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Abstract
This paper aims to analyse electrical conduction in partially sintered porous materials using an original resistor network
model within discrete element framework. The model is based on sintering geometry, where two particles are connected
via neck. Particle-to-particle conductance depends on neck size in sintered materials. Therefore, accurate evaluation of neck
size is essential to determine conductance. The neck size was determined using volume preservation criterion. Additionally,
grain boundary correction factor was introduced to compensate for any non-physical overlaps between particles, particularly
at higher densification. Furthermore, grain boundary resistance was added to account for the porosity within necks. For
numerical analysis, the DEM sample was generated using real particle size distribution, ensuring a heterogeneous and realistic
microstructure characterized by a maximum-to-minimum particle diameter ratio of 15. The DEM sample was subjected to hot
press simulation to obtain geometries with different porosity levels. These representative geometries were used to simulate
current flow and determine effective electrical conductivity as a function of porosity. The discrete element model (DEM) was
validated using experimentally measured electrical conductivities of porous NiAl samples manufactured using spark plasma
sintering (SPS). The numerical results were in close agreement with the experimental results, hence proving the accuracy
of the model. The model can be used for microscopic analysis and can also be coupled with sintering models to evaluate
effective properties during the sintering process.
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1 Introduction

Spark plasma sintering (SPS) is a powder consolidation
method which employs the flow of electric current through
graphite tools and powder (if conductive) to generate heat.
It is used to manufacture various materials from conductive
and non-conductive powders such as transparent ceramics,
thermal barrier coatings, thermoelectric and magnetic mate-
rials [1, 2], as well as different types of porous materials
[3]. Porous materials are usually characterized by effective
properties such as effective thermal or electrical conductivity.
Electrical properties are especially important for materi-
als manufactured for certain applications, such as electrical
contacts [4, 5], solid-state batteries, electrodes, capacitors,
magnetic and thermoelectricmaterials [6–8]. It is also impor-
tant to investigate effective electrical conductivity during
densification of conductive powders. The results can be use-
ful for process design and modelling [9, 10].

Effective electrical properties of porous materials man-
ufactured by SPS have been extensively researched, both
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theoretically and experimentally. Based on experimental
results, various analytical approximations of effective elec-
trical conductivity as a function of porosity are proposed
and assessed in literature, cf. [4, 11–13]. Because of the
thermal–electrical analogy, the relations derived for thermal
conductivity are sometimes used for electrical conductivity
[4] or combined together to study generalized transport prop-
erties [11].

Effective thermal and electrical conductivities of porous
materials can be evaluated using analytical models formu-
lated as an extension of micromechanical models originally
proposed for composite materials [14]. Similarly, Batchelor
and O’Brien [15] derived the effective thermal and electri-
cal conductivity of randomly arranged grains immersed in a
matrix, where porous materials can be considered a special
case. Many analytical models exploit a relationship between
tortuosity and conductivity [13, 16, 17]. Tortuosity, defined
as a ratio of effective flow path to straight-line distance in
the macroscopic flow direction, is one of the main parame-
ters characterizing porous material. Most of these analytical
models are based on simplified models or geometries. More
possibilities can be explored numerically. Effective conduc-
tivity can be determined using numerical homogenization
employing finite element method (FEM) [18–20], finite dif-
ference method (FDM) [21] or discrete element method, e.g.
[22–24]. The discrete element method (DEM) is an efficient
modellingmethod for sintered porousmaterials. DEMmodel
consisting of an assembly of particles accurately represents
actual microstructure composed of particles connected via
necks.

The DEM was first proposed for the dynamics of gran-
ular materials but later was successfully applied to thermal
and electrical problems. Schneider et al. [25, 26] modelled
electrodes of solid oxide fuel cells (SOFC) with monosized
sintered particles to calculate their effective conductivity. The
same model was used by Roussel et al. [27] who compared
the results of the DEM calculations with those performed
on the microstructure obtained from micro-CT. Renouf and
Fillot [28] investigated electrical characteristics of granular
material coupling electrical and mechanical effects in the
DEM. Bourbatache et al. [29] studied electrical transfer in
metallic granular materials under mechanical loading using
an original DEM model with several electrical potentials
inside a particle. Zohdi [30] developed aDEMmodel for elec-
trical current flow within the thermal-electrical–mechanical
coupled framework. Hubert et al. [31] proposed an original
method to simulate the electrical conduction in continuum
with the DEM. Birkholz et al. [18] studied the effective
electrical conductivity of granular materials using the DEM
model. Effective transport properties in granular lithium-ion
battery electrodes were studied by Becker et al. [32] using
the DEMwith ellipsoidal particles. The DEMwas employed

by Zhu et al. [33] and Zeng et al. [34] to investigate electrical
properties of a shearing powder layer.

The electrical models in all the mentioned works except
[29] constitute resistance networks with particle centres as
nodes of the electrical circuits. The governing equationswere
derived from first Kirchhoff’s law. The branches connecting
nodes represent the inherent resistance of particles and addi-
tional contact resistance in unbonded granular material or
grain boundary resistance in bonded granular material. In
sintered materials, particles are connected by the neck, and
the grain boundary resistance is determined by the neck size
and porosity in the necks. Therefore neck size evaluation is
important to study conduction between particles. Neck size
in DEM sintering models is commonly calculated according
to Coble’s sintering model [35]. It gives a good estimation
of neck size in the initial stages of sintering, but it is shown
to overestimate neck size for higher densification [36].

An original model of two-particle sintering geometry,
where the neck size was determined based on the volume
conservation principle, was proposed by Rojek et al. [36].
This geometry was used to obtain analytical relation between
thermal conductance and neck size. Considering the analogy
between thermal and electrical problems, themodel proposed
in [36] can also be used for electrical conduction of sintered
materials.

This work aims to model electrical conduction in partially
sintered porous materials using the DEMmodel presented in
[36]. The model was originally developed for heat conduc-
tion and was used to study effective thermal conductivity
in sintered porous materials [37]. The thermal model was
implemented for transient heat transfer analysis with the heat
conduction equations integrated in time using the explicit
forward Euler method. In the electrical problem, transient
response is very short, and it can be neglected in most cases.
Electrical current flow in a resistance network is considered a
steady-state problem, described by the system of linear alge-
braic equations. The system of linear algebraic equations in
the DEM algorithms for electrical problems is often solved
using iterative methods, cf. [28, 31, 34]. In this work, the
electrical problem will implemented in the framework for a
transient solution. It will be shown that the recursive formula
obtained in the forward Euler method is identical to that in a
general iterative scheme, the subsequent solutions are actual
approximations from the iterative scheme, and the conver-
gence criterion is equivalent to the stability criterion of the
time integration scheme.

The model is applied to simulate electric current flow in
partially sintered NiAl samples with different porosity lev-
els. DEM samples are obtained from sintering simulation
of NiAl, which is performed on the sample generated using
real particle size distribution. Hence the heterogeneity of the
samples is quite high with a maximum to minimum particle
size ratio of 15. TheDEMmodel employing constant volume
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Fig. 1 Temperature and pressure profiles for the whole sintering cycle
of sample 1 (as an example)

criterion for the calculation of neck size is further improved
by adding a correction factor to make up for the non-physical
overlaps. Moreover, additional resistance at the interface or
grain boundary is added to account for the porosity in the
necks. This makes the model applicable over a broad range
of densities. The electrical properties of NiAl with different
porosities are investigated experimentally, and the data are
used for model validation. The present study is also impor-
tant for process designing, as it can be used to determine
potential evolution during the sintering process, where the
sample is continuously undergoing densification.

2 Manufacturing of porous samples

DEMmodel for conductionwas validated using experimental
measurements on porous intermetallic NiAl samples manu-
factured using SPS. NiAl powder (Goodfellow, 99.9% pure)
was sintered using different processing parameters to obtain
cylindrical samples with varying porosity, as presented in
Table 1. Fig. 1 illustrates temperature and pressure profiles
for the sintering cycle of sample 1. SPS sintering process
begins with applying pressure, followed by heating. At first,
the sample is heated to 150 ◦C and held there for 2min to sta-
bilize the heating. Then, the sample is heated to 1100 ◦C at
a rate of 100K/min. After that, the heating rate is decreased
to 50K/min to prevent overheating. Once reaching the maxi-
mum sintering temperature of 1200 ◦C, the sample is held for
10min to allow enough time for sintering. Then the sample
is allowed to cool down to room temperature uncontrollably.
Finally, the pressure is released and the sample is retrieved.

Densityρ of these sampleswasmeasuredusingArchimedes
principle, and porosity was calculated as: 1− (ρ/ρ0), where
theoretical bulk density ρ0 = 5.90 g/cm3.Microscopic anal-
ysis of these samples was performed using SEM (Hitachi

Fig. 2 SEM images showing porosity in necks, sample with 0.164
porosity

S4100) to study sintering mechanism. Figure2 shows an
SEM image of the sample with 0.164 porosity, where con-
nections between particles in the form of necks can be seen.
During sintering, necks form between particles and grow due
to mass transport, resulting in pore reduction. Figure2 shows
fractured necks, where a significant amount of porosity can
be seen. This finding is particularly significant as the porosity
present in necks provides additional resistance, thus reducing
conductance.

The electrical resistance of these sintered samples was
measured using four-point probe method, which was then
converted to electrical conductivity κ . Conductivity with
respect to porosity is presented in Table 1.

3 Formulation of the discrete element
method

3.1 Governing equations for conduction

The discrete element method for electrical conduction con-
siders an assembly of contacting particles where the centres
represent circuit nodes connected via resistors, as shown in
Fig. 3. The formulation follows first Kirchhoff’s law, which
states that the sum of current entering and leaving a node is
zero, so for the i-th particle we have:

Ii =
nci∑

i=1

Ii j = 0, (1)

where Ii is the resultant current for the i-th particle, Ii j is
current through the branch connecting nodes i and j , and nci
is the number of particles in contact with the i-th particle. Ii
may also include an externally supplied source I exti ,

Ii =
nc∑

j=1

Ii j − I exti = 0. (2)
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Table 1 SPS sintering processing parameters and density

Heating rate (K/min) Sintering temperature (◦C) Pressure (MPa) Holding time (min) Porosity Electrical conductivity κ (S/m)

Sample 1 100 1200 5 10 0.216 4.33 × 105

Sample 2 100 1300 5 10 0.164 6.14 × 105

Sample 3 100 1100 30 10 0.106 7.44 × 105

Sample 4 100 1200 30 10 0.050 8.77 × 105

i

c

V jV

R

ijR

iR jR

Fig. 3 Resistance network model—circuit using centres as nodes con-
nected via resistor branches

The current between connected particles Ii j is given by the
Ohm’s law

Ii j = Vj − Vi
Ri j

= Ki j (Vj − Vi ), (3)

where Vi and Vj are particle voltages, and Ri j and Ki j are the
resistance and conductance between two nodes, respectively.

The first Kirchhoff’s law can be written in a global matrix
form (for all the nodes):

KV = I (4)

where vector V contains all the nodal voltages V =
{V1, V2, . . . , VN }T, N is the number of particles, vector I
contains either zeros or external currents
I = {0, 0, . . . , I exti , . . . , 0}T, and the global conductance
matrix K is assembled from the conductances of all the
branches in the network Ki j . If there are no external cur-
rents Eq. (4) takes the form:

KV = 0 (5)

The form of Eq. (4) is the same as that of FEM equation for
static equilibrium, and the conductance matrix K is analo-
gous to the stiffness matrix. Similar to the stiffness matrix for
non-restricted system, the conductance matrixK is singular,
and the system of equations (4) or (5) cannot be solved. To
solve these equations, it is necessary to prescribe voltage to
at least one node.

Let us assume that vectorVp contains the prescribed nodal
voltages andVu contains unprescribed (free) nodal voltages.
Accordingly, vector V can be decomposed as follows:

V =
{
Vu

Vp

}
(6)

Hence, Eq. (4) can be decomposed as follows:

[
Kuu Kup

KT
up Kpp

] {
Vu

Vp

}
=

{
Iu
Ip

}
(7)

Remark: voltage and current cannot be prescribes simultane-
ously to the same node. The unknown nodal voltages can be
determined by solving the following equation:

KuuVu = Ires (8)

where

Ires = Iu − KupVp. (9)

3.2 Solution algorithm

Equation (8) can be solved using any method of solving a
systemof linear equations.Weadopt here an iterative solution
derived as follows using the framework of the explicit time
integration of the transient state analysis. For algorithmic
reasons, let us introduce an additional term to Eq. (8)

CuuV̇u + KuuVu = Ires (10)

Analogously to the heat capacitance the capacitance matrix
Cuu it will be taken in the diagonal form with particle capac-
itance assumed as

Ci = mici , (11)

where mi—particle mass, ci—specific capacity used for
numerical purposes. To integrate the system of the first-order
ODE given by Eq. (10), we use the forward Euler explicit
scheme:

Cuu
Vi+1
u − Vi

u

�t
= Ires − KuuVi

u (12)
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The solution for time tn+1 can be obtained as follows:

Vi+1
u =

(
I − �tC−1

uu Kuu

)
Vi
u + �tC−1

uu Ires (13)

where I is the identity matrix. The form of Eq. (13) is iden-
tical to the general form of equation used for the iterative
solution of the linear equations cf. [38]. The diagonal matrix
Cuu ensures efficiency of the solution for a single iteration
since its inverse is trivial. Starting from a certain initial vector
of nodal voltagesV0

u the iterative procedure gives a sequence
of vectors Vi

u converging to the solution Vu of Eq. (8). The
convergence is monitored using the convergence indicator
gi+1
max defined as maximum relative change of voltage at iter-

ation i + 1 taken over all particles n (1 ≤ n ≤ N ):

gi+1
max = max

1≤n≤N

∣∣∣∣
V i+1
n − V i

n

V i+1
n

∣∣∣∣ (14)

gi+1
max The convergence is assumed when the convergence

indicator is below a certain tolerance β:

gi+1
max ≤ β (15)

Back substitution of evaluated voltages Vu into the second
block equation (7) yields currents for the imposed potentials
Ip:

Ip = KT
upVu + KppVp (16)

It is shown in the Appendix that the convergence criterion
of the iterative procedure defined by Eq. (13) is identical to
the stability criterion of the forward Euler scheme.

3.3 Equivalent conductance

In the resistance network model (Fig. 3), effective resistance
Ri j of the branch connecting two nodes is the sum of all
resistors in series, such that

Ri j = Ri + R j + Rc, (17)

where resistors Ri and R j represents resistance of particles i
and j , while Rc is the contact resistance. Conductance K is
the inverse of resistance R. Therefore, Eq. (17) can bewritten
as:

Ki j = Ki K j Kc

Ki K j + K j Kc + Ki Kc
. (18)

Electrical conductance of a hemisphere Ki or K j can be
evaluated using the same geometry and model developed for
the thermal problem in [36]. The equivalent conductance Ki

is normalized by the conductance Ki
cyl of the cylinder of

� h 
 a

ri

rj

g
b

Fig. 4 Two particles of different sizes connected by the neck

radius and height ri , enclosing the hemisphere, and a lin-
ear relation between neck size a and conductance Ki was
obtained:

Ki

K i
cyl

= 1.08
a

ri
, (19)

where

Ki
cyl = λ

πr2i
ri

= λπri , (20)

where thermal conductivity λ can be replaced with electrical
conductivity κ .

For neck size a calculation, generally Coble’s sintering
model [35] is used e.g. [39–42]:

a = √
2r∗h, (21)

where r∗ = 2rir j/(ri +r j ) is the effective radius, and h is the
overlap.However, it is shown in [36] thatCoble’smodel over-
estimates neck size, especially for increasingly large overlaps
at higher densification.

Therefore, in this work, we will use a more appropriate
two-particle sintering geometry proposed in [36], as shown in
Fig. 4. It is assumed that the volumeof overlap is redistributed
to the cylindrical neck, and the neck radius is calculated based
on volume conservation criterion.

3.4 Correction of neck size for higher density

For the validation of the DEM electrical model, we gener-
ated geometries with different porosity levels using sintering
simulation with the model formulated in [43]. This model
considers the interaction between two interacting particles,
but it neglects the possible interaction with other particles in
contact. This may lead to non-physical neck overlaps when
particles havemultiple contacts. These non-physical overlaps
can be tracked using
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grain boundary fraction [44], which is defined for each
particle as the ratio of the sum of necks and particle surfaces:

f gb fi =
∑nc

j=1 S
neck
i j

Si
, (22)

The grain boundary fraction cannot be greater than 1

f gb fi ≤ 1. (23)

If the condition in Eq. (23) is not fulfilled, all the necks of the
i-th particle are reduced using a scaling factor αi

acorri j = αi ai j . (24)

By substituting (24) into (22) from inequality (23) we obtain

αi ≤ 2ri√∑nc
j=1(ai j )

2
. (25)

3.5 Conductance of the neck

SEM analysis of fractured surface (Sec. 2) revealed a signifi-
cant amount of porosity in the necks, as shown inFig. 2.These
pores provide additional resistance at the grain boundary
within necks. This additional resistance must be considered
in the model. For this, we approximately assume a layer of
grain boundary thickness δgb based on microscopic analysis
of grain boundaries of sintered samples (Fig. 5). In this layer,
bulk conductivity κ is reduced by a conductivity reduction
factor ε (0 < ε < 1), such that κgb = εκ . The conductance
Kc of cylindrical neck with radius a and height δgb (Fig. 4)
can be calculated as follows:

Kc = εκπa2

δgb
. (26)

Grain boundary thickness δgb and conductivity reduction
factor ε are considered to be fitting parameters in model cal-
ibration.

4 Results

The presented DEM model is used to simulate conduction
in cylindrical samples representing partially sintered NiAl
material with different porosity levels. The DEM samples
were obtained by thermo-mechanical simulation of pressure
assisted sintering also known as hot pressing. The represen-
tative geometries with varying porosity levels were retrieved
from hot press simulation and were subjected to electrical
simulation using the model presented herein. The effective
conductivities were evaluated and compared to experimental

results. The electrical analysis consisted of two stages. First,
the model without additional grain boundary resistance was
used. In the second stage, the full model with grain bound-
ary resistance was employed. The fitting parameters, grain
boundary thickness and conductivity reduction factor were
calibrated on one of the samples, and then the model with
calibrated parameters was validated on the other three sam-
ples. Both calibration and validation procedures were based
on comparison of numerical effective electrical conductivity
with experimental measurements presented in Sec. 2.

4.1 DEM sample generation and characterization

The DEM model of over 17,000 particles was generated for
hot pressing simulation using real particle size distribution
with a diameter ranging from 1.5 to 20µm. Loose particles,
randomly distributed in space and confined in a cylinder,
were allowed to fall under gravitational force while cylin-
drical walls contracted resulting in an initial or tap density
of 65%. The cylindrical DEM sample had a diameter and
height of 123.6µm and 202µm, respectively. Then, the DEM
sample was used to simulate hot pressing using the thermo-
viscoelasticmodel presented in [43]. Thematerial parameters
essential for sintering simulation (i.e. dihedral angle, surface
energy, theoretical density, coefficient of thermal expansion,
enthalpy for diffusion, etc) were the same as presented in
[43]. The sintering simulation was paused at various inter-
vals to obtain representative DEM samples with porosities
similar to experimentally manufactured NiAl samples.

The DEMmethod allows us to track the neck size growth.
This enables a more comprehensive understanding of current
flow since neck size, as discussed earlier, is a predominant
factor affecting conduction in sintered materials. Figure6
shows neck size distribution in DEM samples with different
porosities, where neck size is normalized by the minimum
radius of the two contacting particles:

rmin = min(ri , r j ) (27)

The right shift observed in the histograms of neck size distri-
butionwith decreasing porosity indicates neck growth during
sintering. The observationswere consistentwith the sintering
theory and the real process.

4.2 Conduction simulation

Electrical conduction in partially sintered samples was sim-
ulated using the theoretical density ρ0 of 5910 kgm−3 and
electrical conductivity κe of 9.8× 105 Sm−1, while the spe-
cific capacity c of 2 ×106 F kg−1 was used as a numerical
parameter. Current flow in the axial direction was produced
by fixing 3.5 × 10−5 V at the top layer of particles and 0 V
at the bottom and assuming insulation at the cylindrical sur-
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Fig. 5 SEM image showing
grain boundaries in sintered
NiAl sample with porosity 0.05
a multiple grain boundaries
visible, b zoomed image of one
boundary with a measured
thickness of 0.36µm
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Fig. 6 Neck size distribution w.r.t porosity

face. The convergence tolerance β as described in Eq. (15)
was set to be 0.0002. The evolution of electrical potential and
its convergence is presented in Fig. 7 for one of the samples
with porosity 0.164. Figure7a shows the convergence indi-
cator as a function of number of iterations. Figure7b shows
the increase in potential in different particles at different
heights in the samples. The solution reached convergence
tolerance limit after 40 iterations with a time-step of 5µs,
which was calculated using Eq. (43). The final solution is
shown in Fig. 7c. It is characterized by linear variation of the
potential along the sample height.

4.3 Effective conductivity

The solutions for all fourDEMsampleswith different porosi-
ties were used to calculate effective electrical conductivity
κeff employing Ohm’s law on the cylindrical geometry:

κeff = − I L

�V A
, (28)

where I is the total current through the cross-sectional area
A of the sample, �V is the potential difference between the

top and bottom of the sample with height L . The total current
I was calculated by summing currents from particles with
prescribed potential at the top or bottom of the sample

Itop =
ntop∑

i=1

Ii , (29)

Ibottom =
nbottom∑

i=1

Ii , (30)

where ntop and nbottom are number of particles with pre-
scribed voltage at the top and bottom of the sample, respec-
tively. The total current through the top, bottom, and all other
cross sections are equal.

I = Itop = Ibottom. (31)

The numerical results from the DEM model without
grain boundary resistance are shown in Fig. 8. The numer-
ical results are compared with experimental results. A clear
trend can be observed, suggesting an inverse relation between
porosity and conductivity. Numerical results without grain
boundary resistance, though close, still shownoticeable devi-
ation from the experimental results, hence demonstrating
the need to consider porosity at the grain boundary. Similar
observations were also presented in [20], where the effective
thermal conductivity was evaluated using FEM.

Additional grain boundary resistance was added to the
model, as given in Eq. (26). The equation includes two
parameters, grain boundary thickness δgb and conductivity
reduction factor ε, that require calibration. For calibration,
a parametric study was performed on the sample with a
porosity of 0.164. The range of grain boundary thickness
(0.1–0.3µm) in the parametric study overlapped the range
obtained frommicroscopic SEManalysis (0.15–0.4µm), pre-
sented in Fig. 5. In this parametric study, conductivity in the
grain boundary layer was reduced using conductivity reduc-
tion factor ε in the range of 0.1–0.5.
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Fig. 7 Solution for the sample with porosity of 0.164: a convergence
indicator, b converging solution at different heights across the sample,
c final potential distribution across the sample

Electrical conductivities obtained for different combina-
tions of δgb and ε are represented in form of a map in Fig. 9.
The lines confine experimental conductivity with error. Any
combination of δgb and ε can be used to obtain valid con-
ductivity results from the numerical model. However, for

Fig. 8 Effective conductivity without grain boundary resistance as a
function of porosity

Fig. 9 Map representing parametric study to calibrate grain boundary
thickness and conductivity reduction factor

further analysis, the values of ε and δgb were taken as 0.16
and 0.23µm, respectively.

These values of the parameters were used to validate
the model on the other three samples. The effective con-
ductivities with the additional grain boundary resistance
for all the samples are shown in Fig. 10. These numerical
results are compared with the experimental results. It can be
observed that numerical results with additional grain bound-
ary resistance are in close proximity to the experimental
measurements. This demonstrates the validity of the DEM
model over the given range of porosity.

5 Conclusions

AnoriginalDEMelectricalmodelwas formulated by exploit-
ing the analogy between thermal and electrical problems.
Heat conduction model based on thermal pipe network, pro-
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Fig. 10 Effective conductivity as a function of porosity with additional
grain boundary resistance

posed in [36], was used to develop resistor network model
for electrical problems. The model was implemented in the
framework for transient analysis. The set of linear algebraic
equations for the electrical problemwere solved iteratively. It
was shown that the expression obtained fromexplicit forward
Euler approach was identical to that obtained from iterative
method.

The model was validated using experimental measure-
ments on NiAl samples with varying porosity levels fabri-
cated using SPS. Experimental investigation demonstrated
the decrease in conductivity with increasing porosity. SEM
analysis of fractured surfaces revealed a significant amount
of porosity in the necks, even for higher densifications. These
findingswere used to enhance themodel by introducing grain
boundary resistance.

The validity of the DEM model was demonstrated on a
heterogeneous microstructure generated using real particle
size distribution. Microstructural analysis of DEM samples
indicated an increase in neck size with decreasing porosity,
which was consistent with the sintering theory and the real
process.

The electrical conductivity obtained by the DEM model
with particle resistance only was largely in agreement
with experimental measurements. However, a consistent dif-
ference persisted between the predicted and experimental
results. This underscored the importance of resistance pro-
vided by porosity in the necks, as shown in the SEM analysis.
After introducing additional resistance, numerical results
were in alignment with the experimental measurements,
hence suggesting the validity of the DEM model.

Appendix: Convergence of the iterative solu-
tion

Starting from a certain initial vector V0
u the iterative pro-

cedure defined by Eq. (12) produces a sequence of vectors
{Vi

u}i=0,1,2,.... The iterative procedure is convergent if for
any initial vector V0

u the sequence {Vi
u}i=0,1,2,... converges

to the exact solutionVu of Eq. (8). The exact solution should
also satisfy the following equation

Vu =
(
I − �tC−1

uu Kuu

)
Vu + �tC−1

uu Ires (32)

Subtracting Eq. (32) from Eq. (12) we obtain the recurrence
formula

Vi+1
u − Vu =

(
I − �tC−1

uu Kuu

) (
Vi
u − Vu

)
(33)

By repeating this step, we obtain:

Vi+1
u − Vu =

(
I − �tC−1

uu Kuu

)i (
V0
u − Vu

)
(34)

The convergence theorem, cf. [45], states that if for some
subordinate matrix norm ‖·‖
∥∥∥I − �tC−1

uu Kuu

∥∥∥ < 1, (35)

the iterative procedure defined by Eq. (33) is convergent, that
is:

lim
i→∞

∥∥∥Vi
u − Vu

∥∥∥ = 0 (36)

for any initial vector V0
u.

Determination of the convergence will be illustrated for a
simple system of two particles i and j with the interparticle
conductance Ki j . Equation (5) for these particles takes the
form:

[
Ki j −Ki j

−Ki j Ki j

]{
Vi
Vj

}
=

{
0
0

}
(37)

The system of linear equations is indefinite. Let us prescribe
a certain value of Vj . Then Eq. (37 is reduced to

Ki j Vi = Ki j Vj (38)

which corresponds to Eq. (8). By adding the term with the
interparticle capacitanceCi j , we obtain equation correspond-
ing to Eq. (10)

Ci j V̇i + Ki j Vi = Ki j Vj (39)
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The iterative solution for Vi can be obtained as follows:

V k+1
i =

(
1 − �t

Ci j
Ki j

)
V k
i + �t

Ci j
Ki j Vj (40)

Taking the absolute value as the norm in one-dimensional
vector space, the convergence criterion for (40) is given by

∣∣∣∣1 − �t

Ci j
Ki j

∣∣∣∣ < 1, (41)

which yields the condition

�t

Ci j
Ki j < 2. (42)

Inequality (42) specifies permissible �t for given values of
Ci j and Ki j to have convergent solution.

�t <
2Ci j

Ki j
. (43)

Condition (43) is identical to the stability criterion for the
forward Euler integration scheme of Eq. (39)
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