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Many applications of the emerging quantum
technologies, such as quantum teleportation and
quantum key distribution, require singlets, max-
imally entangled states of two quantum bits. It
is thus of utmost importance to develop optimal
procedures for establishing singlets between re-
mote parties. As has been shown very recently,
singlets can be obtained from other quantum
states by using a quantum catalyst, an entan-
gled quantum system which is not changed in
the procedure. In this work we take this idea
further, investigating properties of entanglement
catalysis and its role for quantum communica-
tion. For transformations between bipartite pure
states, we prove the existence of a universal cat-
alyst, which can enable all possible transforma-
tions in this setup. We demonstrate the advan-
tage of catalysis in asymptotic settings, going be-
yond the typical assumption of independent and
identically distributed systems. We further de-
velop methods to estimate the number of sin-
glets which can be established via a noisy quan-
tum channel when assisted by entangled cata-
lysts. For various types of quantum channels our
results lead to optimal protocols, allowing to es-
tablish the maximal number of singlets with a
single use of the channel.

1 Introduction
Quantum catalysis enhances the abilities of remote
parties to manipulate entangled systems via local op-
erations and classical communication (LOCC) [1–4].
Two remote parties, Alice and Bob, can convert a
shared quantum state |ψ⟩AB into another state |ϕ⟩AB

whenever the reduced states ψA and ϕA fulfill the
majorization relation ψA ≺ ϕA [5]. If this condi-
Chandan Datta: dattachandan10@gmail.com

tion is violated, Alice and Bob cannot convert |ψ⟩AB

into |ϕ⟩AB via LOCC. However, in some cases Alice
and Bob can still convert |ψ⟩AB into |ϕ⟩AB by using
catalysis. A quantum catalyst is an additional quan-
tum system in an entangled state |τ⟩A′B′

, enabling
the LOCC conversion

|ψ⟩AB ⊗ |τ⟩A′B′
→ |ϕ⟩AB ⊗ |τ⟩A′B′

. (1)

After the first example of entanglement catalysis was
presented [1], this topic has been explored in more
detail over the last decades [3, 4, 6–14]. We refer to
[15] for a general overview of catalysis.

Despite significant efforts [6–13], no simple cri-
teria are known for exact catalytic transformations
between two given pure bipartite entangled states,
while a significant progress has been achieved for
approximate weakly correlated entanglement cataly-
sis [3, 4]. An approximate weakly correlated entan-
glement catalysis from |ψ⟩AB to |ϕ⟩AB allows for an
error in the final state, assuming that the error can
be made arbitrarily small by choosing an appropri-
ate catalyst state. As was shown in [3], approximate
weakly correlated entanglement catalysis between bi-
partite pure states is fully characterized by entangle-
ment entropy of the initial and the final states. In
particular, Alice and Bob can transform |ψ⟩AB into
|ϕ⟩AB iff [3]

S(ψA) ≥ S(ϕA), (2)

with the von Neumann entropy S(ρ) =
− Tr[ρ log2 ρ].

For any two states fulfilling Eq. (2), it is possi-
ble to find a catalyst by using the methods presented
in [3, 4]. The constructed catalyst depends on the par-
ticular states |ψ⟩AB and |ϕ⟩AB , which makes it useful
only for this particular transition. It is an open prob-
lem whether universal catalysis exists, i.e., whether
there are quantum states that can catalyze transitions
for all quantum states fulfilling Eq. (2). Here, we
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give a positive answer to this question. Furthermore,
we explore the role of catalysis in asymptotic conver-
sion. The advantage of catalysis for setups beyond
the usual independent and identically distributed (iid)
scenario is also discussed.

Quantum information science strives to understand
the limitations of sending quantum systems over long
distances. As any practical quantum channel is nec-
essarily subject to noise, knowing how many qubits
can be reliably transmitted via a noisy channel is of
crucial importance for the development of quantum
technologies. The standard approach to this prob-
lem assumes that the communicating parties have
unrestricted access to the channel. Then, the prob-
lem reduces to the evaluation of quantum capacity, a
quantity which captures the number of reliably com-
municated qubits per channel use [16–20]. In this
work, we introduce catalytic communication where
the communicating parties make use of a noisy quan-
tum channel only once, and have access to LOCC and
entangled catalysts. We develop methods of estimat-
ing the catalytic capacity of the channel, correspond-
ing to the number of qubits which can be sent reliably
in the presence of a catalyst. For general quantum
channels we provide upper and lower bounds on the
catalytic capacity of the channel.

2 Catalytic transformations of entan-
gled states
The original definition of entanglement catalysis in
Eq. (1) assumes that the transformation is exact, i.e.,
the final state |ϕ⟩AB is obtained perfectly without any
error. Recently, this definition has been extended to
approximate transformations [3, 4]. In this more gen-
eral case, an error is allowed in the final state, pro-
vided that the error can be made arbitrarily small. We
say that an approximate weakly correlated catalytic
transformation |ψ⟩AB → |ϕ⟩AB is possible if and
only if for any ε > 0 there exists a (not necessarily
pure) catalyst state τA′B′

and an LOCC protocol Λ
such that [3]∥∥∥Λ (ψAB ⊗ τA′B′)− ϕAB ⊗ τA′B′

∥∥∥
1

≤ ε, (3)

TrAB

[
Λ
(
ψAB ⊗ τA′B′)] = τA′B′

. (4)

Here, we use the notation ψAB = |ψ⟩⟨ψ|AB and sim-
ilar for ϕAB . Note that the final state σ = Λ(ψAB ⊗
τA′B′) can, in principle, exhibit correlations between
the system (AB) and the catalyst (A′B′). However,
Eq. (3) ensures that the amount of these correlations

can be made arbitrarily small, i.e., the system effec-
tively decouples from the catalyst. The decoupling
condition in Eq. (3) also implies a bound on the mu-
tual information between the primary systemAB and
the catalystA′B′ [21]. Eq. (4) means that the catalyst
is unchanged in the process, avoiding any undesired
effects due to “embezzling” of entanglement [22].

Alternatively, we can say that there is an approxi-
mate catalytic transformation from |ψ⟩AB to |ϕ⟩AB if
there exists a sequence of catalyst states {τA′B′

n } and
a sequence of LOCC protocols {Λn} such that [3]

lim
n→∞

∥∥∥Λn

(
ψAB ⊗ τA′B′

n

)
− ϕAB ⊗ τA′B′

n

∥∥∥
1

= 0,
(5)

TrAB

[
Λn

(
ψAB ⊗ τA′B′

n

)]
= τA′B′

n . (6)

It is immediately clear that these conditions are
equivalent to Eqs. (3) and (4). As has been shown
very recently in [3], an approximate catalytic trans-
formation from |ψ⟩AB into |ϕ⟩AB is possible if and
only if Eq. (2) is fulfilled. In the rest of this article,
whenever we refer to “catalytic transformations” we
mean approximate weakly correlated catalytic trans-
formations as defined in Eqs. (3) and (4).

2.1 Dimension of catalyst system

Whenever we talk about state transformations using
a catalyst, the question of its dimension comes into
the picture. In the original definition of entangle-
ment catalysis [1] a catalyst of finite dimension has
been used. In contrast, we will now see that for arbi-
trary precision, approximate weakly correlated catal-
ysis requires a catalyst of unbounded dimension in
general. To show this, we first introduce logarithmic
negativity [23, 24]

EN (ρ) = log2 ∥ρTA∥1, (7)

where ρ = ρAB is a bipartite state, and TA represents
partial transpose with respect to the subsystemA. For
pure states, we will also consider the entanglement
entropy defined as E(|ψ⟩) = S(ψA) [25–27]. Re-
call that logarithmic negativity is additive on tensor
products [24]

EN (ρ⊗ σ) = EN (ρ) + EN (σ). (8)

Consider now two bipartite pure states |ψ⟩ and |ϕ⟩
such that

E(|ψ⟩) ≥ E(|ϕ⟩), (9a)
EN (|ψ⟩) < EN (|ϕ⟩). (9b)
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Examples for such states are provided in Appendix A.
Eq. (9a) implies that |ψ⟩ can be converted into |ϕ⟩ by
catalytic LOCC [3]. However, as we will see in the
following, Eq. (9b) means that the catalyst must have
an unbounded dimension, in order for the conversion
to work with arbitrary precision. To see this, consider
the transformation ψ⊗τn → ϕ⊗τn, with the proper-
ties given in Eqs. (9). Remembering that logarithmic
negativity is monotonic under LOCC, we have

EN (ψ ⊗ τn) ≥ EN (Λ[ψ ⊗ τn]) (10)

for any LOCC protocol Λ. Furthermore, ∥µn − ϕ ⊗
τn∥1 is arbitrarily close to zero for some large n,
where µn = Λ(ψ ⊗ τn). Now, if the dimension of
the catalyst is finite then the logarithmic negativity of
µn is arbitrarily close to ϕ ⊗ τn, see Appendix B for
the proof. Therefore, we have

EN (ψ⊗τn) ≥ EN (ϕ⊗τn) ⇒ EN (|ψ⟩) ≥ EN (|ϕ⟩),
(11)

where in the second step we use the additivity. Hence,
we arrive at a contradiction, and as a result, we need
an unbounded catalyst to achieve the above transfor-
mation. Note that here we consider that the state
transformation occurs with arbitrary precision. Oth-
erwise, we can utilise a finite-dimensional catalyst,
the dimension of which is determined by the target
precision. This kind of phenomenon has also been
studied in [21] for general resource theories.

We will now go one step further and prove that
for a catalytic transformation from |ψ⟩ to |ϕ⟩ corre-
lations between the primary system and catalysis are
required if the states fulfill Eqs. (9). For this, con-
sider Eq. (10) and suppose that for all n greater than
some m, there is no correlation between the system
and the catalyst, i.e., Λ(ψ ⊗ τn) = ϕ′ ⊗ τn, where
ϕ′ is arbitrarily close to the desired state ϕ in trace
distance. Using additivity and continuity of logarith-
mic negativity, we reach the following contradiction:
EN (|ψ⟩) ≥ EN (|ϕ⟩). Therefore, a catalytic trans-
formation for states fulfilling Eqs. (9) requires cor-
relations between the system and the catalyst. As
discussed above, these correlations can be made ar-
bitrarily small.

2.2 Correlations established by reusing the cat-
alyst

The correlations between the system and the catalyst
also establish correlations across different systems, if
the same catalyst is used repeatedly. We will investi-
gate these correlations in the following. To simplify

the notation, we will denote the primary system by
S, and the catalyst will be denoted by C. Consider a
system in a state ρS1 is transformed arbitrarily close
to σS1 using a catalyst τC and an LOCC operation Λ
on the system and the catalyst, such that

||µS1C − σS1 ⊗ τC ||1 < ε (12)

with µS1C = Λ[ρS1 ⊗ τC ]. Now, in the next step we
use the same catalyst to convert the same state ρS2

of another system S2 into σS2 . The final state of the
systems and the catalyst can be expressed as

µS1CS2 = (1S1 ⊗ ΛCS2)
(
µS1C ⊗ ρS2

)
, (13)

where we demand that TrS1S2 [µS1CS2 ] = τC and∥∥∥TrS1

[
µS1CS2

]
− σS2 ⊗ τC

∥∥∥
1
< ε. (14)

Since, the system S1 is correlated with the catalyst,
the systems S1 and S2 will also be correlated. We are
interested in obtaining an upper bound on this cor-
relation, to be precise, we want an upper bound on
||TrC [µS1CS2 ] − σS1 ⊗ σS2 ||1. Using the properties
of the trace norm, Eq. (12) directly implies that∥∥∥µS1C ⊗ ρS2 − σS1 ⊗ τC ⊗ ρS2

∥∥∥
1
< ε. (15)

Applying the LOCC procedure ΛCS2 onto the cata-
lyst C and the system S2 and using the fact that the
trace norm does not increase under quantum opera-
tions we further obtain∥∥∥ΛCS2

[
µS1C ⊗ ρS2

]
− ΛCS2

[
σS1 ⊗ τC ⊗ ρS2

]∥∥∥
1

< ε, (16)

which is equivalent to∥∥∥µS1S2C − σS1 ⊗ µS2C
∥∥∥

1
< ε. (17)

Now using triangle inequality, we find∥∥∥µS1S2C − σS1 ⊗ σS2 ⊗ τC
∥∥∥

1

≤
∥∥∥µS1S2C − σS1 ⊗ µS2C

∥∥∥
1

+∥∥∥σS1 ⊗ µS2C − σS1 ⊗ σS2 ⊗ τC
∥∥∥

1
< 2ε. (18)

As trace norm does not increase under partial trace,
we note that∥∥∥TrC

[
µS1S2C

]
− σS1 ⊗ σS2

∥∥∥
1
< 2ε. (19)
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By repeating the same argument, this time taking
Eq. (18) instead of Eq. (12) as the starting point, and
utilising the same catalyst state τC as in Eq. (14), we
can see that∥∥∥µS1S2S3C − σS1 ⊗ σS2 ⊗ σS3 ⊗ τC

∥∥∥
1
< 3ε.

(20)
We can extend this reasoning to n successive appli-
cations of the catalyst τC to obtain

∥∥∥µS1···SnC − σS1 ⊗ · · · ⊗ σSn ⊗ τC
∥∥∥

1
< nε, (21)

which implies that∥∥∥TrC

[
µS1···SnC

]
− σS1 ⊗ · · · ⊗ σSn

∥∥∥
1
< nε. (22)

As we can see, the amount of correlation between
systems S1, . . . , Sn remains small after utilising the
catalyst τC a finite number of times.

3 Universal catalysis for bipartite pure
states
While the results in [3] prove that a catalytic conver-
sion between bipartite states |ψ⟩AB and |ϕ⟩AB is pos-
sible in principle if S(ψA) ≥ S(ϕA), the state of the
catalyst presented in [3] is not universal, as it strongly
depends on the initial and the final state. It has re-
mained an open problem in [3] whether a universal
catalyst state exists, which can enable all catalytic
transformations at once. We will close this gap with
the following theorem, showing that universal cataly-
sis is indeed possible for transitions between bipartite
pure states.

Theorem 1. Consider a bipartite Hilbert space of
arbitrary but finite dimension. For every ε >
0 there exists a universal catalyst state τε such
that for every pair of pure states |ψ⟩AB and |ϕ⟩AB

with S(ψA) ≥ S(ϕA) there is an LOCC protocol
Λ for which∥∥∥Λ (ψAB ⊗ τε

)
− ϕAB ⊗ τε

∥∥∥
1
< ε, (23a)

TrAB

[
Λ
(
ψAB ⊗ τε

)]
= τε. (23b)

Proof. It is enough to prove the theorem for the
case that |ψ⟩ and |ϕ⟩ have the same Schmidt ba-
sis. To see this, note that Alice and Bob can al-
ways apply local unitaries to the initial state |ψ⟩,
ensuring that the Schmidt basis of |ψ⟩ coincides
with the Schmidt basis of |ϕ⟩.

First, we will show that there is a finite collec-
tion of states {|ϕs⟩} such that for every state |ϕ⟩
in the considered Hilbert space HAB there exists
|ϕi⟩ for which

∥ |ϕi⟩⟨ϕi| − |ϕ⟩⟨ϕ| ∥1 <
ε

10 , (24a)

ϕA ≺ ϕA
i , (24b)

where we consider strict majorization in
Eq. (24b). To show this, let Uϕ be a collection
of open subsets of the set of pure states, defined
in the following way. If |ϕ⟩ =

∑
i

√
ci |ii⟩,

by Vϕ we denote the set of all states that ϕA

majorizes strictly, i.e.
∑

i

√
di |i⟩ |i⟩ ∈ Vϕ iff∑k

i=1 ci >
∑k

i=1 di, for every k = 1, 2, . . . , d − 1,
where d = min{dim HA, dim HB}. Note
that the coefficients {ci} and {di} are
sorted in non-increasing order. Let also
Bϕ =

{
|ψ⟩ : || |ψ⟩⟨ψ| − |ϕ⟩⟨ϕ| ||1 < ε

10
}
. If |ϕ⟩

is a product state, let Uϕ = Bϕ; otherwise
Uϕ = Bϕ ∩ Vϕ. Clearly, each Uϕ is open, and
moreover the whole state space is covered by the
collection (Note that for the collection to cover
the whole set, it is necessary to single out the
special case of |ϕ⟩ being a product state). Since
the set of states is compact, there is a finite
number of states {|ϕs⟩} such that the sets Uϕs

cover the entire set of states.
Notice that by increasing slightly the largest

Schmidt coefficient of a state |ϕs⟩, we preserve
the majorization condition in Eq. (24b). This
way, by imposing an even smaller threshold in
Eq. (24a), and because the number of states |ϕs⟩
is finite, we can always choose them to be such
that

L =

min
{

|S(ϕA
i ) − S(ϕA

j )|, i, j : S(ϕA
i ), S(ϕA

j ) > 0
}

> 0, (25)

i.e., the entropies of the reduced states ϕA
s are all

different as long as they are strictly positive.
Knowing the number L, we can repeat the

above argument and show that there is also a
finite collection |ψr⟩ of states such that for every
state |ψ⟩ ∈ HAB there exists |ψj⟩ for which

∥ |ψj⟩⟨ψj | − |ψ⟩⟨ψ| ∥1 < δ, (26a)
ψA ≺ ψA

j , (26b)

where δ > 0 is a number such that δ < ε
4 and

δ

2 log(d− 1) + h

(
δ

2

)
< L. (27)
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The last inequality, together with the Fannes-
Audenaert inequality, ensures that S(ψA) − L <
S(ψA

j ).
We will now construct the universal catalyst

state. Recall that a catalytic transformation
|ψ⟩ → |ϕ⟩ is possible if and only if S(ψA) ≥
S(ϕA) [3]. Let F be the finite set of pairs of
indices (r, s) such that S(ψA

r ) ≥ S(ϕA
s ). For

(r, s) ∈ F , let τr,s be a catalyst that enables the
transition |ψr⟩ → |ϕs⟩ with an error at most ε

2 .
We define:

τε =
⊗

(r,s)∈F

τr,s. (28)

As we will now see, the state τε is the de-
sired universal catalyst state. Let |ψ⟩, |ϕ⟩ be
states such that S(ψA) ≥ S(ϕA). According to
the above discussion, we can find indices r, s for
which

∥ |ϕs⟩⟨ϕs| − |ϕ⟩⟨ϕ| ∥1 <
ε

10 , (29a)

∥ |ψr⟩⟨ψr| − |ψ⟩⟨ψ| ∥1 <
ε

4 , (29b)

S(ψA) − L < S(ψA
r ), (29c)

and the conversion |ψ⟩ → |ψr⟩ is possible via
LOCC.

If S(ϕA
s ) = 0, then |ϕs⟩ is a product state, and

there is an LOCC transformation |ψr⟩ → |ϕs⟩.
Suppose S(ϕA

s ) > 0. There exists a state |θ⟩
such that ∥ |ϕs⟩⟨ϕs| − |θ⟩⟨θ| ∥1 < ε

20 , S(θA) <
S(ϕA

s ). Hence, there exists another state |ϕt⟩
from the finite collection defined above, such that
∥ |ϕt⟩⟨ϕt| − |θ⟩⟨θ| ∥1 < ε

10 , and S(ϕA
t ) ≤ S(θA).

Clearly ∥ |ϕt⟩⟨ϕt| − |ϕ⟩⟨ϕ| ∥1 <
ε

10 + ε
20 + ε

10 = ε
4 .

If S(ϕA
t ) = 0, then |ϕt⟩ is a product state which

can be prepared via LOCC, just as before. If
S(ϕA

t ) > 0, then because |ϕs⟩ , |ϕt⟩ we have that

S(ϕA
t ) ≤ S(ϕA

s ) −L ≤ S(ϕA) −L ≤ S(ψA) −L

≤ S(ψA
r ), (30)

where the second inequality follows from the ma-
jorization between ϕA and ϕA

s . In any case, there
exists an LOCC protocol that converts |ψr⟩ into
|ϕt⟩ (or into |ϕs⟩), utilising the universal catalyst
state τε with an error at most ε

2 . Since neither
|ψr⟩ nor |ϕt⟩ (as well as |ϕs⟩) are further than
ε
4 from respectively |ψ⟩ or |ϕ⟩, an additional ap-
plication of the triangle inequality concludes the
proof. □

The theorem just presented shows that universal
catalysis is possible for transformations between bi-
partite pure states, solving a problem pointed out
in [3]. It remains an open question whether univer-
sal catalysis is possible also for transformations be-
tween mixed states, i.e., whether Eqs. (23) can be
extended to mixed states ρAB and σAB whenever
the conversion ρAB → σAB is possible via catalytic
LOCC with a catalyst which depends on the initial
and the final state. A similar open question concerns
catalytic transformations of entangled states in multi-
partite settings. We also note that universal catalysis
has been previously investigated in quantum thermo-
dynamics, where it was shown that almost all states
can be used as universal catalysts [28].

4 Catalysis in asymptotic setups

4.1 Catalysis for iid systems

As has been discussed in [3, 4], catalytic conversion
of entangled states is closely related to asymptotic
conversion. For the latter, the goal is to convert n
copies of an initial state ρ into m copies of a final
state σ by using LOCC, allowing for an error which
vanishes in the limit of large n. The figure of merit
in this setup is the optimal conversion rate, i.e., the
maximal possible value of m/n. Whenever there ex-
ists an asymptotic conversion ρ → σ with unit rate,
there also exists a catalytic LOCC protocol convert-
ing from ρ into σ. We refer to the Refs. [3, 4] for
more details.

We will now go one step further, investigating
asymptotic conversion of entangled states in the pres-
ence of catalysts. To keep the notation simple, we
denote the system of Alice and Bob by S, and the
catalyst will be denoted by C. We say that a state ρ
can be converted into another state σ via asymptotic
catalysis with rateR, if there exists a sequence of cat-
alyst states {τC

n } and a sequence of LOCC protocols
{Λn}, such that

lim
n→∞

∥∥∥Λn

[
ρ⊗n ⊗ τC

n

]
− σ⊗⌊nR⌋ ⊗ τC

n

∥∥∥
1

= 0,
(31)

and

TrS⊗⌊nR⌋

{
Λn

[
ρ⊗n ⊗ τC

n

]}
= τC

n (32)

for every integer n, where Λn[ρ⊗n ⊗ τC
n ] is a state

in S⊗⌊nR⌋ ⊗ C. The supremum taken over all such
numbers R is the optimal rate of converting ρ into σ
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via asymptotic catalysis. With this in the following
theorem we prove that in the presence of entangled
catalysts asymptotic transformations and single-copy
transformations are equally powerful.

Theorem 2. A state ρ can be transformed into σ
via asymptotic catalysis with unit rate if and only
if there exists a catalytic LOCC transformation
converting one copy of ρ into σ.

We refer to Appendix C for the proof. We point out
that Theorem 2 generalizes Theorem 1 of [3], and
also holds for multipartite systems and multipartite
LOCC protocols. In this general setup, the existence
of an asymptotic catalytic transition ensures the exis-
tence of a catalytic transformation on the single-copy
level. Note that this kind of transformation has been
studied before for pure bipartite states in [8], where
it has been shown that multiple-copy exact catalytic
transformation is equivalent to the single-copy cat-
alytic transformation. On the contrary, our result is
more general since it takes into account arbitrarily
small error in the final state of the system as well as
arbitrarily small correlation in the final state of the
system and the catalyst.

4.2 Asymptotic settings beyond iid

In the usual independent and identically distributed
(iid) scenario, one assumes that Alice and Bob have
access to many copies of a bipartite quantum state
|ψ⟩, i.e., the total state is given by |ψ⟩⊗n. We will
now go one step further, assuming that Alice and Bob
have access to states of the form ⊗n

i=1 |ψi⟩, where
the bipartite states |ψi⟩ are not necessarily identical.
As we will show below, catalysis provides significant
advantage for such non-iid settings.

In the following, we say that the sequence {|ψi⟩}
allows to extract a singlet with fidelity f and proba-
bility p if there exists an integer n and a probabilistic
LOCC protocol Λ such that

Tr (Λ [⊗n
i=1ψi]) = p, (33)

⟨ϕ+
2 |Λ [⊗n

i=1ψi] |ϕ+
2 ⟩

p
= f. (34)

Moreover, we say that the sequence {|ψi⟩} allows to
extract m singlets with catalysis, if for any ε > 0
there exists an integer n, a catalyst state τ , and an
LOCC protocol Λ such that∥∥∥Λ [(⊗n

i=1ψi) ⊗ τ ] − |ϕ+
2 ⟩⟨ϕ+

2 |⊗m ⊗ τ
∥∥∥

1
< ε,

(35)

TrS {Λ [(⊗n
i=1ψi) ⊗ τ ]} = τ.

(36)

We are now ready to prove the following theorem.

Theorem 3. Given fidelity f > 1
2 and any ε > 0,

there is a sequence of two-qubit states {|ψi⟩} such
that for any n ≥ 1 the probability of convert-
ing the state ⊗n

i=1 |ψi⟩ into a singlet, via LOCC
with fidelity f , is smaller than ε. At the same
time, an unbounded number of singlets can be ex-
tracted with certainty from ⊗n

i=1 |ψi⟩ with the help
of catalysis, as n → ∞.

Proof. Let λΨ
n denote the square of the largest

Schmidt coefficient of the yet to be constructed
state |Ψn⟩ = ⊗n

i=1 |ψi⟩. According to [29], The-
orem 3 and below, the maximal probability of
converting the state |Ψn⟩ into a singlet |ϕ+

2 ⟩ with
fidelity f is given by

Pf = 1 − λΨ
n

sin2 (π
4 − cos−1 √

f
) , (37)

as long as the following quantity is negative:

mn = sin−1
√

1 − λΨ
n +cos−1 √f− π

4 < 0. (38)

Because f > 1
2 , we have that cos−1 √

f < π
4 . Let

us choose 0 < δ < 1
2 such that

sin−1 √
δ + cos−1 √f − π

4 < 0, and (39a)

δ

sin2 (π
4 − cos−1 √

f
) < ε. (39b)

Our goal is to construct |Ψn⟩ = ⊗n
i=1 |ψi⟩

such that λΨ
n > 1 − δ, and at the same time∑∞

i=1 S(ψA
i ) = ∞.

Let |ψi⟩ =
√

1 − pi |00⟩ + √
pi |11⟩, where the

sequence 0 < pi < 1 is such that
∞∏

i=1
(1 − pi) > 1 − δ, (40a)

−
∞∑

i=1
pi log2 pi = ∞. (40b)

In order to construct such a sequence, we
recall that the series of positive numbers:∑∞

k=2 k
−1(log2 k)−(1+u) converges for u > 0 and

is divergent for u ≤ 0. Let us fix 0 < u ≤ 1, and
let r1 = 1

2 and

rk = 1
k(log2 k)1+u

, (41)
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for k = 2, 3, . . .. Note that if (ak) is a sequence
such that

∑∞
k=1 |ak| < ∞ and ak > −1, then∑∞

k=1 | log2(1 + ak)| < ∞, which follows simply
from the fact that | log2(1 + ak)| ≤ 2(ln 2)|ak| as
long as |ak| < 1

2 . By setting ak = −rk, we get∑∞
k=1 | log2(1 − rk)| < ∞, i.e.

∏∞
k=1(1 − rk) =

C > 0. Because the product converges, there is a
number N such that

∏∞
k=N (1 − rk) > 1 − δ. We

set pi = ri+N and obtain Eq. (40a).
Eq. (40b) follows from a straightforward calcu-

lation (see also [30]). For k ≥ 2, we have

−rk log2 rk = 1
k(log2 k)1+u

log2

(
k(log2 k)(1+u)

)
= 1

k (log2 k)u
+ log2(log2 k)(1+u)

k (log2 k)(1+u) ,(42)

and the first term makes up a divergent series for
u ≤ 1. Thus

−
∞∑

k=2
rk log2 rk ≥

∞∑
k=2

1
k (log2 k)u

= ∞. (43)

Of course, Eq. (43) implies Eq. (40b).
Now, because δ < 1

2 , each pi <
1
2 , and the

square of the largest Schmidt coefficient of the
state |Ψn⟩ must be λΨ

n =
∏n

i=1(1 − pi) > 1 − δ.
At the same time, because of Eq. (40b), we have
that

∑n
i=1 S(ψA

i ) = ∞. Finally, as the entangle-
ment entropy of |Ψn⟩ diverges, we can extract an
unbounded number of singlets with the help of a
catalyst [3]. This completes the proof. □

The above theorem demonstrates an advantage of
catalysis in settings beyond iid. There exist se-
quences of two-qubit states {|ψi⟩} which do not al-
low for the extraction of singlets via LOCC without
catalysis, as the probability to obtain a singlet (or
even any state close to a singlet) is vanishingly small.
At the same time, if the remote parties have access
to an entangled catalyst, they can in principle extract
an unbounded number of singlets from the sequence
with certainty. We note that entanglement distillation
from non-iid sequences of states has also been dis-
cussed in [31–33].

5 Entanglement catalysis for quantum
channels
In classical information theory an important devel-
opment is the Shannon noisy channel coding theo-
rem, where mutual information plays a pivotal role

to describe classical capacity of a channel [34–36].
Analogously, in quantum information theory the fig-
ure of merit is the quantum capacity [16, 37, 38], cor-
responding to the maximum rate at which a sender
can faithfully send qubits to a receiver via a noisy
quantum channel. Quantum capacity is closely re-
lated to the coherent information of a channel Λ and
a source state ρ [16, 37]:

I(ρ,Λ) = S(Λ[ρ]) − S(1 ⊗ Λ[|ψρ⟩⟨ψρ|]), (44)

where |ψρ⟩ is some purification of ρ. In terms
of coherent information, the quantum capacity of
the quantum channel Λ can be expressed as fol-
lows [16, 20, 39]:

Q(Λ) = lim
n→∞

1
n

max
ρn

I(ρn,Λ⊗n). (45)

Quantum capacity also coincides with the entangle-
ment generation capacity of a channel [40]. Initially
introduced in [16], quantum capacity has been greatly
explored for different kinds of channels, such as Pauli
channels [41], bosonic channels [42, 43], symmetric
side channels [44], arbitrarily correlated noise chan-
nels [45], and low noise channels [46]. Recently,
an experiment has been performed to determine the
lower bound to the quantum capacity of two-qubit
channels [47], which is based on a method to de-
tect lower bounds of quantum capacities [48]. Ad-
ditionally, LOCC-assisted private and quantum chan-
nel capacity has been discussed in [49]. For a general
overview of the subject we also refer to [50, 51].

The usual assumption in the study of quantum ca-
pacity is that the parties can use many copies of the
same channel in parallel. In contrast to this, here
we assume that Alice and Bob can use the quantum
channel only once and can have unlimited classical
communication. This implies that (in general) they
will not be able to send qubits perfectly through the
channel. However, as we will now see, the situation
changes completely if Alice and Bob can addition-
ally use catalytic LOCC. We assume that Alice and
Bob initially share a catalyst1 in the state τAB

n . Alice
and Bob are further in possession of registers A′ and
B′ of the same dimension dA′ = dB′ , initialized in
the states |0⟩⟨0|A

′
and |0⟩⟨0|B

′
. The aim of the pro-

cedure will be to entangle these registers A′ and B′.
For achieving this, Alice and Bob can use a carrier
particle C initialized in the state |0⟩⟨0|C , which can

1To simplify the notation, in this section the catalyst
system will be denoted by AB, and the primary system
will be called A′B′.
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be sent from Alice to Bob via the noisy channel Λ.
The overall initial state is given by

σn = σABA′B′C
n = τAB

n ⊗|0⟩⟨0|A
′
⊗|0⟩⟨0|B

′
⊗|0⟩⟨0|C .

(46)
Consider now a protocol consisting of the following
steps.

1. Preprocessing: Alice and Bob apply an LOCC
protocol to σn, with the resulting state νn.

2. Alice uses the channel ΛC to send the carrier
particle to Bob. The resulting state is χn =
ΛC [νn], where the particle C is now in Bob’s
lab.

3. Postprocessing: Alice and Bob apply an LOCC
protocol to χn, resulting in the state µn.

For the final state µn, we require that the state of the
catalyst is returned unchanged for each n:

TrA′B′

[
µABA′B′

n

]
= τAB

n . (47)

This requirement is analogous to Eq. (4) for catalytic
state transformations, implying that the catalyst can
be reused. In the same way as in Eq. (3) we also re-
quire that the catalyst decouples from A′B′ for large
n:

lim
n→∞

∥∥∥µABA′B′
n − τAB

n ⊗ µA′B′
n

∥∥∥
1

= 0. (48)

This requirement limits the amount of correlations
between different systems, if they are transformed
with the help of the same catalyst.

The protocol just presented is the most general pro-
cedure which Alice and Bob can apply, if they have
access to catalytic LOCC, and a quantum channel Λ
which can be used only once. A case of special inter-
est arises if the state µA′B′

n established in this way is
close to a maximally entangled state of m qubits, i.e,

lim
n→∞

∥∥∥µn − τAB
n ⊗ |ϕ+

2m⟩⟨ϕ+
2m |A

′B′∥∥∥
1

= 0. (49)

Since |ϕ+
2m⟩ can be used to teleport m qubits, Alice

and Bob can use the procedure to send m qubits with
arbitrary accuracy. If Eq. (49) is fulfilled for some
m ≥ 1, we say that the channel Λ can transmit m
qubits.

Equipped with these tools, we are now ready to
define the catalytic capacity Qc of a quantum chan-
nel Λ as the maximal number of qubits which the
channel can transmit. In more detail, let {τAB

n } be a
suitably chosen sequence of catalyst states, and {µn}
is a sequence of total final states such that Eqs. (47)
and (49) are fulfilled for some m ≥ 1. The catalytic
capacity of Λ is the largest possible value of m:

Qc(Λ) = max
{
m : lim

n→∞

∥∥∥µn − τAB
n ⊗ |ϕ+

2m⟩⟨ϕ+
2m |A

′B′∥∥∥
1

= 0
}
. (50)

If Eq. (49) cannot be fulfilled for any m ≥ 1, we
set Qc(Λ) = 0. In this context, it is worth noting a
recent study [4] that looks into the prospect of using
catalysis to improve teleportation fidelity. We go into
further detail about this in Appendix E.

The main differences between the standard quan-
tum capacity and the catalytic capacity are as follows:
(i) The definition of standard quantum capacity does
not involve any classical communication between the
parties, while unlimited classical communication is
allowed in the definition of catalytic capacity. (ii)
Standard quantum capacity is defined in the limit of
large number of copies of the channel, whereas cat-
alytic capacity is defined for a single application of
the channel.

We will now consider a concrete example to eluci-
date the above concept of catalytic capacity, which

is also illustrated in Fig. 1. We assume that the
system A is a qubit, and the carrier particle C is
a qutrit. Recalling that the carrier particle is ini-
tially in possession of Alice, she can use the prepro-
cessing step to entangle C with an additional qutrit
A′′, creating a maximally entangled two-qutrit state
|ϕ+

3 ⟩A′′C locally. The particle C is then sent to
Bob via the quantum channel Λ. In this way, Al-
ice and Bob end up sharing the noisy two-qutrit state
ξ = 1 ⊗ Λ(|ϕ+

3 ⟩⟨ϕ+
3 |). So far, the procedure did not

make any use of the catalyst. In the postprocessing
step, Alice and Bob apply catalytic LOCC to convert
ξ into a Bell state. This is possible whenever ξ has
distillable entanglement larger or equal than one [3].
In particular, Alice and Bob can obtain the state µn
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Figure 1: Alice prepares a maximally entangled two-qutrit state |ϕ+
3 ⟩A′′C and sends the particle C to Bob through

a noisy channel Λ, resulting in the state ξ = 1 ⊗ Λ(|ϕ+
3 ⟩⟨ϕ+

3 |). Additionally, the parties have access to a catalyst in
the state τAB

n . Applying catalytic LOCC Alice and Bob can obtain a singlet when the distillable entanglement of ξ
is at least one.

such that TrA′B′ [µn] = τAB
n and additionally

lim
n→∞

∥∥∥µn − τAB
n ⊗ |ϕ+

2 ⟩⟨ϕ+
2 |A

′B′∥∥∥
1

= 0. (51)

Thus, Alice and Bob can establish a state µA′B′
n ≈

|ϕ+
2 ⟩⟨ϕ+

2 |A
′B′

.
The procedure just described shows that a noisy

qutrit channel Λ can transmit a qubit whenever
Ed(1 ⊗ Λ[|ϕ+

3 ⟩⟨ϕ+
3 |]) ≥ 1, where Ed is the distil-

lable entanglement. Note that the use of a maximally
entangled state is not crucial in this procedure. In
fact, instead of creating the two-qutrit state |ϕ+

3 ⟩, Al-
ice can locally create any other two-qutrit state ρ. The
procedure will work in the same way, as long as the
distillable entanglement of 1 ⊗ Λ[ρ] is at least one.
By the same arguments, the channel Λ can transmit
m qubits whenever there exists a bipartite state ρ such
that [4, 52]

Ed(1 ⊗ Λ[ρ]) ≥ m. (52)

Recall now that the distillable entanglement is
bounded below as follows [53]: Ed(ρAB) ≥ S(ρA)−
S(ρAB). Together with Eq. (52) we see that a quan-
tum channel can transmit m qubits if the following
condition is fulfilled:

S
(
1 ⊗ Λ

[
|ϕ+

d ⟩⟨ϕ+
d |
])

≤ log2 d−m. (53)

Here, d is the dimension of the Hilbert space on
which Λ is acting. Assuming again that d = 3, we
see that all qutrit channels which are not “too noisy”
can transmit a qubit as long as S(1⊗Λ[|ϕ+

3 ⟩⟨ϕ+
3 |]) ≤

0.58. It is important to note that in this example (and

the examples later), for the purpose of simplicity, we
regard the pre-processing stage to be Alice prepar-
ing a suitable state. However, as previously intro-
duced, the pre-processing stage can generally involve
an LOCC protocol between Alice and Bob.

We will now discuss the converse, providing meth-
ods to show when a channel cannot send a qubit per-
fectly. As we will see, a channel can transmit a qubit
only if it can transmit one unit of entanglement. As
a quantifier of entanglement we use the squashed en-
tanglement defined as [54]

Esq(ρAB) =

inf
{1

2I(A;B|E) : ρABE extension of ρAB
}
,

(54)
with the quantum conditional mutual information
I(A;B|E) = S(ρAE) + S(ρBE) − S(ρABE) −
S(ρE). For a quantum channel Λ we now define the
amount of transmitted entanglement as follows:

∆Esq(Λ) =

sup
ρABC

{
EA|BC

sq (ΛC [ρABC ]) − EAC|B
sq (ρABC)

}
,

(55)
and the supremum is taken over all tripartite states
ρABC . Equipped with these tools, we are now ready
to prove the following theorem.

Theorem 4. The catalytic capacity of a channel
Λ is bounded above as

Qc(Λ) ≤ ∆Esq(Λ). (56)
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Proof. We allow Alice and Bob to use the most
general communication protocol as described be-
low Eq. (46). In the preprocessing step, Alice and
Bob apply LOCC to the state σn. In a general
LOCC protocol Alice and Bob can also attach lo-
cal systems. We thus denote the state after the
preprocessing by νn = νÃB̃C

n , where Ã includes
AA′, and all additional particles that Alice has
attached locally, and similar for B̃. Noting that
the squashed entanglement does not increase un-
der LOCC [54], we have

EÃC|B̃
sq (νn) ≤ EAA′C|BB′

sq (σn). (57)

In the second step of the protocol, Alice sends
the carrier particle C to Bob, using the quan-
tum channel ΛC . The resulting state is χÃB̃C

n =
ΛC [νÃB̃C

n ]. Note that the squashed entanglement
between Alice and Bob can increase in this pro-
cess, and the increase is bounded by ∆Esq(Λ):

EÃ|B̃C
sq (χn) − EÃC|B̃

sq (νn) ≤ ∆Esq(Λ). (58)

In the postprocessing step, an LOCC protocol is
applied to χÃB̃C

n . In this step, Alice and Bob also
discard all particles apart from AA′BB′, and the
final state is denoted by µn = µAA′BB′

n . Again
using the fact that the squashed entanglement
does not increase under LOCC we have

EAA′|BB′
sq (µn) ≤ EÃ|B̃C

sq (χn). (59)

Combining these arguments, we see that the over-
all increase of entanglement in this procedure is
bounded as follows:

EAA′|BB′
sq (µn) − EAA′C|BB′

sq (σn)

≤ EÃ|B̃C
sq (χn) − EÃC|B̃

sq (νn) ≤ ∆Esq(Λ). (60)

Recall now that µAB
n = τAB

n is the state
of the catalyst, which does not change in this
procedure. Moreover, by the properties of the
squashed entanglement [54] we have

EAA′|BB′
sq (µAA′BB′

n ) ≥ EA|B
sq (µAB

n ) + EA′|B′
sq (µA′B′

n )

= EA|B
sq (τAB

n ) + EA′|B′
sq (µA′B′

n ),
(61)

EAA′C|BB′
sq (σn) = EA|B

sq (τAB
n ). (62)

Together with Eq. (60) we obtain

EA′|B′
sq (µA′B′

n ) ≤ ∆Esq(Λ). (63)

If the channel Λ can transmit m qubits, then
the state µA′B′

n can be made arbitrarily close to
|ϕ+

2m⟩. Using the continuity of the squashed en-
tanglement [55] together with Esq(|ϕ+

2m⟩) = m
we obtain m ≤ ∆Esq(Λ), and the proof is com-
plete. □

An immediate consequence of Theorem 4 is that
entanglement breaking channels have zero catalytic
capacity. Since the action of any entanglement break-
ing channel can be simulated by LOCC [56], it fol-
lows that ∆Esq(Λ) = 0 whenever Λ is entanglement
breaking. Moreover, since catalytic capacity is an in-
teger, it follows that any channel with ∆Esq(Λ) < 1
has zero catalytic capacity. This also holds for chan-
nels which – in principle – can establish entangle-
ment, but which cannot establish a singlet, even when
entangled catalysts are used.

6 Applications for entanglement catal-
ysis of noisy quantum channels
While the evaluation of the transmitted squashed en-
tanglement ∆Esq is very challenging in general, in
this section we will see that for certain types of quan-
tum channels it is possible to obtain computable up-
per bounds, thus leading to simple upper bounds on
the catalytic capacity.

A general quantum channel Λ acts on one part of a
bipartite quantum state ρ as follows:

1 ⊗ Λ(ρ) =
k∑

i=1
(1 ⊗Ki)ρ(1 ⊗K†

i ), (64)

where
∑k

i=1K
†
iKi = 1 and k is the minimal number

of Kraus operators. The final state 1⊗ Λ(ρ) can also
be expressed as

1 ⊗ Λ(ρ) =
∑

i

piσi, (65)

with probabilities pi and states σi given as

pi = Tr
[
(1 ⊗Ki)ρ(1 ⊗K†

i )
]
, (66a)

σi = (1 ⊗Ki)ρ(1 ⊗K†
i )

pi
. (66b)

Assume now that the initial state ρ is maximally en-
tangled, i.e., ρ = |ϕ+

d ⟩⟨ϕ+
d |, where d is the dimension

of the Hilbert space on which Λ is acting. All states
σi are pure in this case, and it holds that

S(1 ⊗ Λ[|ϕ+
d ⟩⟨ϕ+

d |]) ≤ H(pi). (67)
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withH(pi) = −
∑
pi log2 pi. Recall that the channel

Λ can transmit m qubits if Eq. (53) is fulfilled. This
means that the channel can transmit m qubits when-
ever

H(pi) ≤ log2 d−m. (68)

From these results we obtain a lower bound on the
catalytic capacity:

Qc(Λ) ≥ ⌊log2 d−H(pi)⌋ . (69)

As a consequence, any quantum channel Λ of dimen-
sion d ≥ 4 can transmit at least one qubit if the chan-
nel can be decomposed into (at most) 2 Kraus opera-
tors.

As an example, consider a quantum channel of the
form

Λ[ρ] = (1 − p)ρ+ pUρU † (70)

with some unitary U , and p ∈ [0, 1/2]. From the
above discussion it follows that Λ can transmit m
qubits when the following inequality is fulfilled:

h(p) ≤ log2 d−m. (71)

For d = 3 and m = 1 this condition is fulfilled for
p ∈ [0, 0.1403]. As noted above, for d ≥ 4 and
m = 1 the inequality in Eq. (71) is always true, which
means that any such channel can perfectly transmit a
single qubit.

So far we have shown that various quantum chan-
nels can perfectly transmit qubits in the presence of
entangled catalysts. We will now demonstrate how to
use the converse in Theorem 4, which allows to estab-
lish upper bounds on the catalytic capacity. For this,
we need to evaluate the transmitted entanglement
∆Esq, which is very challenging in general. How-
ever, for some channels the expression in Eq. (55)
can be simplified significantly. Note that ∆Esq quan-
tifies how much entanglement can be distributed via
a given quantum channel Λ. According to Theorem 8
in [57], for a single-qubit Pauli channel

Λp[ρ] =
3∑

i=0
piσiρσi (72)

the optimal way to distribute entanglement is to send
one half of a Bell state through the channel:

∆Esq (Λp) = Esq
(
1 ⊗ Λp

[
|ϕ+

2 ⟩⟨ϕ+
2 |
])
. (73)

Similarly, if the quantum channel is a tensor prod-
uct of (possibly different) Pauli channels, the optimal
entanglement distribution procedure is again to send

one half of a maximally entangled state. In particular,
for a two-qubit channel of the form Λp ⊗ Λp we have

∆Esq (Λp ⊗ Λp) = 2Esq
(
1 ⊗ Λp

[
|ϕ+

2 ⟩⟨ϕ+
2 |
])
.

(74)
Note now that the squashed entanglement is

bounded above by the entanglement of formation
Ef [54]. For pure states Ef is defined as the en-
tanglement entropy: Ef (|ψ⟩AB) = S(ψA). For
mixed states, Ef corresponds to the minimal av-
erage entanglement of the state [58]: Ef (ρ) =
min

∑
i piEf (|ψi⟩), where the minimum is taken

over all pure state decompositions of the state ρ.
From Eq. (74) and the fact that Esq is bounded from
above by the entanglement of formation we obtain

∆Esq (Λp ⊗ Λp) ≤ 2Ef

(
1 ⊗ Λp

[
|ϕ+

2 ⟩⟨ϕ+
2 |
])
.

(75)
Thus, from Theorem 4 we see that the two-qubit
channel Λp ⊗ Λp has zero catalytic capacity if

Ef

(
1 ⊗ Λp

[
|ϕ+

2 ⟩⟨ϕ+
2 |
])
<

1
2 . (76)

Since the entanglement of formation has a closed ex-
pression for all states of two qubits [59], it is straight-
forward to check if a given Pauli channel fulfills
Eq. (76). In particular, note that 1 ⊗ Λp

[
|ϕ+

2 ⟩⟨ϕ+
2 |
]

is diagonal in the Bell basis, with entanglement of
formation given by [58]

Ef

(
1 ⊗ Λp

[
|ϕ+

2 ⟩⟨ϕ+
2 |
])

= h

(1
2 +

√
pmax(1 − pmax)

)
(77)

for pmax > 1/2 and Ef = 0 otherwise, where
pmax = max{pi}. This means that Λp ⊗ Λp has zero
catalytic capacity for pmax < 0.813.

We will now extend our results to n copies of a
single-qubit Pauli channel Λp. Using the equality

S
(
1 ⊗ Λ⊗n

p

[
|ϕ+

2n⟩⟨ϕ+
2n |
])

= nS
(
1 ⊗ Λp

[
|ϕ+

2 ⟩⟨ϕ+
2 |
])

= nH(pi) (78)

together with Eq. (53), we see that the total channel
Λ⊗n

p can transmit m qubits whenever

H(pi) ≤ 1 − m

n
. (79)

As we show in Appendix D, for a given pmax =
max{pk} the maximum value of H(pi) is achieved
for p0 = pmax, p1 = p2 = p3 = (1 − pmax)/3.
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Therefore, if Eq. (79) is satisfied for this distribu-
tion, then it holds true for any probability distribution
with the same pmax. In Fig. 2, we show values of
pmax which allow to send a single qubit perfectly as
a function of n. As an example, for n = 2, we can
send a qubit perfectly when pmax > 0.926, resulting
in Qc(Λp ⊗ Λp) = 1 for 0.926 < pmax < 1. More-
over, our results imply that for any pmax > 0.8107
there exists some n such that Λ⊗n

p can transmit (at
least) one qubit perfectly.

We will now provide converse bounds for n copies
of a Pauli channel, showing when the channel can-
not send a certain number of qubits perfectly. Using
results from [57] (in particular Theorem 8 there), we
can generalize Eq. (74) as follows:

∆Esq
(
Λ⊗n

p

)
= nEsq

(
1 ⊗ Λp

[
|ϕ+

2 ⟩⟨ϕ+
2 |
])
. (80)

From Theorem 4 we see that the channel Λ⊗n
p can

transmit m qubits only if

Esq
(
1 ⊗ Λp

[
|ϕ+

2 ⟩⟨ϕ+
2 |
])

≥ m

n
. (81)

Recalling that the squashed entanglement is bounded
above by the entanglement of formation, we further
obtain

Ef

(
1 ⊗ Λp

[
|ϕ+

2 ⟩⟨ϕ+
2 |
])

≥ m

n
. (82)

If this condition is violated, then it is not possible
to transmit m qubits with n copies of Λp. Using
Eq. (77), it is possible to obtain values of pmax for
which this condition is violated. In Fig. 2 we show
the values of pmax for which no qubit can be trans-
mitted by using n copies of Λp, which implies that
the catalytic capacity is zero in those cases.

Since entanglement of formation has a closed ex-
pression for all states of two qubits [59], the condi-
tion in Eq. (82) is easily verifiable. As we will now
see, an improved numerical condition can be obtained
from Eq. (81), using a numerical approximation of
the squashed entanglement. We will demonstrate this
explicitly for a Pauli channel of the form

Λ[ρ] = pρ+ (1 − p)σzρσz. (83)

When applied on one half of a maximally entangled
state we obtain

1⊗ Λ[|ϕ+
2 ⟩⟨ϕ+

2 |] = p |ϕ+
2 ⟩⟨ϕ+

2 | + (1 − p) |ϕ−
2 ⟩⟨ϕ−

2 | .
(84)

A purification of this state can now be defined as fol-
lows:

Figure 2: Catalytic communication with n Pauli chan-
nels. Solid curve shows the values of pmax beyond which
the catalytic capacity of Λ⊗n

p is at least one (blue shaded
region). Dashed curve shows the values of pmax below
which the catalytic capacity of Λ⊗n

p is zero (gray shaded
region).

|ψ⟩ABE1E2 = 1
AB ⊗ UE1E2

(√
p |ϕ+

2 ⟩ ⊗ |00⟩

+
√

1−p |ϕ−
2 ⟩ ⊗ |01⟩

)
, (85)

where E1 and E2 are qubit systems, and UE1E2 is
some two-qubit unitary. The reduced state ρABE1 is
a valid extension of the state in Eq. (84). A numerical
upper bound on the squashed entanglement can now
be obtained by randomly generating the two-qubit
unitaries UE1E2 and evaluating I(A;B|E1)/2 for the
state ρABE1 . For a million iterations, we find that
for p = 0.817 (see also Fig. 3) the upper bound on
the squashed entanglement is 0.49988. Together with
Eq. (81), this means that for p < 0.817 two copies of
the channel cannot transmit a qubit perfectly. This re-
sult should be compared to the bound obtainable from
Eq. (82), which gives p < 0.813. Moreover, using
the arguments presented above it is straightforward
to see that for p ≥ 0.89 two copies of the channel can
be used to transmit a qubit perfectly. Summarizing,
two copies of the channel in Eq. (83) can transmit a
qubit perfectly for p ≥ 0.89, and cannot send a qubit
perfectly when p < 0.817.

As a final application, we will consider the general
amplitude damping channel Λad with Kraus opera-
tors [60]

K0 = |0⟩⟨0| +
√

1 − p
d−1∑
i=1

|i⟩⟨i|, (86)

Km = √
p|0⟩⟨m|, m = {1, 2, · · · , d− 1}.(87)

We will now evaluate the number of qubits which the
channel can transmit by using Eq. (53). Applying
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Figure 3: Entanglement of formation (solid line) and
a numerical upper bound on squashed entanglement
(dots) for the state given in Eq. (84) as a function
of p.

the channel onto one half of the maximally entangled
state |ϕ+

d ⟩ we obtain the state

ρAB = 1 ⊗ Λad
(
|ϕ+

d ⟩⟨ϕ+
d |
)

= (d− (d− 1)p)
d

|ψ⟩⟨ψ| + p

d

d−1∑
m=1

|m0⟩⟨m0|,

(88)

where

|ψ⟩ =
√

1 − p√
d− (d− 1)p

(
1√

1 − p
|00⟩ +

d−1∑
m=1

|mm⟩
)
.

(89)
As |ψ⟩ and |m0⟩ are orthogonal for all m > 0, the
eigenvalues of the state ρAB are 0, (d− (d− 1)p) /d
and p/d with degeneracy d(d− 1), 1 and (d− 1) re-
spectively. With this, we can easily calculate S(ρA)−
S(ρAB) and find the range of pwhere the channel can
transmit m qubits. In Table 1 we show the range of p
where S(ρA)−S(ρAB) ≥ 1 for different d, implying
that a qubit can be send perfectly in this parameter
range.

7 Enhancing entanglement distribu-
tion with catalysis
Consider a setup where Alice wishes to send one
qubit to Bob. For this purpose, Alice has access to
quantum channel of length l, with an intermediate
node able to assist the parties in the procedure, see
Fig. 4. We assume that the quantum channel is a
single-qubit depolarizing channel

Λl[ρ] = e−αlρ+ (1 − e−αl)12 (90)

d p

3 < 0.16
4 < 0.25
5 < 0.32
6 < 0.36
7 < 0.40
8 < 0.43

Table 1: Parameter range of the general amplitude
damping channel allowing for the transmission of one
qubit.

Figure 4: Entanglement distribution from Alice to Bob
via depolarizing qubit channel of length l. Additionally
the parties can use an intermediate node having distance
s from Alice. The node can perform quantum operations
and exchange classical information (dashed lines) with
Alice and Bob.

with a damping parameter α ≥ 0. If the intermediate
node is not used, the channel can distribute entan-
glement for l < ln 3/α, and becomes entanglement
breaking for l ≥ ln 3/α. As we will now see, using
the intermediate node in this setup will not change
this property: the channel will remain entanglement
breaking. For this, consider a subnormalized channel
of the form

Λ′[ρ] = Λl−s

[
KΛs (ρ)K†

]
, (91)

where 0 ≤ s ≤ l and K is a Kraus operator, i.e.,
K†K ≤ 1. Moreover, s represents the position of
the node, see also Fig. 4. It is straightforward to see
that this procedure allows to establish entanglement
between Alice and Bob if and only if the state

σ = 1 ⊗ Λ′[|ϕ+⟩⟨ϕ+|]
Tr(1 ⊗ Λ′[|ϕ+⟩⟨ϕ+|]) (92)

is entangled for some Kraus operator K.
We will now prove that for l ≥ ln 3/α the state σ

is not entangled for any choice of K and s. Note that
it is enough to prove the statement for l = ln 3/α.
For this, we define

|ψ⟩ = 1
√
q

(1 ⊗K) |ϕ+⟩ , (93)
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µ =
(1 ⊗K)1 ⊗ Λs

[
ϕ+] (

1 ⊗K†
)

Tr [(1 ⊗K)1 ⊗ Λs [ϕ+] (1 ⊗K†)] (94)

with q = Tr[KK†]/2. Notice that ψB =
KK†/Tr[KK†]. Equipped with these tools we ob-
tain

µ = e−αs |ψ⟩⟨ψ| + (1 − e−αs)12 ⊗ ψB. (95)

Using these results, we can now express the state σ
as follows:

σ = e−αl |ψ⟩⟨ψ| + e−α(l−s)(1 − e−αs)12 ⊗ ψB+

(1 − e−α(l−s))e−αsψA ⊗ 1

2 +

(1 − e−α(l−s))(1 − e−αs)12 ⊗ 1

2 . (96)

Our goal now is to show that for l = ln 3/α the state
σ is not entangled for any choice of |ψ⟩. Since |ψ⟩
is a two-qubit state, we can set |ψ⟩ = cosβ |00⟩ +
sin β |11⟩. Recall now that a two-qubit state σ is
entangled if and only if the determinant of the par-
tially transposed matrix σTA is negative [61]. For
l = ln 3/α and replacing s by s′/α, the determinant
of σTA is given by

det(σTA) = e−4s′ cos2 2β
20736

(
[f(s′)]2−

f(s′)
(
3 + e2s′)2

sin2 2β
)
, (97)

where f(s′) = 9 − 10e2s′ + e4s′
. As f(s′) ≤ 0 for

s′ = [0, ln 3], det(σTA) is nonnegative for all β. This
proves that the setup shown in Fig. 4 can distribute
entanglement if and only if l < ln 3/α.

On the other hand, if entangled catalysts are al-
lowed in the procedure, the setup can distribute en-
tanglement in the range l < 2 ln 3/α. To see this,
we choose s = l/2 < ln 3/α. Alice first sends one
half of a maximally entangled state through the chan-
nel, leading to a mixed entangled state between Al-
ice and the node. By using catalytic LOCC between
Alice and the node, it is possible to establish a pure
entangled state resorting to results in [3] and the fact
that all entangled two-qubit states are distillable [62].
The particle is then sent through the second half of
the channel from the node to Bob, leading to an en-
tangled state between Alice and Bob, as claimed.

Note that for l ≥ 2 ln 3/α the setup cannot dis-
tribute entanglement, even if catalysis is used. In this
case, it must be either s ≥ ln 3/α or l − s ≥ ln 3/α.
This means that either the first part of the channel or
the second part of the channel is entanglement break-
ing.

8 Discussion

In this article we investigated different aspects of en-
tanglement catalysis, both for quantum states and
quantum channels. We proved the existence of uni-
versal catalysts, enabling all possible transforma-
tions between bipartite pure states. We investigated
asymptotic state transitions in the presence of cat-
alysts, proving an equivalence between the asymp-
totic and the single-copy transformations in the cat-
alytic regime. Moreover, we showed that catalysis
offers a significant advantage in asymptotic non-iid
setings, where one aims to extract singlets from a se-
quence of non-identical quantum states. There exist
sequences of two-qubit states which allow to extract
an unbounded number of singlets if catalysis is used,
but the probability to extract even one singlet without
catalysis is vanishingly small.

We further investigated the role of catalysis for
noisy quantum channels. Using entangled catalysts,
it is possible to turn a noisy quantum channel into a
noiseless one, being able to transmit a certain number
of qubits with arbitrary precision. We showed that
any quantum channel can faithfully transmit qubits
as long as the channel is not too noisy. Concretely,
any quantum channel of dimension d can transmit
m qubits whenever the von Neumann entropy of its
Choi state is not larger than log2 d − m. Remark-
ably, for d ≥ 4 any quantum channel can transmit
at least one qubit if the Choi state has rank 2. We
introduced the catalytic capacity, corresponding to
the number of qubits which can be reliably transmit-
ted in the presence of catalysts. We developed tools
to estimate the catalytic capacity, allowing to deter-
mine the exact value for various quantum channels.
We also demonstrated that catalysis is useful for en-
tanglement distribution via single-qubit depolarizing
channels. In particular, we showed that a depolariz-
ing channel which is useless for entanglement distri-
bution without catalysis can be turned into a useful
channel by introducing a catalyst and an intermedi-
ate node which assists the parties with local measure-
ments and classical communication.

While we focused on entanglement catalysis in
this article, recent results show that catalysis is use-
ful within the theories of quantum thermodynam-
ics [28, 63–70] and quantum coherence [71–78], giv-
ing access to state transformations which are impos-
sible without the catalyst. It is reasonable to believe
that several results presented in this work can also be
extended to other resource theories, thus significantly
enhancing our understanding of state transformations
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in quantum mechanics.
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A Entanglement entropy and logarith-
mic negativity show different ordering

We will now prove that there exist two states |ψ⟩ and
|ϕ⟩ such that

E(|ψ⟩) ≥ E(|ϕ⟩), (98a)
EN (|ψ⟩) < EN (|ϕ⟩). (98b)

For this, we will focus on two-qutrit states of the form

|Ψ⟩ = sinα cosβ |00⟩+cosα cosβ |11⟩+sin β |22⟩ .
(99)

For the states |ψ⟩ and |ϕ⟩ we choose the parameters
α = 1.3; β = 0.75 and α = 0.7; β = 1, respectively.
With this we find

E(|ψ⟩) = 1.195, E(|ϕ⟩) = 1.157, (100a)
EN (|ψ⟩) = 1.324, EN (|ϕ⟩) = 1.361. (100b)

Note that there do not exist two-qubit pure states
fulfilling Eqs. (98), as for two-qubit pure states all
entanglement measures have the same ordering.

B Continuity of logarithmic negativity
In the following, we show that the difference of loga-
rithmic negativities of two bipartite states ρ and σ are
arbitrarily small if they are arbitrarily close in trace
distance. It is known that trace norm and Hilbert-
Schmidt norm satisfy

∥M∥2 ≤ ∥M∥1 ≤
√
r∥M∥2, (101)

for all matrices M and r represents the rank
of the matrix M . Additionally, we know that
Hilbert-Schmidt norm of a matrix is ∥M∥2 =(∑

i,j |Mij |2
)1/2

, where Mij are the elements of the
matrix M . Hence, under partial transposition, the
Hilbert-Schmidt norm remains invariant, precisely
∥M∥2 = ∥MTA∥2. Using the relation in Eq. (101),
we find

∥ρ− σ∥2 ≤ ∥ρ− σ∥1. (102)

As Hilbert-Schmidt norm is invariant under partial
transpose, we have

∥ρTA − σTA∥2 = ∥ρ− σ∥2 ≤ ∥ρ− σ∥1. (103)

Again using Eq. (101), we get

|∥ρTA∥1 − ∥σTA∥1| ≤ ∥ρTA − σTA∥1

≤
√
r∥ρTA − σTA∥2

≤
√
r∥ρ− σ∥1. (104)

Next, we observe that

EN (ρ) − EN (σ) = log2 ∥ρTA∥1 − log2 ∥σTA∥1

= log2
∥ρTA∥1
∥σTA∥1

≤ log2

(
1 +

√
r∥ρ− σ∥1
∥σTA∥1

)

≤
√
r∥ρ− σ∥1

ln 2∥σTA∥1

≤
√
d∥ρ− σ∥1

ln 2∥σTA∥1
≤

√
d

ln 2∥ρ− σ∥1,

(105)

where we assume that ∥ρTA∥1 ≥ ∥σTA∥1 and con-
sider the relation ln(1 + x) ≤ x for x > −1 in the
second line. In the last line, we further consider r ≤ d
and ∥σTA∥1 ≥ 1, where d is the dimension of the
total bipartite state. One can consider the opposite
when ∥ρTA∥1 < ∥σTA∥1 and will get

EN (σ) − EN (ρ) ≤
√
d

ln 2∥ρ− σ∥1. (106)
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Now if the states ρ and σ are arbitrarily close in trace
distance, i.e., ∥ρ− σ∥1 ≤ ε, then we have

|EN (ρ) − EN (σ)| ≤
√
dε

ln 2 . (107)

Therefore, we prove that if the trace distance between
two states is arbitrarily small, the logarithmic nega-
tivities of them are also arbitrarily close to each other.

C Proof of theorem 2

Here, we consider a general situation where ρ can be
transformed into σ via asymptotic catalysis with unit
rate. This means, for any ε > 0 and any δ > 0 there
exist integers n and m with n > m, a catalyst state
τC and an LOCC protocol Λ such that∥∥∥Λ [ρ⊗n ⊗ τC

]
− σ⊗m ⊗ σg ⊗ τC

∥∥∥
1

≤ ε, (108a)

TrS⊗n

[
Λ
(
ρ⊗n ⊗ τC

)]
= τC ,

(108b)
m

n
+ δ ≥ 1. (108c)

To simplify the notation, we introduce the state µ =
Λ
(
ρ⊗n ⊗ τC

)
which is in S⊗n ⊗C, where S and C

denote the Hilbert space of the system and the cata-
lyst, respectively. Here, σg is a product state acting
on the Hilbert space S⊗(n−m).

Now, we will show that a catalyst τ ′ and an LOCC
operation Λ′ can be chosen, such that ∥µ′−σ⊗τ ′∥1 <
2(ε+ δ), where

µ′ = Λ′(ρ⊗ τ ′) (109)

and
TrS [µ′] = τ ′. (110)

We set the catalyst state to be

τ ′ = 1
n

n∑
k=1

ρ⊗k−1 ⊗ µn−k ⊗ |k⟩⟨k| , (111)

where µi is the reduced state of µ after tracing out
systems i+1 to n. Note that µi is a state in the Hilbert
space of S1 to Si and C. Additionally, note that µn ≡
µ, µ0 ≡ τC , and ρ⊗0 ≡ 1. The Hilbert space of
the catalyst state τ ′ is in S⊗n−1 ⊗ C ⊗ K, where K
represents the Hilbert space of an auxiliary system of
dimension n which is maintained by Alice.

In the following, we give a 3-step construction of
an LOCC protocol Λ′, similar to the one in [3, 68]:

(i) In the first step, Alice measures her register
K in the basis |k⟩ and communicates the outcome
to Bob. If the outcome is n, Alice and Bob per-
form the LOCC protocol Λ given in Eqs. (108) on
S1 ⊗ S2 ⊗ · · · ⊗ Sn ⊗ C. If the outcome is different
from n, the parties do nothing.

(ii) Alice applies a unitary on her registerK, trans-
forming |n⟩ −→ |1⟩ and |i⟩ −→ |i+ 1⟩.

(iii) Finally, both Alice and Bob, apply a SWAP on
their parts of (Si, Si+1) and (Sn, S1), shifting Si −→
Si+1 and Sn −→ S1.

The initial state of the system along with the cata-
lyst is

ρ⊗ τ ′ = 1
n

n∑
k=1

ρ⊗k ⊗ µn−k ⊗ |k⟩ ⟨k| . (112)

The initial state after applying step (i) becomes

ηi = 1
n

n−1∑
k=1

ρ⊗k ⊗ µn−k ⊗ |k⟩ ⟨k| + 1
n
µ⊗ |n⟩ ⟨n| .

(113)
After step (ii), ηi is transformed into

ηii = 1
n

n∑
k=1

ρ⊗k−1 ⊗ µn+1−k ⊗ |k⟩ ⟨k| . (114)

Having traced out Sn from ηii, we obtain τ ′, which is
the initial state of the catalyst, see Eq. (111). Hence,
we perform step (iii) to transform ηii to the final state
µ′ having the property TrS [µ′] = τ ′. Therefore, the
state of the catalyst remains unchanged in the above
procedure.

To complete the proof, we will now show that
∥µ′ − σ ⊗ τ ′∥1 < 2(ε + δ). As µ′ is equivalent to
the state ηii up to a cyclic SWAP, we have

∥µ′ − σ ⊗ τ ′∥1 = ∥ηii − γ∥1, (115)

where

γ = 1
n

n∑
k=1

ρ⊗k−1 ⊗ µ̃n+1−k ⊗ |k⟩⟨k| . (116)

Here, µ̃i is constructed from µi by tracing out Si and
replacing it with σ, i.e., µ̃i = (TrSi µi) ⊗ σ, up to
the order of the components in the tensor product:
S1 ⊗ S2 ⊗ · · · ⊗ Si ⊗ C. Now, we obtain

∥ηii − γ∥1 = 1
n

n∑
k=1

∥µn+1−k − µ̃n+1−k∥1 (117)

= 1
n

n−m∑
k=1

∥µn+1−k − µ̃n+1−k∥1
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+ 1
n

n∑
k=n−m+1

∥µn+1−k − µ̃n+1−k∥1

≤ 2δ + 1
n

m∑
l=1

∥µl − µ̃l∥1

≤ 2δ + 1
n

m∑
l=1

∥µl − σ⊗l ⊗ τC∥1

+ 1
n

m∑
l=1

∥µ̃l − σ⊗l ⊗ τC∥1

≤ 2(δ + m

n
ε) ≤ 2(δ + ε).

In the first inequality we used Eq. (108c) and the fact
that ||ρ − σ||1 ≤ 2 for any quantum states ρ and σ.
The second inequality follows from the triangle in-
equality. In the third inequality we used Eq. (108a)
together with the fact that the trace norm does not in-
crease under partial trace.

The above arguments prove that it is possible to
convert ρ into σ via catalytic LOCC whenever the
conversion ρ → σ is possible via asymptotic catalysis
with unit rate. To prove the converse, note that when-
ever there exists a catalytic LOCC protocol convert-
ing ρ into σ, it is clearly possible to achieve asymp-
totic catalytic conversion with unit rate. This com-
pletes the proof of the theorem.

We note that this theorem also covers the result
presented in Theorem 1 of [3]. To see this, note that
if ρ can be converted into σ via asymptotic LOCC
with unit rate, it is also possible to achieve conver-
sion with unit rate via asymptotic catalysis, simply
by adding a catalyst which does not take part in the
process. Similarly as in Theorem 1 of [3], the proof
presented above also applies for the case where the
system S consists of more than two subsystems, and
multipartite LOCC protocols are considered.

D Maximum entropy for a probability
distribution where one of the probabili-
ties is given

We will now prove that the entropy H(pi) of a prob-
ability distribution {pi}3

i=0 achieves its maximum for
a given p0 when p1 = p2 = p3 = (1 − p0)/3.

For j = {1, 2, 3} we define the probability distri-
bution qj = pj/(1 − p0). Using this we find

−
3∑

j=1
qj log2 qj = log2(1 − p0) −

∑3
j=1 pj log2 pj

1 − p0

(118)

which implies

−
3∑

j=1
pj log2 pj = − (1 − p0)

3∑
j=1

qj log2 qj (119)

− (1 − p0) log2(1 − p0).

For a given p0 the maximum of the right hand side is
achieved when the distribution is uniform, precisely
qj = 1/3, and hence, pj = (1 −p0)/3 maximizes the
entropy H(pi), as claimed.

E Comparison with the fidelity of cat-
alytic teleportation [4]
From Theorem 1 of Ref. [4], one can see that, a bi-
partite state ρ (shared between Alice and Bob) can be
used to teleport m-qubits perfectly whenever

freg(ρ) = lim
n→∞

fn(ρ⊗n)
n

≥ 1. (120)

Where, fn(σ) is given by the following optimisation
problem

fn(σ) = max
E∈LOCC

n∑
i=1

⟨ϕ+
2m | Tr/i (E(σ)) |ϕ+

2m⟩ .

(121)
Here, Tr/i is the partial trace performed over systems
1.....i − 1, i + 1....n. Note that Eq. (120) is equiva-
lent to Rmar(ρ → |ϕ+

2 ⟩) ≥ m i.e, marginal rate of
transforming ρ into |ϕ+

2 ⟩ is greater than m. We refer
to Ref. [52] for the definition of marginal rate. From
Proposition 6 of [52] we see that

Rmar(ρ → |ϕ+
2 ⟩) = R(ρ → |ϕ+

2 ⟩), (122)

where R(ρ → |ϕ+
2 ⟩) is the asymptotic transforma-

tion rate from ρ into |ϕ+
2 ⟩. This shows Eq. (120) is

equivalent to
Ed(ρ) ≥ m. (123)

This shows the connection between Eq. (52) and the
main result of reference [4].
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