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 

Abstract— Objective: Neoadjuvant chemotherapy (NAC) 
is widely used in the treatment of breast cancer. However, 
to date, there are no fully reliable, non-invasive methods 
for monitoring NAC. In this article, we propose a new 
method for classifying NAC-responsive and unresponsive 
tumors using quantitative ultrasound. Methods: The study 
used ultrasound data collected from breast tumors treated 
with NAC. The proposed method is based on the 
hypothesis that areas that characterize the effect of 
therapy particularly well can be found. For this purpose, 
parametric images of texture features calculated from 
tumor images were converted into NAC response 
probability maps, and areas with a probability above 0.5 
were used for classification. Results: The results obtained 
after the third cycle of NAC show that the classification of 
tumors using the traditional method (AUC = 0.81 - 0.88) 
can be significantly improved thanks to the proposed new 
approach (AUC = 0.84–0.94). This improvement is 
achieved over a wide range of cutoff values (0.2-0.7), and 
the probability maps obtained from different quantitative 
parameters correlate well. Conclusion: The results 
suggest that there are tumor areas that are particularly 
well suited to assessing response to NAC. Significance: 
The proposed approach to monitoring the effects of NAC 
not only leads to a better classification of responses, but 
also may contribute to a better understanding of the 
microstructure of neoplastic tumors observed in an 
ultrasound examination. 

 
Index Terms— breast cancer, neoadjuvant chemotherapy, 

quantitative ultrasound, treatment monitoring. 
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I. INTRODUCTION 

REOPERATIVE chemotherapy (Neoadjuvant Chemotherapy 

- NAC), introduced in 1970, was initially used for locally 

advanced breast cancer (LABC) and inflammatory breast 

cancer (BC). The aim was to reduce the size of the tumor and, 

as a result, limit the scope of surgical treatment of both the 

breast tumor and the axillary lymph nodes. 

Currently, NAC is also recommended in the early stage of BC, 

in the following subtypes: triple negative breast cancer 

(TNBC), with the presence of HER-2+ receptors (Luminal B 

HER2-positive and HER-positive non-Luminal subtype) and 

in cases of Luminal B HER2-negative cancer with low 

expression of hormone receptors, high grade of malignancy 

(G3) and in patients at a young age (up to 35 years old) in 

stage II or III [1]. 

As with other cancers, pathological response to NAC 

treatment, especially pathological complete response (pCR), 

has been considered a surrogate for favorable overall survival, 

event-free survival and long-term survival for TNBC and 

HER2+ subtypes [2]. 

Unfortunately, the assessment of response to NAC based on 

methods commonly used in clinical practice (ultrasound, 

mammography, magnetic resonance) is not sufficiently 

accurate and generates false positive and false negative results 

[3][4][5]. Complete tumor regression, confirmed 

histopathologically as pCR, occurs in an average of 19% of 

patients and is highly dependent on the immunohistochemical 

subtype of the tumor [6][7]. In patients whose BC remains 

insensitive to NAC, i.e. in approximately 20-30% of patients 

[6][7][8], chemotherapy delays necessary surgery, increases 

the risk of metastases, and may contribute to side effects. 

Monitoring of BC during treatment with NAC in-vivo 

provides information regarding the sensitivity of the cancer to 

therapy. Currently, most of the methods used are based on the 

assessment of changes in tumor size estimated on the basis of 

imaging studies. Compared to MMG (mammography), 

contrast-enhanced MMG, or US (ultrasonography), the most 

accurate method of treatment monitoring is MRI (magnetic 

resonance imaging) [6]. 
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However, the assessment of the size of tumors during 

treatment, both in MRI and US, in accordance with RECIST 

1.1 (response evaluation criteria in solid tumors) [3], is not a 

sufficiently sensitive feature due to the appearance of necrotic 

lesions, which are a good response to treatment, but may mask 

a decrease in tumor dimension [6]. Similarly, MRI assessment 

of tumor vascularity provides false positive and false negative 

results. Another disadvantage of methods related to the 

assessment based on tumor size is the long period of time that 

elapses from the onset of NAC to the apparent change in 

tumor size. Thus, a rapid assessment of BC during NAC based 

on a non-invasive method would be particularly useful in this 

group of patients. 

Quantitative ultrasound (QUS) allows the assessment of tissue 

structure and its scattering properties at the cellular level. This 

is important in monitoring the effectiveness of NAC because 

changes in tumor size caused by the use of therapy appear 

after many weeks [9], whereas changes at the cellular level 

after the first dose of the drug [10]. 

Quantitative ultrasound methods have proven to be very useful 

in the classification of breast cancers and in the monitoring of 

chemotherapy. A number of publications show the results 

showing the relationship between the parameters determined 

by quantitative ultrasound and the pathological response of the 

tumor to NAC. Papers [11][12] describe parametric images 

generated with the use of spectral and scattering parameters of 

signals received from the tumor, from which texture features 

were then determined and included in the multi-parameter 

model used to predict the pathological response of the tumor. 

Changes in the amplitude distribution of the ultrasonic signal 

scattered in the tumor after successive cycles of chemotherapy 

were also studied. The distributions were differentiated by the 

Kullback–Leibler divergence determined with respect to the 

distributions after the first NAC cycle [13] or with respect to 

the reference phantom [14]. The highest AUC (area under the 

receiver operating characteristic curve) was achieved after the 

3rd NAC cycle, 0.92 and 0.91 respectively. 

The usefulness of parameters determined from the power 

spectrum of backscattered ultrasound in a breast tumor, such 

as the integrated backscatter coefficient (IBC), average 

scatterer diameter (ASD), and average acoustic concentration 

(AAC), was also analyzed in the assessment of NAC. 

Parameters were determined from data from 30 LABC 

patients collected before and after subsequent doses of NAC 

and compared with tumor pathological response [15]. At week 

8 NAC, the composite parameter (IBC, ASD, AAC) predicted 

no tumor response with sensitivity = 80%, specificity = 100% 

and accuracy = 85%. 

The parameters of statistical distributions, which describe the 

amplitude distributions of scattered signals, were also 

evaluated. It has been shown that the addition of the shape 

parameter of the homodyne K-distribution to the IBC 

classifier is beneficial in predicting the NAC result [16], and 

their assessment is most accurate after the 3rd NAC course 

(AUC=0.91). 

In addition to examining QUS features in the tumor mass, as 

has been done in most studies, QUS parameters in the 

surrounding tumor tissue were also analyzed. In the paper 

[17], the authors demonstrated the great usefulness of the 

analysis of tissue extending 3–10 mm from the focal lesion 

visible in ultrasound. 

The effectiveness of multi-parametric QUS imaging in 

predicting breast tumor response to chemotherapy before 

treatment was also studied. Features were extracted from 

segmented areas within the tumor and tumor margin in various 

parametric images. The results showed that prior to treatment, 

patient response could be predicted with an accuracy of 85.4% 

and AUC = 0.89 [18]. 

Despite the high efficiency noted in studies using QUS, these 

techniques are still not sufficiently sensitive in predicting 

response to treatment. Limitations include, among others, 

small groups of tested tumors and their diversity in each of the 

published research results. Each new method that effectively 

predicts the response to NAC is valuable because it validates 

the usefulness of using quantitative ultrasonic methods to 

monitor chemotherapy for breast tumors. 

Based on microscopic evaluation, it is known that the 

distribution of tumor cells and cell clusters is not 

homogeneous [19]. Cancer cells may be solitary or may form 

small groups or multicellular structures. Malignant breast 

tumors are characterized by various morphological structures, 

solid, tubular, follicular and trabecular structures. The 

morphological structures of the tumor consist of a different 

number of tumor cells, and they also differ in their 

distribution. It has been shown, for example, that alveolar 

structures had about 30 neoplastic cells, whereas tubular 

structures contained single rows of neoplastic cells, and 

trabecular structures had only one or two such rows. The 

largest clusters of tumor cells, up to hundreds of cells, could 

be observed in solid structures [20][21]. 

Chemotherapy destroys cancer cells, so it can be assumed that 

its effects are particularly visible in areas of the tumor with a 

large number of such cells. Then, the observable signs of NAC 

therapy would not be evenly distributed throughout the tumor. 

The methods used to monitor the effects of NAC therapy 

based on quantitative ultrasound most often use the average 

values of tissue characteristics determined for the entire tumor 

or the tumor and its surroundings. If the assumption of 

heterogeneous distribution of the NAC effects is correct, then 

such averaging approach may not be optimal.  

In this study, we hypothesize that tumor areas can be found 

that characterize the effects of NAC particularly well. 

Therefore, we propose a new approach that involves limiting 

the averaging to these specific areas. As a validation of this 

approach, we present results for selected QUS parameters that 

classify well using data from the entire tumor, and even better 

when only data from selected tumor regions are included. 

We based our research on the images of texture features 

obtained from the tumor amplitude images. When searching 

for tumors that did not respond to NAC, we only used data 

collected from tumor areas pre-qualified as having a high 

probability of poor response. This was possible thanks to the 

proposed new type of parametric image processing, which 

results in the probability distribution of non-response to NAC 
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in the tumor. Additionally, we present the classification results 

obtained directly using parametric texture images for 

comparison.  

II. METHODS 

A. Patients 

The study included patients of the National Institute of 

Oncology, Scientific Centre in Warsaw, who were diagnosed 

with breast cancer and were referred to treatment in the form 

of neoadjuvant chemotherapy. Data from subsequent patients 

have been collected over the last few years. The latest version 

of our database was used in [22] and is also the basis for the 

current study. The study involved 40 patients aged 32 to 83 

(average age 47). In accordance with the established protocol, 

patients were included in the study whose tumor size was 

larger than 5 mm and did not exceed 40 mm, and the number 

of multifocal lesions in one patient did not exceed three. These 

were the only criteria and patients meeting them were enrolled 

in the study sequentially. Ten patients were diagnosed with 

multifocal cancer. A total of 51 tumors were monitored. After 

the 3rd cycle of NAC, the number of tumors decreased to 48 

(in 1 case the tumor regressed completely, in 2 cases data were 

not recorded for random reasons).  

All study participants gave voluntary consent to participate 

in the study and signed the appropriate declaration. The 

research was conducted in accordance with the Declaration of 

Helsinki, and the study protocol was approved by the 

Bioethics Committee (project identification code 49/2018). 

Before qualifying for NAC, all patients underwent a core-

needle biopsy (14GA biopsy needle) after administration of 

anesthesia in the form of 2% lidocaine. Three to five cores 

were taken during the biopsy. Based on the obtained tissue 

material, a pathologist with over 25 years of experience in the 

histopathological evaluation of focal breast lesions determined 

the type of cancer (molecular subtype and grade of 

malignancy, Table I). 

Neoadjuvant chemotherapy was administered according to 

international guidelines. Treatment with doxorubicin and 

cyclophosphamide was given from the first to the fourth 

course. Thereafter, treatment with taxol was continued, and in 

HER2+ positive patients, trastuzumab plus taxol. During the 

interview, it was established that one patient was treated with 

doxorubicin and docetaxel, 5 years before starting the current 

therapy. The frequency of drug administration was selected 

individually for each patient. In most patients, the interval 

between particular NAC courses was 3 weeks. Two-week 

intervals were used in 2 patients. 

After the treatment was completed, the patients underwent 

surgery. In 38 cases, mastectomy was performed, in two 

patients breast-conserving therapy was applied. 

B. Histopathology 

The removed residual tumors were subjected to 

postoperative histopathological evaluation by the same 

pathologist who examined the biopsy samples. The residual 

malignant cells (RMC) parameter was used as an indicator of 

histopathological response to NAC treatment. This parameter 

is one of the analyzed elements of the residual cancer burden 

(RCB) scale, which determines the level of residual disease 

after completion of neoadjuvant chemotherapy. The RMC 

parameter ranges from 0% to 100%, where 0% represents a 

complete histopathological response (no tumor cells after 

treatment) and 100% represents a complete lack of response to 

treatment. In the group of patients participating in the study, 

11 patients achieved a complete histopathological response 

(RMC=0%) and 7 patients did not respond to treatment at all 

(RMC=100%). 

C. Ultrasonic data registration 

The patients' ultrasound data were recorded using the 

Ultrasonix SonixTOUCH ultrasound scanner (Ultrasonix 

Medical Corporation, Richmond, BC, Canada) and the L14-

5/38 linear transducer with a center frequency of 7.2 MHz. 

The scanner, in addition to the standard functions of B-mode 

imaging, color Doppler and elastography, also had a research 

interface that enabled the recording of post-beamformed RF 

echoes.  

Ultrasound evaluation of the tumors was performed 

according to the guidelines of the American College of 

Radiology (BI-RADS-lexicon) and the standards of the Polish 

Ultrasound Society. Recording of data from each patient took 

place before the start of treatment and one week after each 

course of chemotherapy. During the test, data from four scan-

planes were recorded: radial, radial + 45°, anti-radial, and anti-

radial + 45°. The doctor tried to reproduce a similar position 

of the transducer during each subsequent examination, based 

on visual assessment of tissue structures on images acquired 

after previous NAC course. All examinations were performed 

using the same scanner preset, with the transmit frequency set 

to 10 MHz. Measurement protocol allowed the doctor to 

adjust the focal depth to the location of the tumor. No other 

parameters affecting the collected data could be modified. In 

order to avoid scanner-embedded image enhancement that 

would affect our results, we acquired the raw B-mode images 

from the post-beamformed RF data. Then, the radiologist 

TABLE I 
PATIENTS AND TUMORS CHARACTERISTICS  

Characteristics 

Count/Value 

before NAC 
after 3rd  

NAC course 

Patients   

Number of patients 40 38 

Mean age (years) 56.6 56.0 

Age range (years) 32-83 32-83 

Tumor   

Number of tumors 51 48 

Size (max diameter) 22,55 (9,89) 16,12 (8,23) 
Multifocal 10 10 

Tumor histology   

Invasive ductal carcinoma 
(IDC) 

51 48 

IDC with ductal carcinoma 

in situ 
20 19 

Receptor Status   

Luminal A 7 6 

Luminal B 24 22 
TNBC 9 9 

HER 2+ 11 11 

Characteristics of the group of patients and the results of 
histopathological evaluation before the start of chemotherapy and 
after the third NAC course. 
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indicated on the B-mode images the areas of the tumor from 

which data were collected for quantification. 

D. Ultrasonic data preprocessing 

B-mode images were obtained through a processing of the 

post-beamformed RF lines. First, the signal envelope was 

detected as an absolute value of the complex signal obtained 

through Hilbert transform. Then, the resulting envelope 

amplitude was log-compressed. As the scanning was 

performed at 4 lines per probe pitch (0.3048 mm), the 

horizontal pixel size was 0.076 mm. For the sampling rate of 

40 Msps and the speed of sound of 1540 m/s the vertical pixel 

size would be 0.0192 mm. To equalize the vertical and 

horizontal pixel size, the images were decimated vertically by 

a factor of 4, so that the pixel size was 0.076 mm × 0.077 mm 

(width × height). The dynamic range of the images was 

limited to 0-128dB and was scaled to 256 gray levels (the final 

images were saved in an 8-bit format). 

E. Quantitative ultrasound maps 

The parametric images (maps of the parameters values) of 

tumors were generated using the sliding window technique. 

Each pixel in the parametric map was estimated based on the 4 

mm × 4 mm (53×52 pixels) block of B-mode data centered 

around the pixel. A set of textural features of the US images 

were extracted including autocovariance coefficient [23], 

features of the gray level co-occurrence matrix (GLCM) 

[24][25], and Law’s texture energy measures [26]. To extract 

features efficiently in the sliding window mode, we developed 

a dedicated library in Matlab® 2021b (MathWorks, Inc., 

Natick, MA). The library was validated using the BUSAT 

Toolbox [27] as a reference. 

F. Autocovariance 

The autocovariance coefficient was already used in the 

context of breast tumor classification in [23]. The authors 

justify its use in place of the auto-correlation coefficient with 

the fact that the resulting predictors are unaffected by the 

overall brightness of an input image. The autocovariance 

coefficient acov is defined as follows: 

𝑎𝑐𝑜𝑣 =
𝐴(∆𝑥,∆𝑦)

𝐴(0,0)
, (1) 

where 

𝐴(∆𝑥, ∆𝑦) =
1

(𝑋−∆𝑥)(𝑌−∆𝑦)
∑ ∑ [𝑓(𝑥, 𝑦) −

𝑌−∆𝑦
𝑦=1

𝑋−∆𝑥
𝑥=1

𝑓][𝑓(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) − 𝑓]. (2) 

X and Y in the above formulas denote the sliding window’s 

horizontal and vertical size in pixels, x and y are the 

corresponding pixel indices within the window, and Δx and Δy 

stand for the horizontal and vertical offsets, respectively. The 

amplitudes (gray levels) are denoted as f whereas 𝑓 is the 

mean amplitude in the window.  

In our study we calculated the autocovariance coefficients 

for Δx and Δy ranging from 0 to 5 pixels, for all {Δx, Δy} 

combinations except {0, 0}, for a total of 35 parameters. All 

combinations provided strongly correlated parameter maps, 

thus in this paper we present the results only for {0, 1} pair 

that leads to the best predictor. 

G. Laws texture energy 

Texture energy measures proposed by Laws [26] are the 

energies of an image after its proper filtration (convolution) 

with a set of center-weighted vectors. For 5-tap filters, the 

vectors are shown in Table II. The image is filtered vertically 

and horizontally by a certain pair of vectors. To make the 

texture energy measures rotationally invariant, images filtered 

with the same vectors but for different directions (e.g. {S5, 

L5} and {L5, S5}) are compounded. Next, to make the results 

independent of the overall brightness of the original image, 

each filtered image is pixel-wise divided by an image filtered 

with {L5, L5} vector pair. After this normalization the energy 

ener of the resulting image g(x,y) can be calculated as follows: 

𝑒𝑛𝑒𝑟 =
∑ 𝑔(𝑥,𝑦)2𝑥,𝑦

𝑋𝑌
. (3) 

In our study we calculated energies for all possible vector 

pairs except the redundant ones (e.g. {L5, S5} is already 

included in {S5, L5}) and also excluding the {L5, L5} used 

for normalization. This resulted in a total of 14 parameters. In 

this paper we present the results for three parameters that 

provided the best predictors. These were the energies of 

images filtered with vector pairs: {S5, L5}, {W5, L5}, and 

{R5, L5}. 

H. GLCM features 

GLCM parameters are often used in research on the 

classification of breast tumors [28][29] and the prediction and 

monitoring of their response to treatment 

[11][12][17][30][31]. GLCM is a matrix of probabilities that a 

pair of certain gray tones occurs in a pair of pixels being in a 

particular relative spatial position [24][25]. In our study the 

GLCM was calculated for 64 gray level intervals (from 0 to 

255 with step of 4), resulting in 64×64 GLCM size. The 

considered spatial relationship was a vertical or horizontal 

displacement by 4 pixels (0.3mm). Based on the GLCM a 

number of texture parameters can be calculated. In our study, 

we analyzed contrast, correlation energy, homogeneity, and 

variance. In this paper we present the results for the variance 

(var) parameter as it provided good classification results in the 

classical approach and showed clear improvement when the 

new approach was used: 

𝑣𝑎𝑟 = ∑ (𝑖 − 𝜇𝑖)GLCM(𝑖, 𝑗)𝑖,𝑗 , (4) 

where 

𝜇𝑖 =
∑ [GLCM(𝑖,𝑗)∙𝑖]𝑖,𝑗

∑ GLCM(𝑖,𝑗)𝑖,𝑗
. (5) 

In the above formulas, i and j are the indices of GLCM 

elements (they indicate the discrete gray levels) whereas μi 

denotes the expected value of i for the probability distribution 

in the GLCM. The variance was calculated separately for 

vertical and horizontal spatial relationships, resulting in 2 

GLCM parameters. Like other features described above, also 

the features determined from the GLCM matrix were 

independent of the brightness of the image. 

TABLE II 
FILTERS FOR LAW’S TEXTURE ENERGY MEASURES 

Low-pass (L5): 1 4 6 4 1 

Edges (E5): -1 -2 0 2 1 

Spots (S5): -1 0 2 0 -1 

Waves (W5): -1 2 0 -2 1 
Ripples (R5): 1 -4 6 -4 1 
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I. Processing of the QUS maps 

A typical approach when using QUS parameters to classify 

tumors or their response to NAC involves either calculating a 

texture parameter value from the whole tumor simultaneously 

or generating a texture parameter map and then averaging it 

over all pixels in the tumor. The latter was used as a reference 

approach to the method proposed in this paper. For each 

tumor, maps of each of the considered QUS parameters were 

determined from data collected in four scan planes of the 

tumor. The mean value of the parameter was then calculated 

and used as a predictor of tumor response to NAC.  

The new method presented in this paper aims to create 

predictors using only those parts of the tumor which bring the 

most reliable information on the tumor response to NAC. For 

this purpose, each parametric map is translated to a map of 

probability of tumor non-response to NAC. It is done using 

functions that assign probabilities to parameter values. For 

convenience, we refer to these functions as "dictionaries" 

throughout the text, as they translate parametric images into 

probability maps. The dictionaries are calculated individually 

for each parameter and for each NAC therapy stage. They are 

determined based on “model” cases of responding and non-

responding tumors, that is, tumors that we know responded 

very well or very badly to NAC. We assumed that tumors with 

RMC = 0% (10 tumors) are the "model" of responders and 

tumors with RMC ≥ 70% (13 tumors) are the "model" of non-

responders. 

To compensate for a different number of model tumors in 

both groups and for different tumor sizes, all pixels within 

each model tumor are assigned a weight w: 

𝑤 = (𝑛𝑝𝑖𝑥𝑒𝑙 ∙ 𝑛𝑡𝑢𝑚𝑜𝑟)
−1

, (6) 

where npixel is a total number of tumor pixels in all scan-planes 

of the tumor whereas ntumor stands for the number of model 

responding or non-responding tumors (ntumor equals 10 when 

the tumor belongs to the group of responding tumors, or 13 

when it belongs to non-responding tumors).  

The weights w are then used for calculating of the weighted 

probability density functions (wPDF) for individual parameters 

(amplitude of a wPDF refers to the accumulated pixel weights 

w, not a pixel count). Then, the domain of the wPDF is divided 

into a number of intervals so that the area under the wPDF for 

each of them (sum of weights in each interval) is the same, as 

shown in Fig. 1b. The first and last intervals extend to -∞ and 

+∞, respectively. In this study the domain was divided into 

100 intervals. Next, for each parameter value interval, two 

sums are computed, the sum of pixel weights from non-

responders (wnr) and the sum of pixel weights from non-

responders and responders together. The ratio of these sums 

determines the probability P that a pixel with a parameter 

value falling within the considered i-th range belongs to non-

responding tumors: 

𝑃(𝑖) =
∑𝑤𝑛𝑟(𝑖)

∑𝑤(𝑖)
. (7) 

 
Fig. 1.  Scheme of building and using a dictionary. Parametric maps 
of model tumors (a) are used to obtain the weighted probability 
density function wPDF (b). The domain of the QUS parameter is 
divided into equally representative intervals. For each interval the 
probability P of non-response to NAC is determined according to (7). 
The resulting “dictionary“ (c) is used to translate the parametric map 
of the tumor into a map of a probability that the tumor does not 
respond to NAC. 
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In this way, we obtain a dictionary that we use to translate 

parametric images into probability maps. It is worth noting 

that the above methodology ensures that all elements 

(parameter value intervals together with assigned 

probabilities) of the dictionary are equally representative. The 

data processing scheme is presented in Fig. 2. 

As our goal is to detect non-responding tumors, the final 

predictors should be derived with special attention to areas of 

high-probability of no response to NAC. In this study, 

predictors were obtained as average probabilities calculated 

jointly from all four probability maps derived from the four 

tumor scanning planes. The averaging was limited to tumor 

regions with a probability above a certain threshold, which 

was set at 0.5 in this work. As the predictors are a direct 

measure of probability that the related tumors belong to the 

non-responding class, they were used as classification scores 

in the further statistical analysis. 

J. Statistical analysis 

Based on the Miller-Payne grading scale [32], tumors with 

RMC < 70% and RMC ≥ 70% were considered responders 

and non-responders, respectively (poor response is represented 

by Miller-Payne grades 1 and 2, which corresponds to a tumor 

cell loss of up to 30%). Individual predictors were tested for 

their effectiveness in classifying tumors into the correct group. 

This was assessed using the receiver operating characteristic 

(ROC) curves, i.e. plots of true positive rate (TPR) versus 

false positive rate (FPR) for varying classification cutoff 

value. Each classifier’s sensitivity and specificity were 

determined for the ROC point closest to the perfect classifier 

(i.e. the (0, 1) point in the ROC space) in the Euclidean sense 

[33]. For the purpose of the overall evaluation of the entire 

ROC curve, area under the ROC curve (AUC) was used [34]. 

The estimation of the confidence intervals was done using the 

bootstrap method [35] with 1000 bootstrap samples and the 

confidence level of 0.95. 

Both procedures, the reference method and the new 

approach, were cross-validated using the Leave-One-Out 

technique [36]. In case of the reference method the cross-

validation was done at the statistical analysis stage, whereas in 

case of the new approach the cross-validation was performed 

at the stage of dictionary determination and translation to the 

probability-maps. As our database contains some multifocal 

lesions (multiple tumors from the same patient), the cross-

validation was performed at the patient, not tumor, level. 

All calculations were done using Matlab. 

III. RESULTS 

The results presented in this section were obtained for data 

collected after the third course of NAC. The results 

corresponding to the first and second NAC courses are 

included in the Appendix. 

 
Fig. 2.  Data processing scheme. First, the B-mode images are 
converted to QUS parametric maps, second, the parametric maps 
serve two purposes, classification - the results are the reference for 
the new approach, and building probability maps using a "dictionary". 
Third, the new approach classification results are determined by 
averaging the probability maps over a selected area with a probability 
above a certain threshold. 

This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBME.2024.3383920

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



8 First Author et al.: Title 

Examples of image data at each processing step: B-mode 

images, QUS parametric images, and probability images are 

shown in Fig. 3 for two sections of a model responding tumor. 

Corresponding images for a model non-responding tumor are 

shown in Fig. 4. 

The classification performance for the reference and the 

new approach is compared with use of the ROC curve in Fig. 

5. The AUC values together with their confidence intervals are 

compared in Fig. 6. Numerical values of the classification 

performance measures are given in Table III. 

The above results are obtained for the arbitrarily chosen 

probability threshold of 0.5. We have checked how the choice 

of the threshold value affects the classification performance. 

The dependence of AUC on the value of the selected 

probability threshold is shown in Fig. 7. We also studied the 

pixel value correlation between tumor probability maps 

obtained from different parametric maps. The obtained results 

are presented in Table IV. 

TABLE III 
CLASSIFICATION PERFORMANCE AFTER THE 3RD NAC COURSE 

 sensitivity specificity AUC cutoff 

 Ref New Ref New Ref New New 

autocovariance 0.82 
1.00 

1.00 
1.00 

0.89 
0.97 

0.84 
0.93 

0.88 
0.96 

0.94 
0.99 

0.75 
0.43 1.00 0.74 0.69 0.71 0.82 

S5L5 energy 0.82 
1.00 

1.00 
1.00 

0.78 
0.90 

0.89 
0.97 

0.86 
0.96 

0.94 
0.99 

0.75 
0.50 1.00 0.63 0.76 0.65 0.82 

W5L5 energy 0.82 
1.00 

1.00 
1.00 

0.89 
0.97 

0.76 
0.88 

0.84 
0.95 

0.89 
0.96 

0.68 
0.40 1.00 0.75 0.59 0.61 0.77 

R5L5 energy 0.82 
1.00 

0.91 
1.00 

0.83 
0.94 

0.76 
0.87 

0.84 
0.94 

0.87 
0.95 

0.66 
0.47 0.50 0.69 0.58 0.63 0.71 

glcm var horiz. 0.73 
0.99 

0.91 
1.00 

0.86 
0.95 

0.76 
0.87 

0.82 
0.93 

0.84 
0.93 

0.74 
0.37 0.46 0.71 0.60 0.64 0.67 

glcm var vert. 0.73 
1.00 

0.91 
1.00 

0.86 
0.95 

0.76 
0.89 

0.81 
0.93 

0.84 
0.93 

0.75 
0.37 0.52 0.71 0.61 0.64 0.68 

Comparison of the classification performance after the 3rd NAC 
course between the reference method (Ref) and the new method 
(New). The comparison includes the following classification 
parameters: sensitivity, specificity, and area under the ROC curve 
(AUC), each with confidence intervals for confidence level of 0.95. 
Additionally, classification cutoff values associated with the reported 
sensitivities and specificities are provided for the new method. 

TABLE IV 
CORRELATIONS BETWEEN PROBABILITY MAPS  

BASED ON VARIOUS QUS PARAMETRIC IMAGES  

 autoco 

variance 

S5L5 

energy 

W5L5 

energy 

R5L5 

energy 

glcm var 

horiz. 

glcm var 

vert. 

autocovariance 1 0,56 0,62 0,61 0,78 0,79 
S5L5 energy 0,56 1 0,88 0,78 0,17 0,17 

W5L5 energy 0,62 0,88 1 0,93 0,16 0,17 

R5L5 energy 0,61 0,78 0,93 1 0,18 0,19 
glcm var horiz. 0,78 0,17 0,16 0,18 1 0,99 

glcm var vert. 0,79 0,17 0,17 0,19 0,99 1 

Correlation coefficients (Pearson) between probability maps based 
on various QUS parametric images after the 3rd NAC course. 

 
Fig. 5.  Comparison of the ROC curves for the reference method 
(black line) and the new approach (red line) for each of the analyzed 
QUS parameters after the 3rd NAC course. The optimal operating 
points, for which the sensitivity and specificity were determined, are 
marked for each ROC curve. 

 
Fig. 6.  AUC comparison between the reference method (AUCREF) and 
the new approach (AUCNEW) after 3rd NAC course. 

 
Fig. 3.  Examples of image data for two sections of a “model” 
responding tumor after 3rd NAC course: B-mode images (a, d), QUS 
parametric maps of the Law’s R5L5 energy (b, e), and related 
probability maps (c, f). 

 
Fig. 4.  Examples of image data for two sections of a “model” non-
responding tumor after 3rd NAC course: B-mode images (a, d), QUS 
parametric maps of the Law’s R5L5 energy (b, e), and related 
probability maps (c, f). 
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IV. DISCUSSION 

According to the literature [31][37], the assessment of the 

tumor response to NAC may be inaccurate after the first and 

fourth week of treatment and improve after the eighth week of 

treatment. It is in line with our own previous observations 

[13][14] that the results after the first and second NAC courses 

(first and fourth week of treatment, respectively) are poor and 

improve after the third NAC course (seventh week of 

treatment). This is also the case in this study, where results 

obtained before the third NAC course (Appendix) are 

significantly worse for both the reference method and the new 

one, and no improvement was observed compared to the 

reference method. Therefore, in this paper we focus on the 

results obtained after the third NAC course. 

The results obtained after the third course of NAC show 

that the 6 features selected to predict tumor response to NAC 

allow for good classification of tumors using the traditional 

method, which is used in this work as a reference for the 

proposed new approach. The determined AUC values ranged 

from 0.81 to 0.88, whereas the sensitivities and specificities 

were in the range of 0.73 - 0.82 and 0.78 - 0.89, respectively. 

The best predictors in terms of AUC were autocovariance 

(AUC = 0.88) and S5L5 energy (AUC=0.86), with a 

sensitivity and specificity of 0.82 and 0.89 for autocovariance 

and 0.82 and 0.78 for S5L5 energy, respectively. However, 

these results can be further improved by the proposed new 

approach of selecting the area of tumor tissue used for 

classification.  

First, the parametric maps of the tumors were used to 

determine the probability maps of the tumor response to NAC. 

Then, assuming that the information relevant for classification 

is contained mainly in tumor tissue, for which the probability 

map shows values above 0.5, a simple approach was adopted 

to transform the probability maps into scalar predictors of the 

classification outcome. This allowed us to easily focus on 

high-probability areas (assuming they contain useful 

information) and ignore low-probability areas. It should be 

noted, however, that there is room for improvement with other 

more sophisticated approaches. 

Based on the AUC values, it can be concluded that the new 

method of assessing the effects of NAC improved the tumor 

response prediction (AUC = 0.84 - 0.94) compared to the 

prediction method using the average values of parametric 

maps (AUC = 0.81 - 0.88). In the new approach, the best 

predictors were also S5L5-energy and autocovariance but with 

higher AUC = 0.94 and sensitivity = 1.00 for both, and 

specificities of 0.89 and 0.84, respectively. The ROC curves 

for most of the predictors reached the TPR of 1.0 at lower FPR 

values than in the reference method (Fig. 5). This in turn leads 

to overall higher sensitivity of the new approach. The optimal 

operating points for the new approach show strong 

improvement in sensitivity (0.91 - 1.00) with slightly 

decreased specificity (0.76 - 0.89).  

It is possible that this sensitivity-oriented improvement is a 

result of focusing on the high probability areas in the process 

of averaging. It may also be caused by a better representation 

of the non-responding tumors by the corresponding group of 

model tumors than it is in the case of responding tumors. 

Regardless of the reasons, this is a favorable situation because 

in the context of NAC monitoring, false negative results have 

much more serious consequences than false positive results. In 

the cases of unidentified non-responders the ineffective 

therapy is continued. This unnecessarily delays surgery or the 

introduction of alternative therapy, giving the cancer more 

time to metastasize. Also, the toxic effect of the therapy on the 

patient remains unreasonably long. As a result, the patient’s 

chance of survival is reduced. On the other hand, in the cases 

of responders incorrectly classified as non-responders, 

verification procedures (e.g. MRI, biopsy) are performed 

unnecessarily.  

In the layout presented in Fig. 6 the AUC markers that are 

above the diagonal indicate the parameters that perform better 

in the new approach than in the reference method. Even 

though the confidence intervals are wide, some parameters 

exhibit clear improvement, especially the autocovariance and 

the Laws S5L5 and W5L5 energies, where the AUC values 

improve by 0.05 - 0.08. 

As the results of the new method were obtained for 

arbitrarily chosen probability threshold equal 0.5, it is natural 

to ask about the impact of the threshold on the classification 

performance. This was also investigated and is shown in Fig. 

7. In most cases, AUC initially increases with increasing 

threshold. For a threshold value of 0, which corresponds to 

averaging of the probabilities over the whole tumor, the AUC 

value is lower than the AUC obtained at the selected higher 

threshold values. This seems to confirm that the approach of 

omitting some tumor areas from determining the final 

probability may lead to a better assessment of the tumor 

response to NAC. Further increasing of the threshold reveals a 

plateau in the AUC characteristic, so threshold tuning is of 

less importance here. This, in turn, justifies the arbitrary and 

approximate selection of the threshold level. Approaching 

each of the QUS parameters individually would allow for 

optimization of the threshold values to maximize the AUC. 

However, in our opinion, it would make sense if we had a 

larger database. 

The results of correlation between the probability maps 

 
Fig. 7.  Comparison of the AUC values for the reference method 
(black line) and the new approach (red line) as a function of the 
probability threshold for each of the analyzed QUS parameters after 
the 3rd NAC course. 
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obtained from different tumor features (Table IV) showed a 

strong correlation for the maps that were calculated from the 

autocovariance and GLCM parameters (0.78 - 0.79). Moderate 

and strong correlations (0.56 - 0.62) were observed for maps 

obtained using autocovariance and lawsEnergy parameters. 

Maps obtained using the parameters of the lawsEnergy and the 

GLCM groups were very weakly correlated (0.16 - 0.19). The 

strong correlation of autocovariance images with other image 

groups may indicate the presence of tumor tissue areas that are 

characteristic of the therapy effect. It is worth noting that the 

classification of tumors into NAC-responders and non-

responders was best when using the autocovariance parameter 

(AUC = 0.94). 

In this study the classification performance of individual 

predictors, for which the interesting results (AUC above 0.9) 

were obtained, was investigated. Typically, to achieve further 

classification improvement, multi-parameter models are used. 

In case of the new approach, it is possible to build the multi-

parameter classification models in two ways. The first one is 

to combine the probability predictors obtained as described in 

this paper. The other way is to determine the “dictionaries” for 

multiple parameters. For example, for a pair of parameters the 

dictionary would be a function of two variables. The two 

parameter maps would still be translated into a single map of 

local probability of unresponsiveness to NAC, and the further 

processing would be performed without changes. 

Apart from the multi-parameter approach, we also 

recognize a number of other concepts worth investigating. 

First, other QUS parameters could be examined, especially 

those based on RF data, such as spectral parameters. It is 

possible that they would have yielded better results with 

earlier doses of NAC. Another issue that needs analysis 

concerns alternative ways of selecting the most informative 

areas of the tumor. A comparison of the resulting selections 

with the saliency maps for some deep learning models would 

also be interesting. Furthermore, one could perform a mapping 

of the US-related images (QUS images, probability maps, 

masks of selected areas, or neural network saliency maps) to 

histopathological images. This could improve our 

understanding of the link between ultrasound signal properties 

and local tissue structures associated with tumor response to 

NAC. The challenge, however, is to collect the database in a 

way that would allow for such mapping. Nevertheless, such a 

comprehensive analysis would further improve the accuracy of 

the assessment of response to NAC.  

We also believe that the application of the presented 

approach should not be limited to monitoring NAC treatment 

in breast cancer. It could be used to evaluate the results of 

chemotherapy in other cancer types that are accessible to 

ultrasound, e.g. liver cancer. It is also justified to consider 

other use-cases as long as the sought information is distributed 

heterogeneously over the area of interest. This may include, 

but is not limited to, classification of tumors as benign or 

malignant. 

V. CONCLUSIONS 

We observed improved classification efficiency when using 

data from selected tumor regions. Increased AUC values were 

obtained for a wide range of probability cutoffs. It supports 

our hypothesis that areas characterizing the effect of therapy 

particularly well can be found. Also, the results of correlation 

studies between probability images may suggest the existence 

of such areas. 

We believe that the proposed new approach to assessing the 

effects of NAC not only leads to a better classification of 

responses, but also may contribute to a better understanding of 

the microstructure of cancerous tumors seen with ultrasound. 

The number of patients in this study seems sufficient to 

demonstrate the importance of tumor site selection for the 

classification of NAC non-responsive tumors. In the future, 

the statistical power of these studies will be improved by a 

larger cohort of participating patients. A fully developed 

method will be able to predict the tumor response for NAC in 

more objective way. In the event of treatment failure, this will 

enable more effective therapy to be implemented at an earlier 

stage of treatment than is currently the case. The consequence 

will be an increase in the survival rate of cancer patients. 

APPENDIX 
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