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Abstract
Quantum speed limits provide ultimate bounds on the time required to transform one quantum
state into another. Here, we introduce a novel notion of quantum speed limits for collections of
quantum states, investigating the time for converting a basis of states into an unbiased one as well
as basis permutation. Establishing an unbiased basis, we provide tight bounds for the systems of
dimension smaller than 5, and general bounds for multi-qubit systems and the Hilbert space
dimension d. For two-qubit systems, we show that the fastest transformation implements two
Hadamards and a swap of the qubits simultaneously. We further prove that for qutrit systems the
evolution time depends on the particular type of the unbiased basis. Permuting a basis, we obtain
the exact expression for the Hilbert space of dimension d. We also investigate speed limits for
coherence generation, providing the minimal time to establish a certain amount of coherence with
a unitary evolution.

1. Introduction

Striving for quantum advantages, such as an increased speed of a computation, has become a competitive
goal. However, nature has established a fundamental speed limit, via a minimal time that is necessary for the
unitary evolution of an initial quantum state to a final quantum state, as pointed out in [1, 2]. In a geometric
approach [3–6], the quantum speed limit is linked to the length of the shortest path between initial and final
state, which can be quantified via a suitable distance measure. The work [7] characterizes the quantum speed
limit by rate of change of phases in quantum systems with Hermitian and non-Hermitian dynamics. In [8]
the authors discussed the structure of speedlimits for state transformation and provide a comparison
between the classical and quantum speedlimits. For a recent review of quantum speed limits, see [9].

The standard approach to quantum speed limits assumes that a quantum state |ψ⟩ is transformed into
another state |ϕ⟩ via a unitary evolution U= e−iHt. The task is to determine the optimal evolution time for
the transition |ψ⟩ → |ϕ⟩, with respect to the energy scale of the Hamiltonian H. First results in this direction
were presented for orthogonal states, and are known as Mandelstam-Tamm bound [1]:

T⊥ ⩾ π

2∆Eψ
, (1)

where (∆Eψ)2 = ⟨H2⟩ψ −⟨H⟩2ψ is the energy variance. Another bound was derived later by Margolus and
Levitin [2], giving

T⊥ ⩾ π

2Eψ
, (2)
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with the mean energy Eψ = ⟨H⟩ψ − E0, and E0 is the ground state energy. Note that the speed limits (1)
and (2) differ only by the different choice of the energy scale. For transition between mixed states ρ→ σ
generalized quantum speed limits have been presented [5, 6, 10, 11]:

T(ρ→ σ)⩾ arccosF(ρ,σ)

min{∆Eρ,Eρ}
(3)

with fidelity F(ρ,σ) = Tr
√√

ρσ
√
ρ.

While the original approaches [1, 2] studied the speed limit for unitary transitions between two quantum
states, more general versions of the speed limit have been developed in the last years. This includes
investigation of quantum speed limits for non-unitary and open system dynamics [12–20], as well as speed
limits for the evolution of observables in the Heisenberg picture [21], and the study of speed limit for a
bounded energy spectrum [22]. A theoretical approach for measuring quantum speed limits in an ultracold
gas has been proposed recently in [23]. Speed limits for generating quantum resources have also been
considered [24], allowing to determine optimal rates for generating quantum entanglement [25], quantum
asymmetry and coherence [19, 26–28], and quantum discord [29, 30]. A recent work [31] also applied the
notion of speed limit for distinguishing unitary channels using the properties of the diamond norm [32].

However, the previous approaches to the notion of speed limits consider transformations of one state of a
quantum system to another one. Here in this letter, we open a new avenue by introducing and constructing a
novel and well defined notion of speed limit on the space of bases of quantum states rather than the space of
quantum states itself. We also prove theorems and provide bounds regarding the minimal time of
transformation of a basis to another.

2. Notion of speed limit for change of basis

The early approaches [1, 2] studied the speed limit for transforming one quantum state into another one.
However, many quantum technological applications require to transform a collection of states. An important
example is quantum computation where a common operation is a change of basis, e.g. by applying the
well-known Hadamard gate which transforms the computational qubit basis {|0⟩, |1⟩} into {|+⟩, |−⟩}, with
|±⟩= (|0⟩± |1⟩)/

√
2.

Which fundamental speed limits hold for such a basis transformation? We address this question in this
Letter, investigating bounds on the time that is necessary to perform the transformation of a collection of
states, i.e. a simultaneously transformation of an ordered set of quantum states to another class of ordered set
of quantum states, minimized over all Hamiltonians. Constructing the notion of speed limit for change of a
basis (a set of orthonormal states) to another basis or class of bases by unitary evolution, we aim for quantum
speed limits of the form

T
(
|ψj⟩ → |ϕj⟩

)
⩾ g

E
, (4)

where {|ψj⟩},{|ϕj⟩} are two ordered sets of orthonormal states, with j = 1, . . .,d, where d is the dimension of
the Hilbert space, and g can in general depend on the sets {|ψj⟩} and {|ϕj⟩} and the relation between them.
The quantity E in equation (4) denotes a notion of energy which is Hamiltonian dependent. Note that E
cannot be state dependent (such as Eψ) otherwise it would be meaningless as we are speaking of change of a
whole basis. It is also worth to mention that generally the notion of speed limit (either classical or quantum)
without having any constraint on the energy is also meaningless as having access to arbitrary large amount of
energies we can conduct state transformation in arbitrary small interval of time.

Since E represents some notion of energy, we require to have the following properties:

(i) E is independent on the particular choice of basis {|ψj⟩}.
(ii) E is additive for non-interactive Hamiltonians of the form HAB =HA ⊗ IB + IA ⊗HB:

EAB = EA + EB, (5)

where EA and EB are the amount of the function E corresponding to HA and HB, respectively.

In regard of the introduced notions, we have the following general theorem:

Theorem 1. Let {|ψj⟩} and {|ϕj⟩} be two complete orthonormal bases. A speed limit of the form

T
(
|ψj⟩ → |ϕj⟩

)
⩾ g

E
(6)

2
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directly leads to a speed limit for any basis which can be obtained from {|ϕj⟩} via a unitary V=
∑

j e
iαj |ψj⟩⟨ψj|:

T
(
|ψj⟩ → V|ϕj⟩

)
⩾ g

E
. (7)

The speed limit (7) is tight whenever equation (6) is tight.

We refer to the appendix B for the proof of the theorem.
A natural choice of E fulfilling the properties (i) and (ii) would be

E=
1

d

∑
j

⟨ψj|H|ψj⟩− E0, (8)

which is a natural analogy of the mean energy Eψ appearing in the Margolous–Levitin bound (2) as they
both have the concept of mean in themselves (but they are two different quantities). From now on, we
consider E to be the quantity defined in the equation (8) and we refer to it as mean energy. We also note that
the mean energy (8) is equivalent to E= Tr[H/d]− E0.

In the following, we consider the interesting cases of the speed limit for transformation of a basis to an
unbiased one as well as basis permutation. In addition to investigating the speed limits for change of basis,
we also study speed limits for coherence generation. In particular, we consider the maximal coherence which
can be established within a certain time, given some Hamiltonian with mean energy E. These results are
highly relevant in the context of the resource theory of quantum coherence [26, 33, 34], taking into account
that several recent works suggest that quantum coherence is more suitable than entanglement to capture the
performance of certain quantum algorithms [35–37].

3. Speed limits for unbiased bases

In the following, we will determine speed limits for basis change from the computational basis {|n⟩} into an
unbiased basis {|n+⟩} with |⟨n|n+⟩|2 = 1/d. By basis change we mean that all the vectors in the initial basis
will convert to the corresponding vectors in the target basis simultaneously, see also figure 1. In the following,
we investigate the single qubit, two qubits and qutrit scenario. We also present some bounds for the speed
limits regarding the quantum system with arbitrary Hilbert space’s dimension.

3.1. Single qubit system
A general single-qubit Hamiltonian has the form

H= E+|E+⟩⟨E+|+ E−|E−⟩⟨E−|, (9)

where the eigenvalues E± and eigenstates |E±⟩ can be parametrized as

E± = (G± E) , |E±⟩⟨E±|=
1

2
(I± n ·σ) . (10)

Here, G and E⩾ 0 are real numbers, n= (nx,ny,nz) is a normalized vector, and σ = (σx,σy,σz) contains the
three Pauli operators. The Hamiltonian (9) can thus be equivalently expressed as

H= (En ·σ+GI) . (11)

Note that E corresponds to the mean energy of the Hamiltonian:

E=
1

2
Tr [H]− E−. (12)

Equipped with these tools, we will now present a bound for the evolution time between any two single-qubit
states.

Proposition 2. The time for converting a single-qubit state ρ0 into the state ρ1 via unitary evolution U= e−iHt

is bounded as

T(ρ0 → ρ1)⩾
1

2E
arccos

(
r0 · r1
|r0||r1|

)
, (13)

where ri is the Bloch vector of the state ρi.

3
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Figure 1. Generation of an unbiased basis {|n+⟩} from the computational basis {|n⟩} via a unitary evolution e−iHtmin . All the
vectors in the computational basis will transform to their corresponding vectors in the unbiased basis within the time tmin. Note
that the time tmin is the same for all the transformations |n⟩ → |n+⟩.

Proof. Note that the unitary

U(t) = e−iHt = e−iGte−iEtn·σ (14)

can be interpreted as a rotation by an angle 2Et about the axis n of the Bloch sphere. The minimal value for Et
is achieved by choosing the rotation axis n to be orthogonal to both Bloch vectors r0 and r1:

n=
r0 × r1
|r0 × r1|

, (15)

Et=
1

2
arccos

(
r0 · r1
|r0||r1|

)
. (16)

This completes the proof of the proposition.

Noting that Tr[ρiρj] = (1+ ri · rj)/2 we can reformulate equation (13) as follows:

T(ρ0 → ρ1)⩾
1

2E
arccos

(
2Tr [ρ0ρ1]− 1√

(2Tr [ρ20]− 1)(2Tr [ρ21]− 1)

)
. (17)

The proof of proposition 2 implies that this bound is tight, i.e. for any two single qubit-states ρ0 and ρ1, there
exists a Hamiltonian with mean energy E saturating equation (17). For pure qubit states this expression
simplifies to the tight bound

T(|ψ0⟩ → |ψ1⟩)⩾
1

2E
arccos

(
2|⟨ψ0|ψ1⟩|2 − 1

)
. (18)

For single-qubit systems, any unitary transforming |0⟩ into |+⟩= (|0⟩+ |1⟩)/
√
2 also transforms |1⟩

into |−⟩= (|0⟩− |1⟩)/
√
2. For a transition from the computational basis {|0⟩, |1⟩} to an unbiased qubit

basis we thus obtain the minimal time of transformation

Tunbiased ⩾
π

4E
. (19)

3.2. Qutrit system
It is now intuitive to assume that for d> 2 the evolution time into an unbiased basis increases, compared to
the qubit setting. To support this intuition, consider a two-qubit system AB, and let HA and HB be qubit
Hamiltonians which bring {|0⟩, |1⟩} into {|+⟩, |−⟩} within minimal time π/(4EA) and π/(4EB),
respectively. If we set EA = EB, the Hamiltonian HAB =HA ⊗ IB + IA ⊗HB achieves the transformation

{|00⟩, |01⟩, |10⟩, |11⟩} → {|++⟩, |+−⟩, | −+⟩, | −−⟩} (20)

within time π/(4EA) = π/(2E), where E= 2EA is the mean energy of the total Hamiltonian HAB. From this
argument, we see that for d= 4 an unbiased basis can be achieved within time π/(2E), which is longer
compared to the single-qubit setup.

4
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As we will see in the following, this intuition is not correct. For this, we will first focus on qutrit systems.
As we show in the appendix A, a general unbiased qutrit basis can be obtained via a diagonal unitary

V=
∑
j

eiαj |j⟩⟨ j| (21)

from one of the following two bases (denoted by {|n+⟩} and {|ñ+⟩}, respectively):

|0+⟩=
1√
3

(
|0⟩+ ei

2
3π|1⟩+ ei

4
3π|2⟩

)
, (22a)

|1+⟩=
1√
3
(|0⟩+ |1⟩+ |2⟩) , (22b)

|2+⟩=
1√
3

(
|0⟩+ e−i 23π|1⟩+ e−i 43π|2⟩

)
, (22c)

and

|0̃+⟩=
1√
3

(
|0⟩+ e−i 23π|1⟩+ e−i 43π|2⟩

)
, (23a)

|1̃+⟩=
1√
3
(|0⟩+ |1⟩+ |2⟩) , (23b)

|2̃+⟩=
1√
3

(
|0⟩+ ei

2
3π|1⟩+ ei

4
3π|2⟩

)
. (23c)

Note that these two sets of basis states are odd permutations of each other. According to the theorem 1,
this implies that speed limits for the transitions {|n⟩} → {|n+⟩} and {|n⟩} → {|ñ+⟩} will also lead to speed
limits for general unbiased qutrit bases {|n⟩} → {V|n+⟩} and {|n⟩} → {V|ñ+⟩} with a diagonal unitary V.
Equipped with these tools, we now present the first main result of this Letter.

Theorem 3. The time for converting a qutrit basis onto an unbiased basis is bounded below as

Tunbiased ⩾
2π

9E
. (24)

We refer to the appendix C for the proof.
Having established a speed limit for basis change it is natural to ask whether this bound is tight,

i.e. whether for any unbiased basis there exists a Hamiltonian H with mean energy E saturating the
bound (24). Recalling the definition of the unbiased bases {|n+⟩} and {|ñ+⟩} in equations (22) and (23), we
answer this question in the following proposition.

Proposition 3. The speed limit (24) is tight for the basis {|n+⟩} and is saturated by the Hamiltonian
H= |α⟩⟨α| with

|α⟩= 1√
3

(
|0⟩+ e−i 23π|1⟩+ |2⟩

)
, (25)

but not tight for the basis {|ñ+⟩}.

We refer to the appendix D for the proof of the proposition.
The above results imply that there are two different classes of unbiased bases for qutrits: bases of the form

{V|n+⟩} can be obtained from the computational basis at time T= 2π/9E, while bases of the form {V|ñ+⟩}
require an evolution time T> 2π/9E, where V is an arbitrary diagonal unitary. For the second class {V|ñ+⟩}
we have numerical evidence that a tight speed limit is given as (see figure 2 )

T(|n⟩ → |ñ+⟩)⩾
4π

9E
. (26)

To see this, note that any unitary achieving the transformation |n⟩ → |ñ+⟩must be of the form

U=
2∑

n=0

eiϕn |ñ+⟩⟨n| (27)

5
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Figure 2. Numerical test of equation (26). We sample 106 unitaries of the form (27) with random phases 0 ⩽ ϕn ⩽ 2π and
evaluate Et using equation (8). The plot shows the numerical probability as a function of Et. As a numerical bound, we obtain
Et ⩾ 4

9
π + ε with ε ⩽ 10−5, in good agreement with equation (26).

with some phases ϕn. Let now λj = e−iαj be the eigenvalues of U, such that the phases αj are in increasing
order and−π ⩽ αj ⩽ π. For a given set of such phases {αj}, there exists a Hamiltonian implementing the
unitary U= e−iHt such that

Ejt= αj or Ejt= αj + 2π, (28)

where Ej are the eigenvalues of H. The mean energy of the numerically obtained Hamiltonian then fulfills

Et=
1

3

∑
j

Ejt− E0t. (29)

Using these results, we can test equation (26), by numerically sampling random phases 0⩽ ϕn ⩽ 2π and
evaluating Et via equation (29). The choice of Ejt as in equation (28) guarantees that the numerical
Hamiltonians obtained in this way contain Hamiltonians with the minimal value of Et.

In figure 2 we show the numerical probability for obtaining a certain value of Et for 106 samples. As we
see the minimum Et with nonzero probability occurs at around Et≈ 1.4. The numerical results suggest the
following lower bound for Et:

Et⩾ 4

9
π + ε, (30)

where ε is numerically upper bounded as ε⩽ 10−5, in good agreement with equation (26). A Hamiltonian
saturating the bound (26) is given by H̃=−|α̃⟩⟨α̃| with

|α̃⟩= 1√
3

(
|0⟩+ ei

2
3π|1⟩+ |2⟩

)
. (31)

A direct comparison of theorem 3 with the corresponding qubit bound (19) shows that establishing an
unbiased qutrit basis requires less time, compared to an unbiased qubit basis for the same mean energy E. In
the following, we will discuss the main differences between the qubit and the qutrit setting.

If a single-qubit unitary U= e−iHt is optimal for rotating the basis {|0⟩, |1⟩} onto an unbiased basis, then
the unitary U2 = e−2iHt permutes the basis elements {|0⟩, |1⟩}. This is no longer the case in the qutrit setting.
For this, note that an optimal Hamiltonian for the qutrit transition |n+⟩= e−iHt|n⟩ (transition to the first
class of the qutrit basis {|n⟩} → {|n+⟩}) is given by H= |α⟩⟨α|, with

|α⟩= 1√
3

(
|0⟩+ e−i 23π|1⟩+ |2⟩

)
. (32)

For the optimal Hamiltonian we can evaluate the fidelity between the initial state |0⟩ and the time-evolved
state e−iHt|0⟩:

|⟨0|e−iHt|0⟩|2 = 1

9
[5+ 4cos(t)] . (33)

6
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Note that the right-hand side of equation (33) is never zero, which means that the evolution never permutes
|0⟩ with another basis element, and the same can be shown for the states |1⟩ and |2⟩.

Moreover, if consider the converse situation that the single-qubit unitary U permutes the basis states
{|0⟩, |1⟩}, then

√
U always rotates the {|0⟩, |1⟩} basis onto an unbiased basis. This is no longer the case in the

qutrit setting, as can be seen by inspection, with the permutation U=
∑2

n=0 |(n+ 1) mod3⟩⟨n|. We further
obtain

√
U=

1

3

 2 −1 2
2 2 −1
−1 2 2

 , (34)

and thus
√
U|n⟩ is not a maximally coherent state for any 0⩽ n⩽ 2. It can be verified by inspection that also

U1/3 does not transform any of the states |n⟩ into a maximally coherent state.

3.3. Two qubit system
So far, we considered systems of dimension 2 and 3. We will now go one step further, giving the minimal
evolution time for an unbiased basis for two-qubit systems.

Theorem 5. The time for establishing an unbiased two-qubit basis is bounded below as

Tunbiased ⩾
π

4E
. (35)

There exists a two-qubit Hamiltonian achieving this bound.

Remarkably, this bound is the same as for single-qubit systems, see equation (19). The Hamiltonian
saturating equation (35) is given as

H=−σx ⊗σz +σy ⊗σy −σz ⊗σx. (36)

The eigenvalues of this Hamiltonian are 3,−1,−1,−1, and the mean energy ofH is given as E= 1. Note that
although the Hamiltonian H performs the task of transformation within the minimal time, it is an
interactive Hamiltonian and it may be costly to implement it practically (as it generally causes the qubits to
interact with each other). For t= π/4 we now define the unitary U= e−itH. The action of this unitary onto
the computational basis of two qubits is as follows:

U(|0⟩|0⟩) = eiπ/4|+⟩|+⟩, (37a)

U(|0⟩|1⟩) = eiπ/4|−⟩|+⟩, (37b)

U(|1⟩|0⟩) = eiπ/4|+⟩|−⟩, (37c)

U(|1⟩|1⟩) = eiπ/4|−⟩|−⟩. (37d)

This shows that the Hamiltonian in equation (36) indeed transforms a two-qubit basis onto an unbiased
basis within time π/(4E). We refer to the appendix E for the proof of theorem 5 and more details.

Comparing the results above for one qubit, two qubits and qutrit basis change, one might intuitively
guess some patterns with respect to oddness or primeness of the numbers 3 and 5 that for d= 5, the minimal
time of transformation would be less than π/4E which is the minimal time of transformation for d= 4 (as
for d= 3 the minimal time is less than π/4E which is the minimal time for d= 2). However, we show in the
appendix F that T> π

4E for the Hilbert space of the dimension 5.

3.4. n-qubits and d-dimensional systems
The results presented so far show that the optimal time for transformation onto an unbiased basis is the same
for single-qubit and two-qubit systems, and in both cases given by π/(4E). For a qutrit system we have a
shorter time 2π/(9E). We will now extend these results to many-qubit systems. As we will see, there exists a
universal bound for n-qubit systems, allowing us to establish an unbiased basis within finite time.

Theorem 6. For systems with n qubits, the minimal time for establishing an unbiased basis is bounded above as

Tunbiased ⩽
π

2E
. (38)

Proof. Consider the n qubit Hamiltonian

Hn = V⊗n, (39)

7



New J. Phys. 26 (2024) 023052 M Naseri et al

where V is the Hadamard gate. Note that the mean energy of Hn is given as E= 1. We now define the unitary
Un(t) = e−iHnt. Using the fact that H2

n = I it follows that

Un (t) = cos(t) I− i sin(t)Hn. (40)

For t= π/2 we obtain

Un (π/2) =−iV⊗n. (41)

This unitary transforms the computational basis of n qubits into an unbiased basis, and the proof is complete.

Theorem 6 shows that it is possible to establish an unbiased basis of n qubits within time π/(2E). We
demonstrated this explicitly by presenting a Hamiltonian, which introduced interactions between all the
qubits. Without interactions, i.e. if each of the qubits evolves independently, the optimal evolution time is
given by nπ/(4E).

In the following, we present a general lower bound for the time required for establishing an unbiased
basis for any d-dimensional system.

Theorem 7. The time for establishing an unbiased basis for a system of dimension d is bounded below by

Tunbiased >
π (d− 1)

4Ed
. (42)

As we see, for large Hilbert space dimension d→∞ the lower bound converges to π/4E. For systems of
dimension 6 this bound can be improved slightly to T⩾ 0.227/E. We refer to the Appendix I for the proof of
the theorem and more details. Comparing this lower bound with the bound in the theorem 6, we see that in
the limit n→∞ the minimal time T for establishing an unbiased basis of n qubits fulfills π/4E⩽ T⩽ π/2E.

4. Speed limits for basis permutation

It is instrumental to compare the above results to the speed limits for permuting the basis {|n⟩}:

U|n⟩= |(n+ 1) modd⟩ (43)

for all 0⩽ n⩽ d− 1. In this regard, we have the following proposition.

Proposition 8. The time for permuting a basis is bounded below by

Tperm ⩾ π (d− 1)

dE
. (44)

Proof. As we discuss in the G, the eigenvalues of the permutation unitary (G.1) have the form

λj = e−i 2π j
d , (45)

where integer j is in the range 0⩽ j⩽ d− 1. It follows that for any permutation unitaryU= e−iHt it must hold
that

t
∑
j

Ej =
∑
j

2π j

d
= π (d− 1) . (46)

The proof of the proposition is complete by noting that E=
∑

jEj/d.

Interestingly, for a given Hamiltonian H there are only two options: either the unitary U= e−iHt leads to
permutation with t= π(d− 1)/(dE), or the Hamiltonian never leads to a basis permutation. We further note
that our analysis applies only to permutations of the form (43).

8
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5. Speed of evolution for coherence generation

We will now present speed limits for the creation of quantum coherence under unitary evolution. In
particular, we are interested in the maximal value of coherence Cmax which can be achieved from a given state
ρ within a fixed time t:

Cmax (ρ, t) =max
H

{
C
(
e−iHtρeiHt

)}
, (47)

and the maximization is performed over all Hamiltonians H with average energy E= Tr[H]/d− E0. As a
quantifier of coherence we use the ℓ1-norm of coherence [26, 33]

C(ρ) =
∑
i̸=j

|ρij|, (48)

which can be estimated efficiently in experiments by using collective measurements [38, 39].
We will first discuss the single-qubit setting. Recall that in this case the unitary U(t) = e−iHt can be

interpreted as a rotation by an angle 2Et about the axis n of the Bloch sphere. As for single-qubit states the
amount of coherence C corresponds to the Euclidean distance to the incoherent axis, Cmax(ρ, t) corresponds
to the largest distance from the incoherent axis, maximized over all rotations with a fixed angle 2Et. The
optimal rotation axis n is orthogonal to the Bloch vector r and the incoherent axis, and Cmax takes the
following form:

Cmax (ρ, t) = |r|cos
(
arcsin

[
|rz|
|r|

]
− 2Et

)
. (49)

Note that Cmax cannot be larger than |r|, and this value is attained for the time

Tmc =
1

2E
arcsin

|rz|
|r|
, (50)

in which case the final state is in the maximally coherent plane. If the initial state is pure, it can be
parameterized as

|ψ⟩= cos(θ/2) |0⟩+ eiϕ sin(θ/2) |1⟩ , (51)

and the maximal amount of coherence achievable in a given time t takes the form

Cmax (|ψ⟩, t) = cos(arcsin [cosθ]− 2Et) . (52)

In the next step we will consider systems of arbitrary dimension d⩾ 2 and evaluate the minimal time for
converting a pure state |ψ⟩ into a maximally coherent state of the form

|+⟩d =
1√
d

d−1∑
j=0

eiϕj |j⟩ (53)

with phases ϕj. The following proposition gives a bound for the evolution time T(|ψ⟩ → |+⟩d).

Proposition 9. The time for converting a state |ψ⟩ into a maximally coherent state |+⟩d via unitary evolution
U= e−iHt is bounded as

T(|ψ⟩ → |+⟩d)≥
1

dE
arccos

2
d

∑
j

|⟨ψ|j⟩|

2

− 1

 . (54)

We refer to the appendix J for the proof. For d= 2 and in the σz basis, we have
2
d

(∑
j |⟨ψ|j⟩|

)2
− 1= sin(θ) and cos(θ) = rz

|r| , thus we obtain:

T(|ψ⟩ → |+⟩d) =
1

2E
arccos

[√
1− r2z

|r|2

]
=

1

2E
arcsin

|rz|
|r|

(55)

which is the same as Tmc in the equation (50).

9
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6. Conclusions and outlook

We have introduced and investigated a novel notion of speed limits for basis change via unitary evolutions,
proving general theorems as well as providing bounds on the evolution time which are optimal for several
interesting scenarios. Basis change is of importance in quantum computational tasks and mixed states
transformations.

For dimensions d⩽ 4 we found the optimal evolution time required to convert the computational basis
into an unbiased, i.e. maximally coherent basis. Perhaps surprisingly, the minimal evolution times coincide
for d= 2 and d= 4, when Hamiltonians with the same mean energy E are considered. Moreover, for d= 3
the saturation of the speed limit prefers a special ordering of the basis that is unbiased with respect to the
computational basis. We also showed that an n-qubit Hadamard gate can be implemented within time π/2E.
This proves that in multi-qubit systems, a maximally coherent basis can be established within a period of
time which is independent on the number of qubits. These results further imply that in multi-qubit systems
interactive Hamiltonians can significantly reduce the evolution time, compared to the time for establishing
an unbiased basis by evolving each qubit independently. We further showed that in the limit d→∞ the time
for establishing an unbiased basis is at least π/4E. Speed limits for basis permutation are also discussed.

We have also investigates speed limits for generating a certain amount of quantum coherence, as well as
minimal time to convert a pure state into a maximally coherent one. We expect that our methods can also be
used to derive minimal transformation times for general bases and other quantum resources, such as
quantum entanglement and imaginarity [40–42].
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Appendix A. Unbiased bases for qutrits

Up to an overall phase for each basis element, an arbitrary unbiased basis (w.r.t. the computational basis) for
a qutrit can be written as

|0+⟩=
1√
3

(
|0⟩+ eiα0,1 |1⟩+ eiα0,2 |2⟩

)
, (A.1a)

|1+⟩=
1√
3

(
|0⟩+ eiα1,1 |1⟩+ eiα1,2 |2⟩

)
, (A.1b)

|2+⟩=
1√
3

(
|0⟩+ eiα2,1 |1⟩+ eiα2,2 |2⟩

)
, (A.1c)

where the phases αi,j need to fulfill the condition

1+ ei(αk,1−αl,1) + ei(αk,2−αl,2) = 3δk,l. (A.2)

10
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This condition determines the form of the basis to be either

|0+⟩=
1√
3

(
|0⟩+ ei(α0,1+

2
3π)|1⟩+ ei(α0,2+

4
3π)|2⟩

)
, (A.3a)

|1+⟩=
1√
3

(
|0⟩+ eiα0,1 |1⟩+ eiα0,2 |2⟩

)
, (A.3b)

|2+⟩=
1√
3

(
|0⟩+ ei(α0,1− 2

3π)|1⟩+ ei(α0,2− 4
3π)|2⟩

)
, (A.3c)

or

|0+⟩=
1√
3

(
|0⟩+ ei(α0,1− 2

3π)|1⟩+ ei(α0,2− 4
3π)|2⟩

)
, (A.4a)

|1+⟩=
1√
3

(
|0⟩+ eiα0,1 |1⟩+ eiα0,2 |2⟩

)
, (A.4b)

|2+⟩=
1√
3

(
|0⟩+ ei(α0,1+

2
3π)|1⟩+ ei(α0,2+

4
3π)|2⟩

)
. (A.4c)

If we now introduce the unbiased bases

|0+⟩=
1√
3

(
|0⟩+ ei

2
3π|1⟩+ ei

4
3π|2⟩

)
, (A.5a)

|1+⟩=
1√
3
(|0⟩+ |1⟩+ |2⟩) , (A.5b)

|2+⟩=
1√
3

(
|0⟩+ e−i 23π|1⟩+ e−i 43π|2⟩

)
, (A.5c)

and

|0̃+⟩=
1√
3

(
|0⟩+ e−i 23π|1⟩+ e−i 43π|2⟩

)
, (A.6a)

|1̃+⟩=
1√
3
(|0⟩+ |1⟩+ |2⟩) , (A.6b)

|2̃+⟩=
1√
3

(
|0⟩+ ei

2
3π|1⟩+ ei

4
3π|2⟩

)
, (A.6c)

we see that any basis of the form (A.3) or (A.4) can be obtained from the basis (A.5) or (A.6), respectively, by
using the diagonal unitary V= |0⟩⟨0|+ eiα0,1 |1⟩⟨1|+ eiα0,2 |2⟩⟨2|.

Appendix B. Speed limits for unitary rotated bases

Let {|ψj⟩} and {|ϕj⟩} be two complete orthonormal bases. A speed limit of the form

T
(
|ψj⟩ → |ϕj⟩

)
⩾ g

E
(B.1)

directly leads to a speed limit for any basis which can be obtained from {|ϕj⟩} via a unitary V=∑
j e

iαj |ψj⟩⟨ψj|:

T
(
|ψj⟩ → V|ϕj⟩

)
⩾ g

E
. (B.2)

The speed limit (B.2) is tight whenever equation (B.1) is tight. To prove this, letH be a Hamiltonian such that

e−iHt|ψj⟩= |ϕj⟩. (B.3)

Then the Hamiltonian H ′ = VHV† achieves the transformation

e−iH ′t|ψj⟩= e−iαjV|ϕj⟩, (B.4)

which can be seen by using the expression e−iH ′t = Ve−iHtV†. Noting that H and H′ have the same mean
energy E, we see that equation (B.1) implies the speed limit (B.2) for any unitary V which is diagonal in the
{|ψj⟩} basis. Moreover, the speed limit (B.2) is tight for all diagonal unitaries V whenever equation (B.1) is
tight.

11
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As we have seen in the appendix A, any unbiased basis of a qutrit can be created from the basis {|n+⟩} or
{|ñ+⟩} (see equations (A.5) and (A.6)) via a diagonal unitary V. In combination with the arguments
mentioned above, this implies that speed limits for the transitions {|n⟩} → {|n+⟩} and {|n⟩} → {|ñ+⟩} will
also lead to speed limits for general unbiased qutrit bases {|n⟩} → {V|n+⟩} and {|n⟩} → {V|ñ+⟩}.

Appendix C. Proof of theorem 3

Before we focus on the case d= 3 we will discuss the problem for general d. For this, let U= e−iHt be a
unitary achieving the transformation {|n⟩} → {|n+⟩}, where {|n+⟩} is now a maximally coherent basis of
dimension d. Any unitary achieving the desired transformation must be of the form

U=
d−1∑
n=0

eiϕn |n+⟩⟨n| (C.1)

with some phases ϕn. We further obtain

Tr
[
U+U†]= d−1∑

n=0

(
eiϕn⟨n|n+⟩+ e−iϕn⟨n+|n⟩

)
. (C.2)

Noting that ⟨n|n+⟩= eiγn/
√
d with some phases γn we arrive at the inequality

−2
√
d⩽ Tr

[
U+U†]⩽ 2

√
d. (C.3)

On the other hand, recalling that U= e−iHt with a Hamiltonian H we obtain

Tr
[
U+U†]= 2

∑
i

cos(Eit) , (C.4)

where Ei are the eigenvalues of the Hamiltonian. In summary, for any unitary transformation U= e−iHt

leading to the transformation {|n⟩} → {|n+⟩} it must hold that

−
√
d⩽

∑
i

cos(Eit)⩽
√
d. (C.5)

We will now consider d= 3. In this case, we will show that any unitary U= e−iHt leading to the
transformation {|n⟩} → {|n+⟩} fulfills

Et⩾ 2

9
π. (C.6)

Assuming that Ei are in increasing order, we see that E⩾ (E2 − E0)/3. Thus, for proving equation (C.6) it is
enough to prove that

(E2 − E0) t⩾
2

3
π. (C.7)

We will prove this by contradiction, assuming that the transformation is possible with a unitary violating
equation (C.7). Violation of equation (C.7) implies that

(E1 − E0) t⩽
π

3
or (E2 − E1) t⩽

π

3
. (C.8)

In the first case (E1 − E0)t⩽ π/3, we can set (without loss of generality) E0t=−π/6, which implies the
inequalities

|E1t|⩽
π

6
, E2t<

π

2
. (C.9)

It follows that ∑
i

cos(Eit)> 2cos
(π
6

)
, (C.10)

12
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which is a contradiction to equation (C.5). The remaining case (E2 − E1)t⩽ π/3 can be treated similarly, by
choosing (without loss of generality) E2t= π/6, thus obtaining the following inequalities:

|E1t|⩽
π

6
, E0t>−π

2
. (C.11)

Also in this case we obtain the inequality (C.10), in contradiction to equation (C.5). This completes the proof
of the bound (C.6). Since the methods presented above apply for any qutrit basis which is unbiased with
respect to the computational basis, this completes the proof of Theorem 3.

Appendix D. Proof of proposition 3 of the main text

According to theorem 3, we have the following inequalities for transition into the bases (A.5) and (A.6):

T(|n⟩ → |n+⟩)⩾
2π

9E
, (D.1a)

T(|n⟩ → |ñ+⟩)⩾
2π

9E
. (D.1b)

As can be checked by inspection, equation (D.1a) is saturated for the basis (A.5) by the Hamiltonian
H= |α⟩⟨α| with

|α⟩= 1√
3

(
|0⟩+ e−i 23π|1⟩+ |2⟩

)
. (D.2)

We will now prove that the inequality (D.1b) is strict for the basis (A.6), i.e. there is no evolution e−iHt

leading to the transformation |n⟩ → |ñ+⟩ within the time t= 2π/(9E). Assume—by contradiction—that the
bound is saturated for some unitary U= e−iHt:

|ñ+⟩= e−iHt|n⟩, t=
2π

9E
. (D.3)

Recalling that Ei are in decreasing order and following the arguments from the proof of Theorem 3, it must
be that

E1 = E0, (D.4)

(E2 − E0) t=
2

3
π. (D.5)

Without loss of generality we can choose

E0t= E1t=−π
6
, E2t=

π

2
. (D.6)

Summarizing these arguments, there exists a unitary U= e−iHt fulfilling equation (D.3) and having
eigenvalues

λ0 = λ1 = ei
π
6 , λ2 = e−iπ2 , (D.7)

which implies that it fulfills

Tr
[
U+U†]= 2

√
3. (D.8)

On the other hand, the unitary also admits the form

U=
2∑

n=0

eiϕn |ñ+⟩⟨n|, (D.9)

with some phases ϕn. We find that

Tr
[
U+U†]= 2√

3
(cosϕ0 + cosϕ1)

− 1√
3
cosϕ2 + sinϕ2. (D.10)

13
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Together with equation (D.8) we obtain

2√
3
(cosϕ0 + cosϕ1)−

1√
3
cosϕ2 + sinϕ2 = 2

√
3. (D.11)

This equation has a unique solution in the range 0⩽ ϕi ⩽ 2π, given by

ϕ0 = ϕ1 = 0, ϕ2 =
2

3
π. (D.12)

This implies that the eigenvalues of U must be

µ0 = µ1 = e−iπ6 , µ2 = ei
π
2 , (D.13)

which is a contradiction to equation (D.7). This completes the proof of the proposition.

Appendix E. Proof of theorem 5

We will now focus on the case d= 4. For this case we will prove the lower bound

Et⩾ π

4
. (E.1)

We will prove this by contradiction, assuming that there exists a unitary U= e−iHt transforming {|n⟩} onto a
maximally coherent basis with

Et<
π

4
. (E.2)

Without loss of generality we can assume that E0 = 0, which implies E= (E1 + E2 + E3)/4.
We now define αi = Ei t. Note that π > αi ⩾ 0. Due to equation (E.2) we have α3 < π −α1 −α2, which

further implies

cos(α3)> cos(π −α1 −α2) =−cos(α1 +α2) . (E.3)

It follows that

cos(α1)+ cos(α2)+ cos(α3)> cos(α1)+ cos(α2)

− cos(α1 +α2) . (E.4)

We will now investigate closer the right-hand side of equation (E.4), defining

f(α) = cos(α1)+ cos(α2)− cos(α1 +α2) . (E.5)

In particular, we will show that f(α)⩾ 1 holds true whenever

αi ⩾ 0, (E.6a)

α1 +α2 ⩽ π. (E.6b)

For this, we evaluate the partial derivatives of f with respect to αi:

∂f

∂α1
= sin(α1 +α2)− sin(α1) , (E.7)

∂f

∂α2
= sin(α1 +α2)− sin(α2) . (E.8)

To find local extrema of f we set ∂f/∂αi = 0, which implies sin(α1) = sin(α2). This means that α1 = α2, or
α1 = π −α2. With the condition α1 = α2 we further obtain sin(2α2) = sin(α2), with the solutions

α1 = α2 = 0, (E.9a)

α1 = α2 =
π

3
. (E.9b)

14
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On the other hand, the condition α1 = π −α2 together with ∂f/∂αi = 0 leads to sin(α1) = sin(α2) = 0,
with the solutions

α1 = 0,α2 = π, (E.10a)

α1 = π,α2 = 0. (E.10b)

For proving that f(α)⩾ 1 we evaluate f(α) at the extrema (E.9) and (E.10), and also at the boundary of
the region defined in equation (E.6). For the solutions (E.9) we obtain f(α) = 1 and f(α) = 3/2, respectively.
Moreover, the solutions (E.10) give f(α) = 1.

It remains to show that f(α)⩾ 1 also at the boundary of the region defined in equation (E.6). For a given
value of α1 ∈ [0,π], the boundary is attained for α2 = 0 or α2 = π−α1. As one can verify by inspection,
f(α) = 1 in both cases. In summary, this proves that f(α)⩾ 1 within the region (E.6).

Collecting the above arguments, equation (E.2) implies that there is a unitary U= e−iHt achieving the
transformation {|n⟩} → {|n+⟩} with

∑
i cos(Ei t)> 2, in contradiction to equation (C.5). This completes

the proof of the lower bound (E.1).
As is explained in the main text, it is indeed possible to achieve the transformation {|n⟩} → {|n+⟩}

within time t= π/(4E). This completes the proof of the theorem.

Appendix F. Comparison of speed limits for transformation to an unbiased basis for
d= 4 and d= 5

Comparison of the results for the minimal time T of transformation of a basis to an unbiased basis for the
Hilbert spaces of dimension d= 2, d= 3 and d= 4, may intuitively leads us to the pattern that for d= 5
which is the next prime number, the minimal time would decrease. Here, we show that this intuitive pattern
is wrong and the minimal time of transformation to an unbiased basis for d= 5 must be greater than π

4 (the
minimal time for d= 2,4 ). To prove this, lets assume that there exist a Hamiltonian H with the
eigenenergies {Ei}5i=1 and the mean energy E such that

T⩽ π

4E
. (F.1)

Then we must have
∑5

i=1EiT≡
∑5

i=1αi ⩽ π+π/4. Without loss of generality, we assume that the
minimum eigenenergy of H is Emin = 0. Minimizing the function

f(α) =
5∑

j=1

cosαi (F.2)

with the respect to the constraint 0⩽
∑5

i=1αi ⩽ π+π/4 we find min f = 1+ 4cos 5π
16 ≈ 3.22 which is a

contradiction because according to the equation (C.5), the maximum of the function f(α) for a Hamiltonian
transforming a basis to an unbiased one in the Hilbert space of dimension 5 is equal to

√
5≈ 2.2< 3.22.

Appendix G. Eigenvalues of permutation unitary

In the following we will determine the eigenvalues of the permutation unitary

U|n⟩= |(n+ 1) modd⟩. (G.1)

Let |ψ⟩=
∑

n an|n⟩ be an eigenstate of U, i.e.

U|ψ⟩= eiα|ψ⟩. (G.2)

From equation (G.1) we obtain

an = eiαa(n+1) modd, (G.3)

which implies that all coefficients an must have the same absolute value: |an|2 = 1/d. Thus, any eigenstate |ψ⟩
has the form

|ψ⟩= 1√
d

d−1∑
j=0

eiϕj |j⟩. (G.4)
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From this it follows that U cannot be degenerate. To prove this, assume—by contradiction—that there exists
two eigenstates |ψ1⟩ and |ψ2⟩ with the same eigenvalue. Then, any superposition of |ψ1⟩ and |ψ2⟩ is also an
eigenstate of U. Moreover, by superposing |ψ1⟩ and |ψ2⟩ we can obtain an eigenstate which is not of the
form (G.4), which is the desired contradiction. Consequently, any linear combination of |ψ1⟩ and |ψ2⟩ would
also be an eigenstate of U. Furthermore, through such a linear combination, we could generate an eigenstate
that does not adhere to the form (G.4), leading to the sought contradiction.

In the next step note that any permutation unitary must fulfill

Ud = I. (G.5)

Together with the fact that U is non-degenerate, the eigenvalues of U must be of the form λn = ei
2π
d n, where

n is an integer in the range 0⩽ n⩽ d− 1.

Appendix H. Speed limits for pure states

Let H be a Hamiltonian of dimension d with eigenvalues Ei and eigenstates |Ei⟩. Without loss of generality,
we assume that the eigenvalues are in increasing order, and thus Emax = Ed−1 and Emin = E0.

Suppose now that an initial state |ψ⟩ evolves for the time 0⩽ t⩽ π/Egap, where Egap = Emax − Emin is the
energy gap of the Hamiltonian. In the following, we are interested in the minimal overlap between the initial
state |ψ⟩ and the time-evolved state |ψt⟩= e−iHt|ψ⟩:

Fmin =min
|ψ⟩

∣∣⟨ψ|e−iHt|ψ⟩
∣∣ , (H.1)

minimized over all initial states |ψ⟩.

Proposition 10. For a given Hamiltonian H and evolution time 0⩽ t⩽ π/Egap it holds that

Fmin =
∣∣⟨ψmin|e−iHt|ψmin⟩

∣∣= 1

2

∣∣e−iEgapt + 1
∣∣ (H.2)

with |ψmin⟩= 1√
2
(|E0⟩+ |Ed−1⟩).

Proof. Expanding the initial state in the eigenbasis of the Hamiltonian as |ψ⟩=
∑

j cj|Ej⟩ with complex coef-

ficients cj allows us to write the overlap |⟨ψ|e−iHt|ψ⟩| as follows:

∣∣⟨ψ|e−iHt|ψ⟩
∣∣=
∣∣∣∣∣∣
∑
j

|cj|2e−iEjt

∣∣∣∣∣∣ . (H.3)

Noting that the coefficients cj fulfill the condition
∑

j |cj|2 = 1, our figure of merit can be expressed as

Fmin =min
|ψ⟩

∣∣⟨ψ|e−iHt|ψ⟩
∣∣=min

{pj}

∣∣∣∣∣∣
∑
j

pje
−iEjt

∣∣∣∣∣∣ , (H.4)

where the minimum on the right-hand side is taken over all probability distributions {pj}. Recalling that
Egapt⩽ π, it is straightforward to see that the minimum is attained for the following choice of {pj}:

pj =

{
1
2 for j = 0 and j = d− 1,

0 for 0< j < d− 1.
(H.5)

It follows that the optimal state |ψmin⟩, minimizing the overlap |⟨ψ|e−iHt|ψ⟩|, can be chosen as

|ψmin⟩=
1√
2
(|E0⟩+ |Ed−1⟩) , (H.6)

as claimed. In the last step, it is straightforward to verify that∣∣⟨ψmin|e−iHt|ψmin⟩
∣∣= 1

2

∣∣e−iEgapt + 1
∣∣ (H.7)

which completes the proof of the proposition.
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Remarkably, Fmin does not depend on the structure of the Hamiltonian, but only on the gap between the
largest and the smallest eigenvalue Egap. In the following, we will use this result to bound the evolution time
between pure states.

Proposition 11. The time for converting a pure states |ψ0⟩ into another state |ψ1⟩ via unitary evolution
U= e−iHt is bounded as

T(|ψ0⟩ → |ψ1⟩)⩾
1

Egap
arccos

(
2|⟨ψ0|ψ1⟩|2 − 1

)
. (H.8)

Proof. If the states |ψ0⟩ and |ψ1⟩ fulfill |ψ1⟩= e−iHt|ψ0⟩with 0⩽ t⩽ π/Egap, then by Proposition 10 it follows
that

|⟨ψ0|ψ1⟩|2 ⩾
1

4

∣∣e−iEgapt + 1
∣∣2 . (H.9)

This inequality is equivalent to

t⩾ 1

Egap
arccos

(
2 |⟨ψ0|ψ1⟩|2 − 1

)
. (H.10)

On the other hand, if |ψ0⟩ and |ψ1⟩ fulfill |ψ1⟩= e−iHt|ψ0⟩with t> π/Egap, equation (H.8) is automatically
satisfied, since arccos(x)⩽ π/2 for x⩾ 0. This completes the proof.

Noting that Egap ⩽ dE, where E= Tr[H]/d− E0 is the average energy of the Hamiltonian, we immediately
obtain the following lemma.

Lemma 1. The time for converting a pure state |ψ0⟩ into another state |ψ1⟩ via unitary evolution U= e−iHt is
bounded below as

T(|ψ0⟩ → |ψ1⟩)⩾
1

dE
arccos

(
2|⟨ψ0|ψ1⟩|2 − 1

)
. (H.11)

Moreover, for any two pure states |ψ0⟩ and |ψ1⟩ there exists a Hamiltonian H saturating equation (H.11).
To see this, recall that equation (H.11) is tight for d= 2, see also equation (18). Let now H= |ϕ⟩⟨ϕ| be a
Hamiltonian which saturates the inequality for d= 2. Note that the mean energy in this case is given by
E= 1/2. This implies that the Hamiltonian achieves the transformation |ψ0⟩ → |ψ1⟩ within the time

t= arccos
(
2|⟨ψ0|ψ1⟩|2 − 1

)
, (H.12)

which is the shortest possible time for E= 1/2. For d> 2 we can use the same Hamiltonian H= |ϕ⟩⟨ϕ| to
achieve the transformation within the same time as given in equation (H.12). The mean energy is now given
by E= 1/d, and we see that equation (H.11) is saturated.

Appendix I. Proof of theorem 7

We define Tlow = d−1
dE

π
4 and d⩾ 2. Let us assume that T⩽ Tlow. Then there must exist a Hamiltonian such

that:

ET⩽ d− 1

d

π

4
. (I.1)

Without loss of generality, we consider E0 = 0 and Ej ⩾ 0 for all j. Also we define αj = EjT, therefore we have:∑
j

αj ⩽ (d− 1)
π

4
. (I.2)

By equation (C.5) we must have−
√
d⩽

∑
j cosαj ⩽

√
d. Minimizing the function f(α) =

∑
j cosαj, we

show that f(α) is always greater than
√
d in the region (I.2), hence T cannot be smaller than T low. First, we

find the critical points of the function f(α) inside the region (not on the boundary). Taking the first
derivatives of the function in αi, we obtain the following equations:

sinαi = 0 ∀i. (I.3)
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This shows that αi = Kiπ and Ki ⩾ 0. For these values, cosαi is either 1 or−1, thus the minimum of the
function (among these critical points) occurs when we have maximum number of−1 which with respect to
the constraint (I.2), ⌊ d−1

4 ⌋ number of αi must be equal to π and the others be zero. Therefore the minimum
is d− 2⌊ d−1

4 ⌋ if d−1
4 is not an integer. In the case d−1

4 is an integer, the point will be on the boundary of the
region which we will consider it in the following.

Now, we find the critical points on the boundary of the region (I.2) where we have
∑

jαj = (d− 1)π4 and

αj ⩾ 0. Generally, we assume that we are on the part of the boundary where x number of the {αi}d−1
i=1 are

zero. Applying the Lagrange multipliers method, we end up with the equations below:

sinαi = k ∀i, (I.4)

where k is the Lagrange multiplier. Equation (I.4) show that either αi = λ+ 2Kiπ or αi = π−λ+ 2K
′

i π in
which 0⩽ λ⩽ π

2 and Ki,K
′

i are non-negative integers (because αi ⩾ 0). Being on the part of the boundary

with x number of αi to be zero and assuming that N number of them are of the form αi = π−λ+ 2K
′

i π, we
must have (by

∑
jαj = (d− 1)π4 ):

(d− x− 2N)λ+

N+
∑
j

K ′
j +
∑
l

Kl

π = (d− 1)
π

4
. (I.5)

We define K≡
∑

jK
′
j +
∑

lKl. If we write λ in terms of K and N we obtain:

λ=
(d− 1)/2− 2(N+K)

d− x− 2N

π

2
(I.6)

and the function takes the form x+(d− x− 2N)cosλ. If we are in the domain N< d−x
2 then the function

takes its minimum when λ is largest and it occurs for K = 0 (for any x and N) . If we are in the domain
N> d−x

2 then we have:

λ=
N− (d− 1)/4

N− (d− x)/2

π

2
+

K

N− (d− x)/2

π

2
. (I.7)

Since x⩽
√
d (otherwise

∑
j cosαj >

√
d and the proof would be done), we can easily show that the first

term in equation (I.7) is greater than π/2 as the coefficient N−(d−1)/4
N−(d−x)/2 is greater than 1:

N− d− 1

4
⩾ N− d−

√
d

2
⩾ N− d− x

2
⇐⇒

(√
d− 1

)2
⩾ 0. (I.8)

Also, The second term in (I.7) is positive. Thus, in the domain N> d−x
2 , λ is greater than π

2 which is a
contradiction to the initial assumption λ⩽ π

2 . Furthermore in the case N= d−x
2 , from the equation (I.7), we

get d+ 1+ 2K= 2x which is a contradiction as x is a positive integer and x⩽
√
d. Therefore, N< d−x

2 and λ
takes the following form for the minimum of the function:

λ=
(d− 1)/4−N

(d− x)/2−N

π

2
. (I.9)

Moreover, from the equation (I.8), we know that d−1
4 ⩽ d−x

2 so we must have 0⩽ N⩽ d−1
4 because λ⩾ 0.

Now, we should see which value ofN in the domain minimizes the function. We should obtain the minimum
of the function below while N varies:

x+(d− x− 2N)cos

(
(d− 1)/4−N

(d− x)/2−N

π

2

)
. (I.10)

By taking the first derivative of this function in N we can easily see that it is monotonically decreasing in the
valid domain of N, hence the value N0 = ⌊(d− 1)/4⌋ achieves the minimum of f(α) with the value of

x+(d− x− 2⌊(d− 1)/4⌋)cos( (d−1)/4−⌊(d−1)/4⌋
(d−x)/2−⌊(d−1)/4⌋

π
2 ) which is always greater than

√
d for d⩾ 2:
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√
d⩽ x

(
1− cos

(
(d− 1)/4−N0

(d− x)/2−N0

π

2

))
+

d+ 1

2
cos

(
1

d+1
2 −

√
d
2

π

2

)

⩽ x+(d− x− 2⌊(d− 1)/4⌋)cos
(
(d− 1)/4−⌊(d− 1)/4⌋
(d− x)/2−⌊(d− 1)/4⌋

π

2

)
(I.11)

where for obtaining the second inequality we used the facts that 1⩽ x⩽
√
d and d−1

4 − 1⩽ ⌊ d−1
4 ⌋⩽ d−1

4 .

Thus, the minimum of the function f(α) in the region (I.2) is always greater than
√
d which is a

contradiction to equation (C.5), and the proof is complete.
We will now present a lower bound for the speed limit in the Hilbert space of the dimension d= 6. We

will show that the minimal time for transformation of the basis {|i⟩}5i=0 to an unbiased basis via a
Hamiltonian with fixed mean energy E is bounded below by

1

3E
arccos

(
−
√
6− 4

2

)
⩽ T. (I.12)

To prove the lower bound, let assume there exist a Hamiltonian for which

T<
1

3E
arccos

(
−
√
6− 4

2

)
, (I.13)

thus we must have
∑5

i=0EiT< 2arccos(−
√
6−4
2 ). We define EiT= αi and without loss of generality we

consider the minimum eigenenergy of the Hamiltonian Emin = E0 = 0. By equation (C.5) we must have
−
√
6⩽

∑
j cosαj ⩽

√
6. We show that the function f(α) =

∑
j cosαj is always greater than

√
d in the region

R=

{
5∑

i=0

αi < 2arccos

(
−
√
6− 4

2

)
∧αi > 0 ∀i

}
. (I.14)

Hence, T cannot be smaller than 1
3E arccos(−

√
6−4
2 ).

We minimize the function f(α) =
∑5

i=0 cosαi in the region closure of R. First, we find all the critical
points inside the region. By taking the derivatives of the function f(α) and equating them to zero, we obtain
the critical points as αi = Kiπ, Ki ⩾ 0 and K i are integers. As cos(Kiπ) =±1, the minimum of the function
among these critical points occurs when we have the maximum number of−1 (with respect to our region R,
we are allowed to have only one−1). Thus the minimum among these critical points is 4. Now, we find the

minimum on the boundaries
∑5

i=0αi = 2arccos(−
√
6−4
2 ). Let us assume (without loss of generality) that we

are on the part of these boundaries such that x number of αi are zero. Note that 0⩽ x⩽ 3 otherwise the
function f(α) is greater than

√
6 and we are done with the proof according to equation (C.5). Applying

Lagrange multiplier method, we obtain the following set of equations:

sinαi = k, ∀k (I.15)

where k is the multiplier. From these equations we find that αi must be of the following form:

αi =

{
λ+ 2Kiπ or

π−λ+ 2K ′
i π,

(I.16)

in which 0⩽ λ⩽ π
2 and K i and K ′

i are non-negative integers (they must be non-negative as αi are
non-negative). We further assume (without loss of generality) that N number of αi are in the second form of
equation (I.16). By the constraint on the border of the closure of R, we have:

(6− x−N)λ+N(π−λ)+ 2

∑
i

Ki +
∑
j

K ′
j

= 2arccos−
√
6− 4

2
. (I.17)

Solving this equation for λ we obtain:

λ=
2arccos

(
−

√
6−4
2

)
− (2K+N)π

6− x− 2N
. (I.18)

19



New J. Phys. 26 (2024) 023052 M Naseri et al

where K=
∑

iKi +
∑

jK
′
j . Equation (I.18) implies that N< 6−x

2 otherwise λ > π/2 which is a contradiction
(to the initial assumption that 0⩽ λ⩽ π

2 ). The function f(α) for the critical points on the boundary

becomes (6− x− 2N)cos(
2arccos(−

√
6−4
2 )−(2K+N)π

6−x−2N ). Considering that N< 6−x
2 and 0⩽ λ⩽ π

2 , it takes its
minimum for any x and N when K = 0. Thus the minimum of the function on the boundary must be of the

form (6− x− 2N)cos(
2arccos(−

√
6−4
2 )−Nπ

6−x−2N ) which is greater than or equal
√
6 for any 1⩽ x⩽ 3 and N< 6−x

2 .

Therefore, the minimum of the function f(α) over the region R is greater than
√
6 which is a contradiction

to equation (C.5) and the proof is complete.

Appendix J. Proof of proposition 9 of the main text

From lemma 1 in the appendix H, it follows that the evolution time into a maximally coherent state is
bounded as

T(|ψ⟩ → |+⟩d)⩾
1

dE
arccos

(
2|⟨ψ|+⟩d|2 − 1

)
. (J.1)

Thus, in order to obtain a bound which is valid for all maximally coherent states, we need to estimate the
maximal overlap |⟨ψ|+⟩d| over all states of the form:

|+⟩d =
1√
d

d−1∑
j=0

eiϕj |j⟩ (J.2)

Expanding the initial state |ψ⟩ in the incoherent basis {|i⟩} as

|ψ⟩=
d−1∑
j=0

cje
iαj |j⟩ (J.3)

with cj ⩾ 0, it is straightforward to see that the overlap |⟨ψ|+⟩d|2 is maximized if we set ϕj = αj, thus
arriving at

max
|+⟩d

|⟨ψ|+⟩d|2 =
1

d

∑
j

|⟨ψ|j⟩|

2

. (J.4)

Alternatively, this result can be obtained following [43, 44], noting that max|+⟩d |⟨ψ|+⟩d|2 corresponds to the
maximal fidelity between the state Λ[|ψ⟩⟨ψ|] and the particular maximally coherent state |+⟩d =

∑
j |j⟩/

√
d,

maximized over all incoherent operations Λ. Using equation (J.4) in equation (J.1) completes the proof.
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