-dimensional geometries and linear
elastic problems. Our approach enables computationally efficient deep
learning models for non-linear problems involving arbitrary meshes,
which is an important advancement for this field.

In summary, we introduce a novel graph U-Net framework com-
prising the proposed MAg and graph pooling/unpooling layers. The
MAg layer captures local regularities in the input data, while the
interleaved pooling layers reduce the graph representation to a smaller
size while preserving important structural information. This enables
us to efficiently implement our framework for large-scale problems.
The proposed MAg and graph pooling layers are direct analogues of
respective CNN U-Net layers and are also compatible with many state-
of-the-art graph neural network layers. We elaborate on this point in
the paper, providing a qualitative comparison of the proposed MAg
layer with several existing graph layers. To validate the predictive
capabilities of our framework, we apply it to several non-linear rela-
tionships obtained through finite element analysis and cross-validate
it with predictions given by our CNN U-Net architecture (Deshpande
et al., 2022). To increase the impact of our work, we provide source
codes, datasets, and procedures to generate the datasets utilized in this
work, which can be found in the MAgNET repository: https://github.
com/saurabhdeshpande93/MAgNET.

The paper is organized as follows. In Section 2 we present the
novel MAgNET framework, as well as its particular application to the
hyperelastic FEM-based datasets. Then, in Section 3, we provide details
of implementation and a thorough study of MAgNET for several 2D and
3D benchmark non-linear FEM examples. The conclusions and future
research directions are summarized in Section 4.

2. MAgNET deep learning framework

In this section, we will propose a novel graph-based encoder–
decoder (U-Net) deep-learning framework. We will provide a general
formulation, in which inputs and outputs follow a certain graph topol-
ogy (that is expressed by an adjacency matrix 𝐀). The graph expresses
an assumed structure of correlations within input/output data and
allows us to devise a robust DNN architecture defining a non-linear
mapping between inputs and outputs. We will apply this general frame-
work to mesh-based graphs. Such mesh topology of data is characteristic
to spatially discretized numerical solution schemes for PDEs in scien-
tific computing. In particular, we will focus on hyperelastic problems in
solid mechanics, for which the training/testing data is obtained through
the finite element method (see also the schematics in Fig. 1).

In Section 2.1 we will provide an overview of the proposed Graph
U-Net framework MAgNET. Next, in Sections 2.2–2.4 we will introduce
the building blocks of MAgNET. In particular, in Section 2.2, we will
introduce the adjacency matrix representation of the mesh-based graph,
which will be utilized later in this paper; and in Sections 2.3–2.4 we
will specify a new graph Multi-channel Aggregation (MAg) layer, as
well as new graph pooling/unpooling layers. Afterwards, in Section 2.5,
we will provide an information-passing interpretation of the proposed
Graph U-Net architecture. Finally, in Section 2.6 we will introduce a
particular application of the framework to mesh-based datasets that are

generated from FEM solutions of problems in hyper-elasticity.

https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET

Engineering Applications of Artificial Intelligence 133 (2024) 108055S. Deshpande et al.
Fig. 1. A novel graph U-Net neural network surrogate model for mesh-based simulations. MAgNET accurately captures non-linear FEM responses.
Fig. 2. A schematic of Graph U-Net architecture for mesh based inputs. Colors indicate different types of layers. 𝑐1 , 𝑐2 ,… , 𝑐5 stand for channel dimensions. Different arrows indicate
different layers: the graph Multi-channel Aggregation (MAg) layer, the graph pooling/unpooling layers, and the concatenation layer.
𝜽
m
d
c
d

2.1. MAgNET architecture overview

The MAgNET graph neural network architecture can be classified
as a graph U-Net network and is an extension to the well-known
class of convolution-based U-Net architectures (see Ronneberger et al.
(2015)). As such, the graph U-Net comprises of aggregation (‘convolu-
tion’), pooling, unpooling, and concatenation layers (see the schematics
in Fig. 2), which are here suitably adjusted to work with general
(non-grid) topologies of inputs/outputs.

The graph U-Net architecture has two stages: encoding and decod-
ing. In the encoding stage, first, we apply one or more aggregation
(MAg) layers, which are analogues of convolution layers in non-graph
U-Net networks. Next, we apply a single graph pooling layer, which is a
particular contraction of the graph, and which downsamples (coarsens)
the problem. This aggregation-pooling sequence is repeated several
times to achieve the desired level of contraction (coarsening). At the
coarsest level, the MAg aggregation is performed one or more times,
after which the decoding stage begins, which is the opposite to the
3

encoding stage. At each level of decoding, the graph unpooling layer
is followed by one or more MAg layers. At the upmost level, the last
MAg layer is applied with linear activation to get the output.

More formally, the Graph U-Net network, , is constructed as fol-
lows. First, we set the input layer 𝒅0 as a vector of 𝑁 nodes, each
of which being a vector of input values (also known as features or
channels) of a constant length 𝑐0. (Further on, we will refer to the
features as the channels.) Next, we subsequently add layers, 𝒅𝑙, to form
a U-Net architecture. The subsequent layers, 𝒅𝑙−1 and 𝒅𝑙, are linked by
the following relationship

𝒅𝑙 = 𝐓𝑙(𝒅𝑙−1;𝜽𝑙), (1)

where 𝜽𝑙 is a vector of trainable parameters (e.g., weights and biases,
𝑙 = 𝐤𝑙 ∪ 𝐛𝑙), and 𝐓𝑙(⋅) is one of three already introduced transfor-
ations: MAg(), gPool() or gUnpool(), which will be more precisely
efined in the following sections. Additionally, we also consider remote
oncatenation links between respective layers from the encoding and
ecoding stages, see Fig. 2. The output layer, 𝒅𝐿, is assumed to be of the

same mesh format as the input layer but can have a different number

of channels (features), 𝑐𝐿. Finally, we define the Graph U-Net network

Engineering Applications of Artificial Intelligence 133 (2024) 108055S. Deshpande et al.

s
d



i
f



Fig. 3. Adjacency matrices for the (a) square and (b) triangular meshes. The dashed lines in (a) represent additional edges that are added to the original mesh.
w
t
r
r
𝑑
n
p
b
i

2

e
n
a
f
o
c

a
c
n
f
g
p
o
(
i

g
s
(
g

as a parameterized transformation

(𝒅0,𝜽) = 𝒅𝐿 = 𝐓𝐿(𝐓𝐿−1(𝐓𝐿−2(…);𝜽𝐿−1);𝜽𝐿), (2)

where 𝜽 =
⋃𝐿

𝑙=1{𝜽
𝑙} is a concatenated vector of network parameters.

The calibration of the Graph U-Net parameters is done through a
upervised learning, by fitting a given known input–output training
ataset. The training dataset,

tr = {(𝐟1,𝐮1),… , (𝐟𝑀tr ,𝐮𝑀tr)}, (3)

s in the mesh format, and the training is done by minimizing the
ollowing mean squared error loss function

(tr,𝜽) =
1

𝑀tr

𝑀tr
∑

𝑚=1
‖(𝐟𝑚,𝜽) − 𝐮𝑚‖2 (4)

which gives the optimal parameters

𝜽∗ = arg min
𝜽

(tr,𝜽). (5)

2.2. Adjacency matrix of the mesh-based graph

For the purpose of this work, we will focus on sparse graphs that
derive from data that is spatially organized in the form of meshes.
Those can be 1D, 2D, or higher-dimensional meshes, of an arbitrary
connection topology (see Fig. 3 for examples of 2D meshes). The
graph can be conveniently represented by a symmetric, square, Boolean
adjacency matrix, 𝐴, whose order is equal to the number of nodes in the
original mesh. To simplify the further notation, all nodes (vertices) are
self-connected (have loops), which results in having 1 on the diagonal
of 𝐀. This allows us to more easily express certain graph operations that
are used in this work, for instance, the 𝑘th power of a graph 𝐀, and the
selection of pooling sub-graphs that is presented in Section 2.4.

It is fairly straightforward to generate an adjacency matrix from
an element connectivity matrix of the mesh. For that reason we will
not discuss it in detail. The only point to be emphasized is that we
make all nodes belonging to a given element mutually inter-connected
in the resulting graph (as they can be assumed to be strongly inter-
related). We can visually represent it by adding more links as compared
to a standard wire-frame visualization of finite-elements (see, e.g., the
dashed lines in Fig. 3a).

Remark. In our work we do not consider any attributes for the edges of
a graph. Therefore, the data is only represented through nodal features
and node–node connections which are defined through the adjacency
matrix 𝐀.

2.3. Multi-channel Aggregation (MAg) layer

The proposed novel neural network layer, MAg, is a multi-channel
local aggregation layer that can operate on graph-structured data. Its
architecture is a direct extension to the standard convolutional layer
in CNNs, in which a shareable convolution window is used, making
CNNs restricted to grid-structured data. In the MAg layer, instead, we
propose to use fully-trainable local weighted aggregations (the so-called
message passing scheme), where the aggregation neighborhood of a
4

given node is prescribed through the graph connectivity (the adjacency o
matrix). As such, the scheme is very well suited for sparse graphs and
can be directly applied to graphs that derive from arbitrary 2D or 3D
meshes.

The use of multiple channels aims to improve the capabilities of the
network to capture non-linearities. In the multi-channel version, each
node represents a vector of values (features), which can be visualized
as multiple layers (channels) of the same graph structure (see the
schematics in Fig. 4(a)). The transformation between the input- and
output multi-channel graphs is realized by applying multiple MAg
aggregations on vector data to produce respective multiple components
of output vectors. Note that the input/output channels of the whole
network have usually a certain meaning, and their sizes are fixed
(e.g., three RGB channels of a color image at the input and a single
channel of a segmented image at the output). The number of channels
in the latent layers can be chosen arbitrarily, which is up to the choice
of a designer of a particular graph U-Net architecture.

More formally, we will consider the MAg layer as a parameterized
transformation between the input and output nodes, defined as

𝑑𝑙+1𝑖,𝛼 = 𝜎(𝑏𝑙+1𝑖,𝛼 +
𝑐𝑙
∑

𝛽=1

∑

𝑗∈𝑖

𝑘𝑙+1𝑖,𝑗,𝛼,𝛽𝑑
𝑙
𝑗,𝛽), (6)

here 𝑖 = {𝑗 ∣ 𝐴𝑖𝑗 = 1} is a set of neighbors of a node 𝑖
o be aggregated, 𝛼 and 𝛽 represent the output and input channels,
espectively, while 𝐤𝑙+1 and 𝐛𝑙+1 are trainable weights and biases,
espectively. In this multi-channel definition, for a given component,
𝑙+1
𝑖,𝛼 , of an output, a single aggregation is performed throughout the
eighborhood, 𝑖, and all the input channels, 𝛽 ∈ {1,… , 𝑐𝑙}. The kernel
arameters of MAg transformation, 𝑘𝑙+1𝑖,𝑗,𝛼,𝛽 , are not shared, i.e, they can
e independently trained for each aggregation window (note the free
ndexes 𝑖 and 𝛼).

.3.1. Comparison to existing graph aggregation/convolution layers
As already mentioned in the introduction, the very idea of gen-

ralization of convolution layers to arbitrary graph structure is not
ew. In fact, various concepts have emerged so far, Zhou et al. (2020)
nd Chen et al. (2020), most of which are compatible with the U-Net
ramework proposed in the present work. Below, we will discuss several
f them, introducing a unified notation that will facilitate a qualitative
omparison with respect to the proposed MAg layer, see Table 1.

Graph neural network layers aim to utilize the information about
ssumed correlations in data, with the graph structure expressing those
orrelations. The general approach is to specify a suitable (possibly
onlinear) trainable local transformation that can aggregate the in-
ormation from a node in consideration and its neighbors. (This ag-
regation is followed by a chosen activation function before being
ropagated to the next layer.) Such transformations form a wide class
f, so-called, message passing schemes, and can combine shareable
independent of a node) and non-shareable (dependent on a node,
.e., independently-trainable) sets of parameters.

The simplest and most lightweight realizations of the graph ag-
regation/convolution layer concept only utilize shareable weights,
ee, e.g., the Graph Convolutional Network (GCN), Kipf and Welling
2016). In those approaches, a non-trainable (arbitrary) weighted ag-
regation is performed prior to application of a shareable trainable

perator — something completely opposite to our MAg layer, which

Engineering Applications of Artificial Intelligence 133 (2024) 108055S. Deshpande et al.
Fig. 4. Local aggregation in MAg (a) works very similar to the filter application in CNN (b). However as opposed to CNN, MAg uses different set of weights at different spatial
locations with heterogeneous window size. In CNN, a constant filter slides across the channel.
Table 1
Comparison of the MAg layer with selected state of the art graph convolution layers (biases are omitted for the sake of brevity).
In GAT formulation, 𝛼 = (𝑡−1)𝑁g + 𝛾, which represents the stacking operation for the multi-head attention mechanism, where
𝑡 ∈ (1,… , 𝑁 𝑙+1

h) is the attention head index, and 𝛾 ∈ (1,… , 𝑁g) is the internal channel index (cardinality of each node in the
layer 𝑙 + 1).
Layer Transformation

GCN (Kipf and Welling, 2016) 𝑑𝑙+1
𝑖,𝛼 = 𝜎(

∑𝑐𝑙
𝛽=1 𝑤

𝑙+1
𝛼,𝛽

∑

𝑗∈𝑖

𝐴𝑖,𝑗
∑

𝑘∈𝑖
𝐴𝑖,𝑘

𝑑𝑙
𝑗,𝛽)

GAT (Veličković et al., 2017) 𝑑𝑙+1
𝑖,𝛼 = 𝜎(

∑𝑐𝑙
𝛽=1 𝑤

𝑙+1
𝑡,𝛾,𝛽

∑

𝑗∈𝑖
softmax𝑗 (attn(𝒘𝑙+1

𝑡 𝒅𝑙
𝑖 ,𝒘

𝑙+1
𝑡 𝒅𝑙

𝑗 ,𝜽𝑡))𝑑𝑙
𝑗,𝛽)

SemGCN (Zhao et al., 2019) 𝑑𝑙+1
𝑖,𝛼 = 𝜎(

∑𝑐𝑙
𝛽=1 𝑤

𝑙+1
𝛼,𝛽

∑

𝑗∈𝑖
softmax𝑗 (𝑘𝑙+1𝑖,𝑗,𝛼,𝛽)𝑑

𝑙
𝑗,𝛽)

MAg [present work] 𝑑𝑙+1
𝑖,𝛼 = 𝜎(

∑𝑐𝑙
𝛽=1

∑

𝑗∈𝑖
𝑘𝑙+1𝑖,𝑗,𝛼,𝛽𝑑

𝑙
𝑗,𝛽)
a

𝐒

is fully trainable. This enables to keep the number of trainable pa-
rameters low, which is achieved at the cost of relatively low capacity
of such networks. This low capacity cannot be straightforwardly in-
creased by simply deepening the network because of the well-known
over-smoothing phenomenon.

We will discuss two out of many available approaches to increase
the capacity of graph neural networks. The first approach relies on
the multi-head attention mechanism which allows to assign differ-
ent importance to nodes in the neighborhood, see, e.g, the Graph
Attention Network (GAT), Veličković et al. (2017). In the attention
mechanism, the weights used in local aggregation depend on input
nodal features, which makes the concept qualitatively different from
all approaches (including the MAg layer) that use input-independent
aggregation weights. The second class of approaches resemble the MAg
layer more closely. Particular notable examples of that approach are
the Spatial-Temporal Graph Convolution Network (ST-GCN), Yan et al.
(2018), and the Semantic Graph Convolution Network (SemGCN), Zhao
et al. (2019), which have been introduced in the particular context of
human pose recognition problem (the computer vision domain). The
common features of MAg and SemGCN layers are the input-independent
learnable weighted aggregation and the use of channels to increase the
model capacity. The difference is that the MAg does not use a shared
transformation matrix (𝒘) nor the softmax normalization — both used
in the case of SemGCN.

To summarize, the proposed MAg layer relies on one of the most
flexible message-passing schemes, with no shareable parameters. This
promises a very high capacity of the MAg network. Also, as shown
above, the proposed MAg layer is compatible with other graph convo-
lution/aggregation layer concepts, and thus can be straightforwardly
exchanged, if needed.

2.4. Graph pooling- and unpooling layers

Pooling and unpooling are two fundamental operations allowing
U-Nets to encode (compress) and decode (decompress) information,
respectively, see Fig. 2. The pooling layers are composed of local
contracting operations over the mesh-structured data, and are used to
coarsen the data at the encoding part of the network. At the decoding
5

part, the original refined mesh structure is restored by the unpooling s
layers (upsampling operations). In U-Nets, the unpooling layer is usu-
ally combined with the concatenation operation, which creates a direct
link between the encoding and decoding part of the network (this will
be explained later).
Graph pooling

In this work, we propose a novel clustering-based graph pooling
layer that can be applied to arbitrary graph-structured data. It can be
seen as an extension to the pooling layers known from CNN U-Nets that
are limited to grid-structured data. In our graph pooling approach, we
split the graph into disjoint cliques (fully-connected subgraphs), and
perform the contraction of all the identified cliques (i.e., every clique
is replaced by a vertex, and new edges represent formerly connected
cliques), see Fig. 5. The split into cliques is done statically, i.e., at the
graph U-Net construction phase. In particular, the split does not depend
on the input data.

Below, we will provide a more formal construction of the pooling
layer. For a given input graph 𝐆 that is represented by the vertices 𝐒
nd the connectivity matrix 𝐀, we first generate an arbitrary set of 𝑁̃

non-overlapping fully-connected subgraphs (cliques) 𝐆1,𝐆2...,𝐆𝑁̃ , i.e.,

=
𝑁̃
⋃

𝑖=1
𝐒𝑖, ∀𝐒𝑖∀𝑗,𝑘∈𝐒𝑖𝐴𝑗𝑘 = 1 and ∀𝑖≠𝑗𝐒𝑖 ∩ 𝐒𝑗 = ∅, (7)

where the sets 𝐒𝑖 represent nodes of the respective subgraphs 𝐆𝑖.
The procedure to generate these subgraphs and the respective pooled
adjacency matrix 𝐀̃ is described in Algorithm 1. The pooled graph
𝐆̃ is composed of vertexes 𝐒̃ = {1,… , 𝑁̃} with edges defined by the
adjacency matrix 𝐀̃. The pooling layer is described as:

𝑑𝑙+1𝑖,𝛽 = aggr
𝑗∈𝐒𝑖

𝑑𝑙𝑗,𝛽 , (8)

where the ‘aggr’ operation can be a max/min/avg, etc. Note that graph
pooling layers do not modify the number of channels, i.e., the pooling
is performed individually per each channel of the input.

Graph pooling can be applied several times at the encoding part
of the U-Net, e.g., see Fig. 2. For the purpose of future unpooling
operations, after each pooling operation, we save the original graph,
𝐆, the adjacency matrix, 𝐀, and the pooling subgraphs, 𝐆𝑖. After doing

̃ ̃
o, we substitute 𝐆 ← 𝐆, and 𝐀 ← 𝐀.

Engineering Applications of Artificial Intelligence 133 (2024) 108055S. Deshpande et al.
Fig. 5. One arbitrary choice of non-overlapping subgraphs to create a pooled graph. Subgraphs 𝐆1 ,… ,𝐆5 are represented with different colors and are generated by the Algorithm
1.
Algorithm 1: Generate a pooled graph from an arbitrary parent
graph
Input: 𝑁 ×𝑁 adjacency matrix, 𝐴
Result: list of subgraphs, 𝑆; 𝑁̃ × 𝑁̃ pooled adjacency matrix, 𝐴̃
𝑆 ←{} /* initialisation of the subgraph list */
𝑃 ← {1, 2, ..., 𝑁} /* node indices of the parent graph */
𝐴′ ← 𝐴 /* temporary copy of matrix 𝐴 */
/* Loop for generating non-overlapping subgraphs,

𝑆, see Fig. 5 */
while P ≠ null do

𝑝 ∈ 𝑃 /* randomly select a single node */
𝑆𝑖 ← {𝑝} /* initialise subgraph */
𝑝 ← {𝑚 ≠ 𝑝 | 𝐴′[𝑚, 𝑝] = 1} /* nodes connected to
selected node */
for 𝑛 in 𝑝 do

if ∀ 𝑚 ∈ 𝑆𝑖 𝐴′[𝑚, 𝑛] = 1 then
𝑆𝑖 ← 𝑆𝑖 ∪ {𝑛} /* append node to the subgraph
*/

end
end
𝑃 ← 𝑃 ⧵𝑆𝑖 /* remove subgraph from parent graph */
∀ 𝑚 ∈ 𝑆𝑖 𝐴′[𝑚, ∶] ← 0; 𝐴′[∶, 𝑚] ← 0 /* remove subgraph
from parent graph */

𝑆 ← 𝑆 ∪ 𝑆𝑖 /* add subgraph to subgraphs list */
end
𝑁̃ = sizeof(𝑆) /* number of pooled nodes = number of
pooling subgraphs */

𝐴̃ ← zeros(𝑁̃, 𝑁̃) /* zero initialisation of pooled
matrix */
/* Loop for constructing pooled adjacency matrix 𝐴̃

from subgraphs 𝑆 */
for 𝑟 in {1, 2, .., 𝑁̃} do

for 𝑐 in {1, 2, .., 𝑁̃} do
if ∃ 𝑛 ∈ 𝑆[𝑟], 𝑚 ∈ 𝑆[𝑐] | 𝐴[𝑛, 𝑚] = 1 then

𝐴̃[𝑟, 𝑐] ← 1 /* if 𝑆[𝑟] and 𝑆[𝑐] are connected by
an edge */

end
end

end

Graph unpooling
Structure-wise, the graph unpooling is a reverse operation to pool-

ing. More precisely, the output graph of an unpooling layer will have
the same topology as the input graph of the related pooling layer, see
Fig. 5. The operation is defined via the previously saved subgraphs 𝐆𝑗
(with nodes 𝐒𝑗) as

𝑑𝑙+1 = 𝑑𝑙 for 𝑖 ∈ 𝐒 , (9)
6

𝑖,𝛽 𝑗,𝛽 𝑗
and it simply replicates the features of a node 𝑗 to the nodes specified
by 𝐒𝑗 . As such, this operation is analogous to the related upsampling
operation used in CNNs.
Graph unpooling + concatenation

Concatenations, also known as skipped connections, are charac-
teristic to U-Net architectures. Thanks to them, the layers from the
decoder part gain a direct access to features from the encoder part.
Concatenations help to mitigate the issue of vanishing gradients, and
add extra information that could have been lost due to the earlier
downsampling (pooling).

In our case, the concatenations are always related to the respective
pooling/unpooling operation pairs, see Fig. 2. It is done by stacking
the output of an unpooling layer 𝑙, given by Eq. (9), with the input of
a respective pooling layer 𝑙′:

𝑑𝑙+1
𝑖,𝑐𝑙+𝛼

= 𝑑𝑙
′
𝑖,𝛼 , (10)

In the formula above, 𝑐𝑙 is the number of channels in unpooling
inputs. As the result, the total number of output channels of unpool-
ing+concatenation is 𝑐𝑙 + 𝑐𝑙′ .

2.5. Information-passing interpretation of MAg and pooling layers

During a single forward pass of the MAg layer, the aggregation
is performed locally for each individual node, i.e., each node of the
graph will have an access to the aggregated feature information from
its adjacent nodes only, specified by the adjacency matrix, 𝐀, see Eq (6).
Therefore, the nodes that are not directly connected through 𝐀 do not
exchange information at a single MAg operation (see Fig. 6). Such
long-distance exchange across the network is fundamental to allow the
neural network model to express correlations between topologically
distant input- and output nodes (e.g., how the output displacements
at node C depend on the input loads at the node B, in Fig. 6).

One way to handle this issue would be to apply the MAg layer
several times as shown in Fig. 6. However, in that case, the number
of subsequent layers would be proportional to the diameter of the un-
derlying graph, which could increase the number of training variables
and the depth of the network, deteriorating its performance. A natural
simple improvement, also utilized in the present paper, is to increase
the support (neighborhood) of the MAg operations. In the proposed
framework, this can be straightforwardly done by using higher powers
of the adjacency matrix, e.g., 𝐀2 or 𝐀3, instead of 𝐀. This improvement
alone, however, would still require the number of MAg layers to be
proportional to the graph diameter.

The above observations explain a natural motivation behind using
the pooling/unpooling layers, and hence creating the U-Net architec-
ture. The pooled graph can be seen as a reduced space representation
of the parent graph, and each pooled node aggregates the feature
information corresponding to multiple nodes of the parent graph, see
Fig. 7. The pooled graph is of a coarsened topology when compared to
the parent graph, and this allows for the feature information exchange

Engineering Applications of Artificial Intelligence 133 (2024) 108055S. Deshpande et al.

h
s

𝑊

Fig. 6. This 2D mesh requires at least 4 subsequent local aggregation operations (orange areas with center nodes marked by dots) to propagate the feature information from node
B to the distant node C.
Fig. 7. Visualization of feature information exchange between nodes in the pooled graph. In the pooled space, only 2 MAg operations are sufficient to exchange feature information
between spatially further located nodes in the original graph. The orange region shows the window of MAg operation.
w
o

𝜆

t
I
c
𝐟
R
m
m
m

3

w
t
a
f
o
d
o
C
S

with a lower number of MAg layers. The pooling/unpooling layers can
be nested, which provides an exponential reduction rate of the graphs’
diameters.

Remark. Note that the pooling layer proposed in this work represents a
clique-pooling approach in which the cliques are non-overlapping. This
allows us to achieve a very good level of graph coarsening (contrac-
tion). It is unlike a similar clique-based strategy that has been recently
proposed, Luzhnica et al. (2019), in which the pooling cliques overlap,
providing a much lower level of coarsening.

2.6. Application to FEM-based datasets

We will now focus on a particular graph structure of inputs/outputs
that will be in a form of finite element mesh. Specifically, the MAgNET
framework will be applied as a surrogate model to a finite element
model in large-deformation elasticity. The finite element model will be
shortly introduced below.

We consider a boundary value problem expressed in the weak form
over the domain 𝛺:

∫𝛺
𝑷 (𝑭 (𝒖)) ⋅ ∇𝛿𝒖 𝑑𝑉 − ∫𝛺

𝜌 𝒃̄ ⋅ 𝛿𝒖 𝑑𝑉 − ∫𝛤𝑡
𝒕 ⋅ 𝛿𝒖 𝑑𝑆 = 0 ∀𝛿𝒖, (11)

where 𝑷 (∙) is the first Piola–Kirchhoff stress tensor, 𝒃̄ are prescribed
body forces, 𝒕 are prescribed tractions on the Neumann’s boundary
𝛤𝑁 , while the solution 𝒖 and the variation 𝛿𝒖 belong to appropriate
functional spaces, with 𝒖 = 𝒖̄ and 𝛿𝒖 = 𝟎 on the Dirichlet boundary
𝛤𝑢. The hyperelastic constitutive relationship is expressed through the
strain–energy density potential 𝑊 (𝑭) as

𝑷 (𝑭) =
𝜕𝑊 (𝑭)
𝜕𝑭

, (12)

where the deformation gradient tensor 𝑭 = 𝐈 + ∇𝒖.
For all the cases considered in the present work, the Neo-Hookean

yperelastic law with the following strain energy potential is used,
ee (Simo and Taylor, 1982),

(𝑭) =
𝜇
(𝐼 − 3 − 2 ln 𝐽) + 𝜆 (𝐽 2 − 1 − 2 ln 𝐽), (13)
7

2 𝑐 4 t
where the invariants 𝐽 and 𝐼c are given in terms of deformation
gradient 𝑭 as

𝐽 = det(𝑭), 𝐼c = tr(𝑭 𝑇𝑭), (14)

ith 𝜇 and 𝜆 being Lame’s parameters, which can be expressed in terms
f Young’s modulus, 𝐸, and Poisson’s ratio, 𝜈, as

= 𝐸𝜈
(1 + 𝜈)(1 − 2𝜈)

, 𝜇 = 𝐸
2(1 + 𝜈)

. (15)

Note that one can use other forms of the volumetric part of the above
potential, see Doll and Schweizerhof (2000), or other hyperelastic
models, such as the Mooney–Rivlin and a more general class of Ogden
models, see Ogden (2005).

Finite element discretization transforms the weak form expressed by
Eq. (11) into the system of non-linear equations

𝐑(𝐮; 𝐟ext) = 𝐟int(𝐮) − 𝐟ext = 𝟎, (16)

hat expresses the balance between external and internal nodal forces.
n this work, the vector of external forces, 𝐟ext, represents boundary
onditions, which can be surface tractions or body forces. Given 𝐟ext =
𝑚, the system is solved for an unknown vector 𝐮 with the Newton–
aphson scheme, giving as a result the solution 𝐮𝑚. A pair (𝐟𝑚,𝐮𝑚)
akes an element of the dataset  introduced in Eq. (3), and the FE
esh that results from the FE discretization produces the adjacency
atrix 𝑨 introduced in Section 2.2.

. Results

In this section, we study the performance of the proposed frame-
ork in application to surrogate modeling in mechanics of solids. For

hat purpose, we use four benchmark problems. In Section 3.1, we give
detailed specification of the benchmark problems and the procedure

or obtaining FEM-based datasets. In Section 3.2, we provide details
f neural network architectures for each of the studied cases and will
escribe the training procedure. In Section 3.3, we study the predictions
f neural network models by cross-validating results from MAgNET and
NN models, and by comparing them with the FEM results. Finally, in
ection 3.4 we demonstrate the capabilities of the MAgNET framework

o provide a surrogate model for the unstructured mesh cases.

Engineering Applications of Artificial Intelligence 133 (2024) 108055S. Deshpande et al.
Fig. 8. Schematics of four benchmark problems. (a) 2D L-shape geometry (quad mesh), (b) 3D beam geometry (hexahedron mesh), (c) 2D beam with hole geometry (triangular
mesh), and (d) 3D breast geometry (tetrahedron mesh). In examples (a)–(c), single nodal loads are applied on the region of boundary indicated with red color. In example (d),
only body forces are considered.
Table 2
Material properties used for the benchmark cases.

Problem (element topology) Is structured? Young’s modulus, 𝐸 [Pa] Poisson’s ratio, 𝜈 Density, 𝜌 [kg/m3]

(a) 2D L-shape (quad) No (Yes) 500 0.4 –
(b) 3D beam (hexahedron) Yes 500 0.4 –
(c) 2D beam with hole (triangular) No 500 0.3 –
(d) 3D breast (tetrahedron) No 800 0.4 1000
3.1. Generation of FEM based datasets

We consider four benchmark problems, see Fig. 8. Two of them,
Fig. 8(a–b), utilize simple meshes, which makes it possible to assure
structured (grid) inputs. They will be used to cross-validate between
our MAgNET architecture and the standard CNN U-Net architecture.
The other two examples, Fig. 8(c–d), are more complex and will serve
us to demonstrate the applicability of MAgNET for general (unstruc-
tured) meshes. Each of those two groups consists of a 2D and a 3D
problem, thanks to which the framework can be tested for four different
finite element topologies: triangular, quadrilateral, tetrahedral, and
hexahedral.

For all considered cases, we use the neo-Hookean material model,
see Section 2.6, with material parameters provided in the Table 2. In
order to generate training/testing datasets, for each discretized problem
we individually specify a family of boundary conditions, as described
below, see also schematics in Fig. 8. For the cases shown in Fig. 8(a–c),
nodes on one side are fixed (Dirichlet boundary conditions), and only a
single random nodal force is applied at a selected node in a prescribed
region of interest (denoted by red line/surface in Fig. 8(a–c)). For the
remaining nodes, the external forces are set to 𝟎. For the case shown in
Fig. 8(d), the uniform body force density is prescribed (force per unit
mass, with density 𝜌 = 1000 kg∕m3). The body force field is integrated
through element shape functions to obtain respective nodal forces that
are used in datasets.

All the finite element computations were implemented and per-
formed within the AceGen/AceFem framework (Korelc, 2002). For a
8

given problem, for each loading case, 𝑖, the entire vector 𝐟(𝑖) of external
nodal forces and the vector 𝐮(𝑖) of computed nodal displacements were
saved, which allowed to generate the final training/testing dataset
𝐷 = {(𝐟(1),𝐮(1)),… , (𝐟(𝑀tr+𝑀te),𝐮(𝑀tr+𝑀te))}. The datasets were randomly
split into training sets, 𝑀tr (95%), and testing sets, 𝑀te (5%). The sizes
of datasets and the distribution of force magnitudes are provided in
Table 3.

3.2. Design, implementation and training of neural network models

The implementation of the layers and mechanisms of the MAgNET
framework described in Section 2 and of CNN U-Net framework in-
troduced in Deshpande et al. (2022) has been performed within the
TensorFlow libraries. We use them to build and train deep neural
network models for the cases described in Section 3.1. Table 4 outlines
individual properties of the network architectures implemented in this
work. The codes and datasets are publicly available open source (Desh-
pande et al., 2023a), which makes it possible for other researchers to
reproduce the present results and also to extend our frameworks to new
cases/problems.

To provide a complete understanding of the neural network archi-
tectures listed in Table 4, we will now delve into the details of the
MAgNET architecture used for the 2D L-shape example. Its schematics
is shown in Fig. 9. As indicated in the third column in Table 4, it is a
three-level graph U-Net architecture with two MAg operations at each
level. The fourth column specifies the number of channels utilized for
the MAg operations at each level of the graph U-Net. The forward pass

Engineering Applications of Artificial Intelligence 133 (2024) 108055S. Deshpande et al.
Table 3
Specification of FE-based datasets. For cases (a–c), the external force is applied at a selected node, and for case (d), external body forces are
applied. The magnitudes of forces are randomly sampled from the multivariate uniform distribution, with ranges specified in the table. For
cases (a–c), multiple samples per node are generated, for all nodes in the prescribed area of interest.

Problem N.of FEM
DOFs ()

Range (External forces/
body force density)

Dataset size
𝑀tr +𝑀te

Samples
per node

(a) 2D L-shape 160 𝑓𝑥 , 𝑓𝑦 = −1 to 1 N 3800 + 200 1000
(b) 3D beam 12 096 𝑓𝑥 , 𝑓𝑦 , 𝑓𝑧= −2 to 2 N 33858 + 1782 110
(c) 2D beam (hole) 198 𝑓𝑥 , 𝑓𝑦 = −5 to 5 N 4560 + 240 400
(d) 3D breast 3105 𝑏𝑥 , 𝑏𝑦 = −6 to 6 N∕kg,

𝑏𝑧 = −3 to 3 N∕kg
7600 + 400 –
Table 4
Neural network architectures implemented in this work. The leaky ReLU activation function is used in all MAgNET cases, while ReLU activation
is used for CNN cases. For the last layers, the linear activation function is always applied.
Example Network type (N. of poolings, N. of MAg/conv.

layers per level, window size)
N. of channels per level N. of parameters

2D L-shape MAgNET (3, 2, 𝐴2) 16, 32, 64, 128
∼4 E+6CNN U-Net (2, 2, 3 × 3) 64, 128, 512

3D beam MAgNET (5, 1, 𝐴2) 3, 3, 3, 12, 24, 48
∼75 E+6CNN U-Net (4, 2, 3 × 3 × 3) 256, 256, 256, 512, 512

2D beam (hole) MAgNET (3, 2, 𝐴2) 8, 16, 32, 64 ∼2 E+6

3D breast MAgNET (4, 1, 𝐴2) 6, 12, 12, 24, 48 ∼19 E+6
Fig. 9. MAgNET architecture used for the 2D L-shape example.
starts with the input mesh (2D), to which the MAg layer is applied twice
(with 16 output channels). This is followed by the graph pooling layer,
which coarsens the mesh and transitions to the next level of the U-Net
(from zeroth to the first level). This process repeats twice, with the first
and second levels of the graph U-Net having MAg layers with 32 and
64 output channels, respectively, leading to the coarsest third level of
the U-Net. At this level, two MAg layers (with 128 output channels) are
applied. In the subsequent decoding phase, the graph unpooling layer is
employed with the concurrent concatenation operation, and followed
by two MAg operations (with 64 output channels). This upsampling
sequence repeats twice with the use of 32- and 16-channel MAg layers.
Finally, a single MAg layer (with 2 output channels) is applied, using a
linear activation to produce the desired output mesh (the displacement
mesh must have the same structure as the input mesh of forces). It is
worth noting that analogous architectures of CNN U-Net networks are
similar, with the only distinction being the use of convolution layers
in place of MAg layers and CNN U-Net max poolings instead of graph
poolings.

As demonstrated in Table 4, both 2D L-shape and 3D beam ex-
amples have been modeled utilizing both MAgNET and CNN U-Net
architectures. These networks were designed to have a similar number
of trainable parameters, thus facilitating a fair comparison of their
fitting capabilities. The number of parameters in both types of networks
is controlled by having a higher number of channels in the CNN U-Net
architecture compared to its corresponding MAgNET architecture. This
9

difference in the number of channels is attributed to the convolution
operators in the CNN architecture sharing parameters across a layer,
which may necessitate a larger number of channels to ensure an optimal
fit, while the aggregation operators in the MAg layer use individual
weights per aggregation window, allowing for more flexible fitting
across the mesh with a smaller number of channels. However, caution
must be exercised when selecting the number of channels, as setting it
too low can result in increased prediction errors (as seen in Fig. 15).

The number of neural network levels (pooling operations) and the
size of convolution/aggregation windows have been adjusted on a case-
by-case basis to obtain the desired fitting capabilities while keeping
the number of trainable parameters low and comparable between the
respective CNN U-Net and MAgNET models. The fitting capabilities
heavily depend on the successful propagation of information from the
input throughout the network. This can be compromised when the
number of poolings or the window size is too small, as explained in
Section 2.5. For this reason, a larger number of pooling operations
is used for mesh graphs with larger diameters (e.g., the 3D cases
in Table 4). Additionally, in the case of MAgNET models, a global
optimization of graph pooling operations is performed to reduce the
number of nodes at the coarsest level. In this optimization, Algorithm
1 is run 1000 times with different random seeds, and the case with the
least number of nodes at the lowest level is selected.

Remark. Note that the example presented in Fig. 8(a) utilizes a non-
structured mesh. As such, it cannot be directly used by the CNN

U-Net model, and an additional preprocessing step needs to be done

Engineering Applications of Artificial Intelligence 133 (2024) 108055S. Deshpande et al.
Fig. 10. Zero-padding is applied to make the L-shape topology compatible with the CNN framework. The additional nodal values for inputs (forces) and outputs (displacements)
are set as zero vectors.
𝑒

w
a

𝜎

m
m
C
M
t
e
1
w
s
t
p
b
e

Fig. 11. Training loss curve for the 3D breast MAgNET model.

to make the input and output meshes structured. In this case, we
apply zero padding to convert the L-shape mesh into a structured
mesh, see Fig. 10, which is then used for training with the CNN U-
Net architecture. We do not need to do this preprocessing step for the
MAgNET architecture.

The models presented in Table 4 were trained by minimizing the
loss function, as described in Eq. (4), using the datasets introduced
in Section 3.1. The Adam optimizer, an extension of the stochastic
gradient descent algorithm, was used for this purpose. A mini-batch
size of 4 and an initial learning rate of 1 × 10−4, with a linear decay
to 1 × 10−6 during training, were employed. The number of epochs
(i.e., iterations of the Adam optimizer) was manually tailored on a case-
by-case basis to achieve low values of the loss function. An example
of the training loss is provided in Fig. 11. The network trainings were
conducted using TensorFlow on a Tesla V100-SXM2 GPU at the HPC
facilities of the University of Luxembourg, see Varrette et al. (2014).

3.3. Cross validation of CNN U-Net and MAgNET predictions

We are going to compare the predictions of MAgNET and CNN
U-Net models for two problems with structured inputs/outputs that
were introduced in Fig. 8(a,b). Let us look at the individual examples
with the highest nodal displacement magnitudes. In the 2D L-shape
example, shown in Fig. 12a, MAgNET predictions visually coincide with
the reference FEM solution very well. This is quantitatively shown in
Fig. 12b and c, where the 𝐿2 error field

err(𝐗) = ‖𝑢FEM(𝐗) − 𝑢pred(𝐗)‖2 (17)

is presented for MAgNET and CNN U-Net, respectively, demonstrating
low level of errors for both models. A similar tendency can be observed
in the 3D beam case shown in Fig. 13. Here, although the level of errors
is relatively a bit higher than in the 2D example, the MAgNET and
CNN U-Net perform similarly, which proves good capabilities of the
proposed MAgNET model as compared to the CNN U-Net model.
10

i

Table 5
Error metrics for the structured mesh examples. 𝑀te stands for the number of test
examples, and 𝑒, 𝜎(𝑒), 𝑒max are error metrics defined by Eqs. (20)–(22).

Example 𝑀te 𝑒 [m] 𝜎(𝑒) [m] 𝑒max [m]

2D L-shape (MAgNET) 200 0.5 E−3 0.2 E−3 1.1 E−2
2D L-shape (CNN U-Net) 0.7 E−3 0.6 E−3 1.8 E−2
3D beam (MAgNET) 1782 0.8 E−3 0.7 E−3 7.7 E−2
3D beam (CNN U-Net) 0.7 E−3 0.5 E−3 5.4 E−2

In the following, we will analyze and compare the performance of
both models for all cases in the test datasets. For that purpose, we need
aggregated error metrics. As an error metric for a single test example,
we use the mean absolute error,

𝑒𝑚 = 𝑒(𝐟𝑚,𝐮𝑚) =
1



∑

𝑖=1
|(𝐟𝑚)𝑖 − 𝐮𝑖𝑚|, (18)

where the force–displacement pair (𝐟𝑚,𝐮𝑚) is an element of the test
dataset

te = {(𝐟𝑀tr+1,𝐮𝑀tr+1),… , (𝐟𝑀tr+𝑀te ,𝐮𝑀tr+𝑀te)}, (19)

and  is the number of dofs of the mesh. The metric 𝑒𝑚 gives us the
notion of error between an expected finite element solution, 𝐮𝑚, and the
prediction of the neural network, (𝐟𝑚). To analyze the overall quality
of fitting, we define a single error metric over the entire test set as the
average mean absolute error

̄ = 1
𝑀te

𝑀tr+𝑀te
∑

𝑚=𝑀tr+1
𝑒𝑚, (20)

ith the corrected sample standard deviation (standard deviation of
veraged errors) defined as

(𝑒) =

√

√

√

√

√

1
𝑀te − 1

𝑀tr+𝑀te
∑

𝑚=𝑀tr+1

(

𝑒𝑚 − 𝑒
)2. (21)

Finally, in addition to that, we also use the maximum error per degree
of freedom over the entire test set

𝑒max = max
𝑚,𝑖

|(𝐟𝑚)𝑖 − 𝐮𝑖𝑚|. (22)

The aggregated error metrics for the entire test sets of structured
esh examples obtained using MAgNET and CNN approaches are sum-
arized in Table 5. The first observation is that both MAgNET and
NN models exhibit similar prediction accuracy, demonstrating that the
AgNET architecture can achieve a comparable predictive capacity to

he CNN U-Net architecture for a similar number of trainable param-
ters. The prediction errors, with respect to a characteristic length of
m, fall below 0.1% for the average mean absolute error (Eq. (20)),
hich is a promising result given the presence of geometric and con-

titutive nonlinearities. Additionally, we analyze the performance of
he MAgNET model as a function of the maximum nodal displacement
er test example. This dependency is visualized in Fig. 14 for both
enchmark examples. Although there is a general trend of increased
rrors for larger maximum displacement magnitudes, the sensitivity
s low, and the errors remain small (the regression lines are 𝑒(𝑑) ∝

Engineering Applications of Artificial Intelligence 133 (2024) 108055S. Deshpande et al.
Fig. 12. Deformation of 2D L-shape under point load (−0.93, 0.91) N on the corner node (a) Deformed mesh predicted using MAgNET (blue), for comparison FEM solution is
presented (red) (b) 𝐿2 error of nodal displacements between MAgNET and FEM solution. The relative error for the corner node displacement using MAgNET is 0.5% (c) 𝐿2 error
of nodal displacements between CNN U-Net and FEM solution. The relative error for the corner node displacement using CNN is 0.3%.
Fig. 13. Deformation of the 3D beam under point load (−1.75, 1.31,−1.7) N on the second last node (a) Deformed mesh predicted using MAgNET (blue), for comparison FEM
solution is presented (red) and undeformed mesh is represented by gray (b) 𝐿2 error of nodal displacements between MAgNET and FEM solution. The relative error in predicting
displacement of the node of application of load using MAgNET is 4.4% (c) 𝐿2 error of nodal displacements between CNN U-Net and FEM solution. The relative error in predicting
displacement of the node of application of load using CNN is 3.0%.
Fig. 14. Mean absolute errors (see Eq. (18)) as a function of maximum nodal displacements for all test examples for 2D L-shape and 3D beam cases for CNN U-NET and MAgNET
networks.
1.0 ⋅𝑑 ⋅10−4 (2D L-shape) and 𝑒(𝑑) ∝ 1.6 ⋅𝑑 ⋅10−3 (3D beam) for MAgNET
and 𝑒(𝑑) ∝ 7.0 ⋅ 𝑑 ⋅ 10−4 (2D L-shape) and 𝑒(𝑑) ∝ 1.6 ⋅ 𝑑 ⋅ 10−3 (3D beam))
for the CNN U-NET case.

The increasing sizes of input/output intensify the challenge in non-
convex optimization, necessitating more training data and additional
epochs for convergence. This trend is universally observed across all
deep learning-based surrogate techniques and relates to the well-known
concept of the ‘curse of dimensionality’ in machine learning applica-
tions. As discussed in Section 3.2, the choice of hyperparameters for
the MAgNET and CNN U-Net architectures has been tailored to specific
11
mesh structures and sizes, ensuring effective predictive capabilities
while maintaining a comparable number of training parameters. In
general, finding the most suitable set of hyperparameters would require
fine-tuning, which goes beyond the scope of this work. To shed more
light on that subject, below, we conduct a simple ablation study to
determine the extent to which accuracy declines when simplifying the
DNN architectures.

In the first ablation test we reduce the number of channels in MAg
and CNN layers. As explained in Section 2.3, the number of channels

Engineering Applications of Artificial Intelligence 133 (2024) 108055S. Deshpande et al.

m
i
a
a
m
s
M
d
n
I
a
n
a
a
p
M
c
c
1

Fig. 15. Average mean error over the test set for the L-shape case for different network architectures. The reference case for the MAgNET is marked with black arrows in both
plots, and represents the architecture of 𝐴2 window size, three pooling layers (four levels), and 32 channels. (a) The effect of changing the number of channels used for MAgNET
and CNN U-Net architectures (number of channels are marked as numbers in the plot). (b) The effect of reducing the MAg window size and number of pooling layers for MAgNET
architecture with 32 channels at each level (number of pooling layers are marked as numbers in the plot).
Fig. 16. Deformation of the 2D beam under two different point loads (upper case: (1.28,−4.43) N, lower case: (−3.38, 4.04) N). (a)&(c) Deformed meshes computed using MAgNET
(blue) and FEM (red), with the undeformed configuration (gray). (b)&(d) 𝐿2 error of nodal displacements between MAgNET and FEM solutions.
odulates the model capacity to capture non-linearities in the underly-
ng data. Importantly, the convolution windows are shareable in CNN
rchitectures, whereas the aggregation windows in MAg architectures
re independent. To this end, we expect CNN networks to require
ore channels than their respective MAgNET networks to achieve the

ame level of accuracy. We used this fact when designing CNN and
AgNET architectures in Section 3.2. To verify this hypothesis and

emonstrate this effect, we trained five MAgNET and five CNN U-Net
etworks on the L-shape dataset with different numbers of channels.
n all analyzed cases, we used 4-level MAgNET and 3-level CNN U-Net
rchitectures, with two MAg/Conv layers per level, and with a constant
umber of channels at all levels. Fig. 15(a) shows that there is indeed
strong dependency of accuracy on the number of channels for both

nalyzed network architectures. For a comparable number of trainable
arameters, CNN U-Nets can use more channels than their respective
AgNETs, providing them with comparable predictive accuracy. We

an also observe that too few channels significantly reduce the fitting
apabilities of both networks, with a step jump between the 8- and
6-channel case for MAgNET. For the two largest cases (16 and 32
12
channels for MAgNET and 128 and 256 channels for CNN U-Net), the
accuracy of both architectures is comparable.

In the second ablation test, we modulate two other important hyper-
parameters of MAgNET architectures: the MAg layer window size and
the number of pooling layers. Again, we utilize the L-shape dataset,
with the reference MAgNET architecture characterized by a window
size of 𝐴2, four levels (three pooling operations), and 32 channels at
each level. Fig. 15(b) demonstrates a general trend where the model’s
simplification leads to a drop in accuracy. This is observable both when
reducing the window size from 𝐴2 to 𝐴1 and when decreasing the
number of levels (pooling operations). This reduced capacity of the
simplified models can be explained by the overall reduced number
of parameters, but also by the less intensive exchange of information
across the graph. In particular, a significant drop in accuracy is ob-
served for the single-pooling 𝐴1 case. This can be attributed to the
inability of this oversimplified network to fully exchange the nodal
input information, confirming the effect discussed in more detail in
Section 2.5.

Engineering Applications of Artificial Intelligence 133 (2024) 108055S. Deshpande et al.
Fig. 17. Deformation of the 3D breast geometry with force density of (−5.94,−5.23,−2.56) N∕kg. (a) Deformed meshes computed using MAgNET (blue) and FEM (red), with the
undeformed configuration (gray). (b) 𝐿2 error of nodal displacements between MAgNET and FEM solutions. (c) Titled view of the figure (b), MAgNET efficiently captures fixed
boundary and nearby high non-linear deformations by learning implicitly from the data.
Remark. The high accuracy of the proposed surrogate models is
accompanied by very rapid prediction times compared to the respective
high-fidelity FEM predictions. For example, in the 3D beam case, the
nonlinear FEM solution required over 3 seconds for some test examples,
while MAgNET could make predictions in just 0.18 seconds. Moreover,
while MAgNET maintains consistent prediction times regardless of the
input force, the time for the FEM solution increases with larger load
cases. This increase is due to the use of an iterative solver and an
adaptive load-stepping scheme, which are necessary to address conver-
gence issues in highly nonlinear problems. A more comprehensive study
on how MAgNET’s computational efficiency compares with nonlinear
FEM, as well as with CNN-based and attention-based neural networks,
is provided in Deshpande et al. (2023b).

3.4. Predictions of MAgNET for general (unstructured) meshes

In Section 3.3, we demonstrated that the MAgNET architectures can
achieve very good predictive capabilities for structured mesh cases,
which was also cross-validated against respective CNN U-Net architec-
tures. In this section, we aim to show that the high prediction accuracy
of MAgNET can also be expected for unstructured mesh cases, which is
the central point of the results section. We consider two cases: the first
one is deformation under the application of point loads (the 2D beam
with hole case), similar to the case of structured examples, and the
second is deformation under body forces (the 3D breast case, inspired
from Lavigne et al. (2023)).

Let us first analyze individual examples. In Fig. 16 we present two
particular loading cases of the 2D beam with hole. One of them is
loaded at the tip, featuring the highest nodal displacement magnitude
of all test cases, and the other one is loaded close to the hole, represent-
ing high local distortions. Similarly, for the three-dimensional problem,
in Fig. 17 we show the case featuring the highest nodal displacement
magnitude of all test cases. In all mentioned examples we can observe
overall good accuracy when visually comparing MAgNET predictions
with the respective FEM solutions. This can also be checked quantita-
tively by analyzing maximum displacement errors. In the cases of the
2D beam with hole, those errors are 1.4% and below when related to
the characteristic length of 1 m. In the case of 3D breast geometry, such
relative maximum error is higher, reaching almost 3.1% (related to the
breast diameter of 0.16 m). Despite this fact, we can observe that high
local shape distortions are very well recovered. This property is more
emphasized in Fig. 17c where one can additionally observe that also
the Dirichlet boundary conditions are very well predicted, even though
they were only introduced implicitly by training data.
13
Table 6
Error metrics for the unstructured mesh examples. 𝑀te stands for the number of test
examples, and 𝑒, 𝜎(𝑒), 𝑒max are error metrics defined in Section 3.3.

Example 𝑀te 𝑒 [m] 𝜎(𝑒) [m] 𝑒max [m]

2D beam (hole) 240 0.7 E−3 0.4 E−3 1.4 E−2
3D breast 400 8.9 E−5 3.1 E−5 5.1 E−3

The aggregated error metrics for the entire test sets are provided
in Table 6. The maximum displacement errors over all test cases, 𝑒max,
are at the levels observed for particular cases in Figs. 16 and 17. At
the same time, the average mean errors, 𝑒, are at least an order of
magnitude lower, which suggests that the errors close to maximum
levels are not that often. The average mean errors are further analyzed
in a case-by-case manner in Fig. 18, which is analogous to the analysis
done for the structured cases in Fig. 14. Again, we plot the mean
error 𝑒, of each test example as a function of the maximum nodal
displacement. The regression lines 𝑒(𝑑) ∝ 5.0 ⋅ 𝑑 ⋅ 10−4 (2D-beam) and
𝑒(𝑑) ∝ 8.0 ⋅ 𝑑 ⋅ 10−4 (3D Breast) show low sensitivity of the MAgNET
predictions to displacement magnitudes.

Above, we have demonstrated a good prediction accuracy of MAg-
NET within the test dataset (which is located in the interpolated
domain). However, it is well known that this accuracy can gradually
deteriorate when moving to the extrapolated region, see, e.g., Desh-
pande et al. (2022). We are going to study this effect for MAgNET for
a particular case that is based on the 3D breast geometry. As described
in the Table 3, during the training, the 𝑏z component of body force
density is varied from −3 to 3 N∕kg only. At the inference time, we
applied 𝑏z from −7 to 7 N∕kg (keeping other components 0) to see how
the predictions perform within and outside the training magnitudes.
Fig. 19(a) shows that the error is fairly low and is not increasing within
the training region and it increases rapidly outside, which confirms
this well-known effect. Figs. 19(b) and 19(c) show deformed meshes
predicted for 𝑏𝑧 = 5 and 𝑏𝑧 = 9 N∕kg, respectively, both outside the
training data region. MAgNET is observed to give visually acceptable
results although the accuracy of the framework decreases as we move
away from the training data.

3.4.1. A note on physics-informed errors
The proposed MAgNET framework has only been trained by mini-

mizing the loss function for displacement errors, with no additional ex-
plicit information about the underlying physics/mechanics. As demon-
strated earlier in this work, such training can provide very good accu-
racy in terms of predicted displacements. However, this accuracy is not

Engineering Applications of Artificial Intelligence 133 (2024) 108055S. Deshpande et al.
Fig. 18. Mean absolute errors (see Eq. (18)) as a function of maximum nodal displacements for all test examples (with unstructured meshes) predicted using MAgNET for (a) 2D
beam with hole (b) 3D breast case.
Fig. 19. 3D Breast deformation under horizontal body force densities, (0, 0, 𝑏z)N∕kg. (a) Mean absolute error for testing cases in interpolated and extrapolated regions. The error
increases rapidly in the extrapolated region while it remains low in the training (interpolated) region. (b)&(c) Visualization of deformed meshes for force densities outside the
training region computed using MAgNET (blue) and FEM solution (red).
of machine precision. To this end, a natural question arises: how far the
displacement errors can violate physics? To answer that question, we
are going to analyze some problem-based quantities of interest, such as
residuals (balance of forces) or stresses, in comparison to the expected
ground-truth results.

In Fig. 20 we show nodal internal residual forces for the 2D beam
with hole cases that we introduced earlier (compare Fig. 16 for re-
spective displacement errors). Ideally, the residual forces should be
zero (the balance of forces), except for the boundary condition ar-
eas in which they should be exactly opposite to the reaction at the
support and the applied external force. However, due to inaccuracies
in displacements obtained from the MAgNET model, differences with
respect to the ground true residuals can be noted. In Fig. 20, we can
observe the expected high residual forces in the areas where Dirichlet
and Neumann boundary conditions are applied, however, also localized
residual force spots are present in the fine mesh region around the hole.
The magnitude of those errors in the localized spots can go up to 20%
of the maximal magnitude of applied forces. Also, when more closely
analyzing the residuals at boundary condition areas, it turns out that
they do not fully match the respective FEM residuals. For instance,
the relative error in residuals at the support in Fig. 20a is almost
5%. When analyzing the entire test set, we observed that the mean
error in retrieving residuals at the Dirchilet boundary related to the
maximum external force is 2.4%. A similar relative mean error value for
retrieving the Neumann boundary residual is 14.6%. The higher error
for Neumann boundary residual is attributed to high local non-linear
14
deformations at the vicinity of the point of application of force. Though
the displacement errors provoked by these non-linearities are not so
high, they can result in high residual errors through the relatively high
magnitude of element stiffness.

The errors observed in Figs. 16 and 20 can have a direct impact on
some application-dependent quantities of interest. As an example, in
Fig. 21, we present the field of von Mises stresses, which is a commonly
used measure of shear stresses. We can observe that the MAgNET
solution provides similar profiles of stresses as compared to respective
FEM solutions, however, high localized errors are present at the fine
mesh region (up to 30% of the reference FEM maximal von Mises
stresses).

The above mentioned localized errors in residual forces, von Mises
stresses and other relevant quantities of interest can be reduced by
enriching the loss function with physics-informed terms. For instance,
in the context of mesh-based force–displacement data, in Odot et al.
(2021) such enrichment has been introduced by scaling individual
components of the loss function with the respective computed residual
values, which proved to reduce residual errors. In As’ad et al. (2022),
the authors introduced an energy-based approach that provided purely
physics-informed training for the Gauss-point stress–strain relationship,
which allowed them to satisfy the expected frame indifference. Similar
concepts of physics-informed loss functions can be seamlessly inte-
grated into the MAgNET framework, which would convert it into a
Physics Informed MAgNET.

Engineering Applications of Artificial Intelligence 133 (2024) 108055S. Deshpande et al.
Fig. 20. Nodal residual forces obtained using MAgNET solutions for the examples in Fig. 16 (plotted on deformed meshes). The relative error for retrieving the total reaction
force at the fixed interface is (a) 4.7% for the first example (b) 0.1% for the second example.
Fig. 21. Von Mises stresses obtained for the two examples as in Fig. 16 using (a)&(b) MAgNET solution (c)&(d) FEM solution. In (e)&(f) the absolute error between the MAgNET
and FEM von Mises stresses is shown.
4. Conclusion and future directions

In this work we proposed MAgNET, a novel framework for effi-
cient supervised learning on graph-structured data using geometric
deep learning. The framework comprises two neural network opera-
tions: MAg and graph pooling/unpooling layers, which together form
a graph U-Net architecture capable of learning on large-dimension
inputs/outputs. Notably, the MAgNET framework is not restricted to
any particular input→output relationship or any specific mesh- or
discretization scheme, making it superior to existing convolutional
neural network architectures. MAgNET allows for arbitrary non-grid
inputs/outputs, meaning it can handle arbitrary meshes and support
15
complex geometries and local mesh refinements, making it suitable for
a wide range of engineering applications.

We demonstrated and studied the capabilities of MAgNET in cap-
turing nonlinear relationships in data. In particular, we showed that
MAgNET can serve as an efficient surrogate framework for non-linear
FEM simulations. For this purpose, we conducted quantitative cross-
validation of predictions made by MAgNET and the well-known convo-
lutional U-Net architecture, both of which have been verified against
the ground-truth results obtained with FEM. The benchmarks have
proven that MAgNET has similar predictive capabilities as CNN U-Net
for structured meshes, and it can also be extended to arbitrary meshes
while preserving similar accuracy of predictions.

Engineering Applications of Artificial Intelligence 133 (2024) 108055S. Deshpande et al.
There are multiple avenues for enhancing MAgNET’s capabilities
and applying it beyond the scope of the present work. One promis-
ing direction involves directly integrating the underlying physics into
the training process. While the current purely data-based MAgNET
accurately captures the displacement field, it exhibits increased er-
rors for other physics-related quantities, as discussed in Section 3.4.1.
Incorporating physics-based components into the loss function could
significantly improve the performance of MAgNET in these areas. It
could also result in reduction in the amount of necessary training data.
A second potential research direction is applying MAgNET to unsteady
problems. Such techniques already exist, for instance, in applications to
dynamics (Pfaff et al., 2021; Meister et al., 2020) and in the context of
elasto-plasticity (Mozaffar et al., 2019; Vijayaraghavan et al., 2021).
We believe some of them could be seamlessly integrated with the
MAgNET architecture. A third future research direction is to enhance
the prediction accuracy of surrogate models for real-world applications
involving online observational data. One approach is to combine any
type of DNNs, such as MAgNET, with data assimilation techniques, like
Kalman filtering (Liu et al., 2023). A fourth potential direction is to
transform MAgNET into a probabilistic model. This could be achieved
by performing local aggregations with probability distributions instead
of discrete weights, similar to our approach with Bayesian CNNs in
previous work (Deshpande et al., 2022). A Bayesian MAgNET would
be capable of tracking uncertainties inherent in both the network
architecture and real-world data. Finally, we envision applying MAg-
NET not only to forward problems but also to inverse problems. The
MAgNET architecture’s ability to handle non-structured meshes could
be combined with existing ideas for data-driven calibration of model
parameters, as seen, for example, in Raissi et al. (2019), allowing for a
DNN extension of our earlier calibration schemes (Lavigne et al., 2023)
to a broader class of systems and models.

We have made all the codes, datasets, and examples presented in
this paper available open-access in the MAgNET repository at https:
//github.com/saurabhdeshpande93/MAgNET. Given the generality of
MAgNET in supporting arbitrary non-linear relationships and arbitrary
discretizations, we believe that the repository will provide a useful sur-
rogate modeling framework for researchers and practitioners in various
application areas across disciplines. We see it not only as a ready-to-use
machine-learning library but also as a reference point and foundation
for future developments and extensions in this emerging direction of
research. The generality of MAgNET will enable the community to
explore a range of new applications and modeling scenarios.

CRediT authorship contribution statement

Saurabh Deshpande: Conceptualization, Data curation, Formal
analysis, Methodology, Software, Validation, Visualization, Writing –
original draft, Writing – review & editing. Stéphane P.A. Bordas:
Funding acquisition, Investigation, Methodology, Supervision, Writing
– review & editing. Jakub Lengiewicz: Conceptualization, Data cura-
tion, Investigation, Methodology, Project administration, Supervision,
Validation, Visualization, Writing – original draft, Writing – review &
editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The source codes and supplementary dataset utilized in this study
can be found at https://github.com/saurabhdeshpande93/MAgNET and
https://doi.org/10.5281/zenodo.7784804.
16
Acknowledgments
This project has received
funding from the European
Union’s Horizon 2020
research and innovation
programme under the Marie
Sklodowska-Curie grant
agreement No. 764644. Jakub
Lengiewicz would like to
acknowledge the support from

EU Horizon 2020 Marie Sklodowska Curie Individual Fellowship MOr-
PhEM under Grant 800150. Stéphane Bordas and Jakub Lengiewicz
are grateful for the support of the Fonds National de la Recherche
Luxembourg FNR grant QuaC C20/MS/14782078. Stéphane Bordas
received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 811099 TWINNING
Project DRIVEN for the University of Luxembourg. This paper only
contains the author’s views and the Research Executive Agency and the
Commission are not responsible for any use that may be made of the
information it contains.

References

As’ad, F., Avery, P., Farhat, C., 2022. A mechanics-informed artificial neural network
approach in data-driven constitutive modeling. http://dx.doi.org/10.2514/6.2022-
0100.

Aydin, R.C., Braeu, F.A., Cyron, C.J., 2019. General multi-fidelity framework for
training artificial neural networks with computational models. Front. Mater. 6, 61.

Bianchi, F.M., Grattarola, D., Alippi, C., 2019. Spectral clustering with graph neural
networks for graph pooling. http://dx.doi.org/10.48550/ARXIV.1907.00481, URL:
https://arxiv.org/abs/1907.00481.

Black, N., Najafi, A.R., 2022. Learning finite element convergence with the multi-fidelity
graph neural network. Comput. Methods Appl. Mech. Engrg. 397, 115120, URL:
https://www.sciencedirect.com/science/article/pii/S004578252200305X.

Brenner, S.C., Scott, L.R., 2008. Finite element multigrid methods. In: The Mathematical
Theory of Finite Element Methods. Springer New York, New York, NY, pp. 155–173.
http://dx.doi.org/10.1007/978-0-387-75934-0_7.

Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P., 2017. Geometric
deep learning: Going beyond euclidean data. IEEE Signal Process. Mag. 34 (4),
18–42. http://dx.doi.org/10.1109/MSP.2017.2693418.

Brunet, J.-N., Mendizabal, A., Petit, A., Golse, N., Vibert, E., Cotin, S., 2019. Physics-
based deep neural network for augmented reality during liver surgery. In: Shen, D.,
Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (Eds.),
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019.
Springer International Publishing, Cham, pp. 137–145.

Bui, H.P., Tomar, S., Courtecuisse, H., Cotin, S., Bordas, S.P.A., 2018. Real-time
error control for surgical simulation. IEEE Trans. Biomed. Eng. 65 (3), 596–607.
http://dx.doi.org/10.1109/TBME.2017.2695587.

Cai, C., Wang, D., Wang, Y., 2021. Graph coarsening with neural networks. In:
International Conference on Learning Representations. URL: https://openreview.
net/forum?id=uxpzitPEooJ.

Chen, M., Wei, Z., Huang, Z., Ding, B., Li, Y., 2020. Simple and deep graph
convolutional networks. In: Daumé, H., Singh, A. (Eds.), Proceedings of the 37th
International Conference on Machine Learning. In: Proceedings of Machine Learning
Research, vol. 119, PMLR, pp. 1725–1735, URL: https://proceedings.mlr.press/
v119/chen20v.html.

Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O., 2016. 3D U-net:
learning dense volumetric segmentation from sparse annotation. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention.
Springer, pp. 424–432.

Daniel, T., Casenave, F., Akkari, N., Ryckelynck, D., 2020. Model order reduction
assisted by deep neural networks (ROM-net). Adv. Model. Simul. Eng. Sci. 7 (1),
1–27.

Deshpande, S., Bordas, S., Lengiewicz, J., 2023a. Magnet: A graph U-Net architecture
for mesh-based simulations [dataset]. http://dx.doi.org/10.5281/zenodo.000000.

Deshpande, S., Lengiewicz, J., Bordas, S.P., 2022. Probabilistic deep learning for
real-time large deformation simulations. Comput. Methods Appl. Mech. Engrg.
398, 115307. http://dx.doi.org/10.1016/j.cma.2022.115307, URL: https://www.
sciencedirect.com/science/article/pii/S004578252200411X.

Deshpande, S., Sosa, R.I., Bordas, S.P.A., Lengiewicz, J., 2023b. Convolution, aggre-
gation and attention based deep neural networks for accelerating simulations in
mechanics. Front. Mater. 10, http://dx.doi.org/10.3389/fmats.2023.1128954.

Doll, S., Schweizerhof, K., 2000. On the development of volumetric strain energy
functions. J. Appl. Mech. 67 (1), 17–21.

https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://github.com/saurabhdeshpande93/MAgNET
https://doi.org/10.5281/zenodo.7784804
http://dx.doi.org/10.2514/6.2022-0100
http://dx.doi.org/10.2514/6.2022-0100
http://dx.doi.org/10.2514/6.2022-0100
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb2
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb2
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb2
http://dx.doi.org/10.48550/ARXIV.1907.00481
https://arxiv.org/abs/1907.00481
https://www.sciencedirect.com/science/article/pii/S004578252200305X
http://dx.doi.org/10.1007/978-0-387-75934-0_7
http://dx.doi.org/10.1109/MSP.2017.2693418
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb7
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb7
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb7
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb7
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb7
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb7
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb7
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb7
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb7
http://dx.doi.org/10.1109/TBME.2017.2695587
https://openreview.net/forum?id=uxpzitPEooJ
https://openreview.net/forum?id=uxpzitPEooJ
https://openreview.net/forum?id=uxpzitPEooJ
https://proceedings.mlr.press/v119/chen20v.html
https://proceedings.mlr.press/v119/chen20v.html
https://proceedings.mlr.press/v119/chen20v.html
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb11
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb11
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb11
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb11
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb11
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb11
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb11
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb12
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb12
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb12
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb12
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb12
http://dx.doi.org/10.5281/zenodo.000000
http://dx.doi.org/10.1016/j.cma.2022.115307
https://www.sciencedirect.com/science/article/pii/S004578252200411X
https://www.sciencedirect.com/science/article/pii/S004578252200411X
https://www.sciencedirect.com/science/article/pii/S004578252200411X
http://dx.doi.org/10.3389/fmats.2023.1128954
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb16
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb16
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb16

Engineering Applications of Artificial Intelligence 133 (2024) 108055S. Deshpande et al.
Fernández-León, J., Keramati, K., Miguel, C., González, C., Baumela, L., 2023.
A deep encoder-decoder for surrogate modelling of liquid moulding of com-
posites. Eng. Appl. Artif. Intell. 120, 105945. http://dx.doi.org/10.1016/j.
engappai.2023.105945, URL: https://www.sciencedirect.com/science/article/pii/
S095219762300129X.

Gao, H., Ji, S., 2019. Graph U-net. URL: https://openreview.net/forum?id=HJePRoAct7.
Gao, H., Sun, L., Wang, J.-X., 2021. PhyGeoNet: Physics-informed geometry-adaptive

convolutional neural networks for solving parameterized steady-state PDEs on
irregular domain. J. Comput. Phys. 428, 110079, URL: https://www.sciencedirect.
com/science/article/pii/S0021999120308536.

Gao, H., Zahr, M.J., Wang, J.-X., 2022. Physics-informed graph neural Galerkin
networks: A unified framework for solving PDE-governed forward and inverse
problems. Comput. Methods Appl. Mech. Engrg. 390, 114502. http://dx.doi.org/
10.1016/j.cma.2021.114502, URL: https://www.sciencedirect.com/science/article/
pii/S0045782521007076.

Goury, O., Duriez, C., 2018. Fast, generic, and reliable control and simulation of soft
robots using model order reduction. IEEE Trans. Robot. 34 (6), 1565–1576.

Henkes, A., Wessels, H., Mahnken, R., 2022. Physics informed neural networks for con-
tinuum micromechanics. Comput. Methods Appl. Mech. Engrg. 393, 114790. http:
//dx.doi.org/10.1016/j.cma.2022.114790, URL: https://www.sciencedirect.com/
science/article/pii/S0045782522001268.

Hennequin, R., Khlif, A., Voituret, F., Moussallam, M., 2020. Spleeter: a fast and
efficient music source separation tool with pre-trained models. J. Open Source
Softw. 5, 2154. http://dx.doi.org/10.21105/joss.02154.

Hoq, E., Aljarrah, O., Li, J., Bi, J., Heryudono, A., Huang, W., 2023. Data-driven
methods for stress field predictions in random heterogeneous materials. Eng. Appl.
Artif. Intell. 123, 106267. http://dx.doi.org/10.1016/j.engappai.2023.106267, URL:
https://www.sciencedirect.com/science/article/pii/S0952197623004517.

Huang, D.Z., Xu, K., Farhat, C., Darve, E., 2020. Learning constitutive rela-
tions from indirect observations using deep neural networks. J. Comput. Phys.
416, 109491. http://dx.doi.org/10.1016/j.jcp.2020.109491, URL: https://www.
sciencedirect.com/science/article/pii/S0021999120302655.

Jiang, C., Chen, N.-Z., 2023. Graph neural networks (GNNs) based accelerated numeri-
cal simulation. Eng. Appl. Artif. Intell. 123, 106370. http://dx.doi.org/10.1016/
j.engappai.2023.106370, URL: https://www.sciencedirect.com/science/article/pii/
S0952197623005547.

Johnsen, S.F., Taylor, Z.A., Clarkson, M.J., Hipwell, J., Modat, M., Eiben, B., Han, L.,
Hu, Y., Mertzanidou, T., Hawkes, D.J., et al., 2015. NiftySim: A GPU-based
nonlinear finite element package for simulation of soft tissue biomechanics. Int.
J. Comput. Assist. Radiol. Surg. 10, 1077–1095.

Kipf, T.N., Welling, M., 2016. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Kochkov, D., Smith, J.A., Alieva, A., Wang, Q., Brenner, M.P., Hoyer, S., 2021.
Machine learning-accelerated computational fluid dynamics. Proc. Natl. Acad. Sci.
118 (21), e2101784118. http://dx.doi.org/10.1073/pnas.2101784118, URL: https:
//www.pnas.org/doi/abs/10.1073/pnas.2101784118. arXiv:https://www.pnas.org/
doi/pdf/10.1073/pnas.2101784118.

Korelc, J., 2002. Multi-language and multi-environment generation of nonlinear
finite element codes. Eng. Comput. 18, 312–327. http://dx.doi.org/10.1007/
s003660200028.

Krokos, V., Bordas, S.P., Kerfriden, P., 2024. A graph-based probabilistic geometric deep
learning framework with online enforcement of physical constraints to predict the
criticality of defects in porous materials. Int. J. Solids Struct. 286–287, 112545.
http://dx.doi.org/10.1016/j.ijsolstr.2023.112545, URL: https://www.sciencedirect.
com/science/article/pii/S0020768323004420.

Krokos, V., Bui Xuan, V., Bordas, S.P.A., Young, P., Kerfriden, P., 2022. A Bayesian
multiscale CNN framework to predict local stress fields in structures with mi-
croscale features. Comput. Mech. 69, 733–766. http://dx.doi.org/10.1007/s00466-
021-02112-3.

Lavigne, T., Bordas, S., Lengiewicz, J., 2023. Identification of material parameters and
traction field for soft bodies in contact. Comput. Methods Appl. Mech. Engrg.
406, 115889. http://dx.doi.org/10.1016/j.cma.2023.115889, URL: https://www.
sciencedirect.com/science/article/pii/S0045782523000129.

Lavigne, T., Mazier, A., Perney, A., Bordas, S., Hild, F., Lengiewicz, J., 2022. Digital
volume correlation for large deformations of soft tissues: Pipeline and proof of
concept for the application to breast ex vivo deformations. J. Mech. Behav.
Biomed. Mater. 105490. http://dx.doi.org/10.1016/j.jmbbm.2022.105490, URL:
https://www.sciencedirect.com/science/article/pii/S1751616122003952.

Le, T.-T.-H., Kang, H., Kim, H., 2022. Towards incompressible laminar flow estimation
based on interpolated feature generation and deep learning. Sustainability 14
(19), http://dx.doi.org/10.3390/su141911996, URL: https://www.mdpi.com/2071-
1050/14/19/11996.

Lee, J., Lee, I., Kang, J., 2019. Self-attention graph pooling. http://dx.doi.org/10.
48550/ARXIV.1904.08082, URL: https://arxiv.org/abs/1904.08082.

Liu, W., Lai, Z., Bacsa, K., Chatzi, E., 2023. Neural extended Kalman filters
for learning and predicting dynamics of structural systems. Struct. Health
Monit. 14759217231179912. http://dx.doi.org/10.1177/14759217231179912,
arXiv:2210.04165.
17
Lorente, D., Martínez-Martínez, F., Rupérez, M., Lago, M., Martínez-Sober, M.,
Escandell-Montero, P., Martínez-Martínez, J., Martínez-Sanchis, S., Serrano-
López, A., Monserrat, C., Martín-Guerrero, J., 2017. A framework for modelling
the biomechanical behaviour of the human liver during breathing in real
time using machine learning. Expert Syst. Appl. 71, 342–357. http://dx.doi.org/
10.1016/j.eswa.2016.11.037, URL: https://www.sciencedirect.com/science/article/
pii/S0957417416306728.

Luzhnica, E., Day, B., Lio’, P., 2019. Clique pooling for graph classification. http://dx.
doi.org/10.48550/ARXIV.1904.00374, URL: https://arxiv.org/abs/1904.00374.

Meister, F., Passerini, T., Mihalef, V., Tuysuzoglu, A., Maier, A., Mansi, T., 2020.
Deep learning acceleration of total Lagrangian explicit dynamics for soft tissue
mechanics. Comput. Methods Appl. Mech. Engrg. 358, 112628. http://dx.doi.org/
10.1016/j.cma.2019.112628, URL: https://www.sciencedirect.com/science/article/
pii/S0045782519305109.

Mendizabal, A., Márquez-Neila, P., Cotin, S., 2019. Simulation of hyperelastic materials
in real-time using deep learning. Med. Image Anal. 59, 101569. http://dx.doi.org/
10.1016/j.media.2019.101569.

Mozaffar, M., Bostanabad, R., Chen, W., Ehmann, K., Cao, J., Bessa, M.A., 2019.
Deep learning predicts path-dependent plasticity. Proc. Natl. Acad. Sci. 116 (52),
26414–26420. http://dx.doi.org/10.1073/pnas.1911815116.

Nguyen, T.N.K., Dairay, T., Meunier, R., Mougeot, M., 2022. Physics-informed neural
networks for non-Newtonian fluid thermo-mechanical problems: An application
to rubber calendering process. Eng. Appl. Artif. Intell. 114, 105176. http://
dx.doi.org/10.1016/j.engappai.2022.105176, URL: https://www.sciencedirect.com/
science/article/pii/S0952197622002810.

Nikolopoulos, S., Kalogeris, I., Papadopoulos, V., 2022. Non-intrusive surrogate
modeling for parametrized time-dependent partial differential equations us-
ing convolutional autoencoders. Eng. Appl. Artif. Intell. 109, 104652. http://
dx.doi.org/10.1016/j.engappai.2021.104652, URL: https://www.sciencedirect.com/
science/article/pii/S0952197621004541.

Obiols-Sales, O., Vishnu, A., Malaya, N., Chandramowliswharan, A., 2020. CFDNet: A
Deep Learning-Based Accelerator for Fluid Simulations. ICS ’20, Association for
Computing Machinery, New York, NY, USA, http://dx.doi.org/10.1145/3392717.
3392772.

Odot, A., Haferssas, R., Cotin, S., 2021. DeepPhysics: a physics aware deep learn-
ing framework for real-time simulation. http://dx.doi.org/10.48550/ARXIV.2109.
09491, URL: https://arxiv.org/abs/2109.09491.

Ogden, R.W., 2005. Non-Linear Elastic Deformations. Dover Publications.
Pant, P., Doshi, R., Bahl, P., Farimani, A.B., 2021. Deep learning for reduced order

modelling and efficient temporal evolution of fluid simulations. Phys. Fluids 33
(10), 107101. http://dx.doi.org/10.1063/5.0062546.

Pellicer-Valero, O.J., Rupérez, M.J., Martínez-Sanchis, S., Martín-Guerrero, J.D., 2020.
Real-time biomechanical modeling of the liver using machine learning models
trained on finite element method simulations. Expert Syst. Appl. 143, 113083. http:
//dx.doi.org/10.1016/j.eswa.2019.113083, URL: https://www.sciencedirect.com/
science/article/pii/S0957417419308000.

Pfaff, T., Fortunato, M., Gonzalez, A., Battaglia, P., 2021. Learning mesh-based simula-
tion with graph networks. In: International Conference on Learning Representations.
URL: https://openreview.net/forum?id=roNqYL0_XP.

Raissi, M., Perdikaris, P., Karniadakis, G., 2019. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations. J. Comput. Phys. 378, 686–707. http://dx.
doi.org/10.1016/j.jcp.2018.10.045, URL: https://www.sciencedirect.com/science/
article/pii/S0021999118307125.

Rao, C., Liu, Y., 2020. Three-dimensional convolutional neural network (3D-CNN)
for heterogeneous material homogenization. Comput. Mater. Sci. 184, 109850.
http://dx.doi.org/10.1016/j.commatsci.2020.109850.

Ren, X., Zhang, X., Chen, L., Zheng, X., Zhang, C., Guo, L., Yu, B., 2021. A causal
U-net based neural beamforming network for real-time multi-channel speech
enhancement. pp. 1832–1836. http://dx.doi.org/10.21437/Interspeech.2021-1457.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for biomed-
ical image segmentation. In: Medical Image Computing and Computer-Assisted
Intervention. MICCAI, In: LNCS, vol. 9351, Springer, pp. 234–241, URL: http:
//lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a. (available on arXiv:
1505.04597 [cs.CV]).

Roy, A.M., Guha, S., 2023. A data-driven physics-constrained deep learning com-
putational framework for solving von mises plasticity. Eng. Appl. Artif. Intell.
122, 106049. http://dx.doi.org/10.1016/j.engappai.2023.106049, URL: https://
www.sciencedirect.com/science/article/pii/S0952197623002336.

Runge, G., Wiese, M., Raatz, A., 2017. FEM-based training of artificial neural networks
for modular soft robots. In: 2017 IEEE International Conference on Robotics
and Biomimetics. ROBIO, pp. 385–392. http://dx.doi.org/10.1109/ROBIO.2017.
8324448.

Rus, D., Tolley, M.T., 2015. Design, fabrication and control of soft robots. Nature 521
(7553), 467–475.

Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V., Guo, H., Hamdia, K.,
Zhuang, X., Rabczuk, T., 2020. An energy approach to the solution of partial
differential equations in computational mechanics via machine learning: Con-
cepts, implementation and applications. Comput. Methods Appl. Mech. Engrg.
362, 112790. http://dx.doi.org/10.1016/j.cma.2019.112790, URL: https://www.
sciencedirect.com/science/article/pii/S0045782519306826.

http://dx.doi.org/10.1016/j.engappai.2023.105945
http://dx.doi.org/10.1016/j.engappai.2023.105945
http://dx.doi.org/10.1016/j.engappai.2023.105945
https://www.sciencedirect.com/science/article/pii/S095219762300129X
https://www.sciencedirect.com/science/article/pii/S095219762300129X
https://www.sciencedirect.com/science/article/pii/S095219762300129X
https://openreview.net/forum?id=HJePRoAct7
https://www.sciencedirect.com/science/article/pii/S0021999120308536
https://www.sciencedirect.com/science/article/pii/S0021999120308536
https://www.sciencedirect.com/science/article/pii/S0021999120308536
http://dx.doi.org/10.1016/j.cma.2021.114502
http://dx.doi.org/10.1016/j.cma.2021.114502
http://dx.doi.org/10.1016/j.cma.2021.114502
https://www.sciencedirect.com/science/article/pii/S0045782521007076
https://www.sciencedirect.com/science/article/pii/S0045782521007076
https://www.sciencedirect.com/science/article/pii/S0045782521007076
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb21
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb21
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb21
http://dx.doi.org/10.1016/j.cma.2022.114790
http://dx.doi.org/10.1016/j.cma.2022.114790
http://dx.doi.org/10.1016/j.cma.2022.114790
https://www.sciencedirect.com/science/article/pii/S0045782522001268
https://www.sciencedirect.com/science/article/pii/S0045782522001268
https://www.sciencedirect.com/science/article/pii/S0045782522001268
http://dx.doi.org/10.21105/joss.02154
http://dx.doi.org/10.1016/j.engappai.2023.106267
https://www.sciencedirect.com/science/article/pii/S0952197623004517
http://dx.doi.org/10.1016/j.jcp.2020.109491
https://www.sciencedirect.com/science/article/pii/S0021999120302655
https://www.sciencedirect.com/science/article/pii/S0021999120302655
https://www.sciencedirect.com/science/article/pii/S0021999120302655
http://dx.doi.org/10.1016/j.engappai.2023.106370
http://dx.doi.org/10.1016/j.engappai.2023.106370
http://dx.doi.org/10.1016/j.engappai.2023.106370
https://www.sciencedirect.com/science/article/pii/S0952197623005547
https://www.sciencedirect.com/science/article/pii/S0952197623005547
https://www.sciencedirect.com/science/article/pii/S0952197623005547
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb27
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb27
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb27
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb27
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb27
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb27
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb27
http://arxiv.org/abs/1609.02907
http://dx.doi.org/10.1073/pnas.2101784118
https://www.pnas.org/doi/abs/10.1073/pnas.2101784118
https://www.pnas.org/doi/abs/10.1073/pnas.2101784118
https://www.pnas.org/doi/abs/10.1073/pnas.2101784118
https://www.pnas.org/doi/pdf/10.1073/pnas.2101784118
https://www.pnas.org/doi/pdf/10.1073/pnas.2101784118
https://www.pnas.org/doi/pdf/10.1073/pnas.2101784118
http://dx.doi.org/10.1007/s003660200028
http://dx.doi.org/10.1007/s003660200028
http://dx.doi.org/10.1007/s003660200028
http://dx.doi.org/10.1016/j.ijsolstr.2023.112545
https://www.sciencedirect.com/science/article/pii/S0020768323004420
https://www.sciencedirect.com/science/article/pii/S0020768323004420
https://www.sciencedirect.com/science/article/pii/S0020768323004420
http://dx.doi.org/10.1007/s00466-021-02112-3
http://dx.doi.org/10.1007/s00466-021-02112-3
http://dx.doi.org/10.1007/s00466-021-02112-3
http://dx.doi.org/10.1016/j.cma.2023.115889
https://www.sciencedirect.com/science/article/pii/S0045782523000129
https://www.sciencedirect.com/science/article/pii/S0045782523000129
https://www.sciencedirect.com/science/article/pii/S0045782523000129
http://dx.doi.org/10.1016/j.jmbbm.2022.105490
https://www.sciencedirect.com/science/article/pii/S1751616122003952
http://dx.doi.org/10.3390/su141911996
https://www.mdpi.com/2071-1050/14/19/11996
https://www.mdpi.com/2071-1050/14/19/11996
https://www.mdpi.com/2071-1050/14/19/11996
http://dx.doi.org/10.48550/ARXIV.1904.08082
http://dx.doi.org/10.48550/ARXIV.1904.08082
http://dx.doi.org/10.48550/ARXIV.1904.08082
https://arxiv.org/abs/1904.08082
http://dx.doi.org/10.1177/14759217231179912
http://arxiv.org/abs/2210.04165
http://dx.doi.org/10.1016/j.eswa.2016.11.037
http://dx.doi.org/10.1016/j.eswa.2016.11.037
http://dx.doi.org/10.1016/j.eswa.2016.11.037
https://www.sciencedirect.com/science/article/pii/S0957417416306728
https://www.sciencedirect.com/science/article/pii/S0957417416306728
https://www.sciencedirect.com/science/article/pii/S0957417416306728
http://dx.doi.org/10.48550/ARXIV.1904.00374
http://dx.doi.org/10.48550/ARXIV.1904.00374
http://dx.doi.org/10.48550/ARXIV.1904.00374
https://arxiv.org/abs/1904.00374
http://dx.doi.org/10.1016/j.cma.2019.112628
http://dx.doi.org/10.1016/j.cma.2019.112628
http://dx.doi.org/10.1016/j.cma.2019.112628
https://www.sciencedirect.com/science/article/pii/S0045782519305109
https://www.sciencedirect.com/science/article/pii/S0045782519305109
https://www.sciencedirect.com/science/article/pii/S0045782519305109
http://dx.doi.org/10.1016/j.media.2019.101569
http://dx.doi.org/10.1016/j.media.2019.101569
http://dx.doi.org/10.1016/j.media.2019.101569
http://dx.doi.org/10.1073/pnas.1911815116
http://dx.doi.org/10.1016/j.engappai.2022.105176
http://dx.doi.org/10.1016/j.engappai.2022.105176
http://dx.doi.org/10.1016/j.engappai.2022.105176
https://www.sciencedirect.com/science/article/pii/S0952197622002810
https://www.sciencedirect.com/science/article/pii/S0952197622002810
https://www.sciencedirect.com/science/article/pii/S0952197622002810
http://dx.doi.org/10.1016/j.engappai.2021.104652
http://dx.doi.org/10.1016/j.engappai.2021.104652
http://dx.doi.org/10.1016/j.engappai.2021.104652
https://www.sciencedirect.com/science/article/pii/S0952197621004541
https://www.sciencedirect.com/science/article/pii/S0952197621004541
https://www.sciencedirect.com/science/article/pii/S0952197621004541
http://dx.doi.org/10.1145/3392717.3392772
http://dx.doi.org/10.1145/3392717.3392772
http://dx.doi.org/10.1145/3392717.3392772
http://dx.doi.org/10.48550/ARXIV.2109.09491
http://dx.doi.org/10.48550/ARXIV.2109.09491
http://dx.doi.org/10.48550/ARXIV.2109.09491
https://arxiv.org/abs/2109.09491
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb47
http://dx.doi.org/10.1063/5.0062546
http://dx.doi.org/10.1016/j.eswa.2019.113083
http://dx.doi.org/10.1016/j.eswa.2019.113083
http://dx.doi.org/10.1016/j.eswa.2019.113083
https://www.sciencedirect.com/science/article/pii/S0957417419308000
https://www.sciencedirect.com/science/article/pii/S0957417419308000
https://www.sciencedirect.com/science/article/pii/S0957417419308000
https://openreview.net/forum?id=roNqYL0_XP
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.jcp.2018.10.045
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
http://dx.doi.org/10.1016/j.commatsci.2020.109850
http://dx.doi.org/10.21437/Interspeech.2021-1457
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
http://dx.doi.org/10.1016/j.engappai.2023.106049
https://www.sciencedirect.com/science/article/pii/S0952197623002336
https://www.sciencedirect.com/science/article/pii/S0952197623002336
https://www.sciencedirect.com/science/article/pii/S0952197623002336
http://dx.doi.org/10.1109/ROBIO.2017.8324448
http://dx.doi.org/10.1109/ROBIO.2017.8324448
http://dx.doi.org/10.1109/ROBIO.2017.8324448
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb57
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb57
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb57
http://dx.doi.org/10.1016/j.cma.2019.112790
https://www.sciencedirect.com/science/article/pii/S0045782519306826
https://www.sciencedirect.com/science/article/pii/S0045782519306826
https://www.sciencedirect.com/science/article/pii/S0045782519306826

Engineering Applications of Artificial Intelligence 133 (2024) 108055S. Deshpande et al.
Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., Battaglia, P.W.,
2020. Learning to simulate complex physics with graph networks. In: Learning
to Simulate Complex Physics with Graph Networks. pp. 8459–8468, URL:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094802982&partnerID=
40&md5=57a515ee79e6915a2266fa3f2bc4870c. Cited by: 53.

Seo, M., Min, S., 2023. Graph neural networks and implicit neural representation
for near-optimal topology prediction over irregular design domains. Eng. Appl.
Artif. Intell. 123, 106284. http://dx.doi.org/10.1016/j.engappai.2023.106284, URL:
https://www.sciencedirect.com/science/article/pii/S0952197623004682.

Shivaditya, M.V., Alves, J., Bugiotti, F., Magoules, F., 2022. Graph neural network-based
surrogate models for finite element analysis. arXiv:2211.09373.

Simo, J., Taylor, R., 1982. Penalty function formulations for incompressible nonlinear
elastostatics. Comput. Methods Appl. Mech. Engrg. 35 (1), 107–118.

Thakolkaran, P., Joshi, A., Zheng, Y., Flaschel, M., De Lorenzis, L., Kumar, S., 2022.
NN-EUCLID: Deep-learning hyperelasticity without stress data. J. Mech. Phys. Solids
169, 105076. http://dx.doi.org/10.1016/j.jmps.2022.105076, URL: https://www.
sciencedirect.com/science/article/pii/S0022509622002538.

Varrette, S., Bouvry, P., Cartiaux, H., Georgatos, F., 2014. Management of an academic
HPC cluster: The UL experience. http://dx.doi.org/10.1109/HPCSim.2014.6903792.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y., 2017.
Graph attention networks. http://dx.doi.org/10.48550/ARXIV.1710.10903, URL:
https://arxiv.org/abs/1710.10903.

Vijayaraghavan, S., Wu, L., Noels, L., Bordas, S.P.A., Natarajan, S., Beex, L.A.A., 2021.
Neural-network acceleration of projection-based model-order-reduction for finite
plasticity: Application to RVEs. http://dx.doi.org/10.48550/ARXIV.2109.07747,
URL: https://arxiv.org/abs/2109.07747,

Vlassis, N.N., Ma, R., Sun, W., 2020. Geometric deep learning for computational
mechanics part I: anisotropic hyperelasticity. Comput. Methods Appl. Mech. Engrg.
371, 113299. http://dx.doi.org/10.1016/j.cma.2020.113299, URL: https://www.
sciencedirect.com/science/article/pii/S0045782520304849.
18
Šarkić Glumac, A., Jadhav, O., Despotović, V., Blocken, B., Bordas, S.P., 2023.
A multi-fidelity wind surface pressure assessment via machine learning: A
high-rise building case. Build. Environ. 234, 110135. http://dx.doi.org/10.1016/
j.buildenv.2023.110135, URL: https://www.sciencedirect.com/science/article/pii/
S0360132323001622.

Wang, F., Eljarrat, A., Müller, J., Henninen, T., Erni, R., Koch, C., 2020. Multi-
resolution convolutional neural networks for inverse problems. Sci. Rep. 10, 5730.
http://dx.doi.org/10.1038/s41598-020-62484-z.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S., 2021. A comprehensive survey
on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32 (1), 4–24.
http://dx.doi.org/10.1109/TNNLS.2020.2978386.

Yan, S., Xiong, Y., Lin, D., 2018. Spatial temporal graph convolutional networks for
skeleton-based action recognition. http://dx.doi.org/10.48550/ARXIV.1801.07455,
URL: https://arxiv.org/abs/1801.07455.

Zhang, Y., Gong, Z., Zhou, W., Zhao, X., Zheng, X., Yao, W., 2023. Multi-fidelity
surrogate modeling for temperature field prediction using deep convolution neu-
ral network. Eng. Appl. Artif. Intell. 123, 106354. http://dx.doi.org/10.1016/
j.engappai.2023.106354, URL: https://www.sciencedirect.com/science/article/pii/
S0952197623005389.

Zhao, X., Gong, Z., Zhang, Y., Yao, W., Chen, X., 2023. Physics-informed convolutional
neural networks for temperature field prediction of heat source layout without
labeled data. Eng. Appl. Artif. Intell. 117, 105516. http://dx.doi.org/10.1016/
j.engappai.2022.105516, URL: https://www.sciencedirect.com/science/article/pii/
S0952197622005061.

Zhao, L., Peng, X., Tian, Y., Kapadia, M., Metaxas, D.N., 2019. Semantic graph convo-
lutional networks for 3D human pose regression. In: 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition. CVPR, IEEE, http://dx.doi.org/10.1109/
cvpr.2019.00354.

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., Sun, M., 2020.
Graph neural networks: A review of methods and applications. AI Open 1, 57–81.
http://dx.doi.org/10.1016/j.aiopen.2021.01.001, URL: https://www.sciencedirect.
com/science/article/pii/S2666651021000012.

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094802982&partnerID=40&md5=57a515ee79e6915a2266fa3f2bc4870c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094802982&partnerID=40&md5=57a515ee79e6915a2266fa3f2bc4870c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094802982&partnerID=40&md5=57a515ee79e6915a2266fa3f2bc4870c
http://dx.doi.org/10.1016/j.engappai.2023.106284
https://www.sciencedirect.com/science/article/pii/S0952197623004682
http://arxiv.org/abs/2211.09373
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb62
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb62
http://refhub.elsevier.com/S0952-1976(24)00213-6/sb62
http://dx.doi.org/10.1016/j.jmps.2022.105076
https://www.sciencedirect.com/science/article/pii/S0022509622002538
https://www.sciencedirect.com/science/article/pii/S0022509622002538
https://www.sciencedirect.com/science/article/pii/S0022509622002538
http://dx.doi.org/10.1109/HPCSim.2014.6903792
http://dx.doi.org/10.48550/ARXIV.1710.10903
https://arxiv.org/abs/1710.10903
http://dx.doi.org/10.48550/ARXIV.2109.07747
https://arxiv.org/abs/2109.07747
http://dx.doi.org/10.1016/j.cma.2020.113299
https://www.sciencedirect.com/science/article/pii/S0045782520304849
https://www.sciencedirect.com/science/article/pii/S0045782520304849
https://www.sciencedirect.com/science/article/pii/S0045782520304849
http://dx.doi.org/10.1016/j.buildenv.2023.110135
http://dx.doi.org/10.1016/j.buildenv.2023.110135
http://dx.doi.org/10.1016/j.buildenv.2023.110135
https://www.sciencedirect.com/science/article/pii/S0360132323001622
https://www.sciencedirect.com/science/article/pii/S0360132323001622
https://www.sciencedirect.com/science/article/pii/S0360132323001622
http://dx.doi.org/10.1038/s41598-020-62484-z
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://dx.doi.org/10.48550/ARXIV.1801.07455
https://arxiv.org/abs/1801.07455
http://dx.doi.org/10.1016/j.engappai.2023.106354
http://dx.doi.org/10.1016/j.engappai.2023.106354
http://dx.doi.org/10.1016/j.engappai.2023.106354
https://www.sciencedirect.com/science/article/pii/S0952197623005389
https://www.sciencedirect.com/science/article/pii/S0952197623005389
https://www.sciencedirect.com/science/article/pii/S0952197623005389
http://dx.doi.org/10.1016/j.engappai.2022.105516
http://dx.doi.org/10.1016/j.engappai.2022.105516
http://dx.doi.org/10.1016/j.engappai.2022.105516
https://www.sciencedirect.com/science/article/pii/S0952197622005061
https://www.sciencedirect.com/science/article/pii/S0952197622005061
https://www.sciencedirect.com/science/article/pii/S0952197622005061
http://dx.doi.org/10.1109/cvpr.2019.00354
http://dx.doi.org/10.1109/cvpr.2019.00354
http://dx.doi.org/10.1109/cvpr.2019.00354
http://dx.doi.org/10.1016/j.aiopen.2021.01.001
https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://www.sciencedirect.com/science/article/pii/S2666651021000012

	MAgNET: A graph U-Net architecture for mesh-based simulations
	Introduction
	MAgNET Deep Learning Framework
	MAgNET architecture overview
	Adjacency matrix of the mesh-based graph
	Multi-channel Aggregation (MAg) layer
	Comparison to existing graph aggregation/convolution layers

	Graph pooling- and unpooling layers
	Information-passing interpretation of MAg and pooling layers
	Application to FEM-based datasets

	Results
	Generation of FEM based datasets
	Design, implementation and training of neural network models
	Cross validation of CNN U-Net and MAgNET predictions
	Predictions of MAgNET for general (unstructured) meshes
	A note on physics-informed errors

	Conclusion and future directions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

