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ABSTRACT The aim of this study is to contribute to the important question in Neuroscience of whether
the number of neurons in a given layer of a network affects transmission efficiency. Mutual Information,
as defined by Shannon, between the input and output signals for certain classes of networks is analyzed
theoretically and numerically. A Levy-Baxter probabilistic neural model is applied. This model includes all
important qualitative mechanisms involved in the transmission process in the brain. We derived analytical
formulas for the Mutual Information of input signals coming from Information Sources as Bernoulli
processes. These formulas depend on the parameters of the Information Source, neurons and network.
Numerical simulations were performed using these equations. It turned out, that the Mutual Information
starting from a certain value increased very slowly with the number of neurons being added. The increase
is of the rate m−c where m is the number of neurons in the transmission layer, and c is very small. The
calculations also show that for a practical number (up to 15000) of neurons, the Mutual Information reaches
only approximately half of the information that is carried out by the input signal. The influence of noise on
the transmission efficiency depending on the number of neurons was also analyzed. It turned out that the
noise level at which transmission is optimal increases significantly with this number. Our results indicate that
a large number of neurons in the network does not mean an essential improvement in transmission efficiency,
but can contribute to reliability.

INDEX TERMS Shannon communication theory, neural network, network layer, transmission efficiency,
mutual information, model of neuron, spike trains, information source, entropy.

I. INTRODUCTION
The human brain contains billions of neurons, linked to
one another via hundreds of trillions of tiny contacts called
synapses [1]. It is known that more than 80% of neurons
are l small branch cells located in the cerebellum and have
received only a few electrical impulses (spikes) from to
4-7 synapses, while the rest of the neurons have up to
200 000 connections [3]. Over the last two decades, signif-
icant progress has been made in explaining the evolution
and role of brain size [2]. In this context, it is important to
understand how the size of the network, andmore specifically
the number of neurons, affects the efficiency of information
transmission.

The associate editor coordinating the review of this manuscript and
approving it for publication was Luca Barletta.

Research on the impact and effects of scales on the
functioning of neural networks has been conducted in
several aspects. Neural activity at the microscopic level was
modeled using phenomenological equations [4]. Schwalger
and co-authors proposed a system of equations for several
interacting populations at a mesoscopic scale, starting from
a microscopic model of randomly connected generalized
integrate-and-fire neuron models for networks varying
between 50-2000 neurons [5]. In turn, in [6], it was shown that
structural networks are a crucial component of the stochastic
brain model on the mesoscopic scale. A metric called
multiscale relevance (MSR) was proposed in [7] to capture
the dynamic variability of the activity of single neurons
across different scales. It was shown that neurons with a low
MSR tend to have low Mutual Information, whereas neurons
with a high MSR contain significant information on spatial
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navigation and allow the decoding of the spatial position.
In [8], it was suggested by exploiting the Hindmarsh-Rose
neuron model that in small-scale networks information,
is exchanged using temporal codes, while on a macroscopic
scale, there would typically be pairs of neurons not directly
connected because of the brain’s sparsity, firing rate, and
interspike-interval codes would be the most efficient codes.

The scale problems also constitute a challenge for the
efficient implementation and performance of advanced
networks. In [9], linear models were considered to analyze
the memory consumption of the constituent components of
neuronal simulators as a function of the network size and
number of cores used. It was found out that as the network
model sizes approach the regime of meso- and macroscale
simulations, memory consumption on individual compute
nodes became a critical bottleneck. Large-scale models of
neuronal activity describing the activity of whole neural
populations were considered in [10]. The authors combined
simulations of brain network models with microscopically
detailed spiking neuron network models. This approach
enables the integration of different information sources and
analysis of the biophysiological mechanisms in the network.

However, an important question regarding the role of
the brain is its effectiveness in information processing.
Two criteria are important to quantitatively measure this
effectiveness. The first criterion simply maximizes the rate of
information transmission, and the second criterion maximize
information in relation to the energy used to transmit it.
This study focuses on the first criterion. For the second
criterion, it is important to estimate the energy costs.
Attwell and Laughlin [11] analyzed the metabolic cost of
different components of excitatory signaling and suggested
that signaling-related energy consumption increases linearly
with spiking frequency. More recently, detailed models and
experimental results [12] have extended these calculations
to the nonlinear regime. In [13], it was shown by direct
mathematical analysis for the bi-stable neuron model that
there exists an optimal number of neurons in the network
where the average energy cost compared to the Mutual
Information achieved per neuron passes through a global
minimum.

The quantitative measurement of information requires the
application of adequate mathematical tools. In general, there
are two approaches to the quantitative analysis of information
transfer processes, the Wiener and Shannon approaches [14].
The Shannon formulation differs from theWiener approach in
the nature of the transmitted signal and in the type of decision
made at the receiver. In the Shannon model, a randomly
generated message produced by a source of information is
encoded, that is, each possible message that the source can
produce is associated with a signal belonging to a specified
set. On the other hand, in the Wiener model, a random signal
communicated directly through the channel; the encoding
step is absent. Furthermore, the channel model is essentially
fixed. The channel is generally taken to be a device that adds
to the input signal a randomly generated ‘‘noise’’. In Shannon

Information Theory [15], [16], neural networks are treated
as communication channels and the information transmitted
is measured as the Mutual Information between stimuli
and response signals [16], [19], [20], [21]. When studying
information transmission processing, it is important to select
both neural [23] and network architecture models [22].
In previous studies, we directly investigated the transmission
for simple neuronal ring architectures composed of a few
Levy-Baxter neurons [24] paying particular attention to
the role of inhibitory neurons, long-range connections, and
adaptation of neuronal networks to the presence of noise [18],
[25]. This neuron model has a probabilistic character
and exploits the binary representation of neuronal signals.
Moreover, it contains all essential qualitative mechanisms
participating in the transmission process, and provides results
consistent with physiologically observed values [24].

In this study, we focus on the problem of the influence
of the number of neurons in the network on transmission
efficiency. We analyze both theoretically and numerically the
Mutual Information between the input and output signals
in the case of a simple class of neural networks with
an increasing number of neurons. This type of analysis
provides insight and intuition regarding complex situations.
We present the results characterizing MI dependence on the
size of the network as well as on the adopted parameters of the
neurons. It is worth emphasizing that finding the maximum
MI actually means finding the Shannon capacity of the
transmission channel, which directly characterizes optimal
decoding opportunities.

The remainder of this paper is organized as follows. In Sec-
tion II, we briefly recall the following subsections: the basic
concepts and notations of Shannon’s Communication Theory,
standard digitization of the spike trains, the neuron model
used, and the assumed network architecture. Section III
presents theoretical and numerical results. A discussion and
concluding remarks are preseented in Section IV.

II. MATHEMATICAL BACKGROUNDS AND MODELS
In this Section, we present basic information regarding
the fundamental concepts of Shannon’s theory, neuronal
signals digitization, neuron model used and assumed network
architecture. We introduce notations based on mathematical
formalism, but also refer to certain intuitions and a more
accessible understanding of the process of information
transfer in neural networks.

A. SHANNON COMMUNICATION THEORY
In this Section, we provide a brief overview of the basic
concepts of Shannon’s Communication Theory. The two
fundamental concepts of this theory are entropy and Mutual
Information (MI ) between two random variables X and Z
[16]. These concepts have been extensively used in many
problems related to the application of learning methods that
use neural networks to data classification problems [26].
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Mutual Information can be expressed in terms of entropy as

MI (X;Z ) := H (X ) − H (X |Z ) = H (X ) + H (Z ) − H (X ,Z ),

(1)

where H (X |Z ) is the entropy of X conditional on Z and
H (X ,Z ) is the joint entropy of X and Z [27], [28]. Clearly, 0
≤ MI (X;Z ) ≤ H (X ). There is a lot of estimators of entropy
and consequently also Mutual Information developed in the
literature [29]. These estimators require large empirical data
to be effective; in the case of a neural network and a neuron
model, they would require the generation of very long strings
of bits (output signals), and taking into account that in order to
find the maximumMI , this generation operation would have
to be repeated, it would be very computationally expensive.
However, in practice, it is difficult to obtain reliable
results. Therefore, in the following sections we present first
theoretical and then numerical results. We derived analytical
formulas for Mutual Information between input signals
coming from an Information Source, such as Bernoulli
processes and output signals. Then, we performed numerical
simulations based on these formulae, as described in the next
subsection.

The basic idea of Mutual Information (expressed bits) is to
determine the reduction of uncertainty (measured by entropy)
of random variable X provided that we know the values of
discrete random variables Z . Maximal MI is linked with the
channel capacity for a given communication channel through
the Shannon Fundamental Theorem, which characterizes the
optimal decoding schemes.

B. SPIKE TRAINS CODING
It is commonly known [17], [18], [30], [31], [32] that
the carriers of information between neurons are electrical
signals, specifically sequences of potential actions called
spike-trains. Considering the physiological issues associated
with the spike train appearance, each spike was detected
with a limited time resolution. This led to the idea of
representing spike trains by using a sequence of symbols. The
binary digitalization of spike trains is the most natural and
commonly used representation [30]. Because a spike train is
observed with a limited time resolution δ, a spike is either
present in each time bin (denoted by ‘‘1’’) or absent (assigned
by ‘‘0’’). Then, if we look at a time interval of length T , each
spike train is represented by a binary sequence (additionally
with some probability of occurrence). Mathematically, such
sequences can be treated as a part of a trajectory of a
stochastic process that can be analyzed from the point of view
of the information they carry using Shannon’s Information
Theory [16].

C. NEURON MODEL APPLIED
In this study, we assume a probabilistic Levy-Baxter neuron
model [24], (see Fig. 1). In general, it considers all
essential qualitative mechanisms involved in the information
transmission process and provides results that are consistent

with the physiologically observed values. In this model, the
synaptic noise s is a success rate parameter (0 < s < 1) that
a spike will be transmitted through the synapse (this means
that when the synaptic noise parameter s is equal to 1 there
is no noise, while the noise increases when s is smaller),
amplitude modulation Qi is a random variable with uniform
distribution in the interval [0,1] and activation threshold
height g (g > 0), are the neuron model’s parameters. The
input to each neuron at a given moment in time, is a sequence
of bits X = [X (1), . . . ,X (n)] where n denotes the number of
synapses. The neuron output at each moment is a bit (‘‘0’’
or ‘‘1’’). To simplify the notation used in the original study
by Levy and Baxter, we denote inputs E and I by X with an
appropriate index.

Neuron acts in the following manner. Each binary input
(block of n bits) to a given neuron is subject in synapses to
quantal failures φ being a Bernoulli distributed random vari-
able (with parameter s) and quantal amplitude modulation Qi
and which are summed to σ . This is the input to the spike
generator g(σ ). A spike is generated if the magnitude of its
excitation σ exceeds the assumed threshold g.
Because the type of stimuli coming from inhibitory

neurons is an internal mechanism in the brain, while the aim
of this study was to estimate the transmission of information
from external sources (information provided by external
stimuli), we assumed only external Sources of Information.

D. NETWORK ARCHITECTURE ASSUMED
To analyze how an increasing number of neurons in the
network can affect the transmission efficiency, we directly
considered a network with a simple architecture (see
Figure 2) enabling the addition of subsequent neurons in the
transmission layer (i.e., the Second Layer N ) and having
the option, after connecting a new neuron, to transmit the
same input information. Thus, we assume that, at every
moment in time, each neuron in the Second Layer N
receives the same information represented by a block of bits.
Therefore, the length of the input block (Input Layer X )
is equal to the assumed number of synapses n for a single
neuron. Each bit (component) in the input block appears
at each subsequent moment with probability p when it is
equal to ‘‘1’’ and with probability 1-p when it is equal
to ‘‘0’’. Therefore, according to Shannon’s terminology, the
source of the information is an n-dimensional stochastic
process. To introduce this notation, we now move on to
a more formal description in mathematical language using
Shannon’s formalism. Let n denote the number of synapses
for each neuron and m be the number of neurons in the
network in the transmission layer. The Information Source
is assumed to be an n-dimensional stochastic process,
X (ti) = [X (1)(ti), . . . ,X (n)(ti)], i = 1, 2, . . ., and ti+1 −

ti = 1, where 1 is the assumed time resolution. For
example, one can assume that this information come from n
neurons and is modeled by process X . The components of
process X (k)(ti), k = 1, 2, . . . , n are considered independent
Bernoulli processes with parameter p. This parameter can be
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FIGURE 1. The scheme of the neuron model proposed by Levy and Baxter [24]. Additionally, similarly to [25] the type of inputs was also emphasized.
Encoded stimuli is modeled by a discrete, binary stationary stochastic process with firing-rate (fr ) being the probability of a spike occuring and 1 − fr the
probability of no spike. Parameters E (i ) describe excitatory strength, b addresses inhibition strength, quantal failures φ is a random variable taking 0 for
the input 0 and 1 with probability s for the input 1, amplitude fluctuations Q are implemented as random variables U [0; 1] with uniform distribution
function. The activation threshold is denoted by g. When σ is greater than g a ‘‘1’’ bit is generated, otherwise a ‘‘0’’ is output.

FIGURE 2. Architecture of the neural network under consideration. Each
neurons X (i ), i = 1, 2, . . . , n in the input layer X is supported by signals
from other sources, for example, from earlier neurons. Each neuron
N (j ), j = 1, 2, . . . , m in the second layer N is supported by inputs from
Information Source X (consisting of n neurons). Thus, we assumed that
the neurons in the second layer had n synapses. In this study, the Mutual
Information MI(X ; Z ) between the information delivered by neurons from
layer X and the information carried out by the output layer Z is evaluated
and analyzed.

understood as the firing rate fr of the input spike trains to a
single synapse of a neuron located in the Second Layer N .
The joint neuronal output from layer N of m neurons (which
is a m-dimensional random variable) is denoted by Z =

[Z (1), . . . ,Z (m)], where Z (i) is a binary random variable (see
Fig. 2). Note that because MI (X;Z ) ≤ H (X ) and H (X ) ≤ n,
consequently MI (X;Z ) must be less than the number n of
synapses in a single neuron.

III. RESULTS
In this Section, we first present the theoretical and then
numerical results. We derived analytical formulas for

Mutual Information between input signals coming from an
Information Sources, such as Bernoulli processes and output
signals. Then, we performed numerical simulations based on
these formulae, as described in the next subsection.

A. THEORETICAL RESULTS
Now, let us assume that xk is the event that, at a givenmoment
of time, k of specific components X (i) in X being inputs to
neurons in layer N are equal to 1, and the other n− k is equal
to 0. Similarly, let zj be the event that at a given moment in
time, j of specific components Z (i) in Z being output from
layer Z is equal to 1 and the other m− j is equal to 0.

Because the random variables X (i), are independent, the
probability of event xk is

P(xk) = P(X = xk) = f kr (1 − fr )n−k . (2)

For each neuron from the output layer, the input spike
can pass through the synapse with a success rate s. Next,
the amplitudes of the transmitted signals are modulated
by a random function Q with the uniform distributions on
the interval [0; 1]. Thus, the conditional probability of the
activation of a single neuron, provided that event xk occurs,
is

P(Z = z1|X = xk) =

k∑
i=0

(
k
i

)
si(1 − s)k−iP(iQ ≥ g) (3)

P(Z = z0|X = xk) = 1 − P(Z = z1|xk) (4)

where P(iQ ≥ g) denotes the probability that the sum iQ of i
random variables of type Q reaches the activation threshold
g and z1 is the probability of activation of a single neuron.
Because eachQ is uniformly distributed and independent, the
random variable iQ has an Irwin-Hall distribution [33]. Then,
the probability P(iQ ≥ g) can be expressed as:

P(iQ ≥ g) = 1 − P(iQ < g), (5)
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where the cumulative distribution function (CDF) is of the
form [33]

P(iQ < g) =
1
i!

|g|∑
h=0

(−1)h
(
i
h

)
(g− h)i. (6)

Note that the calculation of probability (5) is directly obtained
from the CDF of iQ at point g. By substituting (5) and (6)
into (3) we obtain

P(Z = z1|X = xk)

=

k∑
i=0

(
k
i

)
si(1 − s)k−i(1 −

1
i!

|g|∑
h=0

(−1)h
(
i
h

)
(g− h)i). (7)

Since the components in the output Z = [Z (1), . . . ,Z (m)] are
independent, thus we have

P(Z = zj|X = xk)

= (P(Z = z1|X = xk))j(P(Z = z0|X = xk))m−j,

(8)

P(Z = zj,X = xk)

= P(xk)P(Z = zj|X = xk) (9)

P(Z = zj) =

∑
x∈X

P(x, zj) =

n∑
k=0

(
n
k

)
P(X = xk,Z = zj).

(10)

Thus, we can calculate all the components (i.e. corresponding
entropies) that are needed to determine the Mutual Informa-
tionMI (X;Z) in (1). The entropies are expressed as follows:

H (X) = H (X(1)) + H (X(2)) + . . . + H (X(n))

= −n[fr log fr + (1 − fr ) log(1 − fr )], (11)

H (Z) = −

∑
z∈Z

P(z) logP(z)

= −

m∑
j=0

(
m
j

)
P(zj) logP(zj), (12)

H (Z|X)

= −

∑
x∈X

∑
z∈Z

P(z, x) logP(z|x)

= −

n∑
k=0

(
n
k

)
P(xk)

m∑
j=0

(
m
j

)
P(zj|xk) logP(zj|xk),

(13)

H (X,Z) = −

∑
x∈X

∑
z∈Z

P(x, z) logP(x, z)

= −

n∑
k=0

m∑
j=0

(
n
k

)(
m
j

)
P(xk, zj) logP(xk, zj).

(14)

Thus, the Mutual Information MI (X;Z) is of the form

MI (X;Z) = −n[fr log fr + (1 − fr ) log(1 − fr )]

+ −

m∑
j=0

(
m
j

)
P(zj) logP(zj)

+

n∑
k=0

m∑
j=0

(
n
k

)(
m
j

)
P(xk, zj) logP(xk, zj)

(15)

and can be calculated by substituting equations (8), (9),
and (10) into equation (15).
To summarize, in this subsection we have derived the

formulas that allow the calculation of Mutual Information
MI (X;Z ) between the input signal X and the output signal
Z expressed in terms of the parameters of the information
source (fr ), neuron (s, g) and the number of neurons m in the
second layer N of the considered neural network.
In the next section, we apply (15) to find the Mutual

Information between the input signalsX and output signals Z
for the considered networks with an increasing number
of neurons m, and perform calculations for the full range
of parameters characterizing a Levy-Baxter neuron and
Information Source.

B. NUMERICAL RESULTS
We performed a numerical simulation to evaluate MI (X;Z)
by exploiting formulas (8), (9), (10), and (15) developed in the
previous section. The application of these formulas allows us
to reduce the computational cost essentially and consequently
allow us to evaluateMI (X;Z ) for a larger number of neurons,
even up to m = 60. It is worth emphasizing that directly
applying formula (1) to a reliable estimate of MI (X;Z )
would require estimating the probabilities needed to calculate
the entropy H (Z ) and H (X ,Z ), which, given the length
of the Z strings of even m = 20 bits, would require
generating very long strings and would be computationally
very expensive. In addition, such calculations would have
to be repeated for different parameters s, and fr to calculate
the maximum MI (X;Z ), which constitutes a significant
additional computational cost. To find the maximal MI with
satisfactory accuracy, we needed to go through the neuron
parameter space of synaptic failure s as 0 < s < 1
and through firing frequency fr (0 < fr < 1) with a
relatively small step equal to 0,01. Because the Levy-Baxter
model of a neuron has a probabilistic nature, simulating the
input-output process for a single neuron requires the use
of randomizing generators (working according to a given
probability distribution). This implies that MI calculations
can be performed successfully for a network containing up to
several dozen of neurons. To perform the computations with a
possibly large number of neurons m and taking into account
the information concerning the number of synapses in [3].
we performed an analysis for neurons with five synapses.
The threshold parameter g was assumed to be 5% of the
maximal possible value that could be reached by a neuron
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FIGURE 3. The influence of an increasing number (m) of neurons in the layer N on maximal Mutual Information MI(X; Z). For each number m the
maximum was taken over the source (i.e. layer X ) parameter fr and neuron parameter s being the success rate (i.e. probability s that spike will be
successfully transmitted over a given synapse) in layer N . Activation threshold g is assumed to be 0.25. The calculations are presented for n=5, what
means that the number of synapses of neurons in layer N is already 5. It turned out that the best fitting curve is of the form f (m) = a −

b
mc

(a = 12.05, b = 11.37, c = 0, 025), where m is the number of neurons in the Layer N . The goodness of fitting according to MATLAB Curve
Fitting Toolbox is: SSE : 0.02096, RMSE : 0.01917. The confidence bounds with 95% of confidence level are also depicted (±2SD).

with five synapses. Despite these limitations, our results
showed quantitative and qualitative behavior of maximal
MI (X;Z) as a function of the number of neurons (m). The
results are presented in Fig. 3, 4 and Table 1.

In Fig. 3, the influence of increasing the number of neurons
m on the maximal Mutual Information MI (X;Z ) for neural
networks with the architecture presented in Fig. 2 is shown.
We applied the MATLAB Curve Fitting Toolbox and found
that the best fitting curve is the function maxMI (m) =

12.05 −
11.37
m0.025 with a goodness of fit RMSE = 0.019 and

SSE = 0.02. Here, RMSE and SSE are the root mean
square error (RMSE) and summation of the square error
(SSE), respectively. The smaller the SSE , the better the
fitting. MaxMI is the maximum value of MI (X;Z ) for all
0 < s < 1 and 0 < fr < 1. This shows that maxMI
is asymptotically limited, and another important observation
is that it increases very slowly starting from the number of
m about 50 – 60. Moreover, because we assumed in our
simulations that the number of synapses for each neuron is
equal to five and that the input signals to each synapse come
from the Bernoulli process, taking into account the classical
inequality MI (X;Z ) ≤ H (X ), we have that MI (X;Z ) can be
up to five. Therefore, we see that for a practical number of
neurons m up to 15000 the value of MI (X;Z ) = f (m) ∼

2.57 is only approximately half of the maximum possible
value. This means that the uncertainty of correctly decoding
the input signal given the output signal is, in this case, reduced
in average by half.

In Fig. 4, Mutual Information MI (X;Z) = MI (fr , s, g)
as a function of the source parameter firing rate fr
and neuron parameter synaptic noise s for increasing

TABLE 1. Maximal Mutual Information (expressed in bits) for a selected
number of neurons m (5, 10, 30, 60). The parameters s (the probability
that an action potential will pass through the synapse) and fr (probability
of ‘‘1’’/action potential occurrence in the input sequence) for which these
maxima are achieved are also given. The threshold g = 0, 25 is assumed
5% of the maximal possible σ which is equal to 5 (since the number of
synapses to a given neuron is n = 5).

numbers m (5, 10, 30, 60) of neurons in layer N is presented.
It can be observed that, with an increase in the network size
m the values of maxMI (i.e., the capacity of the transmission
channel) are reached for smaller s and larger fr values
(see also Table 1). Because s is a parameter responsible
for the level of noise in synapses, it is the probability
of successful transmission of an action potential through
the synapse; therefore, the larger s, the higher the success
and the lower the noise. The results in Table 1 show that
as the number of neurons increases, achieving maximum
transmission efficiency is accompanied by a slight increase in
noise (column ‘‘s’’). We see that in the case of a network with
a size of m = 5 neurons, the maximum Mutual Information
is achieved for s = 0.980, while for m = 10 neurons the
value of s for which this maximum is achieved is 0.9. Then,
atm = 30 neurons, it increases the value of themost favorable
noise in synapses reaching s = 0.821 and for m = 60 this
value is s = 0.695. In turn, the observation that for a larger
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FIGURE 4. Mutual Information MI(X; Z) = MI(fr , s, g) for neural networks shown in Figure 2 stimulated by a Bernoulli information
source with firing rate fr (horizontal axe) and synaptic noise s (vertical axe). The number m of neurons in the second layer N increases
successively, m = 5, 10, 30, 60. The isolines with step 0.05 are depicted. One can see that the maximum MI is achieved for the synaptic
noise s significantly less than 1. This is especially visible when the number of neurons m is larger.

network the maximum MI is achieved for larger fr confirms
that more energy must be used [11] to obtain a more efficient
transmission with increasing size and, as compensation, this
maximum is achieved for a more noisy channel (i.e. for
a lower success rate s). This implies that a network with
a larger number of neurons is more resistant to noise and
consequently is more reliable.

To summarize themain numerical results, it was found that,
for these neural networks, the maximum Mutual Information
increased very slowly at the rate m−c, with a small c =

0.02473, where m is the number of neurons. This indicates,
among other things, that a further increase in the number of
neurons does not mean a significant increase in transmission
efficiency. Moreover, it was also noticed that the maximum
transmission efficiency is achieved for a certain noise s in
synapses, which shows that, in a sense, neural mechanisms
can cope with this natural phenomenon in biological systems.

IV. DISCUSSION AND CONCLUSION
Mechanisms have been developed over the course of
evolution to enable more efficient and reliable information
processing. However, the key question is the impact of the
size of the brain and thus the role of the number of neurons
on the efficiency of these processes. Can such a performance

be significantly improved by a simple increasing the size
of the neural network. To provide insight into this problem,
it seems natural to analyze these issues by examining the
relevant models of the networks and neurons themselves [34],
[35]. However, realistic models of real neural networks
are analytically and computationally intractable. One of the
major difficulties is the selection of the appropriate size
and topology of these networks. Hunter et co-authors [36]
discussed hot issues, including different learning algorithms,
efficiency of different network topologies, and importance
of choosing the proper size of neural networks. In [37]
a new formalism that borrows from many-body statistical
physics methods to analyze finite-size effects in spiking
neural networks was introduced. Therefore, a very important
question arises: does increasing the size of the network
always lead to greater efficiency of information transfer?
Another important question is whether increasing network
noise always leads to a decrease in the effectiveness of
information transfer.

Traditional mathematical approaches to analytically study
the dynamics of neural networks rely on mean-field approx-
imation, which is rigorously applicable only to infinite-sized
networks [38]. However, all existing biological networks
consist of a finite number of neurons, often consisting of
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only a few dozen neurons, such as the microscopic circuits in
invertebrates. Therefore, it is important to extend our ability
to analytically study neural dynamics in small networks.
At present, systematic analytical solutions for the dynamics
of finite-size neural networks require further analysis. In this
study, to provide insight into the impact of network size
on the efficiency of information transmission and noise
influence, we considered the case of fully connected networks
consisting of Levy-Baxter neurons with a single hidden
layer with an increasing number of neurons. We treated
this problem quantitatively using the Shannon approach,
and analyzed the Mutual Information between the input and
output signals. The L-B neuron, which exhibits the basic
properties of a biological neuron, is described in probabilistic
language, which allows us to derive analytical formulas for
MI expressed in terms of the size of the network and the
parameters of the neuron. Numerical results obtained using
these formulas have shown that for a practical number of
neurons for which the input signal can reach a given moment
(up to 15000), the Mutual Information between the input
and output signals is approximately 50% of the maximum
possible information that can be achieved. It is also important
to note that the increase in MI is very slow as the number
of neurons increases. The results of our study concerning
the influence of network size are consistent with those
obtained in [13]. In this study, the effectiveness of information
transmission with an increasing number of neurons for a
network architecture similar to that used in our study was
examined. The authors used a bistable neuron model and
consider the information carried by the signal in such a
network in relation to its metabolic cost. More precisely, they
consider the E

MI quotient. It was demonstrated that there exists
an optimal number of neurons in this model for which the
energy cost per Mutual Information passes through a global
minimum. Our work shows that Mutual Information, starting
from a certain level of the number of neurons, grows very
slowly, and it is known that the energy consumption increases
with the number of neurons practically linearly [11], [39],
or even exponentially [12], in which the MI

E indicator passes
through a global maximum (because we consider the inverse
quotient) for an increasing number of neurons, which is
consistent with the results in [13].

In turn, in the case of the influence of noise on the
transmission efficiency, our results are consistent with the
results obtained in the works of [40], [41], [42], and [43],
which also found that a certain level of noise in the considered
system (neural networks, signal recovery through an array
of saturating sensors, estimator design) may be beneficial in
the context of information processing. This means that since
the maximum transmission rate is reached as the number
of neurons increases, for higher and higher noise values s,
it shows that larger networks are more reliable.

To summarize, the results of our paper show that large
number of neurons in actual biological networks (brain) is
related mostly to the fact that individual areas in the brain are
dedicated to different types of stimuli and it is rather due to

the tendency to achieve reliability and noise immunity rather
than a significant increase in the information performance.

Studies related to the presented results regarding the
saturation of the information transmission rate as a function
of the number of neurons and the impact of noise on the
transmission efficiency are the subject of further research. It is
particularly important to clarify these issues in brain-inspired
networks (such as spiking neural networks or large-scale
brain networks) with more advanced architectures and with
the application of a variety of neuron models starting from
physiological neuron such as integrate-and fire models based
on the insight into pulsating electrical activity or from the
biophysical Hodgkin–Huxley like models that describe ion
channels.
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