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Abstract: Sialodacryoadenitis virus (SDAV) has been identified as the etiological agent responsible
for the respiratory system and salivary gland infections in rats. The existing literature on SDAV
infections is insufficient to address the topic adequately, particularly in relation to the central nervous
system. In order to ascertain how SDAV gains access to neuronal cells and subsequently exits, our
attention was focused on the small molecule valosin-containing protein (VCP), which is an ATPase.
VCP is acknowledged for its function in the ubiquitin-mediated proteasomal degradation of proteins,
including those of viral origin. To ascertain the potential influence of VCP on SDAV replication
and egress, high-content screening was employed to determine the viral titer and protein content.
Western blot analysis was employed to ascertain the relative expression of VCP. Real-time imaging of
SDAV-infected cells and confocal imaging for qualitative morphological analysis were conducted.
The Eeyarestatin I (EerI) inhibitor was employed to disrupt VCP involvement in the endoplasmic
reticulum-associated protein degradation pathway (ERAD) in both pre- and post-incubation systems,
with concentrations of 5 µM/mL and 25 µM/mL, respectively. We demonstrated for the first time
that SDAV productively replicates in cultured primary neurons. VCP expression is markedly elevated
during SDAV infection. The application of 5 µM/mL EerI in the post-treatment system yielded a
statistically significant inhibition of the SDAV yield. It is likely that this modulates the efficacy of
virion assembly by arresting viral proteins in the submembrane area.

Keywords: SDAV; VCP; primary neurons; virion assembly; ERAD; eeyarestatin I

1. Introduction

Rodents are the most diverse and most abundant order of mammals in the world;
they account for about 43% of mammalian species. Belonging to rodents, rats mainly
inhabit urban areas, which is associated with their frequent interaction with humans. These
animals are reservoirs of viruses, including coronaviruses, and thus pose a potential threat
of zoonotic transmission. To date, two human-infecting coronaviruses, HCoV-HKU1 and
HCoV-OC43, have been reported that are likely derived from rodent coronaviruses [1,2].
Following the One Health approach, viruses that cause rat infections should be studied
more to better understand the nature of coronaviruses that are potentially dangerous
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to humans [3,4]. Sialodacryoadenitis virus (SDAV) is the aetiological agent of frequent
respiratory infections in laboratory rats [5–7]. Clinical signs of infection include salivary and
lacrimal gland inflammation and pharyngitis, photophobia, intermandibular edema, and,
in some cases, reduced fertility. SDAV is antigenically related to the mouse hepatitis virus
(MHV) serogroup [8] and can cause CNS infection and encephalopathies (documented only
by in vivo studies) [9,10].

The viral replication cycle is a complex process in which the interactions of pathogen
structures with host cell components are crucial. Identifying the proteins and other
molecules present in cells that are important during viral entry, multiplication, and release
are critical regarding potential zoonotic transfer. One protein that has been extensively
studied in the context of viral infections due to its ubiquitous presence in cells and involve-
ment in many cellular processes is valosin-containing protein (VCP). VCP belongs to the
family of ATPases associated with diverse cellular activities (AAA+). It is expressed in
different cells and is a highly conserved protein in all eukaryotes. It also occurs under other
names—p97 in mammals, Cdc48 in yeast, CDC-48 in Caenorhabditis elegans, and Ter94 in
Drosophila melanogaster [11–13]. It is mainly localized in the cytosol but is also present on
the membranes of organelles such as endosomes, cell nucleus, endoplasmic reticulum, and
Golgi apparatus [14]. VCP participates in numerous cellular processes, and the full range of
VCP-related functions is still emerging [11]. VCP’s segregase activity and role in targeting
proteins for degradation are best characterized. Both processes make essential contributions
to maintaining cellular homeostasis. Eliminating abnormal proteins, organelles, and granu-
lar compartments is crucial for the proper function of neurons [15–18]. VCP also participates
in endoplasmic reticulum-associated degradation (ERAD) [19], ribosome-associated protein
quality control (RQC) [20], and mitochondria-associated degradation (MAD) [21]. The VCP
is a promising target for clinical research in cancer treatment [22,23]. Although further
research is necessary, recent reports indicate that the VCP inhibitor Eeyarestatin I (EerI)
has shown promising results in the treatment of multiple myeloma and acute myeloid
leukemia. In particular, the EerI-derived compound CB-5083 has demonstrated favourable
synergistic effects when combined with other anti-leukemia drugs, including cytarabine
and venetoclax [24]. This targeted therapy may be primarily based on the induction of
apoptosis in tumour cells and the unfolded protein replication (UPR) pathway [22,25]. An-
other compound, VP20, has been demonstrated to inhibit tumour progression by inhibiting
the NF-κB signalling pathway in the context of malignant multiple myeloma [26]. Another
finding proved that targeting VCP with EerI in non-small cell lung carcinoma (NSCLC)
restored p53 and NFB levels and ameliorated the growth and tumorigenicity, improving
clinical outcomes [27]. In the case of experimental treatment of idiopathic epilepsy, VCP
inhibition by EerI without stress induction, together with folding enhancement, represents
a new strategy to restore the proteostasis of misfolding-prone GABAA receptors [28].

Considering the numerous functions performed in the cell and the widespread occur-
rence of VCP, the involvement of this protein during viral infections has begun to be studied.
VCP has been shown to be utilized by various families of viruses, both with genomes in
the form of RNA and DNA, during entry, replication, and exit from cells [29–32]. The
protein likely mediates endosomal vesicle fusion through interactions with early endosome
antigen 1 (EEA1), clathrin, and syntaxin 5 [33–35]. It is also possible that VCP controls
the multimerization state of viral proteins during entry into the host cell [29,36]. The way
viruses likely utilize VCP during the initial stages of infection has been best described in
the family Flaviridae, whose cell entry is mediated by clathrin- and dynamin-dependent en-
docytosis [37–40]. VCP was also shown to be involved in the release of gammacoronavirus
Infectious Bronchitis virus (IBV) and Human alphacoronavirus 229E (HCoV-229E) from en-
dosomes [41]. The application of VCP-specific siRNA resulted in the accumulation of these
viruses in the early endosomes of infected cells. This suggests the involvement of VCP in
the acidification of the environment for envelope–membrane fusion and in the reprocessing
and degradation of the nucleocapsid protein, which may indicate an important role for
VCP in the infection of all coronaviruses [29,42]. Another process in which VCP is involved
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is the viral replication in cells. A disrupted replication process due to VCP inhibition has
been observed in the case of infection with viruses of the Togaviridae family, including
Chikunguya virus (CHIKV), Semliki Forest virus (SFV), and o’nyong’nyong virus (ONNV),
or in case of flavivirus, Zika virus [40,43]. Studies indicate that VCP inhibition at different
time points during infection with the human coronaviruses HCoV-229E and HCoV-OC43
resulted in reduced levels of RNA replication. In addition, these coronaviruses were found
to affect proteins involved in the cell cycle through VCP [44]. Reduced replication levels
were also observed when SARS-CoV-2-infected cells were treated with a VCP inhibitor [45].
The impact of VCP function in the late stage of infection during viral release was studied
using the Rift Valley Fever virus (RVFV). RVFV has been found to utilize VCP, probably
when moving viral glycoproteins into the Golgi apparatus and releasing virions from
cells [46].

As mentioned above, VCP plays a role in the viral infection cycle at various stages,
including receptor binding and entry, replication, and viral egress. This is primarily through
its enzymatic activity. In addition, viruses can use VCP to exploit innate and adaptive
immune responses, leading to chronic infections and virus-induced diseases [29]. The
ubiquitous presence of VCP in cells, coupled with its involvement in the replication cycle
of viruses from several families, including Coronaviridae, suggests that VCP may also
be a critical factor during SDAV infection. It is essential to understand the molecular
mechanisms underlying the potential proviral role of VCP, including the proteins that
interact with SDAV, in order to develop effective therapies that target functions that inhibit
the proviral action of VCP. The precise role of VCP during SDAV replication in cells,
particularly in neurons, remains to be fully elucidated. In the research presented here, we
have taken on this task.

2. Results
2.1. SDAV Cytopathic Effect in Cultured Neurons

An analysis of primary neuronal cultures of BALB/c mice showed that SDAV infection
causes focal and diffuse cytopathic effects in the neurons, during which the cell shape
changes and vacuolization and lysis occur, resulting in the formation of plaques. This
gradual process is shown in Figure 1. What is worth mentioning is that the initial cytopathic
effect (CPE) in primary neurons started to occur at 276 h post-infection (h p.i.) (Figure 1A,
red arrow) by syncytium formation. After 454 h p.i. it was possible to distinguish two
growing plaques, but the cell culture confluence was still 82% (97,66% before infection,
Figure 1B). The progressive changes started to appear after 577 h p.i. when more plaques
were formed (Figure 1A, red arrow), and cells’ confluence decreased to 78,5% (Figure 1B).
Within a few hours, there was visible cell degradation along with extensive plaque forma-
tion. These events resulted in decreasing cell confluence to 23,9% after 628 h p.i. (Figure 1B).
It was notable that some neurons survived the infection (Figure 1A, orange arrow). Their
activity was sustained until the end of the assay three days later.

The Determination of fluorescent focus units (FFU) in cultured primary neurons
was performed using Array Scan XTI (ThermoFisher™, Waltham, MA, USA). Figure 2B
shows images from individual wells of a 96-well plate where primary neurons infected
with 10-fold dilutions of SDAV (100–10−5) were cultured. SDAV titer was determined as
log10 FFU/mL = 2.193 ± 0.15 (Figure 2A).
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Figure 1. Real-time cell growth analysis of SDAV-infected primary murine neurons performed by 
live image movie analyzer JuLi™Br (NanoEnTek, Seoul, Republic of Korea). Cultures were observed 
for 672 h post-infection (h p.i.). Red arrows indicate the process of creating the cytopathic effect 
(CPE) in the form of plaques. The Orange arrow represents surviving neurons (A). The generated 
graph shows the percentage of cells’ confluence level [%] during the whole analysis [hours]. Images 
were taken every 10 min and analyzed for monolayer confluence (B). Objective magnification ×40. 

Figure 1. Real-time cell growth analysis of SDAV-infected primary murine neurons performed by
live image movie analyzer JuLi™Br (NanoEnTek, Seoul, Republic of Korea). Cultures were observed
for 672 h post-infection (h p.i.). Red arrows indicate the process of creating the cytopathic effect (CPE)
in the form of plaques. The Orange arrow represents surviving neurons (A). The generated graph
shows the percentage of cells’ confluence level [%] during the whole analysis [hours]. Images were
taken every 10 min and analyzed for monolayer confluence (B). Objective magnification ×40.
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Figure 2. Virus titer is defined as log10 FFU/mL in neurons infected with 10-fold dilutions of SDAV 
stock solution (A). Representative images of individual wells of a 96-well plate seeded with primary 
neuron cells infected with 10-fold dilutions of SDAV. SDAV nucleocapsid protein (green), cell nuclei 
(blue) (B). Array Scan XTI (ThermoFisher™, Waltham, MA, USA), ×5 magnification. 

2.2. Evaluation of SDAV Replication in Primary Murine Neurons 
The visualization of SDAV nucleocapsid proteins and cellular structures in primary 

neuron cells made it possible to assess viral replication using high-content image analysis. 
An analysis of the images showed the presence of signals corresponding to the 
nucleocapsid protein inside infected cells (Figure 3A). No signal specific to the 
nucleocapsid protein was observed in control cultures. In images showing 0 h p.i., 0.5 h 
p.i., 2 h p.i., and 4 h p.i. cells, a similar intensity of green signal was observed. Images 
taken of 1 h p.i. and 18 h p.i. neurons showed higher levels of green fluorescence compared 
to the aforementioned post-infection times. The highest increase was observed in images 
showing 24 h p.i. cells (Figure 3A). A quantitative analysis was performed on an average 
of 400 cells per field of view. When comparing the mean fluorescence intensity 
corresponding to the SDAV nucleocapsid protein at different times after infection (0–24 h 
p.i.) to that of the negative control, a highly statistically significant increase in fluorescent 
intensity was detected at all tested times (Figure 3B, blue asterisk). The smallest increase 
was observed at 0 and 0.5 h p.i., while the largest increase was seen at 24 h p.i. Comparison 
to 0 h p.i. showed a statistically significant increase only at 18, 24 h p.i. (Figure 3B, black 
asterisks) 

Analyzing the morphology of SDAV-infected neurons, virus antigens can be seen in 
the area of the cell’s membrane and moving inside neurites after 24 h p.i. (Figure 4C(a)), 
white arrows). Furthermore, it is visible that the signal corresponding to the VCP antigen 
is in close affinity with the virus antigen (Figure 4C(b), yellow arrow, and white arrows). 

Figure 2. Virus titer is defined as log10 FFU/mL in neurons infected with 10-fold dilutions of SDAV
stock solution (A). Representative images of individual wells of a 96-well plate seeded with primary
neuron cells infected with 10-fold dilutions of SDAV. SDAV nucleocapsid protein (green), cell nuclei
(blue) (B). Array Scan XTI (ThermoFisher™, Waltham, MA, USA), ×5 magnification.

2.2. Evaluation of SDAV Replication in Primary Murine Neurons

The visualization of SDAV nucleocapsid proteins and cellular structures in primary
neuron cells made it possible to assess viral replication using high-content image analysis.
An analysis of the images showed the presence of signals corresponding to the nucleocapsid
protein inside infected cells (Figure 3A). No signal specific to the nucleocapsid protein was
observed in control cultures. In images showing 0 h p.i., 0.5 h p.i., 2 h p.i., and 4 h p.i.
cells, a similar intensity of green signal was observed. Images taken of 1 h p.i. and 18 h p.i.
neurons showed higher levels of green fluorescence compared to the aforementioned
post-infection times. The highest increase was observed in images showing 24 h p.i. cells
(Figure 3A). A quantitative analysis was performed on an average of 400 cells per field
of view. When comparing the mean fluorescence intensity corresponding to the SDAV
nucleocapsid protein at different times after infection (0–24 h p.i.) to that of the negative
control, a highly statistically significant increase in fluorescent intensity was detected at
all tested times (Figure 3B, blue asterisk). The smallest increase was observed at 0 and
0.5 h p.i., while the largest increase was seen at 24 h p.i. Comparison to 0 h p.i. showed a
statistically significant increase only at 18, 24 h p.i. (Figure 3B, black asterisks).

Analyzing the morphology of SDAV-infected neurons, virus antigens can be seen in
the area of the cell’s membrane and moving inside neurites after 24 h p.i. (Figure 4C(a)),
white arrows). Furthermore, it is visible that the signal corresponding to the VCP antigen
is in close affinity with the virus antigen (Figure 4C(b), yellow arrow, and white arrows).
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Figure 3. Representative images for each time point after SDAV infection (0–24 h). Cell nuclei (blue), 
SDAV antigen (green). Magnification x10 (A). Mean fluorescence intensity corresponding to virus 
protein as a function of time after infection of primary neuron cells (B). Negative control—
uninfected cells. Data from three independent experiments are shown as mean ± SD. One-way 
ANOVA, * p < 0.05, *** p ≤ 0.001. Blue asterisk—comparison to uninfected control; black asterisk—
comparison to 0 h p.i. 

Figure 3. Representative images for each time point after SDAV infection (0–24 h). Cell nuclei (blue),
SDAV antigen (green). Magnification x10 (A). Mean fluorescence intensity corresponding to virus
protein as a function of time after infection of primary neuron cells (B). Negative control—uninfected
cells. Data from three independent experiments are shown as mean ± SD. One-way ANOVA,
* p < 0.05, *** p ≤ 0.001. Blue asterisk—comparison to uninfected control; black asterisk—comparison
to 0 h p.i.
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Figure 4. Representative confocal images of primary neurons morphology after infection with SDAV 
for 24 h (A). Merged image of SDAV antigen (green), VCP (blue), cell nuclei (yellow), cell membrane 
(magenta) (B). Closeup image of SDAV antigen moving inside cell protrusion (C(a)). Closeup of 
viral antigen in close affinity of cell nuclei and possible colocalization with VCP (whitish 
fluorescence) (C(b)). Magnification ×60, scale bar 20 µm. Olympus FV10i. 

  

Figure 4. Representative confocal images of primary neurons morphology after infection with SDAV
for 24 h (A). Merged image of SDAV antigen (green), VCP (blue), cell nuclei (yellow), cell membrane
(magenta) (B). Closeup image of SDAV antigen moving inside cell protrusion (C(a)). Closeup of viral
antigen in close affinity of cell nuclei and possible colocalization with VCP (whitish fluorescence)
(C(b)). Magnification ×60, scale bar 20 µm. Olympus FV10i.
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2.3. Levels of VCP in SDAV-Infected Neurons

Similarly, an HCS analysis of the mean fluorescence intensity signal of VCP antigen in
the control and cells infected from 0 to 24 h showed interesting results. In the time from 0
to 18 h p.i., there was no significant increase in antigen levels compared to the uninfected
control (Figure 5A,B). A rise in the mean intensity of the red fluorescence signal (VCP
antigen) was observed in images taken 24 h p.i. A highly significant increase was detected
in the quantitative analysis compared to the positive, uninfected control (Figure 5A). This
was also observed in qualitative observation as a bright fluorescence signal of VCP antigen
in the perinuclear area (Figure 4C, yellow arrows).
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Figure 5. Representative images for each time point after SDAV infection (0–24 h). Cell nuclei (blue),
VCP antigen (red). Magnification ×10 (A). Mean fluorescence intensity corresponding to VCP as a
function of time after SDAV infection of primary neuron cells (B). Negative control—uninfected cells.
Data from three independent experiments are shown as mean ± SD. One-way ANOVA, ** p ≤ 0.01.
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2.4. Evaluation of the Contribution of VCP to the SDAV Replication Cycle in Cultured
Primary Neurons

The potential involvement of VCP in the SDAV replication cycle was assessed by
visualizing infected cultures untreated (Figure 4B) or treated with EerI (Figures 6 and 7A,B)
and by quantitative analysis of the spot count/cell of the VCP and N protein antigens in EerI-
treated cultures compared to infected controls not treated with the inhibitor (Figure 8B,C).
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Figure 6. Representative confocal images of primary neurons morphology after infection with SDAV
for 24 h treated with 5 µM/mL EerI and control nontreated. Merged image of SDAV antigen (green),
VCP (orange), cell nuclei (blue), and cell membrane (magenta) (A,B; a–d are regions zoomed in and
shown as a’–d’). Closeup image of SDAV antigen in the perinuclear area possibly correlating with
VCP (whitish fluorescence) (B(a’,c’)). Closeup of viral antigen trapped in the submembrane region
along with VCP (B(b’,d’)). Magnification ×60, scale bar 20 µm. Operetta CLS (Revvity™, Waltham,
MA, USA).
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Figure 7. Representative images of neurons 24 h p.i. with SDAV. Cells were treated with 5 µM/mL
and 25 µM/mL EerI in pre-incubation and post-incubation methods. Positive control—infected cells,
untreated with EerI. Cytoplasm (magenta), VCP antigen (blue), SDAV nucleocapsid protein (green).
FV10i (Olympus), magnification ×40, scale bar 20µm (A,B). Representative Western blot image for
VCP followed by densitometric semi-quantification of relative VCP expression in infected neurons
(SDAV+), pre- or post-incubated with VCP EerI inhibitor (5 µM/mL or 25 µM/mL separately),
compared to non-infected control (SDAV−). Acquired in Image Lab™ Software v6.0.1 (Bio-Rad,
Hercules, CA, USA) (C). Data from three independent experiments are presented as mean ± SD (D).
Non-parametric, Friedman test, followed by post hoc group comparison test, * p < 0.05.

The SDAV antigen is located in the outer cell membrane region after incubation with
5 µM/mL EerI (Figure 6B(b’,d’); white arrows). Nevertheless, in non-treated cells, the virus
antigen is detected moving in cell protrusions (Figure 4C(a), white arrows). Interestingly,
there is a noticeable, possible colocalization of VCP with SDAV antigens seen as bright
magenta fluorescence (Figure 6B(c’,d’), yellow and white arrows).

The analysis of morphological alterations in cells revealed no abnormalities after
administering 5 µM/mL and 25 µM/mL EerI for 24 h p.i. However, notable alterations in
the intensity of the viral antigen and VCP fluorescence signals were observed following the
treatment with both inhibitor concentrations, particularly in the post-incubation method.
The fewest changes were observed in cultures that had been pre-incubated with 25 µM/mL
EerI. In these cultures, the intensity of the fluorescence of the viral antigen and VCP
was found to be similar to that observed in the control cells that had not been treated
(Figure 7A,B). Western blot analysis demonstrated a statistically significant (p < 0.05)
increase in VCP expression 24 h p.i. (12 ± 1.1) in comparison to the uninfected control cells
(9 ± 0.98) (Figure 7C,D). Following incubation with EerI, a statistically significant (p < 0.05)
decrease in VCP expression was observed in both incubation methods when compared to
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the positive infected control. Pre-incubation with 5 µM/mL (10 ± 1.1 vs. 12 ± 1.1), 25 µM
(9 ± 0.95 vs. 12 ± 1.1), and post-incubation with 5 µM/mL (8.7 ± 0.4 vs. 12 ± 1.1), 25 µM
(5 ± 1.0 vs. 12 ± 1.1) indicated a statistically significant (p < 0.05) drop in VCP expression.
A decrease in VCP expression in comparison to the uninfected control was only observed
for the post-incubation method at the 25 µM/mL concentration level (9 ± 0.98 vs. 5 ± 0.90).
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Figure 8. High-content imaging screening spot detection analysis of SDAV nucleocapsid and VCP
antigen 24 h p.i in neurons. Representative images for infected untreated cells (positive control) and
cells treated with EerI inhibitor at concentrations of 5 µM/mL and 25 µM/mL in the pre-incubation
and post-incubation system. Cell nuclei (blue), viral antigen (green), VCP (red signal). Operetta®

CLS™ (Revivity™, Waltham, MA, USA), ×40 magnification (A). Quantitative analysis corresponding
to the nucleocapsid protein of SDAV (B) and VCP (C) depending on the incubation method and
inhibitor concentration using Harmony™ 4.9 software (Revvity™, Waltham, MA, USA) spot detecting
protocol. Negative control—non-infected cells, positive control—infected, untreated cells. Data from
three independent experiments are presented as mean ± SD. Two-way ANOVA, ** p ≤ 0.01 (to
positive control) or *** p ≤ 0.001 (to negative control).
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The visualization of infected cultures treated with EerI along with quantitative analysis
was performed using Operetta® CLS™ and Harmony™ (Revvity™, Waltham, MA, USA)
(Figure 8A–C). A quantitative analysis was performed for approximately 400 cells present
in the field of view. The spot count of AlexaFluor™ 488 (N protein) and AlexaFluor™
647 (VCP) signals in EerI-treated cultures was compared to the infected, non-EerI-treated
neurons (positive control) after 24 h p.i. Changes in spot count number per cell correspond-
ing to the nucleocapsid protein were detected for both incubation methods (5 µM/mL or
25 µM/mL) compared to positive control (153.87 ± 26.7) (Figure 8B). A highly statistically
significant (** p ≤ 0.01) decrease in the spot count of N protein occurred in pre-incubated
25 µM/mL (69.07 ± 12.5) and post-incubated 5 µM/mL (63.17 ± 11.5) EerI-treated neurons
(Figure 8B).

Interestingly the spot number of VCP increased extremely statistically significantly
(*** p ≤ 0.001) after SDAV infection (29.96 ± 9.35) compared to the uninfected, untreated
control (9.52 ± 6.1) (Figure 8C). After treatment with EerI, a highly significant statistical
decrease (** p ≤ 0.01) in the spot count of VCP was observed only in the post-incubation
method with 5 µM/mL EerI (14.61 ± 4.19). The decreasing trend of the VCP number
was observed after SDAV infection compared to the positive control. The VCP number
increased in all conditions when compared to the negative control (Figure 8C).

The changes in SDAV titer following treatment with EerI were evaluated using high-
content analysis (HCA), with the results expressed as log10 FFU/mL. To evaluate the
efficacy of the employed treatment, the SDAV was initially titrated with the EerI inhibitor
at concentrations of 5 µM/mL and 25 µM/mL in a post-incubation system (chosen based
on previous promising results) for 24 h p.i. (Figure 9A(c)). Subsequently, prior to analysis,
the cell media was collected and utilized for a second titer analysis to ascertain whether
EerI influenced SDAV egress from neurons (Figure 9A(d)).
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Figure 9. High-content analysis for SDAV nucleocapsid antigen after post-incubation with EerI at
concentrations of 5 µM/mL and 25 µM/mL (HCS™ studio software v2.0 spot detector protocols,
ThermoFisher®). Schematic representation of the procedure (A; c,d represent analysis steps with
respective results shown in c’,d’). Mean fluorescent signal intensity of spots detected for virus antigen
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in the function of 10-fold dilutions of SDAV stock solution (B(c’)). Mean fluorescent signal intensity of
spots detected for virus antigen in the function of 10-fold dilutions of previously infected cell media
to test the hindering effect of the EerI inhibitor on the release of SDAV progeny virions (B(d’)). Data
from three independent experiments are presented as mean ± SD. Two-way ANOVA, ** p ≤ 0.01,
*** p ≤ 0.001.

A highly statistically significant (** p ≤ 0.01) decrease in log10 FFU/mL occurred in a
concentration of 5 µM/mL EerI by 0.278 logarithms in dilution 100 and 0.270 logarithms in
dilution 10−3 compared to the non-treated virus (dilution 100: 5.39 ± 0.81 non-treated vs.
5.03 ± 0.29 5 µM/mL treated and 10−3: 2.19 ± 0.51 non-treated vs. 1.90 ± 0.51 5 µM/mL
treated) (Figure 9B(c’)). Interestingly, an extremely significant decrease (*** p ≤ 0.001) in
log10 FFU/mL appeared in the second round of viral tittering with collected cell media
(Figure 9B(d’)). Again, the best results were obtained after incubation with 5 µM/mL EerI,
where a 0.840 logarithms drop in dilution 10−3 was observed (1.96 ± 0.53 non-treated vs.
1.12 ± 0.41 5 µM/mL treated).

To assess the morphology of cells and the potential manifestation of CPE following
SDAV infection, a post-incubation method utilizing EerI at a concentration of 5 µM/mL
was performed. This employed additional real-time growth analysis over a 672 h interval
(Figure 10). During the course of the infection, the formation of small plaques was observed,
though they did not evolve into larger plaques (Figure 10A, red arrows). The level of cell
confluence remained above 94% throughout the entire recording span, indicating that EerI
had a limiting effect on the egress of SDAV progeny virions (Figure 10B).

Int. J. Mol. Sci. 2024, 25, 11633 13 of 23 
 

 

A highly statistically significant (** p ≤ 0.01) decrease in log10 FFU/mL occurred in a 
concentration of 5 µM/mL EerI by 0.278 logarithms in dilution 100 and 0.270 logarithms in 
dilution 10−3 compared to the non-treated virus (dilution 100: 5.39 ± 0.81 non-treated vs. 
5.03 ± 0.29 5 µM/mL treated and 10−3: 2.19 ± 0.51 non-treated vs. 1.90 ± 0.51 5 µM/mL 
treated) (Figure 9B(c’)). Interestingly, an extremely significant decrease (*** p ≤ 0.001) in 
log10 FFU/mL appeared in the second round of viral tittering with collected cell media 
(Figure 9B(d’)). Again, the best results were obtained after incubation with 5 µM/mL EerI, 
where a 0.840 logarithms drop in dilution 10−3 was observed (1.96 ± 0.53 non-treated vs. 
1.12 ± 0.41 5 µM/mL treated). 

To assess the morphology of cells and the potential manifestation of CPE following 
SDAV infection, a post-incubation method utilizing EerI at a concentration of 5 µM/mL 
was performed. This employed additional real-time growth analysis over a 672 h interval 
(Figure 10). During the course of the infection, the formation of small plaques was 
observed, though they did not evolve into larger plaques (Figure 10A, red arrows). The 
level of cell confluence remained above 94% throughout the entire recording span, 
indicating that EerI had a limiting effect on the egress of SDAV progeny virions (Figure 
10B). 

 
Figure 10. Real-time cell growth analysis of SDAV-infected primary murine neurons post-incubated 
with EerI at a concentration of 5 µM/mL performed by live image move analyzer JuLi™Br. Cultures 
were observed for 672 h p.i. Red arrows indicate the process of creating the CPE (A). The generated 
graph shows the percentage of cells’ confluence level [%] during the whole analysis [hours]. Images 
were taken every 10 min and analyzed for cell confluence (B). Objective magnification ×40. 

Figure 10. Real-time cell growth analysis of SDAV-infected primary murine neurons post-incubated
with EerI at a concentration of 5 µM/mL performed by live image move analyzer JuLi™Br. Cultures
were observed for 672 h p.i. Red arrows indicate the process of creating the CPE (A). The generated
graph shows the percentage of cells’ confluence level [%] during the whole analysis [hours]. Images
were taken every 10 min and analyzed for cell confluence (B). Objective magnification ×40.
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3. Discussion

The Sialodacryoadenitis virus, a highly infectious pathogen that causes infections in
rats, poses a potential threat to humans and other animals due to possible interspecies trans-
fer. Cases of mutation of the genome of various coronaviruses leading to the acquisition of
the ability to infect new species have been documented [4]. It is now known that VCP can
be a pro- or antiviral factor. Its effect has so far been verified for picornaviruses [32,46,47],
flaviviruses [48–50], and coronaviruses (IBV, HCoV 229E, HCoV OC43) [41,43]. For this rea-
son, the present study decided to carry out research to gain a better understanding of SDAV.
We decided to target valosin-containing protein, knowing its crucial role in cell metabolism
and viral replication. A successful in vitro multiplication of the Sialodacryoadenitis virus
has so far been found in a few established lines (L2p, LBC) and a primary culture of rat
kidney cells [5,51–53]. An attempt to multiply SDAV in mice brain cells’ primary culture
was unsuccessful [5], despite studies showing brain lesions in neonatal CD-1, CWF mice,
and W1 Wistar rats infected with SDAV [10].

For the first time, we demonstrated SDAV replication in the primary neuron cul-
ture of BALB/c mice without previous adaptation. Focal and diffuse cytopathic ef-
fects were shown in primary neurons (Figure 1A, red arrows). The PFU = 106 and
log10 FFU/mL = 2.193 ± 0.15 obtained in the study are comparable to those obtained
by Gaertner et al. (1992) [54] (Figure 2). The onset of plaque formation was observed
at 276 h p.i. (Figure 1A, red arrows), while in the case of the infected LBC established
line, defined plaques were visible after 48 h p.i. [55]. This may be an indication of the
movement of SDAV virions between neurons without cell destruction. An analysis of
SDAV replication in primary neuron cells derived from BALB/c mice was carried out
based on the Harmony (Revvity™, Waltham, MA, USA) algorithm’s calculation of the
average fluorescence intensity corresponding to the SDAV nucleocapsid protein (Figure 3).
Compared to cells analyzed at 0 h p.i. (after cell entry), there was an extremely statistically
significant (*** p ≤ 0.001) increase in the mean fluorescence intensity at 24 h p.i., confirming
the effective penetration of SDAV into mouse neurons and the completion of a full SDAV
replication cycle. To explore the role of VCP in SDAV replication, we first examined VCP
levels in uninfected and SDAV-infected primary neurons. We reported a highly statistically
significant increase (** p ≤ 0.01) in mean fluorescence intensity corresponding to VCP
24 h p.i., which may suggest increased production of this protein in neurons resulting from
SDAV infection (Figure 5). Similar results were obtained from Western blot analysis, where
there was a statistically significant (* p ≤ 0.05) increase in relative VCP expression in infected
cells (12 ± 1.1) in comparison to the uninfected control cells (9 ± 0.98) (Figure 7C,D).

The effect on VCP expression was studied before in the context of SARS-CoV and
CoV-229E infection. It was shown that 24 h p.i. VCP expression in human monocytes
for both coronaviruses decreased [56], contrary to our results. Coronaviruses require a
suitable environment for replication to take place, which is created, among other things, by
DMVs, which are thought to originate from EDEMosomes—vesicles that arise from the
endoplasmic reticulum membrane and contain regulators of the ERAD pathway. It has been
shown that during betacoronavirus infection, there is increased formation of EDEMosomes.
This may be related to the prevention of the accumulation of viral proteins in the ER, as
regulators contained in EDEMosomes may increase ERAD activity and thus affect the
release of viral structural proteins [57–60]. It is possible that the increase in the mean
fluorescence corresponding to VCP and protein relative expression, one of the components
of ERAD, is related to the activation of ERAD by regulators contained in EDEMosomes
(Figures 5 and 7C,D).

To further explore the role of VCP in SDAV replication, we used Eeyarestatin I (EerI),
a VCP inhibitor, and checked its effect on SDAV-infected primary neurons. EerI is a
substance that shows affinity for the endoplasmic reticulum due to its aromatic domain.
EerI has been shown to interact with VCP located within the endoplasmic reticulum via
a nitrofuran-containing group (NFC). The VCP present in this area is part of ERAD, a
pathway associated with protein degradation [50,61]. In high-content screening analysis
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(Operetta CLS, Revvity™, Waltham, MA, USA) of the spot count/cell of the VCP antibody
signal, an extremely statistically significant (*** p ≤ 0.001) increase in the infected, non-
treated control was observed 24 h p.i. compared to uninfected neurons (29.96 ± 9.35
vs. 9.52 ± 6.1, respectively) (Figure 8C). The statistically significant decrease compared
to the positive control occurred only in 5 µM/mL EerI post-treatment (29.96 ± 9.35 vs.
14.61 ± 4.19, respectively) (Figure 8C). No statistically significant changes were observed
under other incubation conditions. This may be due to the action of EerI, its affinity for the
endoplasmic reticulum, and its inability to interact with VCPs located in other organelles
or in the cytoplasm [62]. In addition, an overall higher spot count/cell (Figure 8C) and a
higher relative expression (Figure 7C,D) of VCP in infected neurons, both untreated and
treated with EerI, suggest its important involvement in SDAV virion assembly. In the
context of the SDAV N protein signal after EerI treatment, a highly statistically significant
(** p ≤ 0.01) decrease in the spot count/cell was observed for 25 µM/mL pre-incubation
(69.07 ± 12.5) and 5 µM/mL post-incubation (63.17 ± 11.5) compared to the positive control
(153.87 ± 26.7) (Figure 8B). This indicates the likely involvement of VCP at a later stage
of replication, during the release of viral proteins from the endoplasmic reticulum. An
interesting observation that confirms the VCP role at later stages of viral replication was
the accumulation of the viral antigen signal in the submembrane areas of neurons after
post-incubating with 5 µM/mL (Figure 6B(b’,d’), white arrows). No presence was detected
in cell protrusions like it was seen in the untreated infected control (Figure 4C, white
arrows). Here, we can speculate that a similar phenomenon of “viral protein homeostasis”
described by Tabata et al. (2022) [62] played a role by controlling the amount of each
SDAV protein in virus-infected cells by the ERAD system modulated by the EerI inhibitor.
Another study demonstrated that the administration of either Xanthohumol or Eeyarestatin
I resulted in a reduction in Zika virus (ZIKV) and Usutu virus (USUV) titers in infected
cells. This finding aligns with the crucial role of valosin-containing protein (VCP) during
the intracellular stages of the viral replication cycle. Of particular interest, the research also
revealed a previously unappreciated direct antiviral activity of Eeyarestatin I against virus
infectivity (virucidal activity). However, this activity was exclusive to Eeyarestatin I, and
not observed with Xanthohumol [63]. Concluding the results, we noticed a better effect
in reducing virus yield by using the post-incubation method (Figures 6–9). To evaluate
the efficiency of this treatment, the SDAV was initially tittered with the EerI inhibitor at
concentrations of 5 µM/mL and 25 µM/mL and, again, using a collected cell medium (after
24 h course of infection) to ascertain whether VCP inhibition by EerI influenced SDAV
egress from neurons (Figure 9A,B). The analysis confirmed our hypothesis, indicating that
the second titer showed an extremely statistically significantly (*** p ≤ 0.001) reduction in
the virus titer.

The usage of 5 µM/mL decreased log10 FFU/mL by 0.840 logarithms in dilution 10−3

(1.96 ± 0.53 non-treated vs. 1.12 ± 0.41 5 µM/mL treated) (Figure 9B(d’)). This outcome
prompted the decision to conduct the final analysis using only a concentration of 5 µM/mL
in the post-treatment system. The real-time observation of neuronal growth following
treatment and infection with SDAV for 672 h demonstrated a minimal cytopathic effect and
a sustained cell confluence of no less than 94% (Figure 10). A comparison of the results of
the same analysis conducted without prior incubation with EerI confirmed the effect of VCP
on the assembly and release of SDAV progeny virions. In cells that had not been treated and
that had been infected for 672 h, the level of confluence dropped to an incomplete 6%, and
a significant cytopathic effect was observed, manifesting as plaques and cell vacuolization
(Figure 10).
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4. Materials and Methods
4.1. Primary Neuronal Cell Culture

Balb/c (H2d) mice were used to establish the primary culture of murine neurons using
the method by Cymerys et al. (2010; 2016) [64,65]. Pregnant female mice (16–19 days post-
mating) were sacrificed, and fetuses were removed and decapitated for brain collection.
Then, isolated cerebral hemispheres from fetal brains were washed three times in cold HBSS
solution (10x Hanks Buffer; Life Technologies Waltham, MA, USA) and treated with 2.5%
EDTA-free trypsin solution at 37 ◦C in 5% CO2 for 15 min. Again, after incubation, cells
were washed three times in a warm HBSS solution and mechanically homogenized using a
pipette. After suspending and counting, cells were plated onto poly-L-lysine-coated wells
or poly-D-lysine with laminin-coated coverslips. Primary murine neurons were cultured
in B-27 Neuron Plating Medium, consisting of the neurobasal medium, B-27 supplement,
200 mmol/L of glutamine, 10 mmol/L of glutamate, 1% penicillin/streptomycin antibiotics
with 5% supplement of fetal bovine, and 5% horse serum (Gibco Life Technologies, Waltham,
MA, USA). To avoid propagation of non-neural cells, cultures were maintained in growth
medium supplemented with 10 µM cytosine β-D-arabinofuranoside (after 3 days for 24 h)
(Sigma-Aldrich, Darmstadt, Germany). Subsequently, the medium was removed and
replaced with Neuron Feeding Medium (B-27 Neuron Plating Medium without glutamate;
Life Technologies Waltham, MA, USA). In such conditions, neurons were maintained for
the next 8 days before analysis, infection, and incubation with inhibitor at 37 ◦C with
5% CO2.

4.2. SDAV Infection and Calculation of Viral Antigen Signal Using High-Content Analysis

The virus used in the study, Sialodacryoadenitis virus strain 681, was provided cour-
tesy of Professor Susan Compton, Yale University, USA. The strain was isolated in 1976
at Yale [66,67]. A rat L2 lung epithelial cell line (CCL-149™, ATCC®, Manassas, VA, USA)
was used to multiply and determine the viral titer (PFU/mL = 106 using the method
by Gaertner et al. (1993)) [54]. Viral titer in primary murine neurons was assessed by
the fluorescent focus units (FFU). Cells were seeded in 96-well plates (at a density of
5 × 103 cells/well) and infected with 10-fold dilutions of the SDAV (from 100–10−5 in
twelve replicates). After 1 h of incubation in 5% CO2, 37 ◦C, the virus suspension was
aspirated, and a fresh growth medium was added. At 24 h post-infection (h p.i.), cells were
fixed in 3.7% paraformaldehyde (PFA) in PBS (ThermoFisher™, USA) for 15 min at room
temperature (RT). Next, the cells were permeabilized with 0.5% Tween (Sigma-Aldrich) in
PBS (15 min, RT) and blocked with 1% bovine serum albumin (BSA, Sigma-Aldrich) in PBS
(30 min, RT) to prevent nonspecific binding. Next, SDAV nucleocapsid proteins were visual-
ized by incubation with mouse-SARS/SARS-CoV-2 monoclonal primary antibody specific
for N protein (ThermoFisher™) (1:250 dilution, 1 h, 37 ◦C) and AlexaFluor™ 488 Goat
anti-Mouse IgG secondary antibody (ThermoFisher™) (1:500 dilution, 1 h, RT). Cell nuclei
were visualized for cell localization with Hoechst 33,258 (ThermoFisher™) (2 µg/1 mL,
3 min, RT). The fluorescent signals were detected via high-content analysis (Array Scan
XTI, ThermoFisher™, Waltham, MA, USA) at ×10 magnification. The number of infected
cells in each well was automatically obtained from 9 images per well (approx. 10,000 cells)
using HCS studio software version 2.0 spot detector protocols. How the algorithm worked
is shown in Figure 11. Results were presented as the number of spots detected (AlexaFluor
488™) corresponding to virus antigen in log10 FFU/mL [68,69].



Int. J. Mol. Sci. 2024, 25, 11633 17 of 23Int. J. Mol. Sci. 2024, 25, 11633 17 of 23 
 

 

 
Figure 11. Representative images of SDAV-infected primary neurons presenting how the algorithm 
for detecting the spot-protein area of the SDAV nucleocapsid works. (A) Overlay of green signal 
(AlexaFluor™ 488, SDAV N protein) and blue signal (Hoechst 33258, cell nuclei), (B) non-blue 
signals (cell nuclei) from which the algorithm determines the cell area, (C) green lines represent cell 
areas, and red dots represent the detected viral antigen: Array Scan XTI (ThermoFisher™, USA), 
magnification ×5. 
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4.3. Real-Time Imaging of SDAV Cytopathic Effect in Primary Neurons

To determine the cellular growth and morphology of primary neurons infected with
SDAV and incubated with VCP inhibitor, the JuLITMBr Live Cell-system for bright-field
analysis (NanoEnTek, Seoul, Republic of Korea) was used [70]. When cultured neurons
reached about 90% confluency, cells were infected with undiluted SDAV suspension (100),
as previously described. Images were captured for 672 h with 10 min intervals. The results
were obtained and analyzed using JuLiTMBr PC v1.01. software. Uninfected cells were
used as a negative control. All images were captured at ×40 magnification.

4.4. Cell Treatment with VCP-Interfering Inhibitor

Eeyarestatin I (EerI, Sigma-Aldrich®) was used to determine the potential use of VCP
by SDAV in the replication cycle. It is a membrane-penetrating substance that preferentially
localizes near the endoplasmic reticulum. EerI causes inhibition of the ERAD pathway
through an irreversible interaction with VCP. Cell viability after EerI treatment was detected
by XTT assay (data not shown) (The Cell Proliferation Kit II (XTT), Roche, Basel, Switzer-
land). EerI concentrations were chosen by XTT assay results and literature data [63,71,72].
The potential use of VCP by SDAV was investigated by treating primary neuron cultures
with EerI before and after virus infection (pre-incubation and post-incubation, respectively).
All analyses of EerI-treated cultures were performed in triplicates in a 96-well plate and
Nunc™ systems. Positive controls were infected cells not treated with EerI. Noninfected
cells were negative control. Pre-incubation consisted of adding EerI diluted in culture
medium (5 µM/mL and 25 µM/mL, 1 h, 5% CO2, 37 ◦C) to uninfected primary neuron
cultures, aspiring the EerI media, adding the SDAV to the cell culture (1 h, 5% CO2, 37 ◦C),
and replacing inoculum with fresh medium. Post-incubation, on the other hand, consisted
of infecting the primary neuron culture with the SDAV (1 h, 5% CO2, 37 ◦C), washing of
the SDAV, and adding EerI in growth medium (5 µM/mL and 25 µM/mL, 24 h, 5% CO2,
37 ◦C). After 24 h, cultures were fixed and prepared for visualization as described above.

4.5. SDAV Titration After EerI Treatment Using High-Content Analysis

To determine the outcome of EerI treatment on viral titer, we repeated viral titration
using focus forming assay. Primary neuron cultures were post-incubated with 5 µM/mL or
25 µM/mL EerI and fixed after 24 h of incubation (5% CO2, 37 ◦C). As described above,
fluorescence staining of N protein and cell nuclei and high-content screening were carried
out. To evaluate the efficacy of the employed treatment, the SDAV was initially titrated
with the EerI inhibitor at concentrations of 5 µM/mL and 25 µM/mL in a post-incubation
system for 24 h p.i. Subsequently, prior to analysis, the cell media was collected and utilized
for a second titer analysis to ascertain whether EerI influenced SDAV egress from neurons.
A schematic representation is shown in Figure 9A, which was made with Biorender [73].
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4.6. Immunofluorescence Staining for Morphology Analysis of SDAV Infected Neurons

The immunofluorescence method was used to visualize cell structures and viral
antigens. After pre-incubation and post-incubation with 5 µM/mL or 25 µM/mL EerI,
primary neuronal cell cultures were washed twice in PBS (Sigma-Aldrich, Darmstadt,
Germany), then fixed in 4% PFA (Thermo Fisher, Waltham, MA, USA) for 10 min at
24 h p.i. After fixation, the cells were washed twice with PBS solution and incubated with
1% Tween/PBS solution for 5 min at room temperature. Cells were then washed twice
with PBS solution. After blocking with 1% BSA/PBS for 15 min, the cells were incubated
with a 1:250 dilution ratio of primary antibody specific for SARS-CoV-2 Nucleoprotein
(N) (Mouse mAb) (Thermo Fisher Scientific, Waltham, MA, USA) overnight at 4 ◦C. The
unbound antibody was removed by washing with PBS three times. Then, the Goat anti-
Mouse IgG (H + L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 488 (Thermo
Fisher Scientific, USA), was used at a 1:1000 dilution ratio for 1h at room temperature.
VCP was visualized by incubation with rabbit anti-VCP primary monoclonal antibody
(ThermoFisher™) (1:500 dilution, overnight, 4 ◦C) and Texas Red™-X secondary goat anti-
rabbit IgG antibody (ThermoFisher™) (dilution 1:500, 1 h, RT). To stain the cell membranes,
cells were incubated with wheat germ agglutinin (WGA) conjugate, AlexaFluor™ 647
(ThermoFisher™) (10 µg/mL, 1 h, RT). Additionally, cell nuclei were stained with Hoechst
33,258 (Thermo Fisher, Waltham, MA, USA) for 2 min, RT. Afterward, cover slips were
mounted on microscope slides using ProLong Gold Antifade Mounting Medium (Thermo
Fisher, Waltham, MA, USA). Images were acquired in a confocal microscope (Fluoview
FV10i, Olympus, Japan), saved in 24-bit .tiff format, and analyzed using FV10i v4.1 software
(Olympus), ImageJ2 (NIH Image, v1.53q, Bethesda, MD, USA), and Adobe Photoshop CS6
software (Adobe Systems Incorporated, v23.4.1, San Jose, CA, USA). During data processing
to improve visualization of the structures, the fluorescence signals were changed to the
following colours: Texas Red™—blue; AlexaFluor™ 647—purple; Hoechst™—yellow.

4.7. High-Content Imaging System for Quantitative SDAV Nucleoprotein and Valosin-Containing
Protein (VCP) Detection

The high-content screening was performed on cells in the 96-well plate with two
methods. First, screening was performed without treatment (uninfected and 0, 0.30, 1, 2, 4,
18, 24 h p.i.) to assess the level of proteins. Second, it was performed with pre-treatment
and post-treatment (5 µM/mL or 25 µM/mL EerI, 24 h p.i.) in order to check the VCP
involvement in SDAV replication. Fluorescent staining was carried out as described in the
confocal imaging section.

The images were acquired using the Operetta CLS high-content imaging system
(Revvity™, Waltham, MA, USA), equipped with an ×40 water objective lens. The exposure
time for each channel was customized to optimize the signal-to-noise ratio, ensuring clear
and accurate data capture. Illumination intensity was adjusted for optimal fluorescent
signal capture, and at least 400 cells were analyzed per condition, providing a robust dataset
for downstream analysis.

The analysis of cellular images was conducted using the Harmony 4.9 software
(Revvity™, Waltham, MA, USA). This process involved a sequence of segmentation and
feature extraction steps designed to quantify specific protein distributions within cells. The
Hoechst channel was selected, and Harmony’s built-in algorithm was used to perform
automatic nuclei segmentation. Parameters were adjusted to accurately detect the nuclei,
ensuring that objects of irregular shapes were recognized correctly. WGA conjugated to
AlexaFluor™ 647 (ThermoFisher™) was used to stain the cell membrane and cytoplasm.
Alexa647 channel was employed to detect cytoplasmic regions surrounding the nuclei.
Noise reduction techniques, such as Gaussian filtering, were applied to enhance signal-
to-background contrast. Using Harmony’s segmentation algorithms, the cytoplasm was
segmented by expanding outward from the previously segmented nuclei. Careful parame-
ter tuning was conducted to prevent cytoplasmic overlap between adjacent cells. Objects
touching the image boundary were excluded from further analysis to avoid artifacts from
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incomplete cell structures. Spot detection algorithms in Harmony were utilized to locate
distinct fluorescent spots corresponding to VCP and SDAV proteins. Parameters such as
spot size, intensity threshold, and minimum distance between spots were optimized for
precise detection. The total number of spots per cell was calculated.

4.8. VCP Expression Analysis by Western Blot

Murine primary neuron cells were cultured and treated accordingly (5 µM/mL or
25 µM/mL EerI post- and pre-treated for 24 h p.i.). Cell lysates were prepared with cell
lysis buffer (N-PER™ Neuronal Protein Extraction Reagent, Thermo Scientific™, USA)
and protease inhibitor (Halt™ Protease Inhibitor Cocktail, Thermo Scientific™, USA).
Protein content was measured using Micro BCA™ Protein Assay Kit (Thermo Scientific™,
USA), and protein samples were prepared using an equal amount of protein, 4× Laemmli
Sample Buffer (Bio-Rad, USA) and 2-mercaptoethanol. Protein samples were heated
at 95 ◦C for 10 min and equally loaded and separated on 12% polyacrylamide gels by
electrophoresis (Mini-PROTEAN Tetra Cell, Bio-Rad, USA) in the following conditions: 80 V
for 15 min, followed by 120 V for 85 min and then transferred to polyvinylidene difluoride
(PVDF) 0.45 µm membranes (Immobilon® P Membrane, Merck Millipore, Burlington, MA,
USA) using wet-blotting system (Bio-Rad, USA) and 330 mA for 1h in cooling conditions.
Membranes were blocked after transfer for 30 min in 5% skim milk in TBS-Tween 20 (TBS-T)
buffer at room temperature and incubated overnight with primary antibodies at 4 ◦C. The
following day, membranes were washed 5 times for 5 min in TBS-T buffer and placed in
secondary antibodies conjugated with horseradish peroxidase for 1 h at room temperature.
After incubation, membranes were washed again using the same protocol, and proteins
were visualized with an ECL kit (Clarity™, Bio-Rad, USA) using ChemiDoc Touch Imaging
System (Bio-Rad, USA) using signal accumulation mode (SAM) with the same settings
for each membrane (Bio-Rad, USA). Densitometry was performed using images acquired
after the exact same time of exposure in Image Lab™ Software v6.0.1 (Bio-Rad, USA).
Each target protein band intensity was compared to the intensity of the GAPDH protein
band (loading control). Expression is presented as a relative protein expression (target
protein/loading control). All antibodies used were diluted in blocking buffer, and the
following dilutions were used: anti-VCP (1:1000, #MA3-004, Invitrogen, ThermoFisher,
USA), anti-GAPDH (1:5000, #MA5-15738, Invitrogen, ThermoFisher, USA). Secondary
HRP-conjugated antibodies were used, including anti-mouse (1:5000, #31450, Invitrogen,
ThermoFisher, USA). Antibodies were freshly prepared and used once.

4.9. Statistical Analysis

The results were statistically evaluated by one-way or two-way analysis of varia-
tion (ANOVA) using Tukey’s multiple comparisons test or multiple unpaired t-test using
threshold p-value with the Šídák–Bonerroni multiple comparisons correction method. For
Western blot analysis, the non-parametric Friedman test, followed by a post hoc group
comparison test, was used. All experiments were performed at least in triplicate. These
analyses were performed using GraphPad PrismTM version 9.4.0 (453) for macOS software
(GraphPad Software Inc., San Diego, CA, USA). Statistical differences were interpreted as
significant at p ≤ 0.05, highly significant at p ≤ 0.01, extremely significant at p ≤ 0.001, and
not significant at p > 0.05.

5. Conclusions

In addition to its multiple roles in regulating cellular homeostasis, particularly in
nervous system cells, the ATPase valosin-containing protein is an important host factor in
viral infections. It remains unclear in which critical replication points VCP is used by SDAV.
However, the results of our study have provided insight into the important role of the
VCP in the assembly and release of progeny virion. We have shown for the first time that
SDAV infection in neurons enhances VCP expression, which explains the use of ATPase
in the viral replication cycle. In addition, using an EerI inhibitor that targets the role of
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VCP in the ERAD system results in an apparent reduction in viral titer. These changes are
particularly evident in the second round of titers replicated from the cell medium after the
first infection cycle. What is more, based on confocal image analysis, we can conclude that
EerI influences the SDAV capability of viral protein assembly and egress from the cell by
“trapping” the virions in the submembrane area.
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