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A B S T R A C T

This paper presents a novel approach to representing the Limit Order Book data at a given timestamp using
the Ordered Fuzzy Numbers concept. The limit order book contains all buy and sell orders placed by investors,
updated in real-time, for the most liquid securities, even several hundred times a minute. Due to its irregular
nature (different and dynamic changes in the number of buy and sell orders), direct calculations on the
order book data are not feasible without transforming it into feature vectors. Currently, most studies use
a price level-based data representation scheme when applying deep learning models on limit order book data.
However, this scheme has limitations, particularly its sensitivity to subtle perturbations that can negatively
impact model performance. On the other hand, the ordered fuzzy number is a mathematical object (a pair
of two functions) used to process imprecise and uncertain data. Ordered Fuzzy Numbers possess well-defined
arithmetic properties. Converting the limit order book data to ordered fuzzy numbers allows the creation of
a time series of ordered fuzzy numbers (order books) and use them for further calculations, e.g., to represent
input data for deep learning models or employing the concept of fuzzy time series in various domains, such
as defining liquidity measures based on limit order book data. In this paper, the proposed approach is tested
using one-year market data from the Polish Stock Exchange for the five biggest companies. The DeepLOB
model is employed to predict mid-price movement using different input data representations. The proposed
representation of Limit Order Book data demonstrated remarkably stable out-of-sample prediction accuracy,
even when subjected to data perturbation.
1. Introduction

Financial market research constantly evolves by integrating innova-
tive computational tools and novel mathematical concepts. The scope
and form of data used in these studies are also evolving, from simple
closing prices to candlestick chart data to complete order information
from the limit order book. Today, more than half of the stock markets
are order-driven markets that use electronic limit order books [1,2].
Therefore, order limit book data is increasingly used as input to a wide
range of computational models.

The Limit Order Book (LOB) is the central element of order-driven
markets that records the intentions of buyers and sellers. It serves
as a real-time representation of supply and demand for a particular
financial instrument, displaying the changing price dynamics at a de-
tailed, micro-structural level. LOBs, with their layers of price points and
corresponding volumes, are inherently multi-dimensional, revealing
complex spatial and time frames that explain price fluctuations. The
structure of a LOB is complex, with multi-dimensional aspects resulting
from multiple price points and order volumes spread over different
levels for buy and sell orders. Fig. 1 provides a snapshot of this dynamic
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system, illustrating the intricate interplay of buy and sell orders at
different price levels.

To better understand the meaning of LOBs, it is necessary to high-
light the wealth of data they generate. With the advent of algorithmic
trading and the digitization of exchanges, a deluge of LOB data has
spurred a renewed focus on data-driven approaches in financial mar-
kets. As a result, the intersection of machine learning, in particular
deep learning and quantitative finance, has flourished [3,4]. However,
representing LOB data in machine learning models comes with its own
set of challenges. While plenty of raw LOB data is available, trans-
lating this data into actionable insights requires sophisticated feature
engineering or representation learning techniques. Interestingly, these
advanced models are based on the initial representation of the LOB
data. Currently, most studies use a price level-based data representation
scheme. However, this representation has its limitations. Namely, it
is susceptible to data perturbations. For example, traders are placing
and canceling orders at deeper LOB levels, significantly amplifying the
data’s noise.
vailable online 2 April 2024
568-4946/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.asoc.2024.111555
Received 24 October 2023; Received in revised form 19 March 2024; Accepted 24
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

March 2024

https://www.elsevier.com/locate/asoc
https://www.elsevier.com/locate/asoc
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
https://dx.doi.org/10.17632/3g4mhdp899.1
mailto:adam.marszalek@pk.edu.pl
https://doi.org/10.1016/j.asoc.2024.111555
https://doi.org/10.1016/j.asoc.2024.111555
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2024.111555&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Applied Soft Computing 158 (2024) 111555A. Marszałek and T. Burczyński

f
l
(
b
i
s
p
e
F
t
d
t
c
i
a
o
c
m
l
m
d

b
o
o
i
r
t
d
m
a
S

2

p
i
s
l
t
i
s
t
y
t
i

Fig. 1. A snapshot of the limit order book.

This paper introduces a novel approach to modeling LOB data
or machine learning applications, challenging the conventional price-
evel-based representation. It proposes using Ordered Fuzzy Numbers
OFNs) to encapsulate the dynamic behavior of LOBs, enhancing ro-
ustness against data perturbations such as adding or removing small,
nsignificant orders. This innovative representation provides a more
table foundation for predictive models, potentially improving their
erformance forecasting market movements. This study makes sev-
ral significant contributions to the field of financial market analysis.
irstly, by adopting ordered fuzzy numbers for LOB data representa-
ion, our approach provides a more nuanced understanding of market
ynamics, enabling machine learning models to account for uncertain-
ies and temporal variations in a way that traditional representations
annot. This innovation represents a substantial departure from exist-
ng methodologies, marking a pivotal shift towards a more resilient
nd adaptive modeling framework. Furthermore, there is an explicit
utline of how our research broadens the current landscape of finan-
ial data analysis. Integrating ordered fuzzy numbers into LOB data
odeling not only enhances the predictive capabilities of machine

earning algorithms but also opens up new avenues for analyzing
arket behaviors previously obscured by the limitations of level-based
ata representation.

The rest of the paper is organized as follows. In Section 2, the
ackground and related research are provided. Section 3 describes limit
rder data and the standard representation scheme. A brief review
f the foundational concept of ordered fuzzy numbers is presented
n Section 4, followed by the introduction of a new method for rep-
esenting Limit Order Book data. A range of experiments designed
o test the robustness of the new LOB representation under different
ata perturbations is presented in Section 5. A benchmark dataset and
odel are also outlined in this section. A summary of the findings

nd considerations for future work and extensions are discussed in
ection 6.

. Literature review and related work

The literature on machine learning models, particularly their ap-
lication to financial market forecasting and high-frequency trading,
s extensive and constantly evolving. Historically, the predictability of
tock markets has been a significant area of interest in the economic
iterature. While there are differences of opinion on market efficiency,
here is a consensus on market predictability to some extent, as ev-
denced by previous studies. For example, paper [5] highlights the
hort-term predictive power of dividend yields for excess returns and
he role of discount and short rate movements in explaining dividend
ield variations, paper [6] documents the predictability of excess re-
urns across various financial markets, linking it to expectational errors
n forecasting. The fact that the variance risk premium can predict
2

stock market returns, with similar patterns observed across multiple
countries, was revealed in [7]. The significant out-of-sample predictive
power of stock market returns by separating them into three compo-
nents was shown in [8]. Mandelbrot’s works discuss the application of
fractals and multifractals in financial markets, illustrating how these
mathematical concepts can be used to analyze market behavior over
different time scales [9,10].

High-frequency trading (HFT) and stock market prediction have
been recognized as complex areas, prompting interdisciplinary research
approaches. For example, paper [11] used a logistic regression model
to predict price jumps between trades, while paper [12] developed
a multivariate linear model for short-term stock price movements.
Also, neural networks have been highlighted for application, given the
chaotic nature of the data [13]. Other studies have expanded the ap-
plication of machine learning, especially neural network architectures,
incorporating innovative approaches to forecast currency rates and
stock indexes and devise trading strategies. For instance, a spatial neu-
ral network model has been developed to model spatial distributions
efficiently within limit order books, significantly outperforming tradi-
tional models by leveraging information deep within the order book for
risk management [14]. Another study introduced a method to infer pat-
terns of quote volatility and price momentum reflective of algorithmic
trading behaviors, enhancing the detection and prediction of market
movements [15]. The efficacy of machine learning in high-frequency
market making was explored, emphasizing the importance of back-
testing classifier performance under trade execution constraints [16].
Research on Recurrent Neuro-Evolution for forecasting foreign cur-
rency exchange rates achieved high accuracy, showcasing the potential
of genetic programming in financial predictions [17]. The application
of artificial neural networks was empirically tested on foreign ex-
change market data, highlighting the importance of input selection for
time-series predictions [18]. A trigonometric functional link artificial
neural network (FLANN) model was developed for short and long-
term stock market predictions, demonstrating the utility of technical
and macroeconomic indicators in forecasting [19]. Machine learning
has also been applied to design medium-frequency trading strategies
for US Treasury note futures, showing profitability [20]. Continuous
time Bayesian networks were investigated for their causality expres-
sion capabilities, offering a new model for high-frequency financial
data that outperforms older models [21]. The hierarchical Hidden
Markov Model captured market sentiment dynamics in the USD/COP
market, learning natural trading strategies and demonstrating superior
performance [22]. These advancements underscore the growing sophis-
tication and diverse application of neural networks in financial market
analysis and strategy development.

Recent advancements have significantly boosted interest in deploy-
ing machine learning algorithms for predicting Limit Order Book (LOB)
data. For example, these efforts encompass the establishment of the
first publicly available high-frequency limit order market dataset for
mid-price prediction, featuring data from five NASDAQ Nordic mar-
ket stocks over ten days, offering a robust benchmark for comparing
state-of-the-art methodologies [23]. Investigations into tensor-based
learning algorithms for high-frequency trading have demonstrated su-
perior performance in mid-price prediction over traditional vector-
based approaches by effectively utilizing multilinear methods on a
dataset containing over 4 million limit orders [24]. A deep learning
approach such as multilayer perceptrons or recursive neural networks
to uncover a universal and stationary price formation mechanism from
billions of electronic market quotes and equities transactions provides
stable out-of-sample prediction accuracy across various stocks and
periods [25–27]. The temporal-aware neural Bag-of-Features model
was designed for high-frequency LOB data, which employs radial basis
function and accumulation layers to model both short-term and long-
term dynamics, significantly outperforming traditional methods [28].
A neural network layer architecture incorporating bilinear projection

and an attention mechanism was proposed for HFT, highlighting crucial



Applied Soft Computing 158 (2024) 111555A. Marszałek and T. Burczyński

w
𝑡
s
t
h
f

o
e
o
d
c
f
m
d
d
b
o
t
t
l

4

4

i
i
n
f

𝐴

i
o

temporal information, and achieving state-of-the-art results with fewer
computations [29]. The application of deep learning using CNNs to pre-
dict stock price movements from large-scale, high-frequency time-series
data derived from financial exchange order books showcasing superior
performance to traditional models [30,31]. A novel method for creating
stationary features to overcome the non-stationary nature of financial
data, allowing effective application of deep learning models like LSTM
networks and CNNs in predicting mid-price movements in the LOB, was
presented in [32,33] and also self-attention transformer networks were
explored in research [34,35]. Given the stochastic nature of financial
time series, these algorithms often involve preprocessing or feature
extraction. Techniques such as principal component analysis (PCA)
and linear discriminant analysis (LDA) have been implemented in this
regard [28]. These initiatives highlight the rich potential of machine
learning and deep learning techniques in enhancing financial market
analysis’s prediction accuracy and efficiency, especially in the complex
and fast-paced environment of high-frequency trading. Readers inter-
ested in a more extensive literature review are referred to the review
publication [36].

Machine learning models’ effectiveness largely hinges on how data
is represented. In neural networks, both the learning of representations
and the forecasting steps are intertwined within the framework of the
network and are collectively trained to optimize the same objective
function. Here, the initial representation of LOB serves as the foun-
dational input for the neural networks, shaping the entirety of the
model. Current research primarily uses a price-level data representation
scheme when applying deep learning models to LOB data, especially
in mentioned above studies [25–27,29,32–35]. In the work [37], at-
tention was drawn to the fact that there needs to be more literature
regarding the compatibility of this representation scheme with deep
learning models. This work showed that the price-level data represen-
tation scheme is sensitive to perturbations in the data, which leads
to a decrease in the performance of advanced machine learning mod-
els. Recognizing the critical insights this work offers, the issue of
data perturbation’s impact on deep learning models’ performance was
positioned at the heart of this paper.

Despite the considerable advances in financial market forecasting,
particularly in modeling limit order book data, our extensive literature
review has identified several gaps that necessitate further research:

• Current methodologies predominantly utilize price-level-based
data representation schemes when applying machine learning
models to LOB data. While these methods have proven effective
to a degree, they inherently assume market homogeneity and
neglect the dynamic nature of order books, leading to potential
misinterpretations of market conditions. This study has found a
lack of comprehensive models that can accurately encapsulate
the complex, multi-dimensional aspects of LOB data, including an
ever-changing number of price levels in the order book, different
for the buy and sell side.

• The traditional data representation techniques are highly sen-
sitive to subtle perturbations in the LOB data, such as minor
fluctuations in order placements and cancellations. This sensitiv-
ity can adversely affect the performance of predictive models,
rendering them less reliable under real-market conditions. A clear
research gap exists in developing robust representation schemes
that remain invariant or minimally affected by these frequent,
minor data alterations.

• While mathematical concepts have been integrated into financial
modeling, applying advanced mathematical structures, such as
ordered fuzzy numbers, remains largely unexplored in LOB data
representation. Fuzzy numbers offer a promising avenue for en-
hancing model robustness and accuracy by better handling the
uncertainties and imprecisions inherent in financial data. The
potential of these advanced mathematical concepts to improve
LOB data modeling and prediction has not been fully investigated
3

in existing literature. i
By addressing these gaps, our study aims to advance financial market
analysis and improve the predictive performance of models dealing
with LOB data. Through the proposed novel approach of represent-
ing LOB data using ordered fuzzy numbers, we seek to tackle the
abovementioned challenges by providing a more robust, dynamic, and
generalizable framework for financial market forecasting.

3. Limit Order Book data

The Limit Order Book is a dynamic record in the order-driven
financial market that catalogues all current buy (bid) and sell (ask)
orders that have been placed but not executed or canceled. These orders
are for specific assets and have a predetermined price and volume.
LOB provides a comprehensive overview of an asset’s current market
demand and supply. In electronic marketplaces, the LOB updates dy-
namically in real-time as new orders arrive, existing orders are canceled
or modified, or orders are executed [38].

The LOB is divided into two main sections. The bid side contains
buy orders sorted in descending order based on their price, and the ask
side contains sell orders sorted in ascending order based on their price.
Each LOB side is divided into distinct levels based on submitted prices.
Each level is characterized by price and volume of order.

Prices and volumes at different levels are often represented as vec-
tors. The LOB vector representation helps capture the spatial structure
and evolution of the market over time [23,37,39]. Spatially, price
and volume at each level are interrelated. The spatial relationship at
different levels is heterogeneous because there is no fixed gap between
adjacent price levels. For example, using a level-based representation,
a LOB snapshot can be represented as a vector

𝑠𝑡 = {𝑝𝑖𝑎(𝑡), 𝑣
𝑖
𝑎(𝑡), 𝑝

𝑖
𝑏(𝑡), 𝑣

𝑖
𝑏(𝑡)}

𝐿
𝑖=1, (1)

here 𝑝𝑖𝑎(𝑡), 𝑝𝑖𝑏(𝑡) are the ask and bid prices for price level 𝑖 at time
and 𝑣𝑖𝑎(𝑡), 𝑣

𝑖
𝑏(𝑡) are the ask and bid volumes, respectively. The time

equences of these snapshots represent the evolution of the market, and
his data structure can be represented as 𝑆 ∈ R𝑇×4𝐿, where 𝑇 is the
istory length and 𝐿 is the number of (nonzero) price levels considered
or each side.

This vector structure, while effective and intuitive from the point
f view of human understanding and compatible with the matching
ngines in exchanges, has several disadvantages from the point of view
f input data for machine learning models [37]. The spatial structure at
ifferent levels is not homogeneous because it is not assumed that adja-
ent price levels have constant spacing, which is the basic assumption
or convolutional neural networks (CNNs) due to the parameter-sharing
echanism. In addition, this representation can sometimes be unstable
ue to dynamic changes in price levels, e.g., the previous best bid/ask
ata may suddenly move to second place when a new order with a
etter price is placed. Similarly, the appearance of a relatively small
rder can dramatically change the norm of this vector. Moreover, only
he first 𝐿 levels (usually 10) are considered in this representation, so
hese levels may take orders with a small volume while kicking out
evels with a much larger volume.

. Proposed representation of LOB

.1. Why ordered fuzzy numbers?

Ordered fuzzy numbers (OFNs) are a specific type of fuzzy numbers
ntroduced by Kosinski et al. (also called Kosinśki’s fuzzy numbers)
n the series of papers [40–44]. OFNs, in contrast to classical fuzzy
umbers [45,46], are defined by ordered pairs of continuous real
unctions defined on the interval [0, 1], i.e.,

= (𝑓, 𝑔) with 𝑓, 𝑔∶ [0, 1] → R 𝑎𝑠 continuous functions, (2)

nstead of the classical membership function 𝜇𝐴 ∶ R → [0, 1]. The
rdered fuzzy number and the ordered fuzzy number as a fuzzy number

n classical meaning are presented in Fig. 2
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Fig. 2. Graphical interpretation of OFN and a OFN presented as fuzzy number in classical meaning [47].
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The main advantage of OFNs is that the basic arithmetic operations
{+,−, ⋅,÷} are defined as the pairwise operations of their elements,
which leads to the existence of the neutral elements of addition and
multiplication. This fact means that the result of an arithmetic opera-
tion is not always a fuzzy number with larger support. Thanks to this,
we can build fuzzy models based on ordered fuzzy numbers in the form
of classical equations without losing accuracy. Essential mathematical
functions such as 𝑙𝑜𝑔, 𝑒𝑥𝑝, 𝑠𝑞𝑟𝑡, and more can be defined in a similar

ay (see [48]). Moreover, an OFN is a generalization of the real number
n the sense that each real number 𝑎 can be represented as the OFN with
onstant functions 𝑓 and 𝑔 equal to 𝑎.

Ordered fuzzy numbers have found many applications in various
areas, such as modeling dynamic changes, decision-making, DDoS at-
tack analysis, and many others [49–53]. In particular, in our previ-
ous works [47,54–56], they have been used to model/represent high-
frequency stock market data in the form of a well-defined mathemat-
ical object, based on which it becomes possible to build more robust
and flexible models that better reflect the complexity and uncertainty
characteristic of financial markets.

Fig. 3 shows a graphical representation of the LOB snapshot (real
data, KGHM on 2017-01-03 09:22:52.299826, only price levels in range
±100% of mid-price) and an illustration of the corresponding demand
and supply (the number of shares we can sell or buy at a fixed price
limit) for the same limit order book data, respectively. It can be noted
that the demand and supply lines can be identified with functions
𝑓 and 𝑔. However, to be an OFN, these functions must be defined
on the interval [0, 1]. For this purpose, a transformation method was
eveloped, which is presented in the section below.

.2. Limit order book as ordered fuzzy number

One of the interesting areas of the limit order book analysis is
odeling and measuring liquidity. The ability to find and estimate

ntraday liquidity quickly and accurately is extremely valuable but
lso very challenging. A perfectly liquid market is one in which any
mount of a given security can be instantaneously converted into cash
nd back to securities at no cost. In the real world, a liquid market
s one where the transaction costs associated with this conversion are
inimized [57]. Market liquidity is not unidimensional and can be
nderstood in the following aspects [58]:

• the quantity of securities that are traded (depth)
• the ability of the security prices to quickly recover after a liquidity

shock (resiliency)
• the costs incurred in trading security (tightness)
• the time taken to execute a trade (immediacy)
• the intensity of trading volume impact on security prices (breadth)

In this paper, the conversion of LOB to OFN is proposed in such
way that OFN, in a simple way, can illustrate the depth of a given
4

t

instrument, i.e., it shows how many shares can be sold or bought at a
given moment and how it will affect the share price.

Let {𝑝𝑖𝑎(𝑡), 𝑣
𝑖
𝑎(𝑡)}

𝐿𝑎
𝑖=1 and {𝑝𝑖𝑏(𝑡), 𝑣

𝑖
𝑏(𝑡)}

𝐿𝑏
𝑖=1 be a complete snapshot of

LOB at time 𝑡 (all price levels), where 𝑝𝑖𝑎(𝑡), 𝑝
𝑖
𝑏(𝑡) are the ask and bid

prices for price level 𝑖 at time 𝑡 and 𝑣𝑖𝑎(𝑡), 𝑣𝑖𝑏(𝑡) are the ask and bid
olumes, respectively, and 𝐿𝑎, 𝐿𝑏 are the number of (nonzero) price

levels considered for ask and bid side, respectively. Moreover, let 𝑝𝑟(𝑡)
be a reference price at time 𝑡 (e.g. mid-price or open price). Then the
function 𝑓 and 𝑔 of OFN 𝐴𝑡 = (𝑓𝑡, 𝑔𝑡) at time 𝑡 are defined as follows:

𝑓𝑡(𝑥)

= −

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if (1 − 𝑥)𝑝𝑟(𝑡) > 𝜇1
𝑎(𝑡),

𝐿𝑎
∑

𝑖=1
𝑣𝑖𝑎(𝑡) if (1 − 𝑥)𝑝𝑟(𝑡) ≤ 𝜇𝐿𝑎

𝑎 (𝑡),
( 𝑙𝑎
∑

𝑖=1
𝑣𝑖𝑎(𝑡)

)(

1 +
𝜇𝑙𝑎
𝑎 (𝑡) − (1 − 𝑥)𝑝𝑟(𝑡)

(1 − 𝑥)𝑝𝑟(𝑡) − 𝑝𝑙𝑎+1𝑎 (𝑡)

)

otherwise

(3)

𝑔𝑡(𝑥)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if (1 + 𝑥)𝑝𝑟(𝑡) < 𝜇1
𝑏 (𝑡),

𝐿𝑏
∑

𝑖=1
𝑣𝑖𝑏(𝑡) if (1 + 𝑥)𝑝𝑟(𝑡) ≥ 𝜇𝐿𝑏

𝑏 (𝑡),

( 𝑙𝑏
∑

𝑖=1
𝑣𝑖𝑏(𝑡)

)

⎛

⎜

⎜

⎝

1 +
𝜇𝑙𝑏
𝑏 (𝑡) − (1 + 𝑥)𝑝𝑟(𝑡)

(1 + 𝑥)𝑝𝑟(𝑡) − 𝑝𝑙𝑏+1𝑏 (𝑡)

⎞

⎟

⎟

⎠

otherwise

(4)

where 𝜇𝑖
𝑎(𝑡) and 𝜇𝑖

𝑏(𝑡) are volume-weighted average prices at time 𝑡 from
evel 1 to 𝑖 for ask and bid prices, respectively, 𝑙𝑎 is the lowest 𝑖 that
atisfies the relation 𝜇𝑖

𝑎 < (1 − 𝑥)𝑝𝑟(𝑡) and 𝑙𝑏 is the lowest 𝑖 that satisfies
he relation 𝜇𝑖

𝑏 > (1 + 𝑥)𝑝𝑟(𝑡).

nterpretation
Fig. 4 shows an example of an ordered fuzzy number generated by

he limit order book of KGHM on 2017-01-03 09:22:52.299826. The
alues of |𝑓 (𝑥)| and 𝑔(𝑥) show the size of trades that can be made for
given level of potential cost (1 − 𝑥), i.e., the percentage difference

etween the real average transaction price and the reference price for
he ask and bid side, respectively. For example, if an investor wishes
o purchase 30,000 shares of KGHM all at once, the average cost per
hare would be 94.97. Compared to the current mid-price of 94.52, this
ould result in an approximate loss of 0.4% if the investor could have
ought the shares at the mid-price. Likewise, if the investor wants to
ell 10,000 shares right now, the average selling price per share would
e 94.22. This would lead to an approximate loss of 0.3% compared to

he current mid-price.
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Fig. 3. Limit order book snapshot for KGHM on 2017-01-03 09:22:52.299826 and the corresponding demand and supply chart.
Fig. 4. The ordered fuzzy number generated by limit order book of KGHM on 2017-01-03 09:22:52.299826.
T
t

dditional parameters and modifications for practical use cases
The general definition of an ordered fuzzy number generated by

imit order book data has been defined above. In order to better adapt
t to specific practical applications, a few additional parameters and
odifications described below are proposed for consideration.

umbers of price levels. Considering all orders in the limit order book
an be problematic and often inappropriate, there may be orders
hat cannot be executed in any given session due to price fluctuation
onstraints. Therefore, it is suggested to consider only price levels
ithin specific reference price bounds (± daily price fluctuation limit,

e.g., ±10%). The result of applying this restriction is shown in Fig. 5.

Maximum cost. Fig. 5 also illustrates that the bulk of the pertinent
data is concentrated close to x=1. This concentration stems from the
limited scope of examined price levels and the method of computing
cost as a percentage difference between the average transaction price
5

and the reference price. Therefore, it is recommended to implement a f
parameter that sets the upper limit for the considered cost (e.g., single
transaction price fluctuation limit, e.g., 3.5%). Subsequently, adjust the
𝑥-axis linearly so that x=0 aligns with the maximum predetermined cost
and x=1 aligns with the zero cost. The result of this transformation for
the assumed maximum cost of 3.5% is shown in Fig. 6.

Discretization. In prior research, for numerical calculations, an ordered
fuzzy number 𝐴 = (𝑓, 𝑔) was represented as an ordered pair of vectors
(𝐟 , 𝐠). These vectors 𝐟 and 𝐠 are constructed from the function values
of 𝑓 and 𝑔, respectively. These values are calculated at (𝑀 + 1) points,
which are obtained by uniformly discretizing the interval [0, 1], i.e.

𝐟 = [𝑓 (0), 𝑓 (𝑑𝑥), 𝑓 (2 ⋅ 𝑑𝑥),… , 𝑓 ((𝑀 − 1) ⋅ 𝑑𝑥), 𝑓 (1)],
𝐠 = [𝑔(0), 𝑔(𝑑𝑥), 𝑔(2 ⋅ 𝑑𝑥),… , 𝑔((𝑀 − 1) ⋅ 𝑑𝑥), 𝑔(1)],

𝑑𝑥 = 1
𝑀

. (5)

his numerical representation of OFN allows for convenient implemen-
ation of arithmetic operations, resulting in ordered fuzzy numbers with
unctions 𝑓 and 𝑔 of any shape. In the case of LOB data representation,
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Fig. 5. The ordered fuzzy number generated by limit order book of KGHM on 2017-01-03 09:22:52.299826 under restriction to price levels in range of ±10% of mid-price.
Fig. 6. The ordered fuzzy number generated by the limit order book of KGHM on 2017-01-03 09:22:52.299826 under restriction to price levels in the range of ±10% of mid-price
nd maximum cost of 3.5%. The labeled markers indicate the distribution of points when using linear and geometric progressions for discretization, respectively.
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eplacing the linear scale with a logarithmic scale (a geometric progres-
ion) to increase the density of points close to x=1 was proposed (see
ig. 6).

. Experiments and results

.1. Benchmark dataset and model

A commonly used LOB dataset for model testing is the FI-2010
ataset [23], which is the first publicly available benchmark dataset of
igh-frequency limit order book data. This dataset contains time series
ata for five Nasdaq Nordic stock market stocks for ten consecutive
ays. However, this publicly available data is based on only ten price
evels and has already been pre-processed (normalized). Therefore, it
s impossible to prepare input data for deep learning models based
n them using the LOB data representation method proposed in this
aper. Moreover, as mentioned in [33], a 10-day dataset is inadequate
or thoroughly evaluating an algorithm’s robustness and capacity for
eneralization, given that the issue of overfitting to historical data is
6

E

ignificant and a signal is typically expected to remain stable over
everal months. That is why they also trained and tested their model on
heir dataset of limit order book data of one-year length for instruments
hat are among the most liquid stocks listed on the London Stock
xchange. Unfortunately, this dataset is not publicly available.

Acknowledgment is extended for the financial support received from
he National Science Centre, which was crucial for acquiring significant
istorical data from the Warsaw Stock Exchange (WSE), including
omprehensive information on all orders and transactions. Following
onsultations and approval from the WSE, an open-access version of
his dataset has been made available to the research community. An
ntroductory dataset description is provided below, and the dataset
as been made publicly available in the Mendeley Data Repository1,

1 Marszałek, Adam (2023), ‘‘WSELOB-2017: The year-long database of
imit order books for the five biggest companies listed on the Warsaw Stock
xchange’’, Mendeley Data, V1, doi: 10.17632/3g4mhdp899.1
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Table 1
Statistical description of the dataset segmented by individual stocks.

Stock LOB
snapshots

LOB snapshots
per day

Mean
gap

KGHM 19, 500, 582 78, 002.328 0.361515 s
PKNORLEN 18, 261, 547 73, 046.188 0.386032 s
PKOBP 16, 322, 175 65, 288.7 0.431902 s
PZU 15, 743, 871 62, 975.484 0.447772 s
PEKAO 9, 022, 376 36, 089.504 0.781342 s

ensuring easy access and facilitating further research by the academic
community.

WSE LOB dataset. A year-long dataset was compiled for the five biggest
stocks on the Warsaw Stock Exchange in 2017: KGHM, PKNORLEN,
PKOBP, PZU, and PEKAO; these are among the most liquid stocks on the
WSE. This dataset covers all LOB updates (messages) and spans every
trading day from January 1, 2017, to December 24, 2017. From the
raw message books, one can reconstruct complete limit order books.
The dataset focuses on time series data of the LOB, including only price
levels within a ±10% daily price fluctuation limit, based on the actual
mid-price. Each level in the series includes both price and volume infor-
mation. Data coverage is during standard trading hours between 9:00
AM and 4:50 PM (CET or CEST, as applicable), excluding auctions and
moments without changes in selected levels. The WSE dataset spans a
year and includes almost 79 million data points. Each stock experiences,
on average, about 63,000 events per day, and these events occur at
inconsistent time intervals. The time gap between any two successive
events can range from a fraction of a second to several minutes. The
average time gap in the dataset is 0.481713 s. Statistics descriptions
for individual stocks are presented in Table 1. For experiments, the
initial nine months of data are used for training (with the separation
of the last 10% of the records as validation data) and the final three
months for testing. Given the high-frequency nature of the data, the 3-
month test period includes millions of data points, making it adequate
for evaluating the model’s effectiveness and accuracy.

DeepLOB model. The DeepLOB model, as referenced in [33], was cho-
sen as the benchmark model to evaluate the proposed method on the
whole WSE dataset. This model is notable for being the first hybrid deep
neural network designed to predict stock price movements using high-
frequency limit order book data. It combines convolutional layers with
Long Short-Term Memory (LSTM) units to achieve superior predictive
performance compared to other existing algorithms that also use LOB
data for feature extraction as of the time it was published. The authors
of the DeepLOB model validated its performance using two datasets.
The first was the FI-2010 benchmark LOB dataset, and the second was
a comprehensive, year-long dataset featuring 134 million data points
from the London Stock Exchange. We chose to use only the DeepLOB
model for our experiments due to computational constraints, which
include the need to train the model multiple times for various assets
and input data types. Another reason for our choice was the similar-
ity between the London Stock Exchange dataset used in the original
DeepLOB model and WSE dataset. The similarity between the WSE
dataset and that of the LSE dataset primarily stems from three aspects:
the duration of the data, the inclusion of the most liquid assets, and
exchange system similarities. Both datasets cover one year, allowing for
a comprehensive analysis of market dynamics. Focusing on the most
liquid stocks ensures that the data represents assets with significant
trading activity, facilitating meaningful comparisons between market
behaviors. The datasets originate from comparable exchange systems,
with both markets operating in a manner that supports high-frequency
trading and the detailed analysis of limit order book data. The higher
liquidity of the LSE compared to the WSE is recognized.
7

5.2. Inputs, normalization and labeling

For the assessment of the new LOB data representation method’s
efficacy, two separate sets of input data were prepared for each asset.

The first set employs the traditional level-based LOB representation,
as outlined in Section 3. In this method, each LOB state includes
ten levels on both the bid and ask sides, featuring both price and
volume data. This results in 40 features per timestamp. The 50 most
recent states of the LOB are utilized as input for modeling purposes. In
particular, a single input is defined as

𝑋(1) = [𝑥(1)1 , 𝑥(1)2 ,… , 𝑥(1)𝑡 ,… , 𝑥(1)50 ]
𝑇 ∈ R50×40, (6)

here
(1)
𝑡 = [𝑝𝑖𝑎(𝑡), 𝑣

𝑖
𝑎(𝑡), 𝑝

𝑖
𝑏(𝑡), 𝑣

𝑖
𝑏(𝑡)]

10
𝑖=1, (7)

nd 𝑝𝑖𝑎(𝑡), 𝑝
𝑖
𝑏(𝑡) are the ask and bid prices for price level 𝑖 at time 𝑡 and

𝑖
𝑎(𝑡), 𝑣

𝑖
𝑏(𝑡) are the ask and bid volumes, respectively.

The second set comprises LOB snapshots formulated using the OFN
pproach, detailed in Section 4. The ±10% fluctuation limit was chosen
ased on the Polish stock market’s regulatory and operational realities.
n the Warsaw Stock Exchange, these are the established thresholds
or the maximum price change that can occur during a single trading
ession and ±3.5% for individual transactions. This regulatory frame-
ork is designed to prevent excessive volatility and maintain market

tability. In this case, a single input is designated as
(2) = [𝑥(2)1 , 𝑥(2)2 ,… , 𝑥(2)𝑡 ,… , 𝑥(2)50 ]

𝑇 ∈ R50×40, (8)

here
(2)
𝑡 = [(1 − 𝑟𝑖𝑟𝑚𝑎𝑥)𝑝𝑟(𝑡), 𝑓𝑡(𝑟𝑖)∕106, (1 + 𝑟𝑖𝑟𝑚𝑎𝑥)𝑝𝑟(𝑡), 𝑔𝑡(𝑟𝑖)∕106]10𝑖=1, (9)

here 𝐴𝑡 = (𝑓𝑡, 𝑔𝑡) is the ordered fuzzy numbers generated by LOB data
t time 𝑡, 𝑝𝑟 is the reference price calculated as mid-price at time 𝑡,
𝑚𝑎𝑥 = 0.035 is the maximum considered cost, and 𝑟𝑖 are 10 points from
he interval (0, 1] spaced evenly on a log scale (a geometric progression,
.e. 0.02709816, 0.06153943, 0.10531364, 0.16094986, 0.23166248,
.32153691, 0.43576567, 0.58094831, 0.76547279, 1).

In the same manner as previous studies [23,33,37], the z-score
tandardization to normalize our data for both types of inputs was
mployed. The mean and standard deviation from the preceding five
ays to normalize each day’s data were used, applying this separately
or each financial instrument. A static normalization approach is unsuit-
ble for a one-year dataset because financial time series often undergo
hanging trends. This dynamic method ensures that the normalized
ata generally falls within a reasonable range.

The aim is centered around forecasting the micro-movements of the
id-price, which is delineated as follows

𝑡 =
𝑝(1)𝑎 (𝑡) + 𝑝(1)𝑏 (𝑡)

2
. (10)

Directly comparing the mid-prices 𝑝𝑡 and 𝑝𝑡+𝑘 can result in a noisy label
set. To address this, a smoothing labeling method similar to one used in
previous research [23,30,33] was employed. Let 𝑚− denote the mean
of the previous 𝑘 mid-prices and 𝑚+ denote the mean of the next 𝑘

id-prices

−(𝑡) =
1
𝑘

𝑘
∑

𝑖=0
𝑝𝑡−𝑖, (11)

𝑚+(𝑡) =
1
𝑘

𝑘
∑

𝑖=0
𝑝𝑡+𝑖, (12)

where 𝑝𝑡 is the mid-price defined in Eq. (10) and 𝑘 is the prediction
horizon. Calculating the percentage change 𝑙𝑡 in the mid-price for
determining its direction is performed using a following equation

𝑙𝑡 =
𝑚+(𝑡) − 𝑚−(𝑡) . (13)
𝑚−(𝑡)
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Fig. 7. Label class balancing for train, validation and test sets for different prediction horizons 𝑘 for the WSE dataset.
Table 2
The values of threshold 𝛼𝑘 for specific prediction horizons 𝑘 for individual stocks.

Stock ∖ 𝑘 20 50 100

KGHM 0.0000263 0.000102 0.000155
PKNORLEN 0.000022 0.000085 0.000145
PKOBP 0.0000207 0.000089 0.000147
PZU 0.000029 0.0000845 0.000136
PEKAO 0.00005 0.00012 0.000185

Subsequently, the movement is classified into three classes: −1 for
ownward movement, 0 for stationary, and +1 for upward movement.

The final labels are determined based on a threshold 𝛼𝑘 for the per-
centage change 𝑙𝑡. If 𝑙𝑡 > 𝛼𝑘 or 𝑙𝑡 < −𝛼𝑘, the movement is classified as
upward (+1) or downward (−1), respectively. For all other cases, it is
considered stationary (0).

Table 2 lists the threshold values 𝛼𝑘 for specific prediction horizons
𝑘. These thresholds were chosen to ensure a balanced distribution of
classes in the training dataset. However, they also lead to a roughly
even distribution of classes in validation and test sets, as demonstrated
in Fig. 7.

5.3. Data perturbation

A straightforward data perturbation technique, inspired by the ap-
proach introduced in [37], was utilized to evaluate the stability of
the proposed method for LOB data representation. In specific LOB
data related to stocks, the price gap between adjacent levels some-
times exceeds the tick size (the smallest allowable price change). This
phenomenon is notably common in small-tick stocks and can cause a
complete shift in the LOB even with placing a minimum-size order at
a price between existing levels. This perturbation method assumes that
8

small orders are placed at vacant price levels beyond the best ask/bid
prices, ensuring that the mid-price remains unchanged, thereby keeping
prediction labels intact. This technique is illustrated through the use of
a real LOB example. The first part (A) of Fig. 8 shows a LOB snapshot
with ten price levels on each of the ask and bid sides (labeled L1-L10)
before any perturbation. The mid-price in this snapshot is 93.93, with
a bid–ask spread of 0.04. Assuming a tick size of 0.01 and a minimum
order size of 1, some price levels, like 93.96 and 93.97 on the ask
side and 93.87 and 93.86 on the bid side, are empty. To perturb this
data, one can place minimum-size orders at these empty levels, which
appears inconsequential as they neither affect the mid-price nor add
significant volume.

Upon perturbation, nearly half of the original price level details
become obscured (see Fig. 8 (B)). For instance, ask-side levels L6 to L10
vanish post-perturbation, while the remaining levels shift in their LOB
positioning. This perturbation has two critical effects from a machine-
learning standpoint. First, it dramatically alters the 40-dimensional
input space; for example, the Euclidean distance between the 40-
dimensional vectors pre and post-perturbation is 6129.09 (0.22 when
the volume is normalized by a factor of 106), even though the total
order volume applied is merely 8. Second, it limits the model’s ability
to ‘‘see’’ the market, as represented by the gray areas masked out in the
LOB visualization after perturbation.

It is worth noting that in the proposed representation method,
the number of price levels considered is variable, depending on the
price range. Although a broader range of price levels is considered,
perturbation is applied only between L1 and L10 to maintain the same
level of disruption. As a result, this method is highly resilient to such
perturbations because new orders will remove none of the existing
levels. Moreover, the impact of small orders is minimal. For instance,
the Euclidean distance between the 40-dimensional vectors generated
by our method before and after perturbation is 0.02 (1464.44 when the



Applied Soft Computing 158 (2024) 111555A. Marszałek and T. Burczyński

c
b

a
i
p
s
(

5

f
c
m
s
c
m
b
t
m

P
(
1
M
b
d
m
r

5

p
a
d
l

N

Fig. 8. (A) Original LOB data with 10 levels on ask and bid side without perturbation. (B) LOB data with 10 levels after data perturbation.
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umulative volume, i.e., values of functions 𝑓 and 𝑔 are not normalize
y a factor of 106).

Note that in the data perturbation method outlined above, all
vailable gaps are filled with new small orders. An extra parameter, 𝑃 ,
s introduced to enhance the flexibility of the approach, indicating the
ercentage of empty price levels to be filled with orders. The empirical
tudies will investigate various levels of perturbation, specifically 0%
no perturbation), 1%, 5%, 10%, 25%, and 50%.

.4. Experiments settings

The publicly accessible version of the DeepLOB model2 is applied
or all experiments, with the training settings, including the use of
ategorical cross-entropy loss and the ADAM optimization algorithm,
aintained as per the original study’s specifications. The learning is

topped if there is no improvement in validation accuracy over 20
onsecutive epochs, with a maximum of 50 epochs. Training employs
ini-batches of 64 samples, as suggested in [33,59]. All models are

uilt using Keras [60] based on the TensorFlow backend [61] and are
rained using a mirrored strategy of distributed learning on computing
achines equipped with two NVIDIA Tesla V100 GPUs.

Models are trained separately for each of the five assets (KGHM,
KNORLEN, PKOBP, PZU, and PEKAO) in two variants of input data
standard and proposed) and for three forecast horizons (𝑘 ∈ {20, 50,
00}), which gave 5 × 2 × 3 = 30 different configurations for training.
odels are trained using a non-perturbed dataset, and data pertur-

ation is applied at various levels (𝑃 ∈ {0%, 1%, 5%, 10%, 25%, 50%})
uring the testing phase to evaluate model performance. In addition, all
odels were re-trained from scratch five times each for added statistical

obustness of results.

.5. DeepLOB model performance

Table 3 showcases the testing efficacy of the DeepLOB model in
redicting price movements within the WSE dataset. The results are
veraged across five stocks, with individual results for each stock
etailed in Appendix A. The table explores variations in perturbation
evels (𝑃 ), prediction horizons (𝑘), and input types (level-based 𝑋(1)

and the newly proposed 𝑋(2)). The model’s performance is assessed
using four distinct metrics: Accuracy (%), Precision (%), Recall (%),
and F-score (%). Accuracy (%) is calculated as the percentage of test
sample predictions that precisely align with the actual outcomes. This is

2 https://github.com/zcakhaa/DeepLOB-Deep-Convolutional-Neural-
etworks-for-Limit-Order-Books
9

considered an unbalanced accuracy score, while the remaining metrics
are weighted averages across different classes. The confusion matrices
are presented in Fig. 9 to facilitate a detailed examination of the results.

First, in a disturbance-free scenario (𝑃 = 0%), the DeepLOB model
shows performance comparable to that outlined in article [33] for the
LSE dataset. Like the findings there, the model’s effectiveness declines
as the prediction horizon expands. While the impact of changing input
types is minor, the proposed input method slightly outperforms all
metrics across various forecasting horizons. This suggests that proposed
input representation method captures critical information about the
limit order book as effectively as traditional level-based representation
schemes.

Second, in line with the observations made in the work [37], the
model’s performance deteriorates when unexpected data distortions
occur, particularly with the traditional input representation. Compared
to a perturbation-free environment, an observed decrease in accuracy
ranges from approximately 7% (𝑃 = 1%) to as much as 23% (𝑃 = 50%).

he confusion matrix data further indicates that, under the traditional
nput scheme, the model increasingly leans towards generating near-
ero positive predictions as noise levels escalate. Contrastingly, this
egradation is far less severe using our proposed input representation,
anging from less than 0.5% (𝑃 = 1%) to around 4% (𝑃 = 50%). This
inding supports our hypothesis regarding the stability and resilience of
he proposed input data representation to emerging noises in the LOB
ata.

To substantiate the significance of the findings further, the Wilcoxon
igned-rank test was applied to the experimental data [62]. This sta-
istical analysis was conducted to rigorously compare the performance
etrics of the DeepLOB model with traditional and proposed input

epresentation methods under varying noise levels. The Wilcoxon test,
hosen for its suitability for non-parametric data, confirmed that the
ifferences in performance between the two input methods were sta-
istically significant. Specifically, the test results showed a significant
dvantage of proposed input method over the traditional one across
ll perturbation levels (see Table 3). This statistical confirmation un-
erscores the robustness and effectiveness of the proposed input rep-
esentation in maintaining model performance amidst data distortions,
roviding a solid statistical foundation for hypothesis on the resilience
f the proposed method against noise in the LOB data.

Recognizing the potential value of transfer learning in broadening
he applicability of predictive models in finance, Table 4 shows the
xperiment results of DeepLOB trained on KGHM and tested on the rest
f the WSE dataset for various perturbation levels, prediction horizons,
nd types of inputs. The results are averaged across four stocks, with
ndividual results for each stock detailed in Appendix B. The general

https://github.com/zcakhaa/DeepLOB-Deep-Convolutional-Neural-Networks-for-Limit-Order-Books
https://github.com/zcakhaa/DeepLOB-Deep-Convolutional-Neural-Networks-for-Limit-Order-Books
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Table 3
Experiment results on WSE dataset for various of perturbation levels (𝑃 ), prediction horizons (𝑘) and types of inputs
(level-based 𝑋(1) and proposed 𝑋(2)).
𝑃 𝑘 Metrics (%)

Accuracy Precision Recall F1-score

𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2)

0%
20 64.53 65.45∗∗∗ 67.1 67.5 64.53 65.45∗∗∗ 64.9 65.76∗∗∗
50 62.11 62.56∗∗∗ 61.57 62.31∗∗∗ 62.11 62.56∗∗ 61.77 62.42∗∗∗
100 61.57 62.06∗∗ 61.04 61.49 61.57 62.06∗∗∗ 61.24 61.69∗

1%
20 55.05 65.22∗∗∗ 54.79 67.16∗∗∗ 55.05 65.22∗∗∗ 54.57 65.53∗∗∗
50 55.27 62.41∗∗∗ 54.27 62.21∗∗∗ 55.27 62.41∗∗∗ 53.34 62.3∗∗∗
100 54.81 62.01∗∗∗ 53.64 61.45∗∗∗ 54.81 62.01∗∗∗ 53.38 61.64∗∗∗

5%
20 47.84 64.36∗∗∗ 48.78 65.9∗∗∗ 47.84 64.36∗∗∗ 46.2 64.65∗∗∗
50 47.85 61.78∗∗∗ 48.59 61.82∗∗∗ 47.85 61.78∗∗∗ 44.44 61.8∗∗∗
100 48.07 61.74∗∗∗ 47.99 61.23∗∗∗ 48.07 61.74∗∗∗ 45.23 61.42∗∗∗

10%
20 45.21 63.5∗∗∗ 46.82 64.72∗∗∗ 45.21 63.5∗∗∗ 42.65 63.77∗∗∗
50 45.4 61.1∗∗∗ 46.7 61.42∗∗∗ 45.4 61.1∗∗∗ 41.26 61.24∗∗∗
100 45.74 61.42∗∗∗ 46.03 60.97∗∗∗ 45.74 61.42∗∗∗ 42.4 61.15∗∗∗

25%
20 42.49 61.91∗∗∗ 44.77 62.69∗∗∗ 42.49 61.91∗∗∗ 38.82 62.12∗∗∗
50 42.71 59.44∗∗∗ 44.43 60.54∗∗∗ 42.71 59.44∗∗∗ 37.9 59.84∗∗∗
100 42.83 60.61∗∗∗ 43.48 60.4∗∗∗ 42.83 60.61∗∗∗ 38.87 60.49∗∗∗

50%
20 41.7 61.14∗∗∗ 43.99 61.78∗∗∗ 41.7 61.14∗∗∗ 37.99 61.33∗∗∗
50 41.58 58.42∗∗∗ 42.97 60.03∗∗∗ 41.58 58.42∗∗∗ 36.93 58.94∗∗∗
100 41.39 60.02∗∗∗ 42.02 60.05∗∗∗ 41.39 60.02∗∗∗ 37.49 60.03∗∗∗

Note: ***, ** and * mean rejection of null hypotheses that the distribution of the differences 𝑋(1) −𝑋(2) is symmetric about
zero at 1%, 5%, and 10% level.
Fig. 9. Confusion matrices for corresponding experimental results in Table 3.
10
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Table 4
Experiment results of DeepLOB trained on KGHM and tested on the rest of the WSE dataset for various of perturbation levels
(𝑃 ), prediction horizons (𝑘) and types of inputs (level-based 𝑋(1) and proposed 𝑋(2)).
𝑃 𝑘 Metrics (%)

Accuracy Precision Recall F1-score

𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2)

0%
20 63.38 63.81∗∗∗ 65.12 64.83 63.38 63.81∗∗∗ 63.65 64.05∗∗∗
50 61.07 61.52∗∗ 60.6 61.13∗∗ 61.07 61.52∗∗ 60.69 61.14∗∗
100 60.49 60.88 60.59∗∗ 60.08 60.49 60.88 60.41 60.19

1%
20 54.66 63.66∗∗∗ 55.72 64.62∗∗∗ 54.66 63.66∗∗∗ 52.24 63.88∗∗∗
50 54.56 61.4∗∗∗ 53.35 61.04∗∗∗ 54.56 61.4∗∗∗ 51.94 61.04∗∗∗
100 53.71 60.8∗∗∗ 53.69 60.0∗∗∗ 53.71 60.8∗∗∗ 52.39 60.11∗∗∗

5%
20 47.7 63.04∗∗∗ 49.21 63.81∗∗∗ 47.7 63.04∗∗∗ 43.7 63.21∗∗∗
50 47.85 60.89∗∗∗ 47.1 60.67∗∗∗ 47.56 60.89∗∗∗ 43.15 60.59∗∗∗
100 46.87 60.53∗∗∗ 47.11 59.77∗∗∗ 46.87 60.53∗∗∗ 42.61 59.86∗∗∗

10%
20 44.9 62.42∗∗∗ 46.85 63.04∗∗∗ 44.9 62.42∗∗∗ 40.2 62.51∗∗∗
50 44.94 60.36∗∗∗ 45.49 60.32∗∗∗ 44.94 60.36∗∗∗ 40.09 60.12∗∗∗
100 44.26 60.21∗∗∗ 44.51 59.5∗∗∗ 44.26 60.21∗∗∗ 39.41 59.56∗∗∗

25%
20 42.01 61.19∗∗∗ 44.84 61.64∗∗∗ 42.01 61.19∗∗∗ 36.57 61.09∗∗∗
50 41.76 59.09∗∗∗ 41.18 59.62∗∗∗ 41.76 59.09∗∗∗ 36.44 59.0∗∗∗
100 41.15 59.47∗∗∗ 42.05 58.99∗∗∗ 41.15 59.47∗∗∗ 35.94 58.93∗∗∗

50%
20 41.28 60.57∗∗∗ 42.98 60.94∗∗∗ 41.28 60.57∗∗∗ 35.92 60.38∗∗∗
50 40.7 58.4∗∗∗ 41.36 59.23∗∗∗ 40.7 58.4∗∗∗ 35.18 58.35∗∗∗
100 40.02 59.06∗∗∗ 40.98 58.76∗∗∗ 40.02 59.06∗∗∗ 34.67 58.59∗∗∗

Note: ***, ** and * mean rejection of null hypotheses that the distribution of the differences 𝑋(1) −𝑋(2) is symmetric about
zero at 1%, 5%, and 10% level.
Table 5
Experiment results of five mainstream deep learning models trained on KGHM for various of perturbation levels (𝑃 ), prediction
horizons (𝑘) and types of inputs (level-based 𝑋(1) and proposed 𝑋(2)).
𝑃 𝑘 Metrics (%)

Accuracy Precision Recall F1-score

𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2)

0%
20 65.42 65.06 68.98∗ 68.24 65.42 65.06 65.75 65.34
50 62.01 61.75 61.69 61.46 62.01 61.75 61.77∗∗ 61.55
100 60.95 60.82 60.52 60.35 60.95 60.82 60.63 60.49

1%
20 56.69 64.86∗∗∗ 58.14 67.88∗∗∗ 56.69 64.86∗∗∗ 55.69 65.14∗∗∗
50 53.46 61.62∗∗∗ 54.75 61.37∗∗∗ 53.46 61.62∗∗∗ 52.69 61.45∗∗∗
100 51.6 60.75∗∗∗ 52.12 60.29∗∗∗ 51.6 60.75∗∗∗ 50.43 60.42∗∗∗

5%
20 48.24 64.07∗∗∗ 50.32 66.59∗∗∗ 48.24 64.07∗∗∗ 45.12 64.34∗∗∗
50 44.86 61.11∗∗∗ 47.84 61.01∗∗∗ 44.86 61.11∗∗∗ 41.58 61.03∗∗∗
100 43.49 60.38∗∗∗ 44.31 60.0∗∗∗ 43.49 60.38∗∗∗ 39.22 60.09∗∗∗

10%
20 45.94 63.26∗∗∗ 48.23 65.4∗∗∗ 45.94 63.26∗∗∗ 42.77 63.5∗∗∗
50 42.84 60.57∗∗∗ 46.33 60.69∗∗∗ 42.84 60.57∗∗∗ 39.47 60.59∗∗∗
100 41.34 59.97∗∗∗ 42.06 59.71∗∗∗ 41.34 59.97∗∗∗ 36.7 59.75∗∗∗

25%
20 43.65 61.64∗∗∗ 45.57 63.31∗∗∗ 43.65 61.64∗∗∗ 40.39 61.76∗∗∗
50 40.67 59.24∗∗∗ 43.09 60.01∗∗∗ 40.67 59.24∗∗∗ 36.84 59.45∗∗∗
100 38.89 58.8∗∗∗ 39.3 59.0∗∗∗ 38.89 58.8∗∗∗ 34.04 58.74∗∗∗

50%
20 42.67 60.75∗∗∗ 44.9 62.23∗∗∗ 42.67 60.75∗∗∗ 39.17 60.78∗∗∗
50 39.58 58.48∗∗∗ 43.4 59.64∗∗∗ 39.58 58.48∗∗∗ 35.2 58.75∗∗∗
100 37.65 57.94∗∗∗ 40.4 58.5∗∗∗ 37.65 57.94∗∗∗ 32.75 57.96∗∗∗

Note: ***, ** and * mean rejection of null hypotheses that the distribution of the differences 𝑋(1) −𝑋(2) is symmetric about
zero at 1%, 5%, and 10% level.
a

onclusions in this case are the same as in the case of the results
resented in Table 3. This preliminary exploration aims to shed light
n how models trained on data from one company might perform when
pplied to data from other companies, offering insights into the models’
daptability and potential for broader market analysis.

.6. Other deep learning models performance

In order to examine whether the obtained conclusions about the
esistance of the proposed method to disturbances in the data are
ndependent of the choice of model, five other deep learning mod-
ls were trained, including a convolutional network (CNN [30]), a
STM [25], an Attention-augmented-Bilinear-Network with two hidden
ayers (C(TABL) [29]) and two extensions of DeepLOB (DeepLOB-
eq2Seq and DeepLOB-Attention [35]). Table 5 showcases the testing
11
efficacy of these five mainstream deep learning models in predicting
price movements of KGHM. The results are averaged across five models,
with individual results for each model detailed in Appendix C. The table
explores variations in perturbation levels (𝑃 ), prediction horizons (𝑘),
nd input types (level-based 𝑋(1) and the newly proposed 𝑋(2)).

Upon examining both collective and individual outcomes, it is ev-
ident that the proposed method for representing input data demon-
strates enhanced stability when faced with data disturbances across all
models considered. Conversely, the traditional representation scheme
yields slightly superior results with undisturbed data on average.

Notably, the latest variations of the DeepLOB model deliver perfor-
mances closely aligned with the original model, particularly excelling in
scenarios with longer forecasting durations. In particular, the DeepLOB-
Attention model achieved the best performance with longer forecasting
horizons. Consequently, the evaluation of the proposed approach was
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Table 6
Experiment results of DeepLOB-Attention model on WSE dataset for various of perturbation levels (𝑃 ), prediction horizons
(𝑘) and types of inputs (level-based 𝑋(1) and proposed 𝑋(2)).
𝑃 𝑘 Metrics (%)

Accuracy Precision Recall F1-score

𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2)

0%
20 64.05 65.07∗∗∗ 66.79 67.41∗∗ 64.05 65.07∗∗∗ 64.38 65.34∗∗∗
50 62.46 63.07∗∗∗ 62.12 62.78∗∗ 62.46 63.07∗∗∗ 62.11 62.74∗∗∗
100 62.16 63.13∗∗∗ 61.92 62.88∗∗∗ 62.16 63.13∗∗∗ 61.79 62.8∗∗∗

1%
20 55.66 64.88∗∗∗ 56.78 67.1∗∗∗ 55.66 64.88∗∗∗ 53.94 65.14∗∗∗
50 54.88 62.96∗∗∗ 55.05 62.68∗∗∗ 54.88 62.96∗∗∗ 51.88 62.66∗∗∗
100 54.34 63.06∗∗∗ 54.8 62.81∗∗∗ 54.34 63.06∗∗∗ 51.08 62.74∗∗∗

5%
20 48.01 64.15∗∗∗ 50.68 66.04∗∗∗ 48.01 64.15∗∗∗ 43.43 64.37∗∗∗
50 47.37 62.49∗∗∗ 49.49 62.31∗∗∗ 47.37 62.49∗∗∗ 41.5 62.31∗∗∗
100 46.87 62.72∗∗∗ 49.16 62.48∗∗∗ 46.87 62.72∗∗∗ 40.93 62.48∗∗∗

10%
20 45.52 63.43∗∗∗ 48.26 65.09∗∗∗ 45.52 63.43∗∗∗ 40.38 63.59∗∗∗
50 44.96 62.01∗∗∗ 49.28 61.98∗∗∗ 44.96 62.01∗∗∗ 38.35 61.94∗∗∗
100 44.4 62.33∗∗∗ 47.07 62.16∗∗∗ 44.4 62.33∗∗∗ 37.79 62.17∗∗∗

25%
20 42.95 62.11∗∗∗ 44.78 63.59∗∗∗ 42.95 62.11∗∗∗ 37.24 62.14∗∗∗
50 42.27 60.89∗∗∗ 42.53 61.3∗∗∗ 42.27 60.89∗∗∗ 35.15 61.01∗∗∗
100 41.74 61.3∗∗∗ 42.77 61.44∗∗∗ 41.74 61.3∗∗∗ 34.67 61.3∗∗∗

50%
20 42.19 61.43∗∗∗ 44.27 62.97∗∗∗ 42.19 61.43∗∗∗ 36.78 61.38∗∗∗
50 41.24 60.21∗∗∗ 43.05 60.92∗∗∗ 41.24 60.21∗∗∗ 34.48 60.41∗∗∗
100 40.58 60.6∗∗∗ 43.22 61.0∗∗∗ 40.58 60.6∗∗∗ 33.86 60.69∗∗∗

Note: ***, ** and * mean rejection of null hypotheses that the distribution of the differences 𝑋(1) −𝑋(2) is symmetric about
zero at 1%, 5%, and 10% level.
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xpanded by incorporating results obtained from this model for the
dditional four companies within the WSE dataset. This was conducted
o assess the generalizability and robustness of the DeepLOB-Attention
odel in various scenarios. Results on the entire WSE dataset are
isplayed in Table 6, whereas details for individual stocks are provided
n C. These results further affirm the advantage and stability of the new
nput data representation.

In contrast, other models generally underperform, irrespective of
he forecasting horizon. The C(TABL) model, despite its lowest per-
ormance with undisturbed data, is distinguished by its most minor
ompared to the others performance degradation in response to increas-
ng data disturbances for both considered types of input data, marking
t as a promising avenue for future research.

. Conclusion

This paper introduced a novel approach to representing Limit Order
ook data, leveraging the Ordered Fuzzy Numbers concept. The study
as motivated by the challenges associated with the traditional level-
ased representation of LOB data, particularly its sensitivity to data
erturbations. The proposed representation scheme aims to effectively
apture the dynamic behavior of LOBs while being considerably more
obust to noise in the data. The proposed method was rigorously evalu-
ted using year-long market data from the Warsaw Stock Exchange for
he five largest companies.

The results indicate several key insights. In a disturbance-free en-
ironment, the proposed OFN-based representation demonstrated com-
arable performance to traditional level-based schemes, slightly out-
erforming them in all evaluated metrics across various forecasting
orizons. This confirms the efficacy of OFN in capturing critical infor-
ation present in LOBs. One of the most compelling findings is the

obustness of the proposed OFN representation to data perturbations.
raditional level-based representation schemes showed a significant
ecrease in prediction accuracy with increasing noise levels, dropping
y up to 23% under certain conditions. In stark contrast, the OFN repre-
entation maintained a remarkably stable performance, with accuracy
eteriorating by no more than 4%.

It is acknowledged that while the proposed model for representing
OB data has shown promising stability and predictive accuracy, espe-
ially in the face of data perturbations, there are inherent limitations
nd assumptions within this study that warrant discussion. Primarily,
12

O

the research was conducted within the context of the Warsaw Stock
Exchange, which may not fully encapsulate the dynamics and liquidity
of larger markets such as the London Stock Exchange. Moreover, the
model’s reliance on the specific structure of the LOB and the assumption
of market conditions remaining consistent with the historical data used
for training may not hold across different periods or unforeseen market
conditions. Future research could address these limitations by testing
the model across a broader range of markets and conditions, potentially
enhancing its robustness and applicability.

In conclusion, the OFN-based representation serves as a promising
input method for machine learning models like DeepLOB and opens
doors to other applications, such as defining liquidity measures or
employing fuzzy time series methods. The results highlight the utility
and robustness of the OFN-based representation, making it a promising
alternative for future research and practical applications. The future
work would mainly focus on applying the proposed representation
scheme to define new liquidity measures because capturing the aspects
of liquidity, such as the depth of the market, was the main inspira-
tion for developing the method. Moreover, future work may focus on
exploring the applicability of this method to other types of financial
instruments and investigating the benefits of integrating the proposed
representation with other machine learning models.
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Appendix A. DeepLOB model performance for individual stocks

This section showcases the remaining tables and confusion matri-
ces that display the outcomes generated by the DeepLOB model for
individual stocks (see Figs. A.10–A.14).

Table A.7
Experiment results on KGHM for various perturbation levels (𝑃 ), prediction horizons
(𝑘) and types of inputs (level-based 𝑋(1) and proposed 𝑋(2)).
𝑃 𝑘 Metrics (%)

Accuracy Precision Recall F1-score

𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2)

0%
20 65.97 66.59 68.52 68.86 65.97 66.59 66.3 66.87
50 62.92 62.85 62.6 62.77 62.92 62.85 62.68 62.76
100 62.77 61.96 62.6 61.45 62.77 61.96 62.67 61.64

1%
20 48.68 66.1 49.68 68.12 48.68 66.1 44.83 66.37
50 51.04 62.5 48.99 62.54 51.04 62.5 47.8 62.48
100 50.27 61.77 50.27 61.28 50.27 61.77 48.61 61.46

5%
20 39.47 64.07 42.63 65.25 39.47 64.07 31.82 64.31
50 40.82 61.06 39.9 61.64 40.82 61.06 33.73 61.25
100 40.66 60.97 40.44 60.58 40.66 60.97 32.81 60.69

10%
20 38.04 61.93 40.67 62.53 38.04 61.93 30.04 62.06
50 39.11 59.5 38.81 60.81 39.11 59.5 31.96 59.89
100 39.02 60.01 38.88 59.83 39.02 60.01 30.55 59.79

25%
20 36.95 57.85 39.29 57.91 36.95 57.85 29.02 57.52
50 37.61 55.75 37.68 59.28 37.61 55.75 30.66 56.39
100 37.38 57.76 37.4 58.42 37.38 57.76 29.53 57.8

50%
20 36.38 55.91 38.01 55.7 36.38 55.91 28.98 55.24
50 36.55 53.64 34.73 58.32 36.55 53.64 29.57 54.26
100 36.17 56.32 35.91 57.74 36.17 56.32 28.91 56.55

Table A.8
Experiment results on PKNORLEN for various perturbation levels (𝑃 ), prediction
horizons (𝑘) and types of inputs (level-based 𝑋(1) and proposed 𝑋(2)).
𝑃 𝑘 Metrics (%)

Accuracy Precision Recall F1-score

𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2)

0%
20 64.09 65.2 66.6 66.61 64.09 65.2 64.6 65.54
50 61.98 62.28 60.7 61.17 61.98 62.28 60.82 61.35
100 61.2 61.86 60.01 60.75 61.2 61.86 59.62 60.77

1%
20 50.48 64.83 50.03 66.07 50.48 64.83 48.19 65.15
50 51.11 62.02 49.87 61.02 51.11 62.02 45.89 61.24
100 51.85 61.81 50.2 60.72 51.85 61.81 46.31 60.76

5%
20 41.85 63.56 43.46 64.37 41.85 63.56 35.92 63.8
50 41.94 60.95 42.23 60.52 41.94 60.95 34.5 60.65
100 43.5 61.51 42.51 60.5 43.5 61.51 35.78 60.64

10%
20 40.46 62.38 42.87 62.95 40.46 62.38 34.19 62.55
50 40.2 59.75 41.31 60.14 40.2 59.75 32.77 59.86
100 41.45 61.14 41.1 60.28 41.45 61.14 33.95 60.45

25%
20 39.31 60.28 41.47 60.67 39.31 60.28 32.83 60.35
50 38.49 56.74 37.92 59.4 38.49 56.74 31.69 57.52
100 38.8 60.0 37.51 59.72 38.8 60.0 31.57 59.76

50%
20 38.65 59.21 39.34 59.75 38.65 59.21 32.42 59.22
50 37.39 54.71 35.48 58.96 37.39 54.71 31.47 55.75
100 36.92 59.04 35.76 59.33 36.92 59.04 30.15 59.09
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Table A.9
Experiment results on PKOBP for various perturbation levels (𝑃 ), prediction horizons
(𝑘) and types of inputs (level-based 𝑋(1) and proposed 𝑋(2)).
𝑃 𝑘 Metrics (%)

Accuracy Precision Recall F1-score

𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2)

0%
20 64.75 65.53 68.18 68.23 64.75 65.53 64.96 65.74
50 61.96 62.42 61.79 62.98 61.96 62.42 61.84 62.61
100 61.33 62.15 61.12 62.2 61.33 62.15 61.15 62.15

1%
20 63.17 65.53 65.11 68.23 63.17 65.53 63.38 65.74
50 60.51 62.42 59.97 62.97 60.51 62.42 59.97 62.6
100 60.15 62.15 59.7 62.2 60.15 62.15 59.69 62.15

5%
20 57.56 65.53 57.44 68.22 57.56 65.53 57.35 65.74
50 55.48 62.42 55.58 62.97 55.48 62.42 53.03 62.6
100 56.07 62.16 55.7 62.2 56.07 62.16 54.43 62.15

10%
20 52.67 65.53 52.88 68.23 52.67 65.53 51.28 65.74
50 51.43 62.42 53.0 62.97 51.43 62.42 47.06 62.6
100 52.43 62.16 52.86 62.2 52.43 62.16 49.53 62.15

25%
20 47.27 65.53 48.67 68.23 47.27 65.53 43.78 65.74
50 46.77 62.42 50.59 62.97 46.77 62.42 40.42 62.6
100 47.73 62.16 49.9 62.2 47.73 62.16 42.97 62.15

50%
20 45.87 65.52 47.72 68.23 45.87 65.52 41.84 65.73
50 45.34 62.41 49.85 62.97 45.34 62.41 38.63 62.6
100 46.01 62.16 49.34 62.2 46.01 62.16 40.54 62.15

Table A.10
Experiment results on PZU for various perturbation levels (𝑃 ), prediction horizons (𝑘)
nd types of inputs (level-based 𝑋(1) and proposed 𝑋(2)).
𝑃 𝑘 Metrics (%)

Accuracy Precision Recall F1-score

𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2)

0%
20 63.71 65.11 66.29 68.03 63.71 65.11 64.05 65.4
50 61.66 62.86 61.51 62.67 61.66 62.86 61.51 62.74
100 61.5 63.09 61.63 62.65 61.5 63.09 61.48 62.79

1%
20 62.3 65.11 64.04 68.02 62.3 65.11 62.58 65.4
50 60.66 62.86 60.35 62.66 60.66 62.86 60.37 62.74
100 60.53 63.09 60.66 62.65 60.53 63.09 60.5 62.79

5%
20 57.87 65.11 58.02 68.02 57.87 65.11 57.88 65.4
50 57.35 62.87 56.71 62.67 57.35 62.87 56.47 62.75
100 57.5 63.09 57.52 62.65 57.5 63.09 57.28 62.79

10%
20 54.25 65.1 54.18 68.02 54.25 65.1 53.85 65.4
50 54.84 62.87 54.22 62.67 54.84 62.87 53.38 62.75
100 55.14 63.09 55.04 62.65 55.14 63.09 54.63 62.79

25%
20 49.89 65.11 50.31 68.02 49.89 65.11 48.67 65.4
50 51.41 62.86 51.1 62.67 51.41 62.86 49.12 62.74
100 51.79 63.09 51.58 62.66 51.79 63.09 50.66 62.8

50%
20 48.99 65.11 49.53 68.02 48.99 65.11 47.68 65.4
50 50.35 62.87 50.11 62.67 50.35 62.87 47.89 62.75
100 50.52 63.08 50.34 62.65 50.52 63.08 49.1 62.79

Appendix B. DeepLOB model performance for transfer learning

This section presents tables that outline the results of applying the
DeepLOB model in transfer learning scenarios across different stocks.
Specifically, the model, initially trained on KGHM stock data, was
subsequently tested on data from other stocks to evaluate its predictive
performance. See Tables B.12–B.15.

Appendix C. Other deep learning models performance on KGHM

This section presents tables that outline the results of applying the
other five mainstream deep learning models on KGHM and, in case of
DeepLOB-Attention, on the rest of the WSE dataset. See Tables C.16–
C.24.

https://dx.doi.org/10.17632/3g4mhdp899.1
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Fig. A.10. Confusion matrices for corresponding experimental results in Table A.7.
Table A.11
Experiment results on PEKAO for various perturbation levels (𝑃 ), prediction horizons
(𝑘) and types of inputs (level-based 𝑋(1) and proposed 𝑋(2)).
𝑃 𝑘 Metrics (%)

Accuracy Precision Recall F1-score

𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2)

0%
20 64.0 64.35 65.62 65.36 64.0 64.35 64.33 64.59
50 62.02 62.27 61.6 62.04 62.02 62.27 61.73 62.11
100 60.64 60.54 60.8 60.02 60.64 60.54 60.65 60.17

1%
20 47.99 64.09 49.78 65.0 47.99 64.09 42.83 64.31
50 52.13 62.16 52.55 61.93 52.13 62.16 45.34 62.0
100 48.83 60.5 49.1 59.98 48.83 60.5 43.49 60.12

5%
20 39.28 63.05 45.42 63.67 39.28 63.05 31.68 63.22
50 41.4 61.65 45.17 61.42 41.4 61.65 32.68 61.49
100 38.88 60.32 40.3 59.79 38.88 60.32 30.1 59.93

10%
20 37.72 62.05 44.22 62.48 37.72 62.05 29.99 62.17
50 39.02 61.2 42.06 61.0 39.02 61.2 30.13 61.06
100 37.12 60.11 38.6 59.59 37.12 60.11 27.93 59.72

25%
20 36.56 60.23 40.34 60.57 36.56 60.23 28.88 60.31
50 37.0 60.12 37.16 60.13 37.0 60.12 28.39 60.07
100 35.33 59.61 36.34 59.15 35.33 59.61 26.18 59.24

50%
20 36.43 59.4 38.4 59.92 36.43 59.4 29.92 59.53
50 36.12 59.48 36.16 59.72 36.12 59.48 29.53 59.5
100 34.6 59.22 34.74 58.87 34.6 59.22 28.06 58.91
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Table B.12
Experiment results of DeepLOB trained on KGHM and tested on PKNORLEN for various
perturbation levels (𝑃 ), prediction horizons (𝑘) and types of inputs (level-based 𝑋(1)

and proposed 𝑋(2)).
𝑃 𝑘 Metrics (%)

Accuracy Precision Recall F1-score

𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2)

0%
20 63.99 64.33 65.7 65.61 63.99 64.33 64.41 64.68
50 61.59 61.87 61.44 62.04 61.59 61.87 61.47 61.91
100 62.23 61.89 61.82 61.16 62.23 61.89 61.96 61.35

1%
20 49.67 63.96 49.53 65.1 49.67 63.96 45.56 64.28
50 50.82 61.51 48.49 61.77 50.82 61.51 46.89 61.59
100 50.1 61.71 49.44 60.99 50.1 61.71 47.5 61.17

5%
20 41.57 62.56 43.0 63.21 41.57 62.56 34.66 62.75
50 41.09 60.13 39.05 60.81 41.09 60.13 34.39 60.36
100 40.67 61.01 40.63 60.39 40.67 61.01 32.76 60.52

10%
20 40.27 61.1 41.14 61.34 40.27 61.1 32.97 61.12
50 39.17 58.64 37.72 59.87 39.17 58.64 32.43 59.03
100 38.7 60.14 38.46 59.68 38.7 60.14 30.49 59.72

25%
20 38.86 58.34 40.39 58.11 38.86 58.34 31.65 57.94
50 36.79 55.32 33.03 58.12 36.79 55.32 30.26 55.98
100 36.06 58.21 36.83 58.36 36.06 58.21 28.42 58.02

50%
20 38.44 57.03 37.59 56.56 38.44 57.03 31.96 56.4
50 35.55 53.64 32.85 57.17 35.55 53.64 29.1 54.35
100 34.75 57.09 34.87 57.74 34.75 57.09 27.63 57.06
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Fig. A.11. Confusion matrices for corresponding experimental results in Table A.8.
Table B.13
Experiment results of DeepLOB trained on KGHM and tested on PKOBP for various
perturbation levels (𝑃 ), prediction horizons (𝑘) and types of inputs (level-based 𝑋(1)

and proposed 𝑋(2)).
𝑃 𝑘 Metrics (%)

Accuracy Precision Recall F1-score

𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2)

0%
20 64.07 64.48 67.31 65.92 64.07 64.48 64.27 64.71
50 60.74 61.03 60.62 60.57 60.74 61.03 60.62 60.5
100 59.86 60.52 60.71 59.94 59.86 60.52 60.07 59.88

1%
20 62.16 64.49 63.84 65.92 62.16 64.49 62.35 64.71
50 59.42 61.04 58.98 60.58 59.42 61.04 59.03 60.5
100 58.54 60.51 59.15 59.93 58.54 60.51 58.65 59.87

5%
20 56.15 64.49 56.05 65.92 56.15 64.49 55.89 64.71
50 54.97 61.04 54.49 60.58 54.97 61.04 53.6 60.51
100 53.91 60.51 54.15 59.93 53.91 60.51 53.54 59.87

10%
20 51.58 64.49 51.81 65.92 51.58 64.49 50.29 64.71
50 51.22 61.04 51.34 60.58 51.22 61.04 49.0 60.5
100 50.1 60.52 50.61 59.93 50.1 60.52 49.13 59.87

25%
20 46.6 64.49 47.83 65.92 46.6 64.49 43.68 64.72
50 46.32 61.04 47.7 60.58 46.32 61.04 42.87 60.51
100 45.42 60.51 46.91 59.93 45.42 60.51 43.31 59.87

50%
20 45.21 64.49 46.83 65.92 45.21 64.49 41.72 64.71
50 44.75 61.04 46.66 60.58 44.75 61.04 40.74 60.5
100 43.88 60.52 45.99 59.94 43.88 60.52 40.97 59.88
15
Table B.14
Experiment results of DeepLOB trained on KGHM and tested on PZU for various
perturbation levels (𝑃 ), prediction horizons (𝑘) and types of inputs (level-based 𝑋(1)

and proposed 𝑋(2)).
𝑃 𝑘 Metrics (%)

Accuracy Precision Recall F1-score

𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2)

0%
20 62.29 63.4 63.7 64.26 62.29 63.4 62.59 63.62
50 60.15 61.55 59.37 60.89 60.15 61.55 59.56 60.99
100 59.42 61.57 59.88 60.54 59.42 61.57 59.54 60.73

1%
20 60.42 63.4 60.88 64.26 60.42 63.4 60.56 63.62
50 58.93 61.55 57.86 60.89 58.93 61.55 57.94 61.0
100 58.05 61.57 58.2 60.54 58.05 61.57 57.97 60.73

5%
20 54.82 63.4 54.7 64.26 54.82 63.4 54.06 63.62
50 55.06 61.55 53.86 60.89 55.06 61.55 52.9 60.99
100 53.97 61.57 53.61 60.54 53.97 61.57 53.16 60.73

10%
20 50.79 63.4 51.32 64.27 50.79 63.4 48.9 63.62
50 51.96 61.55 51.16 60.89 51.96 61.55 48.97 60.99
100 50.79 61.57 50.46 60.54 50.79 61.57 49.3 60.73

25%
20 46.57 63.4 48.3 64.26 46.57 63.4 43.16 63.61
50 48.12 61.55 48.18 60.89 48.12 61.55 44.09 60.99
100 47.37 61.57 47.4 60.54 47.37 61.57 44.63 60.74

50%
20 45.6 63.4 47.68 64.26 45.6 63.4 41.75 63.62
50 47.15 61.55 47.51 60.89 47.15 61.55 42.7 61.0
100 46.51 61.56 46.76 60.53 46.51 61.56 42.93 60.73
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Fig. A.12. Confusion matrices for corresponding experimental results in Table A.9.
Table B.15
Experiment results of DeepLOB trained on KGHM and tested on PEKAO for various
perturbation levels (𝑃 ), prediction horizons (𝑘) and types of inputs (level-based 𝑋(1)

and proposed 𝑋(2)).
𝑃 𝑘 Metrics (%)

Accuracy Precision Recall F1-score

𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2)

0%
20 63.15 63.03 63.77 63.51 63.15 63.03 63.34 63.19
50 61.82 61.63 60.98 61.03 61.82 61.63 61.11 61.17
100 60.45 59.53 59.93 58.67 60.45 59.53 60.07 58.79

1%
20 46.39 62.79 48.63 63.19 46.39 62.79 40.48 62.92
50 49.08 61.48 48.05 60.91 49.08 61.48 43.88 61.05
100 48.16 59.41 47.96 58.56 48.16 59.41 45.43 58.68

5%
20 38.26 61.71 43.1 61.83 38.26 61.71 30.21 61.74
50 39.14 60.85 40.99 60.4 39.14 60.85 31.7 60.51
100 38.95 59.03 40.05 58.21 38.95 59.03 30.99 58.31

10%
20 36.97 60.69 43.14 60.62 36.97 60.69 28.63 60.59
50 37.42 60.2 41.73 59.94 37.42 60.2 29.97 59.97
100 37.46 58.62 38.52 57.87 37.46 58.62 28.73 57.94

25%
20 36.0 58.52 42.86 58.25 36.0 58.52 27.78 58.1
50 35.8 58.45 35.83 58.87 35.8 58.45 28.54 58.5
100 35.74 57.6 37.08 57.12 35.74 57.6 27.41 57.1

50%
20 35.87 57.38 39.81 57.04 35.87 57.38 28.25 56.78
50 35.33 57.38 38.41 58.28 35.33 57.38 28.17 57.56
100 34.92 57.08 36.28 56.83 34.92 57.08 27.13 56.71
16
Table C.16
Experiment results of CNN on KGHM for various perturbation levels (𝑃 ), prediction
horizons (𝑘) and types of inputs (level-based 𝑋(1) and proposed 𝑋(2)).
𝑃 𝑘 Metrics (%)

Accuracy Precision Recall F1-score

𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2)

0%
20 65.83 65.28 69.52 68.81 65.83 65.28 66.17 65.58
50 62.1 61.92 62.28 62.06 62.1 61.92 62.16 61.96
100 61.05 61.03 60.54 60.99 61.05 61.03 60.61 60.91

1%
20 59.19 65.15 61.44 68.51 59.19 65.15 59.4 65.45
50 49.83 61.84 56.35 62.0 49.83 61.84 50.27 61.9
100 46.05 60.99 51.67 60.96 46.05 60.99 46.24 60.87

5%
20 49.55 64.64 51.22 67.5 49.55 64.64 49.47 64.94
50 39.01 61.51 47.12 61.79 39.01 61.51 36.84 61.62
100 37.66 60.74 43.45 60.78 37.66 60.74 35.24 60.65

10%
20 47.26 64.2 48.77 66.69 47.26 64.2 47.02 64.5
50 37.93 61.1 44.68 61.53 37.93 61.1 35.68 61.27
100 36.64 60.49 40.85 60.61 36.64 60.49 34.34 60.43

25%
20 46.23 63.16 49.21 64.96 46.23 63.16 45.36 63.44
50 37.35 60.24 45.71 61.07 37.35 60.24 33.98 60.53
100 36.07 59.82 40.33 60.1 36.07 59.82 33.05 59.8

50%
20 47.74 62.25 53.97 63.42 47.74 62.25 46.46 62.46
50 38.9 60.03 50.54 61.0 38.9 60.03 35.3 60.34
100 36.44 59.34 43.36 59.71 36.44 59.34 32.42 59.35
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Fig. A.13. Confusion matrices for corresponding experimental results in Table A.10.
Table C.17
Experiment results of LSTM on KGHM for various perturbation levels (𝑃 ), prediction
horizons (𝑘) and types of inputs (level-based 𝑋(1) and proposed 𝑋(2)).
𝑃 𝑘 Metrics (%)

Accuracy Precision Recall F1-score

𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2)

0%
20 64.44 63.07 68.12 66.69 64.44 63.07 64.77 63.31
50 59.49 59.37 59.26 58.98 59.49 59.37 59.36 59.11
100 56.86 57.18 56.11 56.25 56.86 57.18 56.39 56.53

1%
20 58.85 63.03 59.26 66.64 58.85 63.03 58.97 63.27
50 55.45 59.34 57.41 58.97 55.45 59.34 56.07 59.09
100 53.73 57.14 53.87 56.24 53.73 57.14 53.72 56.51

5%
20 48.35 62.9 47.98 66.49 48.35 62.9 47.41 63.14
50 47.53 59.18 51.1 58.9 47.53 59.18 48.06 58.99
100 47.19 56.97 47.01 56.16 47.19 56.97 46.8 56.41

10%
20 44.4 62.75 44.06 66.3 44.4 62.75 43.31 62.99
50 44.08 59.04 46.27 58.85 44.08 59.04 44.27 58.9
100 43.4 56.76 42.53 56.07 43.4 56.76 42.24 56.29

25%
20 39.98 62.37 39.96 65.9 39.98 62.37 39.25 62.6
50 39.91 58.57 40.34 58.64 39.91 58.57 39.4 58.56
100 38.32 56.22 37.81 55.79 38.32 56.22 37.16 55.93

50%
20 37.02 62.1 37.39 65.6 37.02 62.1 36.22 62.33
50 37.27 58.2 37.22 58.43 37.27 58.2 35.49 58.27
100 35.39 55.72 35.38 55.52 35.39 55.72 34.38 55.56
17
Table C.18
Experiment results of C(TABL) on KGHM for various perturbation levels (𝑃 ), prediction
horizons (𝑘) and types of inputs (level-based 𝑋(1) and proposed 𝑋(2)).
𝑃 𝑘 Metrics (%)

Accuracy Precision Recall F1-score

𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2)

0%
20 65.53 64.13 70.08 67.46 65.53 64.13 65.83 64.41
50 62.05 60.88 61.09 60.62 62.05 60.88 61.35 60.73
100 60.64 59.8 59.79 59.13 60.64 59.8 60.03 59.37

1%
20 64.43 64.11 69.18 67.42 64.43 64.11 64.65 64.4
50 60.21 60.88 61.08 60.62 60.21 60.88 60.48 60.72
100 57.17 59.8 56.32 59.13 57.17 59.8 56.49 59.37

5%
20 61.09 64.03 64.37 67.22 61.09 64.03 61.08 64.32
50 54.03 60.84 59.5 60.59 54.03 60.84 54.46 60.69
100 50.25 59.78 48.66 59.12 50.25 59.78 47.5 59.36

10%
20 58.65 63.94 60.64 67.0 58.65 63.94 58.57 64.23
50 51.35 60.82 56.96 60.58 51.35 60.82 51.28 60.68
100 46.99 59.77 45.72 59.11 46.99 59.77 42.58 59.35

25%
20 55.66 63.75 56.5 66.52 55.66 63.75 55.56 64.03
50 49.1 60.73 53.73 60.52 49.1 60.73 48.49 60.6
100 43.94 59.74 43.29 59.1 43.94 59.74 38.81 59.34

50%
20 54.21 63.58 54.98 66.15 54.21 63.58 54.06 63.87
50 47.53 60.66 51.88 60.47 47.53 60.66 46.66 60.54
100 43.28 59.71 42.28 59.1 43.28 59.71 39.46 59.32
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Fig. A.14. Confusion matrices for corresponding experimental results in Table A.11.
Table C.19
Experiment results of DeepLOB-Seq2Seq on KGHM for various perturbation levels (𝑃 ),
prediction horizons (𝑘) and types of inputs (level-based 𝑋(1) and proposed 𝑋(2)).
𝑃 𝑘 Metrics (%)

Accuracy Precision Recall F1-score

𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2)

0%
20 65.72 66.33 68.3 69.47 65.72 66.33 66.06 66.64
50 63.27 63.2 62.8 62.93 63.27 63.2 62.94 63.03
100 63.22 63.03 62.96 62.69 63.22 63.03 63.06 62.8

1%
20 50.18 65.96 50.28 68.78 50.18 65.96 46.56 66.26
50 51.08 62.97 49.38 62.77 51.08 62.97 47.39 62.84
100 50.73 62.9 49.27 62.59 50.73 62.9 46.98 62.69

5%
20 41.21 64.44 44.1 66.22 41.21 64.44 34.03 64.71
50 41.66 61.98 41.09 62.1 41.66 61.98 34.14 62.03
100 40.89 62.22 41.97 62.11 40.89 62.22 32.86 62.12

10%
20 39.86 62.88 44.69 63.89 39.86 62.88 32.77 63.1
50 40.4 60.91 40.98 61.53 40.4 60.91 33.11 61.16
100 39.82 61.45 42.31 61.65 39.82 61.45 32.18 61.5

25%
20 38.26 59.91 42.04 60.26 38.26 59.91 30.82 59.99
50 38.68 58.24 41.27 60.5 38.68 58.24 31.72 58.87
100 38.16 59.11 39.55 60.58 38.16 59.11 31.14 59.52

50%
20 37.24 58.62 37.14 58.98 37.24 58.62 29.75 58.66
50 37.23 56.61 38.83 59.95 37.23 56.61 30.01 57.34
100 36.58 57.41 39.17 59.92 36.58 57.41 29.44 57.93
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Table C.20
Experiment results of DeepLOB-Attention on KGHM for various perturbation levels (𝑃 ),
prediction horizons (𝑘) and types of inputs (level-based 𝑋(1) and proposed 𝑋(2)).
𝑃 𝑘 Metrics (%)

Accuracy Precision Recall F1-score

𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2)

0%
20 65.6 66.48 68.88 68.76 65.6 66.48 65.94 66.77
50 63.14 63.36 63.03 62.7 63.14 63.36 63.05 62.94
100 62.99 63.09 63.2 62.7 62.99 63.09 63.06 62.84

1%
20 50.81 66.03 50.54 68.07 50.81 66.03 48.87 66.31
50 50.73 63.1 49.53 62.49 50.73 63.1 49.24 62.72
100 50.34 62.93 49.48 62.54 50.34 62.93 48.7 62.68

5%
20 41.03 64.34 43.94 65.54 41.03 64.34 33.61 64.57
50 42.05 62.04 40.41 61.69 42.05 62.04 34.42 61.83
100 41.45 62.17 40.47 61.82 41.45 62.17 33.73 61.93

10%
20 39.54 62.53 43.0 63.11 39.54 62.53 32.21 62.67
50 40.44 60.97 42.76 60.97 40.44 60.97 33.02 60.95
100 39.87 61.35 38.88 61.12 39.87 61.35 32.19 61.17

25%
20 38.11 59.02 40.15 58.92 38.11 59.02 30.96 58.76
50 38.31 58.41 34.39 59.33 38.31 58.41 30.59 58.7
100 37.96 59.12 35.54 59.41 37.96 59.12 30.04 59.12

50%
20 37.14 57.19 41.01 57.03 37.14 57.19 29.36 56.58
50 36.98 56.89 38.51 58.34 36.98 56.89 28.57 57.24
100 36.53 57.5 41.8 58.24 36.53 57.5 28.06 57.64
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Table C.21
Experiment results of DeepLOB-Attention on PKNORLEN for various perturbation levels
(𝑃 ), prediction horizons (𝑘) and types of inputs (level-based 𝑋(1) and proposed 𝑋(2)).
𝑃 𝑘 Metrics (%)

Accuracy Precision Recall F1-score

𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2)

0%
20 63.89 64.89 65.77 66.34 63.89 64.89 64.33 65.24
50 62.48 62.9 61.21 61.67 62.48 62.9 61.15 61.64
100 62.23 63.26 61.18 62.26 62.23 63.26 60.77 61.86

1%
20 51.78 64.53 51.49 65.71 51.78 64.53 49.38 64.84
50 51.03 62.69 49.64 61.48 51.03 62.69 46.43 61.52
100 50.51 63.12 49.74 62.1 50.51 63.12 45.05 61.81

5%
20 42.16 63.23 45.02 63.69 42.16 63.23 34.91 63.37
50 40.94 61.8 45.08 60.78 40.94 61.8 32.51 61.0
100 40.35 62.51 45.81 61.51 40.35 62.51 32.0 61.55

10%
20 40.51 62.0 44.08 62.06 40.51 62.0 32.41 61.97
50 39.11 60.87 45.87 60.2 39.11 60.87 29.88 60.41
100 38.2 61.69 43.86 60.88 38.2 61.69 29.36 61.07

25%
20 39.21 59.97 42.69 59.73 39.21 59.97 30.95 59.69
50 37.39 58.85 38.12 59.1 37.39 58.85 28.04 58.91
100 36.09 59.74 35.98 59.63 36.09 59.74 27.2 59.64

50%
20 38.67 59.03 40.58 58.83 38.67 59.03 31.84 58.71
50 36.54 57.71 35.98 58.41 36.54 57.71 28.64 57.96
100 35.0 58.6 34.74 58.86 35.0 58.6 27.39 58.69

Table C.22
Experiment results of DeepLOB-Attention on PKOBP for various perturbation levels (𝑃 ),
rediction horizons (𝑘) and types of inputs (level-based 𝑋(1) and proposed 𝑋(2)).
𝑃 𝑘 Metrics (%)

Accuracy Precision Recall F1-score

𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2)

0%
20 64.51 65.25 67.6 68.41 64.51 65.25 64.73 65.45
50 62.04 62.87 61.67 63.21 62.04 62.87 61.75 62.96
100 61.99 63.11 61.6 63.1 61.99 63.11 61.7 63.09

1%
20 62.86 65.25 64.34 68.41 62.86 65.25 63.07 65.45
50 60.52 62.87 59.89 63.21 60.52 62.87 59.7 62.96
100 60.48 63.11 59.87 63.1 60.48 63.11 59.71 63.09

5%
20 56.98 65.25 56.68 68.41 56.98 65.25 56.41 65.45
50 55.0 62.87 55.72 63.21 55.0 62.87 51.38 62.96
100 54.76 63.11 55.52 63.11 54.76 63.11 51.37 63.09

10%
20 52.33 65.25 52.69 68.41 52.33 65.25 49.88 65.45
50 50.84 62.87 53.82 63.2 50.84 62.87 44.73 62.96
100 50.34 63.11 53.47 63.11 50.34 63.11 44.58 63.09

25%
20 47.43 65.25 49.05 68.41 47.43 65.25 42.39 65.45
50 46.39 62.87 52.45 63.2 46.39 62.87 38.59 62.96
100 45.88 63.11 52.27 63.11 45.88 63.11 38.27 63.09

50%
20 46.16 65.25 48.28 68.41 46.16 65.25 40.56 65.45
50 44.9 62.87 51.87 63.21 44.9 62.87 36.81 62.96
100 44.28 63.11 51.8 63.11 44.28 63.11 36.3 63.09
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Table C.23
Experiment results of DeepLOB-Attention on PZU for various perturbation levels (𝑃 ),
prediction horizons (𝑘) and types of inputs (level-based 𝑋(1) and proposed 𝑋(2)).
𝑃 𝑘 Metrics (%)

Accuracy Precision Recall F1-score

𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2) 𝑋(1) 𝑋(2)

0%
20 62.95 64.75 66.87 68.56 62.95 64.75 63.26 65.05
50 62.18 63.53 62.26 63.94 62.18 63.53 62.21 63.69
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