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Abstract
In metal single crystals, the observed formation of deformation banding pattern has been explained by greater latent hardening
of slip systems than their self-hardening, which promotes spatial segregation of plastic slips and lamination towards single-
slip domains. Numerical studies focusing on the formation of deformation bands usually involved initial imperfections,
boundary-induced heterogeneity, or the postulate of minimal global energy expenditure which additionally promoted non-
uniformity of deformation. This article analyses the case when no suchmechanism enforcing locally non-uniform deformation
is implemented in the finite element (FE) method, while the global system of equations of incremental equilibrium is solved
in a standard way. The new finding in this paper is that the deformation banding pattern can appear spontaneously in FE
simulations of homogeneous single crystals even in the absence of any mechanism favouring deformation banding in the
numerical code. This has been demonstrated in several examples in the small strain formalism using a plane-strain model in
which the twelve fcc slip systems are reduced to three effective plastic slipmechanisms. Incremental slips are determined at the
Gauss-point level either by incremental work minimization in the rate-independent case or by rate-dependent regularization.
In the rate-independent approach, the trust-region algorithm is developed for the selection of active slip systems with the help
of the augmented Lagrangian method. Conditions under which a banding pattern appears spontaneously or is suppressed are
discussed. In particular, a critical rate sensitivity exponent is identified.

Keywords Crystal plasticity · Small strain · Slip-system selection · Path instability · Microstructure formation · Finite
element method

1 Introduction

This paper is concernedwith spontaneous formation of defor-
mation bands which, unlike the more frequently analysed
separate shear bands, cover the entire volume of a plastically
deformedmetal single crystal. This phenomenon is well doc-
umented experimentally using various techniques [5–7, 12,
21, 27–29, 32, 56, 91, 95] and even considered ‘a potentially
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most valuable tool for the understanding of the mechanism
of plastic deformation’ [46]. The phenomenonwas explained
[7, 8, 15, 53, 54] as the result of greater latent hardening of
the slip systems than their self-hardening, which makes plas-
tic flow easier when split into two families of deformation
bands with alternating sets of active slip systems.

In models of such laminates, calculations based on ener-
getic preference of a band pattern relative to uniform defor-
mation of a single crystal were performed by assuming band
formation in advance, e.g. [14, 15, 17, 23, 26, 36, 38, 43–45,
63, 67, 68, 75]. The consistency of energy minimization with
the originally assumed incremental constitutive law requires
the existence of an incremental potential, at least in the limit
passage to the imagined exact solution, which is a general
feature of the incremental energy minimization method [74].
Then the same method can be used to determine the set of
active slip systems and incremental slips in each band as part
of determining the response of a rate-independent laminate
model.
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Full field simulations that showed a deformation band pat-
tern without assuming its existence a priori were rarer. In the
rate-independent framework, such calculations using finite
element (FE) method were first performed by global incre-
mental energy minimization applied to polycrystal models
with the vertex effect [78–80], but for single crystals pre-
dominantly used was the rate dependent (RD) regularization
of the slip-system activity rule. In a convenient power-law
approach to rate sensitivity applicable to creep [33], all slip-
systems subjected to non-zero driving force are active and
the slip-rates in a given state are uniquely defined [1, 18, 52,
70, 83], thus avoiding the need for their selection, as opposed
to the rate-independent model. For a sufficiently small pos-
itive rate-sensitivity exponent, m, only plastic flow on slip
systems subjected to a resolved shear stress close enough to
a threshold value is relevant.

In field simulations of rate-dependent plasticity in single
crystals, frequently no clear pattern of deformation bands
emerged or separate localization bands appeared, e.g., [13,
34, 48, 49, 58, 59, 62, 86, 96]. If patterns with multiple nar-
row bands were found in RD simulations, theywere typically
triggered by suitable imperfections or boundary-induced het-
erogeneity [4, 24, 30, 35, 39, 61, 91, 93, 94], supported also
by minimization of a non-convex incremental energy [22,
37, 47, 51, 92, 97]. We do not distinguish here the models
involving slip gradients from the local models as they can
give qualitatively similar results [93]. In this work, conven-
tional crystal plasticity in its possibly simple form is isolated
for study so as not to blur the main message.

The main goal of this work is to demonstrate that defor-
mation banding can appear spontaneously in finite element
simulations of homogeneous single crystals with strain hard-
ening, even in the absence of any direct mechanism of
favouring deformation banding. This poses a challenge, not
yet fully explored in the literature, for robust numerical sim-
ulations of single-crystal plasticity in which the physically
observed deformation band patterning would not be artifi-
cially suppressed but also not uncontrolled. In contrast to the
widely studied formation of a single shear band triggered by
material softening which requires appropriate regularization,
cf. the recent examples [81, 85], the mesh-dependence of the
width of individual deformation bands is not so crucial here.
It is the orientation, slip-system activity, and volume frac-
tion of the bands, rather than their width, that describe the
overall features of the crystal deformation, which can only
slightly depend on mesh density. This feature is inherently
related to the yield-vertex effect, either sharp for conventional
rate-independent models or rounded off by rate sensitivity
or regularization. While this feature is theoretically clear
for homogenized infinite laminates, FE simulations showing
macroscopic mesh-independence of the results at variable
detail resolution are rare, e.g. [79, 80].

In the rate-independent case, the key issue to be addressed
is the selection of active slip systems at the material point
level. A recent overview of existing algorithmic approaches
to rate-independent crystal-plasticity can be found in [65,
77, 82, 87, 98], where further references are provided. The
problem arises when more than five slip systems (or less in
2D problems) can be active simultaneously at a given point,
so the set of active slip systems is not uniquely defined in
advance and an additional selection criterion is needed. The
small-strain analysis performed in this paper is limited to the
symmetric slip-system interactionmatrix that defines a linear
relationship between slip rates and yield function rates. If this
matrix is symmetric, and only if its submatrix for active slip
systems is symmetric, the incremental energy minimization
can be used as a well-founded criterion for selecting the slip-
system set and determining the rate-independent incremental
response at the material point [75, 76], see Sect. 3.

In this paper, the algorithmicdifficulty related tononunique
selection of active slip-systems in the rate-independent mod-
elling is overcome by the incremental work minimization
at each Gauss point, without appealing to any lamination.
A trust region algorithm [16] is developed for incremen-
tal energy minimization to address non-convexity of the
minimized function of incremental slips and is presented
in Sect. 4. It is combined with the augmented Lagrangian
method [9] to address unilateral constraints for slip incre-
ments and implemented in an implicit backward-Euler
computational scheme. An essential feature of the present
algorithm is that, for a given strain increment, it provides
incremental slips on previously unknown systems that con-
verge to exact slip rates as the strain increment tends to
zero. This algorithmic feature is ensured by minimizing an
incremental energy expression up to the second-order terms
with the explicit use of the constitutive matrix of interaction
between slip-systems [76].

The rate-dependent constitutive algorithm is based on the
standard equations [31, 70] and uses a fully implicit scheme.
Its performance was found to be satisfactory; there are other
algorithms being recently in use [20, 60].

The aforementioned two constitutive approaches are used
here in FE simulations to demonstrate the possibility of
obtaining a deformation band pattern without imposing any
imperfection or any global minimization of incremental
energy. Interestingly, this concerns also RD simulations, pro-
vided the rate sensitivity is sufficiently low to mimic the
vertex effect in crystal plasticity. This is a difference from
all the FE simulations reviewed above. Strongly nonuniform
deformation under conditions that could give rise to perfectly
uniform strain can be interpreted as a symptom of (physical
or numerical) instability of the uniformdeformation path [19,
71].

Several examples were case studied from various aspects
to substantiate the qualitative conclusions regarding defor-
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mation banding, obtained within the standard crystal plas-
ticity framework with a latent-to-self hardening ratio greater
than one. For the demonstration purposes and easier interpre-
tation, the attention is limited here to the 2D model of plane
strain, which was obtained [84] from the 3D fcc model by
reducing the number of effective slip systems from twelve to
three. The 2D model was later successfully used in a num-
ber of other works, e.g. [50, 55, 57, 93]. The 2D model is
described in Sect. 5, and detailed comparison of the defor-
mation band patterns obtained for the rate-independent and
rate-dependent models is presented in Sect. 6. Extension to
finite deformation and size effects is not included here.

2 The constitutive framework at small strain

The constitutive equations of conventional crystal plasticity
in the geometrically linear setting are well known and are
briefly quoted below only for the sake of completeness. The
symmetric part of the displacement gradient∇u is additively
decomposed into two symmetric tensors,

(∇u)sym = εe + εp, (1)

where εe is the elastic strain tensor and εp is the traceless
plastic strain tensor, trεp = 0. The forward rate ε̇p of εp

reads

ε̇p =
∑

α

γ̇ αpα, pα = (sα ⊗ mα)sym,

sα · mα = 0, α ∈ N = {1, . . . , N } ,

(2)

where N denotes the number of slip systems, pα is defined
as the symmetrized tensor product of two given orthogonal
unit vectors, slip direction sα and slip-plane normalmα , and
γ̇ α is the rate of plastic shear (called slip-rate) on the α-th
slip system. The effect of crystallographic lattice rotation
is neglected. The resolved shear stress τα on the α-th slip
system is defined by

τα = sα · σmα = σ · pα, (3)

where σ is the symmetric Cauchy stress tensor. It is deter-
mined from the elastic constitutive law

σ = ∂ψe

∂εe
= C

e · εe, ψe(εe) = 1

2
εe · Ce · εe, (4)

where Ce is the constant fourth-order elastic stiffness tensor
of both minor and major symmetries. Throughout this paper,
direct juxtaposition of two tensors means simple contraction
and a central dot the full contraction.

The current critical value of τα is denoted by τα
cr > 0 and

determined by time integration of the conventional strain-
hardening law

τ̇ α
cr =

∑

β

hαβ γ̇ β, α, β ∈ N . (5)

Hardening moduli hαβ are state-dependent parameters that
describe self-hardening of slip systems (for α = β) and
cross-hardening due to slip-systems interactions (for α �= β,
called latent hardening if γ̇ α = 0 �= γ̇ β ).

The yield function is postulated in the usual form as

f α = τα − τα
cr, α ∈ N . (6)

Taking time derivative of σ and f α , after simple rearrange-
ments the following constitutive rate-equations are obtained
as a small-strain version of the equations established by Hill
and Rice [25]:

σ̇ = C
e · ε̇ −

∑

β

C
e · pβ γ̇ β,

ḟ α = pα · Ce · ε̇ −
∑

β

gαβ γ̇ β, α, β ∈ N .
(7)

The slip-systems interaction matrix, (gαβ), is related to the
hardening moduli matrix, (hαβ), by

gαβ = hαβ + pα · Ce · pβ. (8)

Note that (gαβ) = (gβα) if the hardening moduli matrix is
symmetric, (hαβ) = (hβα). This is in contrast to the finite
deformation theory (cf. [25, 69, 75]) where an additional,
generally non-symmetric term enters (gαβ) due to geometric
interaction between slip systems.

The rate-independent rule of slip-systems activity reads

γ̇ α ≥ 0, f α ≤ 0, f α γ̇ α = 0

(no sum) ∀α ∈ N .
(9)

Note that pairs (sα,mα) and (−sα,mα) are understood here
as defining different slip systems, whose number is therefore
doubled (2 × 12 in fcc case). Importantly, to determine slip
rates γ̇ α in a given state, the consistency conditions must be
used,

ḟ α ≤ 0, ḟ α γ̇ α = 0 (no sum) if f α = 0, (10)

where ḟ α is found from Eq. (7)2. In general, this is still
insufficient to determine all slip rates γ̇ α uniquely if f α = 0
for linearly dependent slip systems. To overcome this dif-
ficulty, especially when matrix (hαβ) is indefinite due to
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cross-hardening stronger than self-hardening, we will con-
sider two different approaches at a material point level:
incremental energy minimization [67, 68, 72, 74] (as refer-
ence here) and the rate-dependent regularization (as the most
commonly used).

3 Incremental energyminimization

3.1 The virtual work rate

The rate of free energy density function ψ(εe, ξ), dependent
on elastic strain εe and internal variables ξ at fixed tempera-
ture and taken per unit volume, reads

ψ̇ = σ · ε̇e + ∂ψ

∂ξ
· ξ̇ . (11)

Assuming that (∂ψ/∂ξ) · ξ̇ = ∑
α pαγ̇ α , where pα are state-

dependent parameters related to hardening, the expression for
ψ̇ is rearranged straightforwardly as follows

ψ̇ = σ · ε̇ −
∑

α

χαγ̇ α, χα = τα − pα. (12)

In the following we tacitly assume that α, β run through the
set N .

The rate-independent dissipation function that expresses
the virtual dissipation rate per unit volume is defined by

D =
∑

α

χα
crγ̇

α ≥ 0,

χα
cr = τα

cr − pα ≥ 0, γ̇ α ≥ 0.
(13)

The total virtual work-rate per unit volume now reads

ẇ = ψ̇ + D

= σ · ε̇ −
∑

α

f αγ̇ α,

f α = χα − χα
cr = τα − τα

cr,

(14)

which includes the power of perturbing forces that compen-
sate a possible gap between χα and χα

cr. It follows that the
slip-system activity rule (9) admits the equivalent variational
formulation [75]:

ẇ → min
γ̇ α≥0

for given ε̇. (15)

This constitutes the basis for the incremental energy mini-
mization which, however, requires an additional symmetry
assumption (gαβ) = (gβα).

3.2 The incremental energyminimization in implicit
time-integration scheme

The work-rate expression (14) is now integrated with respect
to time t ∈ [tn, tn+1] under the additional assumption that the
slip-system interaction matrix in the constitutive rate equa-
tion (7)2 is symmetric,

(gαβ) = (gβα) ⇐⇒ (hαβ) = (hβα)

for diagonally symmetric Ce.
(16)

As already remarked, the above equivalence holds true only
in the small-strain format where the relative spin of the mate-
rial and lattice is neglected.

Denote by prefix 	 an increment of any quantity φ in the
time interval [tn, tn+1] as	φ = φn+1−φn for	t = tn+1−tn .
In the implicit time-integration scheme applied to the work-
rate expression (14), we obtain to first order

	1w = σ n+1 · 	ε −
∑

α

f α
n+1	γ α

(17)

and to second order

	w = 1

2
(σ n + σ n+1) · 	ε − 1

2

∑

α

( f α
n + f α

n+1)	γ α. (18)

Time integration of the constitutive rate equations (backward
Euler for ḟ α) gives

	σ = σ n+1 − σ n = C
e · 	ε −

∑

α

C
e · pα	γ α, (19)

	 f α = f α
n+1 − f α

n = pα · Ce · 	ε −
∑

β

gαβ
n+1 	γ β. (20)

Combining the above equations, we obtain

	w = σ n+1 · 	ε −
∑

α

f α
n+1	γ α − 1

2
	ε · Ce · 	ε

+	ε ·
∑

α

C
e · pα	γ α − 1

2

∑

α,β

	γ α gαβ
n+1 	γ β.

(21)

On using Eqs. (16), (19) and (20) for given f α
n , it follows

that the incremental energy function (21) acts as a constitutive
potential for f α

n+1 at given gαβ
n+1, viz.

f α
n+1 = − ∂	w

∂	γ α

∣∣∣∣
	ε

∀α ∈ N . (22)

By incremental energy minimization applied to function
(21), from the Kuhn–Tucker conditions necessary for a min-
imum we obtain
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	w → min
	γ α≥0

�⇒
f α
n+1 ≤ 0 and f α

n+1	γ α = 0 ∀α ∈ N
(23)

as the time-discrete consistency conditions. The Hessian of
function 	w with respect to 	γ α ,

gαβ
n+1 = ∂2	w

∂	γ α∂	γ β

∣∣∣∣
	ε

, (24)

maybe indefinite for linearly dependent slip systems ifmatrix
(hαβ) is indefinite. The minimized function 	w is thus
generally non-convex which requires appropriate numerical
treatment.

For algorithmic purposes, the incremental work density
(21) is rearranged as a quadratic energy function depending
on 	γ α for given 	ε,

	e(	γ α) = −
∑

α

( f α
n + 	ε · Ce · pα)	γ α

+ 1

2

∑

α,β

	γ αgαβ
n+1 	γ β + (σ n + 1

2
C
e · 	ε) · 	ε,

(25)

where gαβ
n+1 are taken from the preceding sub-iterationwithin

the time step [tn, tn+1]. In the current small-strain format,Ce

and pα are constant, 	ε is prescribed, and f α
n and σ n are

known from the previous time step.
This is a simplified version of the more general approach

developed by Petryk and Kursa [76] which applies to finite
deformation. A non-trivial extension to a non-symmetric
matrix (gαβ) is given in [77]. For the purposes of the present
finite element calculations, a minimization algorithm was
developed which is described in the next section.

4 Algorithmic approach

The Trust Region method [16] is effectively used for the
non-convex minimization problem, here for the augmented
Langrangian based on function (25), where direct application
of Newtons method can be hindered by an indefinite Hessian
matrix. Central to the Trust Region approach is the formula-
tion and solution of a subproblemat each iteration that aims to
minimize a quadratic model of the objective function within
a specified trust region. Crucially, when dealing with a non-
positive definite Hessian – which can lead to indeterminate
or directionally incorrect steps – the method requires mod-
ifying or ’regularizing’ the Hessian within the subproblem
to ensure that it gives a meaningful direction for progres-
sion. Therefore, the trust region not only restricts the step
size to maintain model fidelity, but also dynamically adjusts
the region boundaries based on the prediction accuracy of
the previous step. This dual adaptation—both in step size

and in the handling the Hessian’s indefiniteness—supports
the robustness and effectiveness of this method in navigating
complex landscapes of non-convex problems.

The Augmented Lagrangian method [9, 66] is used in
order to deal with inequality constraints imposed on incre-
mental slips 	γ α , which transforms the local constrained
minimization problem formulated in Sect. 3.2 to a smooth
unconstrained minimization problem. The unconstrained
search for a local minimum of the Lagrangian when it is
strictly convex can be performed using the Newton method.

The implicit backward-Euler computational scheme is
used throughout. In result, the algorithm enables automatic
selection of the active slip systems during FE simulations, so
that an energetically preferable solution at every Gauss point
is found that satisfies the discrete consistency conditions (23)
at the end of each time step within the required tolerance.

While the above three algorithmic approaches consid-
ered separately are well known, their combination in the
rate-independent crystal plasticity algorithm applied to FE
calculations appears to be new. Therefore, the algorithm is
described in more detail below.

4.1 Trust region algorithm for augmented
Lagrangian in rate-independent crystal
plasticity

The purpose of the algorithm is to find a solution that satis-
fies the conditions in Eq. (23) by minimizing the incremental
energy function, Eq. (25).Byfinding a solutionwemeanfind-
ing a set of active slip systems and incremental slips for this
set of active slip systems. Since the increments of plastic slips
in the rate-independent model used must be non-negative,
	γ α ≥ 0, the optimization problem is of the constrained
type. To ensure the 	γ α ≥ 0 requirement is finally satis-
fied, the incremental energy (25) is augmented by additional
functions ϕα of Lagrange multipliers and slip increments:

ϕα =
{

λα 	γ α + μ
2 (	γ α)2 if λα + μ	γ α < 0,

− 1
2μ(λα)2 otherwise,

(26)

where λα denotes α-th Lagrange multiplier and μ a regular-
ization parameter which need not tend to infinity to obtain
an exact solution. Adding ϕα to 	e reduces the constrained
minimization problem for 	e to a more convenient, uncon-
strained and smooth optimization problem for the resulting
Lagrangian, defined as follows [76]:

L = 	e + ϕ → min
(	γ α)∈RN

with ϕ =
∑

α

ϕα. (27)

It should be noted that in our algorithm (Algorithm 1) the pri-
mal unknowns 	γ α and Lagrange multipliers λα as well as
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Algorithm 1 Trust region algorithm with Lagrange multipliers for constraints (after [64], with modifications)
Step 0: Input
1: set 	γ α = 0, λα = 0 
 initial incremental slips and Lagrange multipliers
2: set 	, 	max 
 initial and maximal radius of trust region
3: set μ, η = 1/μ0.1, tol1 = 10−16 
 initial regularization parameters and tolerance
4: define L̂ = L(	γ α)|λα,η Ĝ = ∇L(	γ α)|λα,η B̂ = ∇∇L(	γ α)|λα,η

Step 1:
5: insert (	, Ĝ, B̂) into the subproblem in Algorithm 2 and return approximate solution δ	γ α to problem (29)
6: set 	γ α

trial = 	γ α + δ	γ α

Step 2:

7: compute L̂trial = L(	γ α
trial, λ

α, μ) and ρ = L̂trial−L̂
Q(δ	γ )

Step 3:
8: if ρ ≥ 0.25 then
9: 	γ α ← 	γ α

trial 
 accept trial solution
10: cα ← min(0,	γ α)

11: if |(cα)| ≤ η then
12: μ ← μ, η ← η/μ0.9

13: λα ← min(0, λα + μ	γ α) 
 update Lagrange multipliers
14: else
15: μ ← 2μ, η ← 1/μ0.1 
 increase regularization parameter
16: end if
17: L̂, Ĝ, B̂ 
 calculate new values of Lagrangian, gradient and Hessian
18: end if
Step 4: 
 decide whether to update the radius value
19: if ρ ≤ 0.3 then
20: 	 ← 	/4
21: end if
22: if ρ ≥ 0.85 and |(	γ α)| = 	 then
23: 	 ← min(2	,	max)

24: end if
Step 5:
25: if |Ĝ| ≤ tol1 and |(cα)| ≤ tol1 then
26: stop and return solution 	γ α

27: else
28: go to Step 1.
29: end if
Output: 	γ α

regularization parameter μ are updated iteratively in a man-
ner described later. This differs from the alternative approach
of using the augmented Lagrangian method for a convex
objective function, where the problem is solved in a mono-
lithic fashion for constant μ for both the primal unknowns
and Lagrange multipliers.

In the present paper, the trust region method with an iter-
ative optimization [89] is employed to find a minimum of a
given objective function,L. The trust regionmethodwas used
for solving other plasticity problems with nonunique solu-
tions, cf. [79, 80] and references therein. The core idea of a
trust regionmethod is to approximate the original Lagrangian
L with a quadratic model Q constructed from a truncated
Taylor series expansion with respect to 	γ within a specific
region around a particular point, for other parameters fixed,
i.e.

L(	γ + δ	γ ) ≈ L(	γ ) + Q(δ	γ )

with |δ	γ | ≤ 	, where δ	γ = (δ	γ α).
(28)

Hence, in the present case the problem boils down to mini-
mizing, at each iteration, the quadratic model. Specifically:

minimize Q(δ	γ ) = GTδ	γ + 1

2
δ	γ TBδ	γ

subject to |δ	γ | ≤ 	,

(29)

where G is the gradient of L and B is the Hessian of L with
respect to 	γ α . The parameter 	 denotes the value of the
trust region radius that restricts the scope of the local search.
Within this trust region, including its boundary, the quadratic
model is minimized iteratively by adjusting the region’s size
and fine-tuning the approximation to ultimately converge to
a solution that minimizes the original objective function.

In order to solve the above subproblem (29) a modified
version of algorithm proposed by Moré and Sorensen [64]
was implemented (Algorithm 2). In the current version of the
algorithm, a direct calculation of the lowest eigenvalue and
corresponding eigenvector is employed when needed, repre-
senting the primarymodification from the original algorithm,
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Algorithm 2 Subproblem solution (after [64], with modification, cf. [16, Alg. 7.3.6])
Step 0: Input
1: set 	, Ĝ, B̂ 
 Radius, Gradient, Hessian
2: set tol2 = 10−4, ε = 10−5 
 Algorithmic parameters: tolerance, small positive number
Step 1:
3: if B̂ is positive definite then
4: λ ← 0 and solve B̂s = −Ĝ
5: go to Step 3
6: else
7: compute the lowest eigenvalue λ1 of B̂ and set λ ← −λ1
8: end if
Step 2:
9: set B̂ ← B̂ + (λ + ε) I and make Cholesky factorization B̂ = LLT and solve LLTs = −Ĝ
Step 3:
10: if |s| ≤ 	 then
11: if λ = 0 or |s| = 	 then
12: return s
13: else 
 Hard case
14: compute an eigenvector u1 corresponding to λ1
15: find the root α of the equation |s + α u1| = 	

16: set s ← s + αu1 and return s
17: end if
18: else
Step 4:
19: repeat
20: solve Lw = s
21: compute λ ← λ +

( |s|−	
	

) ( |s|2
|w|2

)

22: set B̂ ← B̂ + λ I and make Cholesky factorization B̂ = LLT

23: solve LLTs = −Ĝ
24: until ||s| − 	| ≤ tol2	

25: return s
26: end if
Output: δ	γ ← s

which relied on proper estimates of these quantities (cf. [16]).
If the Hessian is not positive definite and since the number
of unknowns is relatively small, it is modified by finding the
smallest eigenvalue λ1 (see Algorithm 2, step 1). The small-
est eigenvalue, say λ1, is computed with the use of LAPACK
library [3] integrated in the AceGen system [41]. If λ1 ≤ 0
then Hessian B is modified to B + (ε − λ1)I , where I is the
identity matrix and 0 < ε � 1. For further details and other
possibilities of Hessian modification, the reader is referred
to [66, Chapter 3].

The modification of a singular Hessian in the rate-
independent crystal plasticity is similar in spirit to the
perturbation technique proposed in [62, (Sec. 4.1.3)], while
the singular value decomposition, cf. [2], is not used here.
The essential difference between those approaches and the
present work is that here the set of active slip systems is not
assumed in advance when determining slip increments by
incremental energy minimization.

The algorithm described in Algorithm 2, which is used to
solve the subproblem, is included in the trust region algo-
rithm, Algorithm 1 step 1. Of particular significance, in the
trust region algorithm, is the assessment ofwhether the reduc-
tion in the objective function, accomplished through this local
minimization, is consistent with the anticipated reduction

predicted by the quadratic model. This measure of algorithm
performance is denoted by ρ, see Algorithm 1 step 2. When
the approximation meets the stipulated criteria of accuracy,
the solution is accepted, and the algorithm proceeds to the
subsequent iteration (Algorithm 1 step 3). If not, an adjust-
ment of the trust region radius is made (Algorithm 1 step
4).

In addition to the standard trust region method, the step
in which the approximation is deemed satisfactory and the
solution is accepted also involves updating theLagrangemul-
tipliers or regularization parameter (Algorithm 1 step 3).
Importantly, either Lagrange multipliers or the regulariza-
tion parameter are updated, but not both at the same time.
The decision of which one must be updated is made based
on the constraint violation functions denoted as cα in Algo-
rithm 1 step 3, cf. [66, Alg. 17.4]. The Lagrange multipliers
are updated according to:

λα←min(0, λα + μ	γ α). (30)

A more detailed description of the augmented Lagrangian
method can be found in [9] and [66, Chapter 17].

In computational algorithms, the fine-tuning of parame-
ters to the specifics of the problem under investigation is
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crucial for optimizing both performance and accuracy. The
constants like 0.1, 0.9, 2, 0.3, and 0.85, utilized within the
described algorithm, while initially chosen based on conven-
tional practices, possess a degree of flexibility. Altering these
values allows for the adaptation of the algorithm to various
problems, without compromising its theoretical convergence
properties. In our analysis, we observed improvements in
both the robustness and performance of the algorithm by
commencing with a low regularization parameter μ (e.g.,
values such as 10 or 5) and adopting a modest increase
strategy—doubling the value if needed.

To speed up the whole procedure at the Gauss point level,
the Newtonmethodwas first used for the reduced set of equa-
tions based on the previously found set of active slip systems
(if available from the previous step). Such approach is justi-
fied since the change of active slip systems does not happen
too frequently [76]. Importantly, such modification does not
influence the final solution but speeds up the calculations.
Moreover, after obtaining a solution through the trust region
algorithm, the Newton method was used for the reduced set
of equations for two reasons: first to obtain high precision of
the solution in the fully implicit scheme (this is helpful espe-
ciallywhen e.g. gαβ is a nonlinear function of actual values of
γ α), and second to obtain an element tangent matrix through
the automatic differentiation available inAceGen. Thewhole
procedure allowed for meeting consistency conditions with
precision f α ≤ 10−8 and | f α	γ α| ≤ 10−8 at the end of
each computational time step.

The general algorithm described above has been incorpo-
rated into the finite elementmethod (FEM). The implementa-
tion has been donewith the use of theAceGen code generator
which combines the symbolic capabilities of Mathematica
and an automatic differentiation (AD) technique. AceGen
along with the AceFEM module provide a convenient sys-
tem for generating numerical procedures and computing
particular problems in FEM [41, 42]. In the present study,
the minimization problem has been tackled locally, necessi-
tating the invocation of the trust region procedure at each
Gauss point to determine a solution 	γ α for given 	ε.
Consequently, akin to conventional FEM codes, the global
unknowns are restricted solely to displacements. The global
level employs a Newton scheme, with FE simulations con-
ducted using an adaptive deformation step. Displacements
are interpolated using standard biquadratic shape functions,
specifically 9-node quadrilaterals in a two-dimensional finite
element setting. Full integration scheme with (3 × 3) Gauss
quadrature pointswas used.Despite the higher computational
costs of the biquadratic element, it was used to avoid effects
such as hourglass or shear locking phenomena thatmay occur
in lower order elements.All computationswere executed on a
desktop PC featuring a single Intel Core i7-4790K 4.00GHz
processor with 32GB RAM under the Windows operating
system.

4.2 Notes on rate-dependent algorithm

As the algorithm for rate-independent crystal plasticity is
later compared with rate-dependent one, some notes about
the latter formulation are provided here. The rate-dependent
version of crystal plasticity framework is usually used to cir-
cumvent the problem of non-uniqueness in the selection of
active slip systems. The standard approach is to employ the
following explicit equation for the plastic slip rate on each
slip system [33, 70]

γ̇ α = γ̇0 sign(τ
α)

( |τα|
τα
cr

)r

, r = 1/m, m > 0, (31)

where the reference slip rate γ̇0 is a material parameter and
will be assumed as constant for all slip-systems, and m is
the strain-rate-sensitivity exponent which is treated here as
a case study parameter. Importantly, in this formulation the
plastic slip increments or rates γ̇ α may be positive or neg-
ative, therefore the incremental hardening law (5) must be
replaced with

τ̇ α
cr =

∑

β

hαβ |γ̇ β |. (32)

As it is known, when the exponent r is large, the coupled set
of equations becomes highly non-linear, leading to slow con-
vergence and requiring small steps. A common approach is
to begin with a lower exponent value, obtain a solution, and
then increase the exponent gradually. However, in our rate-
dependent algorithm, we employ a different method that has
been found to outperform the former approach. The idea is
that at every first iteration, the plastic slip rates are found
using an explicit step based on the rates from previous con-
vergent step, cf. [31, 70], next the solution is used as a starting
point in a fully implicit scheme. This algorithmic approach
enabled calculations with a much higher exponent r than is
typically encountered in the literature. For other algorithms
which could be potentially used, see e.g. [20, 60].

5 2D plane-strain model

Under special circumstances, the 3D crystal plasticity model
can be reduced, following [84], to a 2D plane-strain model.
The detailed formulation can be found in [50] and [55], there-
fore only the basic formulae are repeated in the following.
The deformation of an fcc single crystal within the crystallo-
graphic plane (110) is realized assuming an initial orientation
of the crystallographic lattice with respect to a fixed refer-
ence frame (xi ), i = 1, 2, 3. The lattice is initially rotated in
the (110) plane counter-clockwise by angle ω, as illustrated
in Fig. 1. In the case of orientationω = 0 the reference frame
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Fig. 1 2D in-plane effective slip-systems in case of orientation a ω = 0
and b ω = π/4. The slip-plane normals for effective slip-systems are
denoted by mK

eff, while the corresponding slip directions, sKeff, are only
indicated by the numbers K = 1, . . . , 6

is defined such that x1 axis collinear with the [11̄0] direction,
x2 axis with the [001̄] direction, and the x3 axis with [110]
direction, cf. Fig. 1a.

For the fcc crystal, out of the twelve positive and twelve
negative crystallographic slip-systems of the 3D model,
defined in Table 1 using the standard notation following
[90], only part of the slip-systems can be activated. Consider-
ing both positive and negative, there are twelve slip-systems
(a3, b3, c1, c2, d1, d2, a3̄, b3̄, c1̄, c2̄, d1̄, d2̄) that can be
activated during deformation in (110) plane-strain condi-
tions.

These twelve crystallographic slip-systems will flow in
pairs. It is sufficient to consider six effective in-plane slip-
systems, which are pairs of the crystallographic slip-systems.
The positive effective slip-systems (1, 2, 3) indexed by K
consist of the following pairs (d2 + d1̄, a3̄ + b3, c2̄ + c1),
respectively, as shown in Table 2. The negative effective slip-

systems (4, 5, 6) correspond to pairs (d2̄+d1, a3+b3̄, c2+
c1̄), respectively. In the rate-dependent description, in con-
trast to the rate-independent framework where 	γ α ≥ 0 for
all α, the negative effective slip-systems need not be consid-
ered separately.

The angle between the effective slip directions s1,4eff and
s2,5eff, as well as between the directions s

3,6
eff and s

2,5
eff, cf. Fig. 1,

is equal to arctan(
√
2) ≈ 54.7◦.

The constitutive description of the 2D plane-strain model
is summarized in termsof effective (in-plane) quantities, after
[55], as follows. Plastic strain rate results from slips γ̇ K

eff on
effective slip-systems indexed by K ,

ε̇p =
∑

K

γ̇ K
eff p

K
eff, pK

eff = (
sKeff ⊗ mK

eff

)
sym ,

K ∈ Neff = {1, . . . , 6} ,

(33)

where a unit vector sKeff defines an effective slip direction and
mK

eff an effective slip plane normal, as shown in Table 2.
The effective yield function f K

eff = τ K
eff − τ K

cr-eff for the
K th individual slip-systems is defined as a difference of the
effective resolved shear stress τ K

eff = σ · pK
eff and its critical

value τ K
cr-eff that obeys the evolution rule

τ̇ K
cr-eff =

∑

L

hK L
eff γ̇ L

eff, K , L ∈ Neff. (34)

The hardening law for the effective critical resolved shear
stresses (in terms of the effective in-plane slips) has been
specified by Lewandowski and Stupkiewicz [55]. The initial
value of critical shear stress τ K

cr-eff at γ K
eff = 0 is related to

initial yield stress τ0 by τ K
0-eff = wK τ0, where wK are the

weights for effective slip-systems K ,

(wK ) =
(

2√
3

√
3

2√
3

2√
3

√
3

2√
3

)T

. (35)

The total slip rate can be expressed using the weights wK in
the form γ̇ = ∑

K wK γ̇ K
eff.

Assuming the standard two-parameter form (38) for crys-
tallographic slip-systems, the hardening moduli matrix for
effective slip-systems was derived by Lewandowski and
Stupkiewicz [55]:

Table 1 Notation of positive
slip-systems, directions and
planes in 3D fcc crystals model,
following [90]

a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3

[01̄1] [101̄] [1̄10] [011] [1̄01̄] [11̄0] [01̄1] [1̄01̄] [110] [011] [101̄] [1̄1̄0]
(111) (1̄1̄1) (1̄11) (11̄1)
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Table 2 Effective in-plane
slip-systems K , respective sums
of α systems, directions sKeff and
planes mK

eff for 2D plane-strain
deformation in the (1 1 0) plane

K 1 2 3 4 5 6

d2 + d1̄ a3̄ + b3 c2̄ + c1 d 2̄ + d1 a3 + b3̄ c2 + c1̄

sKeff [11̄2̄] [11̄0] [1̄12̄] [1̄12] [1̄10] [11̄2]
mK

eff (11̄1) (001) (11̄1̄) (11̄1) (001) (11̄1̄)

(
hKL
eff

) = h

(
Q3×3 Q3×3

Q3×3 Q3×3

)
, (36)

Q3×3 =
⎛

⎝
2
3 (1 + q) 2q 4

3q
2q 3

2 (1 + q) 2q
4
3q 2q 2

3 (1 + q)

⎞

⎠ , (37)

where the latent-to-self hardening ratio q and the hardening
modulus h are to be specified.

The effective slip-systems interaction matrix (gKL
eff ) takes

the form analogous to Eq. (8), gKL
eff = hKL

eff + pK
eff ·Ce

eff · pL
eff,

where the constant elastic stiffness tensor Ce
eff is defined in

reference to the crystal orientation chosen.

6 Rate-independent versus rate-dependent
results—numerical examples

6.1 Material properties

Numerical simulations have been performed for a (fcc) cop-
per single crystal with constant elastic stiffness tensor Ce

and saturation-type strain-hardening in the form (39) at room
temperature.

The symmetric hardening moduli matrix (hαβ) for slip
systems has been specified in the standard two-parameter
form

hαβ = h
(
q + (1 − q) δαβ

)
, (38)

where q is the latent-to-self hardening ratio, usually taken
from the range 1 ≤ q ≤ 1.4 after [40], and δαβ is the Kro-
necker symbol. Isotropic hardening modulus h is defined by
[10]

h = h0

(
1 − τcr

τs

)a

for τ0 ≤ τcr ≤ τs, (39)

with initial hardening parameter h0, saturation stress τs and
exponent a as constant parameters. Isotropic critical flow-
stress rate is defined as τ̇cr = hγ̇ , where γ̇ = ∑

α |γ̇ α| is the
rate of total accumulated slip γ . The initial critical stress at
γ = 0 equals τcr = τ0. Integration over time gives (cf. [11])

τcr(γ ) = τs − τs (A + B γ )
1

1−a for a �= 1, (40)

with two constant parameters A =
(
1 − τ0

τs

)1−a
and B =

(a−1)h0
τs

and γ = ∫ ∑
α |γ̇ α| dt .

The values of constant elastic moduli (C11, C12, C44) that
define elastic stiffness tensor Ce for Cu of cubic symmetry,
taken after [88], and the hardening parameters used in all
simulations reported in this paper are listed in Table 3. In
what follows, the key parameter is q > 1.

Additionally, in computations for the power-law rate-
dependent (RD) regularization, Eq. (31), the reference slip-
rate γ̇0 = 10−3 1/s was used throughout.

6.2 Results for uniform deformation

During FE calculations using adaptive time step 	t , the dif-
ference quotient of the imposed external strain increment
	ε̄ to 	t has been adjusted so that the influence of the
rate-sensitivity exponent, m or its inverse r in Eq. (31),
be negligible for uniform deformation. This has been done
as follows, separately for uniform plane-strain compression
(or tension) and pure shear. In both cases, only two slip-
systems γ 1

eff and γ 6
eff are active. (Recall that the superscripts

K = 1, . . . , 6 represent the labels of the effective in-plane
slip-systems, not any exponent.)

In the case of uniform plane-strain compression along
x2 axis in the orientation ω = 0, the total strain rate is
approximately equal to the plastic strain rate and has two
non-zero components, ε̇22 ∼= −ε̇11. The plastic strain rate

in the compression direction is ε̇
p
22 = −

√
2
3 (γ̇ 1

eff + γ̇ 6
eff),

with γ̇ 1
eff = γ̇ 6

eff ≥ 0 and τ 1eff = τ 6eff = −
√
2
3 σ22. Assum-

ing the value of the shear rate on the active slip-systems
γ̇ 1
eff = γ̇ 6

eff = γ̇0 = 0.001 1/s, so that the compressive plastic

strain rate is ε̇
p
22 = − 2

√
2

3 γ̇0 ≈ −0.000943 1/s = 	ε
p
22/	t ,

we get
(|τ K

eff|/τ K
cr-eff

)1/m = 1 for any value of exponent m.
A similar procedure applied to pure shear, but in the case

of orientation ω = π/4, leads analogously to the conclu-

sion that ε̇
p
12 =

√
2
3 (γ̇ 1

eff + γ̇ 6
eff) = 0.000943 1/s implies

(|τ K
eff|/τ K

cr-eff

)1/m = 1 for any value of exponent m. The dif-
ference between these two cases, apart from the irrelevant
hydrostatic stress component, lies in the different mutual ori-
entation of the crystal and FE mesh as well as the differently
imposed boundary conditions.

Effectiveness of the above procedure to set the external
strain-rate 	ε̄/	t has been verified numerically by com-
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Table 3 Material parameters of
a pure copper crystal used in the
simulations

C11 (GPa) C12 (GPa) C44 (GPa) τ0 (MPa) τs (MPa) h0 (MPa) a q

Elastic moduli Hardening parameters

170 124 75 1 144 250 2 1.4

Fig. 2 Stress–strain curves in FEM simulations using the rate-
dependent algorithm (RD) for selected values of exponent r =
10, 20, 50, 100, 150 (black curves) and using the incremental energy
minimization algorithm (EM) (dashed blue curves). The uniform
responses almost coincide with the upper grey curves (R-P) calculated
analytically for the rigid-plastic model. (a) Plane-strain compression
in case ω = 0, for RD algorithm with 30 × 30 mesh and for EM
algorithm with 10 × 10 mesh, using maximum deformation incre-
ment |	ε̄22|max = 10−4 and |	ε̄22|max = 10−3, respectively. (b)
Pure shear in case ω = π/4, using maximum deformation increment
2	ε̄12max = 10−3 for RD algorithm and 2	ε̄12max = 10−4 for EM
algorithm, in both cases with mesh 10 × 10

paring the finite element results, for the rate-dependent
algorithm (RD) and r = 10, 20, 50, 100, 150, with the
rate-independent EM model. The results of RD calculations
presented in Fig. 2 were performed using an automatic selec-
tionof the time stepbounded fromabove andFEmeshdensity
as indicated in the figure caption. The boundary conditions
for plane-strain compression are described in Sect. 6.3 and

for simple shear in Sect. 6.5.1. For the coarse meshes as
described in the figure caption, all the stress–strain curves
in each of Fig. 2a, b merge into one curve corresponding to
uniform deformation, with a notable exception in case (a) of
plane-strain compression for r = 150, to be discussed later
on.

The analytical solution for uniform deformation, assum-
ing a rigid-plastic model, can be determined using Eqs. (38)
and (40). For two equally active effective slip-systems {1, 6},
for exponent a �= 1 using the formulae of 2D plane-strain
model collected in Sect. 5, we obtain

τ K
eff(γ ) = τ K

cr-eff(γ ) = τ0-eff

+
√
3τs
4

(
A

1
1−a − (A + B γ )

1
1−a

)
· 2
3
(1 + 3q)

for K = 1, 6.

(41)

Values of critical stress τ K
cr-eff(γ ) for non-active slip-systems

{4, 3} (opposite to {1, 6}, cf. Fig. 1) are calculated by the
same formula (41). Critical stress τ K

cr-eff(γ ) for remaining
non-active slip-systems {2, 5} can be calculated by replacing
the factor 2

3 (1+3q)with 4q. Total accumulated slip γ on two
active slip-systems {1, 6} can be calculated usingweightswK

(35) in the form γ = 2√
3
(γ 1

eff + γ 6
eff).

For plane-strain compression in x2-direction in case ω =
0, the stress σ22(γ ) = − 3√

2
τ K
eff(γ ) for K = 1, 6 is calculated

using formula (41) with total accumulated slip γ = √
6 |ε22|.

This closed-form relationship for plane-strain compression
is shown in Fig. 2a as the upper stress–strain curve (R-P). In
the same way, an analogous formula σ12(γ ) = 3

2
√
2
τ K
eff(γ ),

for K = 1, 6 and γ = √
6 ε12 is obtained and illustrated in

the case of pure shear in Fig. 2b.

6.3 Plane-strain compression in case! = 0

As a first example, a series of plane-strain compression
simulations in the case of orientation ω = 0 as shown
in Fig. 1a were performed. Single crystal finite elements
with slip system activity determined at the integration points
using the rate-independent incremental energy minimization
algorithm (EM) or the rate-dependent algorithm (RD) were
applied. Regular FE meshes of various densities with square
elements were used. The boundary conditions corresponding
to uniformdeformationwere enforced by a uniformdisplace-
ment on the upper edge and zero on the bottom edge in
the vertical direction (x2), leaving free deformation in the
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Fig. 3 Plane-strain compression in case ω = 0 calculated by the incre-
mental energyminimization algorithm (EM) for FEmesh 40×40 at final
strain ε̄22 = 0.1. a, d, g show accumulated slip γ 1, and b, e, h show γ 6,
for maximum strain increment 	ε̄22max = 10−3, 	ε̄22max = 10−4 and

	ε̄22max = 10−5, respectively. c, f, i show activity of slip systems in
horizontal cross-section, in vertical cross-section, and total accumulated
slip γ , for 	ε̄22max = 10−3, 	ε̄22max = 10−4 and 	ε̄22max = 10−5,
respectively

lateral direction (x1). The central point of the bottom edge
was clamped. A square sample was finally deformed to the
average compressive strain ε̄22 = 0.1 (for simplicity taken
as positive from now on, with 	ε̄22 > 0) varying propor-
tionally to the control parameter. Computations have been
made with adaptive step control for initial strain increment
	ε̄22 = 10−6 andminimum strain increment	ε̄22 = 10−10.
The results below are shown for 2D effective quantities but
for brevity the subscript eff has been omitted.

6.3.1 Results for rate-independent algorithm (EM)

The effect of the maximum increment in compressive strain
in the range 	ε̄22max = 10−2 ÷ 10−5 is shown in Fig. 3
obtained for the FE mesh 40 × 40 using the incremental
energy minimization algorithm (EM). The picture for maxi-
mum strain increment	ε̄22max = 10−2 is omitted as it gives
uniform deformation such that both slip-systems γ 1 and γ 6

are active in the entire sample. For themaximum strain incre-
ment in the range 	ε̄22max = 10−3 ÷ 10−5, the slip system
activity becomes non-uniformwith clearly visible horizontal
and vertical bands with only one slip-system active, either

γ 1 or γ 6, separated by thin transition zones influenced by
interpolation built into the system, as discussed below. The
resulting pattern and the number and width of the bands are
to some extent random and can even become different in sub-
sequent computations under the same conditions, but retain
their overall character. The character of already formed bands
is slightly dependent on the step length (for a given FE mesh
density). Changes in slip-systems shear values γ α are shown
in Fig. 3c, f in selected horizontal and vertical cross-sections
using the FE shape functions. The lower bound of the accu-
mulated slip-systems shear values is not zero due to an initial
period of double slip when deformation bands have not yet
been formed. Figure 3i shows that the field of total accumu-
lated slip γ = ∫

γ̇ dt is almost uniform despite strong spatial
variations in activity of individual slip systems.

The apparent gradient in Fig. 3 and others is due to the
interpolation built into the AceFEM system used. To further
investigate how the system automatically generates the γ K

fields, a cross-section through the integration points and for
a coarser FE mesh 20 × 20 is shown in Fig. 4. Each dot in
Fig. 4c represents a value of the incremental slip	γ 1 or	γ 6

calculated byEMalgorithm for a single integration point, and
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Fig. 4 Plane-strain compression in case ω = 0 calculated by the incre-
mental energy minimization algorithm (EM) for FE mesh 20 × 20 and
maximum average strain increment 	ε̄22max = 10−3 at final strain
ε̄22 = 0.1. a Field of incremental slip	γ 1 withmarked deformedmesh

and horizontal cross-section line at x2 = 0.625 h of sample height. b
Incremental slips 	γ K in the horizontal cross-section interpolated by
AceFEM at element nodes. cValues of non-zero incremental slips	γ 1

and 	γ 6 calculated at integration points in the same cross-section

three consecutive integration points belong to a single finite
element. The plot of slip increments 	γ K per integration
point in Fig. 4c shows a negligible gradient through a single
element and a jump across the element boundary. Hence, the
gradient visible in Fig. 4b is only apparent.

The influence of FE mesh density on the formation of
bands and CPU time is presented in Table 4. The results are
for two values of maximum strain increment in the com-
pression direction, 	ε̄22max = 10−4 and 	ε̄22max = 10−3.
The computation CPU time depends on the number of bands
formed, which can be observed for rate-independent EM
algorithm in Table 4 as well as in other simulations. In the
particular case of uniform deformation the computations are
very fast, but if many vertical and horizontal bands are cre-
ated then the calculations take much longer time. However,
at a certain point in the calculations, when the pattern of slip
bands distribution is clear, i.e. the whole body is divided into
subregions in which only a single slip is active, the compu-
tations are fast and are performed with a fairy large global
Newton step.

In the case of smaller strain increment 	ε̄22max = 10−4,
the deformation character for different FE mesh densities
does not change significantly, and patterns of horizontal and
vertical bands emerge for all examined FE meshes. For the
larger strain increment 	ε̄22max = 10−3, the deformation
character depends on mesh density, starting from uniform
deformation for coarse mesh 10 × 10. For meshes 20 × 20
and 30 × 30, only horizontal bands appear or dominate, and
both horizontal and vertical bands appear for mesh 40× 40.
For the finer meshes 80 × 80 and 160 × 160, the deforma-
tion character is similar for both maximum strain increments
	ε̄22max = 10−4 and 	ε̄22max = 10−3. As the FE mesh
becomes finer, the number of bands increases and the bands
become narrower as shown in Fig. 5, which is the expected
effect of the lack of an internal length scale in the mate-
rial model used here. For the coarser meshes up to 30 × 30
mesh, the character of deformation bands depends more on
the deformation step length. For the finer meshes, starting

from 40 × 40, the character of deformation bands did not
change significantly and the patterns with both vertical and
horizontal bands formed for different strain increments. In
contrast to the deformation bands visible on the slip distri-
bution images, the total accumulated slip for different mesh
densities and deformation step lengths is quite homogeneous
and of a similar nature, as shown in Figs. 3i and 5b, d.

6.3.2 Results for rate-dependent algorithm (RD)

Guided by the above results for rate-independent (EM)
modelling, computations using rate-dependent algorithm
(RD) have been performed for selected values of exponent
r = 20, 50, 100, 120, 150 and maximum strain increment
	ε̄22max = 10−4, Fig. 6a–d. Based on the analysis in
Sect. 6.2, the external compression rate ˙̄ε22 = 0.000943 1/s
was applied in order to reduce the influence of exponent r .
The most essential conclusion is that for the parameter val-
ues up to approximately r = 100 the bands are not observed.
They form in the case of approximately r = 120, and for
r = 150 they are clearly observed and become a permanent
element of the solution, as in the case of the results for the
incremental energyminimization algorithm (EM), Fig. 6e–h.
In the analysed examples of plane-strain compression calcu-
lated by the rate-independent algorithm (EM), only for the
larger maximum strain increment 	ε̄22max = 10−2 defor-
mation bands are not observed, Fig. 6e, but for the remaining
step sizes the bands of a similar character appeared.

The computation CPU time and the deformation character
for different FE mesh density (from 10 × 10 to 160 × 160),
exponents r = 20, 50, 100, 150 and maximal deformation
steps 	ε̄22max = 10−4 and 10−3 are summarized in Table 5.
For the exponent values up to approximately r = 100 the
bands are not observed independently of the FEmesh density
and of the length of maximal strain increment. Deformation
bands appear for computations with the exponent r = 150
(bands are also observed for r = 100 but for finermeshes and
a larger strain increment) but their character may be different
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and depends largely on the FE mesh density and the step
length. CPU time for the exponent r = 150, where bands
has been formed, can be compared with CPU time for the
rate-independent algorithm EM given in Table 4. It can be
seen that for coarse FEmeshes up to 40×40 the CPU time of
RDandEMcomputations is comparable, orRD takes slightly
less time, but for finer FE meshes 80× 80 and 160× 160 the
EM computations are faster than RD.

Computations for various maximum strain increments
	ε̄22max = 10−2 ÷ 10−5 have been performed in order
to investigate the effect of this parameters on the forma-
tion of deformation bands using the RD algorithm, Fig. 7.
The simulations were performed for FE mesh 40 × 40 and
with exponent r = 150. The results of simulations for a step
length of 	ε̄22max = 10−2 do not show clear deformation
bands and are not included here. Simulations for step length
	ε̄22max = 10−3 show the formation of vertical bands, of
a different nature than in the (EM) case, cf. Fig. 3, where
both vertical and horizontal bands occurred and were much
more dense. Distribution of slip-system shear |γ 3| for the RD
algorithm, shown in Fig. 7b, e, h, can be compared with shear
γ 6 for the rate-independent ED algorithm, cf. Figure 3b, e,
h. Computations for shorter step lengths 	ε̄22max = 10−4

and 10−5 consistently form vertical deformation bands, with
the width of the bands comparable to the size of the FE ele-
ments. The fields of total accumulated slip γ for analysed
step lengths are quite uniform despite visible non-uniform
character of deformation bands, Fig. 7c, f, i.

Computations were also repeated for more dense meshes
80 × 80 and 160 × 160, using exponent r = 150 and step
size 	ε̄22max = 10−4. The bands with alternate activity of
different slip systems are formed, similarly to Fig. 7d, e and
are therefore not shown here. In comparison to the previ-
ous results in Fig. 7f, the total accumulated slip γ is more
uniform. Both meshes produce vertical bands which become
finer with the increasing FE mesh density. As expected, rate
sensitivity does not provide regularization in this respect.
However, as shown in the next section, the ‘macroscopic’
response is almost insensitive to themesh density if the bands
have appeared.

6.3.3 Deformation band formation: Discussion

The emergence of bands with alternating activity of different
slip systems is obviously related to different deformations in
the bands, as illustrated in Fig. 8.

Two basic observations result from the simulations per-
formed:
(i) Under conditions that could result in perfectly uniform
strain, a deformation band pattern spontaneously emerges in
the case q > 1 if the numerical factors discussed below allow
it.
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Fig. 5 Plane-strain compression in case ω = 0 calculated by the incremental energy minimization algorithm (EM) for maximum strain increment
	ε̄22max = 10−3 and FE mesh a, b 80×80 and c, d 160×160. a, c Accumulated slip γ 1 and b, c total accumulated slip γ for final strain ε̄22 = 0.1

Fig. 6 a–d Slip-system shear |γ 1| calculated for plane-strain com-
pression in case ω = 0 at final strain ε̄22 = 0.1 using the
rate-dependent algorithm (RD) for selected values of exponent r =
20, 50, 100, 120, 150 and maximum strain increment 	ε̄22max =

10−4. e–h For comparison, slip-system shear γ 1 calculated by the
rate-independent algorithm (EM) for selected values of increment
	ε̄22max = 10−2 − 10−5. The simulations have been performed for
FE mesh density 40 × 40
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Table 5 Summary of CPU time
and deformation character for
computations using the
rate-dependent algorithm (RD)

FE mesh 	ε̄22max Exponent r CPU time Deformation character

10 × 10 10−4 20 1m 23s Uniform deformation

40 × 40 3m 51s

80 × 80 11m 43s

160 × 160 48m 31s

10 × 10 10−3 20 8s Uniform deformation

40 × 40 24s

80 × 80 1m 16s

160 × 160 5m 11s

10 × 10 10−4 50 1m 21s Uniform deformation

40 × 40 3m 42s

80 × 80 12m 17s

160 × 160 48m 52s

10 × 10 10−3 50 8s Uniform deformation

40 × 40 24s

80 × 80 1m 23s

160 × 160 6m 15s

10 × 10 10−4 100 1m 14s Uniform deformation

40 × 40 3m 35s

80 × 80 16m 55s

160 × 160 3h 6m 49s

10 × 10 10−3 100 9s Uniform deformation

40 × 40 1m 13s

80 × 80 29m 33s Vertical bands

160 × 160 5h 31m 24s Vertical bands

10 × 10 10−4 150 1m 27s Horizontal bands

40 × 40 7m 7s Vertical bands

80 × 80 48m 28s Vertical bands

160 × 160 8h 39m 44s Vertical bands

10 × 10 10−3 150 14s Horizontal bands

40 × 40 2m 33s Horizontal and vertical bands

80 × 80 1h 0m 53s Horizontal and vertical bands

160 × 160 6h 26m 26s Horizontal and vertical bands

The effect of FE mesh density, strain-rate sensitivity and maximum strain increment on the formation of
deformation bands in plane-strain compression in case ω = 0 at final strain ε̄22 = 0.1

(ii) In the case of plane-strain compression, which could lead
to the uniform activity of two effective slip systems {1, 6}, the
deformation domain is covered by two families of vertical or
horizontal bands, with one slip system predominant in one
family of bands and the other slip system predominant in
another family of bands.

Observation (i) can be explained by referring to the so-
called yield-vertex effect. Consider a cross-section of the
current yield surface f K = 0 in stress space in vicinity of
the corner formed by the two segments corresponding to the
currently equally active two slip systems, say for K = 1, 6.
In accordance with a general analysis of uniqueness [73],
fulfillment of the condition det(hKL

eff ) < 0, which reduces
here to q > 1 for h > 0, implies that a further increment in

compressive stress, 	σ22, can be associated with the incre-
mental activity of both slip systems or only one slip system.
In the latter case, if the self-hardening of one active slip sys-
tem is less than latent hardening of the other slip system due
to q > 1, the other slip system undergoes unloading and
becomes inactive. If this is associated with a local change in
the direction of strain increment which can be kinematically
compatible with neighbouring elements in the discretization
scheme used, then it can lead to non-uniform deformation.

The explanation for observation (ii) is related to the ques-
tion of whether such a local change in the direction of strain
incrementmentioned above can be accommodated by the sur-
rounding material elements during FE computations. In the
plane strain problem under consideration, this can be done in
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Fig. 7 Results for plane-strain compression in case ω = 0 calculated
by the rate-dependent algorithm (RD) with exponent r = 150 at final
strain ε̄22 = 0.1 for FE mesh 40 × 40. a, d, g Slip-system shear |γ 1|,

b, e, h |γ 3|, and (c, f, i) total accumulated slip γ for maximum strain
increment (a–c) 	ε̄22max = 10−3, (d–f) 	ε̄22max = 10−4 and (g–i)
	ε̄22max = 10−5, respectively

two ways: (a) for vertical bands and (b) for horizontal bands,
which follows from the requirement of equal longitudinal
strain of the band interface from both sides. Due to the sym-
metries involved, it is clear, even without calculation, that
both kinematic and statical consistency is preserved in each
case (a) or (b), thus completing the explanation of (i) above.
In the small strain formalism used, the horizontal and verti-
cal orientations are equivalent because the total stress itself
is not present in the incremental formulation of the banding
problem.

Based on the FE calculations performed, several factors
that determine whether bands form or not can be specified as
follows.

The basic factor, as explained above, is the latent-to-self
hardening ratio q > 1; in simulations with q < 1, no defor-
mation bands were observed in the FE simulations carried
out.

Another factor is the orientation of the crystallographic
lattice with respect to the applied loading scheme, because
at least two slip systems need to be activated simultaneously
for the yield-vertex effect to occur, cf. the explanation to (i).

If these two conditions are satisfied then the spontaneous
formation of band microstructure can be triggered by numer-

ical inaccuracies that are inevitable during calculations. It is
emphasized that the computational model used in this work
does not have an implemented laminate at the local level of
an integration point or any built-in artificial imperfections.

As the essential specific outcome of the FE calculations
performedusing the rate-dependent algorithm (RD), a thresh-
old valueof the rate sensitivity exponentm has been identified
as r = 1/m = 100 ÷ 150. At values of r below this range
(higher rate-sensitivity), no bands were observed. Together
with the other factors discussed above, thismayhelp to under-
stand why deformation banding is not a common feature in
field simulations of the rate-dependent deformation of metal
single crystals reported so far in the literature.

The next factor is the type of the FE mesh used in the sim-
ulations, here with a square element shape and biquadratic
shape functions with (3 × 3) Gauss quadrature points. It is
difficult to clearly determine the FE mesh density needed
for the band formation. The influence of the deformation
step length was also observed. However, since adaptive time
step control was used in FE calculations, the deformation
step lengths given here refer to their maximum allowable
values. In the case of simulations performed for a larger
strain step 	ε̄22max = 10−2, bands were not created. Bands
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Fig. 8 Plane-strain compression in case ω = 0 calculated by the rate-
independent (EM) algorithm formaximum strain increment	ε̄22max =
10−3 and final strain ε̄22 = 0.1. Fields of plastic strain ε

p
12 for FE mesh

a 40× 40 (results from Fig. 3a–c) and b 80× 80 (results from Fig. 5a,
b)

were formed for step length 	ε̄22max = 10−3 or smaller. In
the analyzed examples, the final compressive strain does not
exceed 0.1.

If the conditions characterized above for formation of
deformation bands are satisfied, then the width of individ-
ual bands is strongly correlated with the mesh density in the
FE simulations. This has been expected because the mate-
rial model used has no internal length scale. However, an
important general observation is the following:
(iii) The overall response of the crystal, represented by the
average stress versus average strain curve, is insensitive to
the mesh density.

This is visualized in Fig. 9, where the macroscopic
stress–strain curves have been calculated and compared
for selected FE mesh densities: 202, 402, 802, 1602, for
the rate-independent incremental energy minimization algo-
rithm (EM) in Fig. 9a and the rate-dependent algorithm (RD)
with exponent r = 150 in Fig. 9b. The curves for dif-
ferent mesh densities are almost identical, even in case of
the EM algorithm, although for meshes 202 and 1602 the
resulting microstructures are significantly different. For both
algorithms it can be concluded that the macroscopic stress–
strain curve for the plane strain compression is practically

Fig. 9 The average stress versus average strain curve in plane-strain
compression in case ω = 0 is insensitive to the mesh density among
the selected FE mesh densities: 202, 402, 802, 1602. The stress–strain
curves were calculated by a the rate-independent incremental energy
minimization algorithm (EM) and by b the rate-dependent algorithm
(RD) with exponent r = 150, both using maximum deformation
increment	ε̄22max = 10−4. The additionally inserted fields of the slip-
system shear γ 1 correspond to the outermost meshes, 202 and 1602, for
final strain ε̄22 = 0.1

independent of the mesh density provided the conditions for
the band formation have been satisfied. As it can be seen
by comparison with Fig. 2a, the macroscopic curve in the
case of deformation banding lies lower than that for uniform
strain, independently of the mesh density. The reason for
this is clear: splitting the double slip into single-slip domains
reduces the overall hardening because the self-hardening of
one slip system is less than the simultaneous cross-hardening
of both slip systems in the case q > 1.

To verify band patterning conditions under circumstances
not limited to the macroscopically uniform plane strain
compression with FE mesh aligned bands, additional 2D
examples are examined in the following sections.
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Fig. 10 Plane-strain compression of the sample clamped in rigid grips
in caseω = 0 calculated by incremental energyminimization algorithm
(EM) for maximum average strain increment 	ε̄22max = 10−3 and FE
mesh 40×200. Distribution of slip-system shear a γ 1, b γ 6, and c total

accumulated slip γ . d Scheme of the compressed sample clamped in
grips with the area shown in the adjacent figures marked by a dashed
rectangle

6.4 Plane-strain compression of the sample clamped
in rigid grips in case! = 0

Plane-strain compression in the vertical direction (x2) is
simulated in case of orientation ω = 0. In contrast to the
example from Sect. 6.3, the sample with a height-to-width
ratio of 5 is now clamped in rigid grips as illustrated in
Fig. 10d. The upper and lower grips have a height equal
to one third of the total height of the sample. In the calcu-
lations, the upper grip is vertically lowered while the lower
grip remains fixed. The final average vertical strain ε̄22 = 4%
is achieved by deformation with the maximum deforma-
tion step 	ε̄22max = 10−3. Square elements and regular
FE meshes of various density were used, but the graphs are
shown for 40× 200 mesh as an illustrative result. Due to the
rigid grips, the deformation is concentrated in the central part
of the sample and therefore only the central part, amounting
to 0.4 of the total height, is shown in Figs. 10 and 11.

Computations were performed using the incremental
energy minimization algorithm (EM), Fig. 10; and the rate-
dependent algorithm (RD) with exponent r = 150 and the
average compression rate ˙̄ε22 = 0.000945 1/s of the section
between the grips, Fig. 11.

The differences in the results of theEMandRDalgorithms
are more visible in this example. First of all, the number of
bands and their width are different, the EM algorithm reveals
manymore of them and they are narrower than the bands gen-
erated by the RD algorithm. Additionally, the EM algorithm
gives also horizontal bands, while in the case of RD they
are not clearly visible, although not excluded for finer FE
meshes. This latter observation is consistent with the results
from the previous Sect. 6.3, where vertical bands also domi-
nated for plane-strain compression for the RD algorithm.

The computation CPU time and the deformation character
for both algorithms and various FE mesh density are sum-
marized in Table 6.

6.5 Examples for the lattice orientation! = �/4

In this section, results of three types of simple shear compu-
tations are reported, all in the case of orientation ω = π/4
shown in Fig. 1b, which can lead to shearing on two slip-
systems {1, 6} as in Sect. 6.3. However, due to different
mutual orientation of the crystal and the FE mesh and the
differently imposed boundary conditions, the deformation
banding pattern is different. Computations reported here have
been performed for themaximum increment of imposed aver-
age simple shear γ̄12 = 2ε̄12 equal to 	γ̄12max = 10−3.

Simulations of simple shear γ̄12 for orientation ω = 0
are not illustrated because they did not contain visible defor-
mation bands, regardless of the algorithm or the FE mesh
density used.

6.5.1 Macroscopically uniform simple shear,! = �/4

The term macroscopically uniform in the title of this Section
refers only to the boundary conditions and not to the resultant
deformation characterwith orwithout bands.Auniformchar-
acter of deformation discussed in Sect. 6.2 has been obtained
using boundary conditions specified in this Section but for a
more coarse FE mesh.

Macroscopic simple shear is imposed by moving the top
edge in the horizontal direction (x1) while the bottom edge is
clamped. In addition, both lateral vertical edges are assumed
here to remain rectilinear while changing slope. The square
sample is deformed up to the ratio of top edge displacement
to sample height equal to 0.1.
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Fig. 11 Plane-strain compression of the sample clamped in rigid grips in case ω = 0 calculated by rate-dependent algorithm (RD) with exponent
r = 150 for maximum average strain increment 	ε̄22max = 10−3 and FE mesh 40 × 200. Distribution of slip-system shear a |γ 1|, b |γ 3|, and c
total accumulated slip γ

Table 6 Summary of the CPU
time and deformation character
for plane-strain compression of
the sample clamped in rigid
grips in case ω = 0

FE mesh CPU time for 	ε̄22max = 10−3 Deformation character

Incremental energy minimization algorithm (EM)

20 × 100 8m 48s vertical bands

30 × 150 19m 55s vertical and horizontal bands

40 × 200 39m 28s vertical and horizontal bands

50 × 250 1h 5m 25s horizontal bands

Rate-dependent algorithm (RD)

20 × 100 7m 15s vertical bands

30 × 150 26m 16s vertical bands

40 × 200 1h 15m 23s vertical bands

50 × 250 2h 55m 6s vertical bands

Computations have been performed using the incremental energy minimization algorithm (EM) and the rate-
dependent algorithm (RD) with exponent r = 150. Calculations with maximum strain increment 	ε̄22max =
10−3 up to final average strain ε̄22 = 0.04, for both algorithms. The effect of FEmesh density on the formation
of deformation bands is shown

Computations were performed by the incremental energy
minimization algorithm (EM), illustrated in Fig. 12, and
by the rate-dependent algorithm (RD) with the exponent
r = 150 and macroscopic shear rate ˙̄ε12 = 0.000943 1/s,
shown in Fig. 13. The differences in results are better visible
for a finer FE mesh. The RD algorithm gives a more regu-
lar character of deformation bands in contrast to disordered
appearance of bands for EM algorithm.

Resulting deformation character andCPU time for various
FE meshes, additionally including 160× 160 mesh, summa-
rized in Table 7, are similar for both algorithms, although
the RD algorithm gives a more regular bands in contrast to
disordered bands for EM algorithm. In this example, CPU
time is even shorter for the RD algorithm compared to the
EM algorithm.

Similar results of both algorithms have been obtained for
a smaller step of simple shear 	γ̄12max = 10−4. The results
are not included in this paper.

It can be expected that the shape of mesh elements can
influence the character of the bands. This can be observed
by comparing the plane-strain compression results, where
the bands are parallel to the grid lines, with the shear tests
results above, where the bands are not aligned with the grid
lines and their width is not equal to the size of the element.
The computations repeated for the same data as in Fig. 12a, b
but for the unstructured triangularmesh (not shown), are very
similar to Fig. 12a, b, but this may not be the case in general.
The issue of the influence of the mesh type on the formation
of deformation bands requires a separate investigation.

6.5.2 Non-uniform simple shear,! = �/4

As above, the top edge is moved in the horizontal direction
(x1) and the bottom edge is clamped, but the lateral edges
are now free. As in the previous Section, the final ratio of top
edge displacement to sample height is equal to 0.1.
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Fig. 12 Macroscopically uniform simple shear in case ω = π/4 cal-
culated by incremental energy minimization algorithm (EM) for the
maximum increment of average simple shear 	γ̄12max = 10−3 and

final macroscopic strain ε̄12 = 0.05. Slip-system shear a, d γ 1, b, e γ 6

and (c, f) total accumulated slip γ for FE mesh a–c 40 × 40 and d–f
80 × 80

Fig. 13 Macroscopically uniform simple shear in case ω = π/4 cal-
culated by rate-dependent algorithm (RD) with exponent r = 150 for
the maximum increment of average simple shear 	γ̄12max = 10−3 and

final macroscopic strain ε̄12 = 0.05. Slip-system shear a, d |γ 1|, b, e
|γ 3| and c, f total accumulated slip γ for FE mesh a–c 40× 40 and d–f
80 × 80

The results of computations made using the rate-indepen-
dent (EM) algorithm show the formation of diagonal uni-
directional bands in the middle of the sample as in Fig. 14.
This character of the bands is observed during simulations
with various FE mesh densities, in the analysed range from
40 × 40 to 160 × 160, as noted in Table 8.

Computations for rate-dependent algorithm (RD) have
been performed using exponent r = 150 and macroscopic

shear rate ˙̄ε12 = 0.000943 1/s. The results show formation
of crossed bidirectional bands in the middle of the sample,
visible in Fig. 15. For the finer FE mesh 100 × 100, as well
as for a mesh 160 × 160, the deformation band character in
the center of the sample is somewhat different than for the
EM results. The differences are not very significant and they
are not observed for the coarser FE mesh, cf. Table 8.
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Table 7 Summary of the CPU
time and deformation character
for the results of the
macroscopically uniform simple
shear in case ω = π/4 using the
incremental energy
minimization algorithm (EM)
and the rate-dependent
algorithm (RD) with exponent
r = 150

FE mesh CPU time for 	γ̄12max = 10−3 Deformation character

Incremental energy minimization algorithm (EM)

40 × 40 6m 5s Predominant diagonal unidirectional bands

80 × 80 36m 46s Disordered fields of diagonal bands

160 × 160 3h 43m 8s Disordered fields of diagonal bands

Rate-dependent algorithm (RD), r = 150

40 × 40 3m 32s Predominant diagonal unidirectional bands

80 × 80 18m 5s Regular fields of diagonal bands

160 × 160 2h 9m 46s Regular fields of diagonal bands

Calculations with the maximum increment of average simple shear 	γ̄12max = 10−3 up to final strain
ε̄12 = 0.05, for both algorithms. Effect of FE mesh density on the formation of deformation bands

Fig. 14 Simple shear in case of orientation ω = π/4 calculated by the incremental energy minimization algorithm (EM) for FE mesh 100 × 100
and maximum simple shear increment 	γ̄12max = 10−3. Slip-systems shear a γ 1, b γ 2, c γ 5 and d γ 6 for final strain ε̄12 = 0.05

Table 8 Summary of the CPU
time and deformation character
in the simple shear in case of
orientation ω = π/4

FE mesh CPU time for 	γ̄12max = 10−3 Deformation character

Incremental energy minimization algorithm (EM)

40 × 40 4m 27s Unidirectional diagonal bands in the middle

80 × 80 20m 17s Unidirectional diagonal bands in the middle

100 × 100 43m 11s Unidirectional diagonal bands in the middle

160 × 160 2h 13m 50s Unidirectional diagonal bands in the middle

Rate-dependent algorithm (RD), r = 150

40 × 40 4m 49s Unidirectional diagonal bands in the middle

80 × 80 29m 17s Unidirectional diagonal bands in the middle

100 × 100 1h 39m 7s Bidirectional diagonal bands in the middle

160 × 160 5h 10m 27s Bidirectional diagonal bands in the middle

The effect of FE mesh density on the formation of deformation bands using the incremental energy mini-
mization algorithm (EM) and the rate-dependent algorithm (RD) with exponent r = 150. Calculations with
maximum simple shear increment 	γ̄12max = 10−3 up to final strain ε̄12 = 0.05, for both algorithms

Fig. 15 Simple shear in case of orientation ω = π/4 calculated by the rate-dependent algorithm (RD) with exponent r = 150 for FE mesh
100 × 100 and maximum simple shear increment 	γ̄12max = 10−3. Slip-systems shear a |γ 1|, b |γ 2| and c |γ 3| for final strain ε̄12 = 0.05
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For both algorithms (EM) and (RD), it can be noticed that
as the mesh becomes denser, the number of bands increases,
but this increase is not as large as in the case of plane-strain
compression. In the case of bands formed during simple
shear, they are oriented non-parallel to the FE grid and there-
fore their character is less correlated with the mesh density.
The computation CPU time and the deformation character
for various FE mesh densities are summarized in Table 8, for
both element types. The EM algorithm is clearly less time
consuming for finer FE meshes, e.g. 160 × 160.

6.5.3 Macroscopic simple shear with compression,
! = �/4

In order to calculate a slightly more complex deformation
process, simulation of simple shear in the horizontal direc-
tion (x1) is realized with additional compression in vertical
direction (x2), while the bottom edge is clamped as previ-
ously. The geometry of the sample is the same as in the
previous Sections. The final ratio of the horizontal displace-
ment of top edge to sample height is equal to 0.1, now with
the additional vertical displacement to height ratio of 0.05.
This additional vertical compression resulted in a different
character of the band.

The results of computations made using incremental
energy minimization algorithm (EM) for different FE mesh
density show formation of nearly vertical or horizontal bands

in the middle part of the sample, as shown in Fig. 16. If a
coarser FE mesh is used, e.g. 40 × 40, the bands are nearly
vertical, but if a finer mesh is used, e.g. 80× 80, only nearly
horizontal bands are obtained. The field of γ 1 is almost uni-
form except near the boundary, and therefore not shown.

Computations using the rate-dependent algorithm (RD)
were performed as in the previous sectionswith exponent r =
150 and for the macroscopic shear rate ˙̄ε12 = 0.000943 1/s,
cf. Fig. 17. The results of RD algorithm computations col-
lected in Table 9 consistently show the formation of nearly
vertical bands in the central part of the sample, regardless the
values of exponent r or the density of the FEM mesh.

Similar character of vertical bands has been obtained for
various values of the exponent r = 50, 150, 300 for FEmesh
size 200 × 200, 150 × 150, 300 × 300, respectively, and
maximum simple shear increment	γ̄12max = 10−3. Similar
results were also obtained for larger values of exponent r =
300, 800 and 1000 calculated with FE mesh density 40× 40
andmaximumsimple shear increment	γ̄12max = 10−4. The
same character of the results was also found for a finer mesh
e.g. 100 × 100, 200 × 200 and 300 × 300 with exponent
r = 150 and different values of the maximum simple shear
increment 	γ̄12max = 10−4 and 	γ̄12max = 10−2.

In this example it can be summarized that for finer
meshes a different character of the resulting microstructures
is obtained for the incremental energy minimization algo-
rithm (EM) and for the rate-dependent algorithm (RD). The

Fig. 16 Macroscopic simple shear with compression in case of ω =
π/4 calculated by the incremental energyminimization algorithm (EM)
formaximum simple shear increment	γ̄12max = 10−3 up to final strain

ε̄12 = 0.05 and ε̄22 = −0.05. Slip-systems shear a, c γ 2 and b, c γ 6

calculated for FE mesh a, b 40 × 40 and c, d 80 × 80
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Fig. 17 Macroscopic simple shear with compression in case of ω =
π/4 calculated by the rate-dependent algorithm (RD) with exponent
r = 150 to final strain ε̄12 = 0.05 and ε̄22 = −0.05 with maximum

simple shear increment 	γ̄12max = 10−3. Slip-systems shear a, c |γ 2|
and b, c |γ 3| calculated for FE mesh a, b 40 × 40 and c, d 80 × 80

Table 9 Summary of the CPU
time and deformation character
for the results of the simple
shear with compression in case
ω = π/4 using incremental
energy minimization algorithm
(EM) and rate-dependent
algorithm (RD) with exponent
r = 150

FE mesh CPU time for 	γ̄12max = 10−3 Deformation character

Incremental energy minimization algorithm (EM)

40 × 40 5m 58s Nearly vertical bands

80 × 80 29m 42s Nearly horizontal bands

100 × 100 50m 1s Nearly horizontal bands

160 × 160 2h 42m 7s Nearly horizontal bands

Rate-dependent algorithm (RD), r = 150

40 × 40 6m 59s Nearly vertical bands

80 × 80 53m 4s Nearly vertical bands

100 × 100 1h 46m 40s Nearly vertical bands

150 × 150 7h 36m 55s Nearly vertical bands

160 × 160 9h 41m 44s Nearly vertical bands

Calculations with maximum simple shear increment 	γ̄12max = 10−3 up to final strain ε̄12 = 0.05 and
ε̄22 = −0.05, for both algorithms. Effect of FEM mesh density on the formation of deformation bands

latter gives nearly vertical deformation bands independently
of the FE mesh density, while the EM algorithm gives nearly
horizontal deformation bands for finer meshes and vertical
bands only for a sparse FE mesh, cf. Table 9.

6.5.4 Computations with constant deformation step for
plane-strain compression in case! = �/4

Finally, in order to compare the calculation CPU time for
the algorithms EM and RD without using the FE adaptive
time step control, simulationswere performedwith a constant

deformation step from the range 	ε̄22 = 10−6 ÷ 10−2. For
both algorithms, plane-strain compression was performed in
case of orientation ω = π/4. The dimensions, geometry and
the boundary conditions of the sample were the same as in
Sect. 6.3, the mesh density was 20× 20. For compression in
this orientation, a single slip-system γ 5 is active in the entire
sample and the deformation is practically uniform, with no
visible bands. In the case of the rate-dependent algorithm
(RD) with 	ε̄22 = 10−5, calculations were performed for
several different values of exponent r = 10, 20, 50, 100 as
shown in Table 10. For the smaller step size, CPU times for
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Table 10 Summary of the CPU
time for uniform plane-strain
compression in case ω = π/4
with constant deformation step
using the incremental energy
minimization algorithm (EM)
and the rate-dependent
algorithm (RD)

	ε̄22 CPU time 	ε̄22 CPU time
Incremental energy minimization (EM) Rate-dependent algorithm (RD)

10−6 3h 50m 48s 10−6 4h 26m 18s for r = 100

10−5 13m 46s 10−5 19m 35s average for r = 10, 20, 50, 100

10−4 1m 21s 10−4 19m 28s for r = 10

10−3 11 s 10−3 No convergence for r ≥ 10

10−2 2 s 10−2 No convergence for r ≥ 10

Computations for FE mesh density 20 × 20 and final compressive strain ε̄22 = 0.1

both algorithms are comparable, with a slight advantage of
theEMalgorithm.However, for the largest constant deforma-
tion steps	ε̄22 = 10−3 and 10−2, the RD algorithm caused a
convergence issue even for small values of exponent r ≥ 10,
while the EM algorithm worked effectively.

7 Conclusions

Spontaneous formation of deformation bands has been
observed in the plane-strain FE simulations of single crys-
tal plasticity at small strain. This has been attributed to the
yield-vertex effect in the case when the latent-hardening
of slip systems is higher than the self-hardening. The new
observation is that this source of deformation banding was
activated only due to numerical inaccuracies in the FE sim-
ulations, without introducing artificial imperfections or any
mechanism favouring deformation banding in the numerical
code.A characteristic feature of the deformation band pattern
obtained for various plane-strain examples was the appear-
ance of regions with two families of bands with alternating
activity of a single (effective) slip system. Such deforma-
tion banding, activated by numerical inaccuracies in the FE
simulations, can be interpreted as a symptom of the inher-
ent instability of uniform deformation of the material model
used, which is consistent with the experimentally observed
mechanism of plastic deformation in metal single crystals.

In the examined case of macroscopically uniform plane-
strain compression, the banding pattern corresponds to the
lower global deformation work than uniform straining and
can therefore be assigned a physical significance. The bands
appeared spontaneously, also for the rate-dependent mate-
rial model. However, in general, the generated band pattern
is not unique, so the need for global incremental energy min-
imization (in the potential case) has not been completely
eliminated.

It has been found that numerical inaccuracies are suffi-
cient to trigger the banding instability when the inverse of
the strain-rate sensitivity exponent m is not less than 150 (or
infinity in the rate-independent limit). Moreover, roughly,
when the time step corresponds to macroscopic strain incre-
ment 10−3 or lower, and the mesh resolution is sufficiently

fine (e.g. 30 × 30) to detect bands that are not aligned with
the grid lines.

These numerical conditions for activation of deformation
banding should be considered as indicative only, as they have
been identified for the specificplane-strain examples andmay
depend on many other factors, e.g., the use of biquadratic
shape functions with (3 × 3) Gauss quadrature points or the
algorithm used. Nevertheless, they help to understand why
the banding pattern has not been widely observed in FE sim-
ulations before.

An important general observation is that the overall
response of the crystal, represented by the average stress
versus average strain curve in plane strain compression, is
insensitive tomeshdensity. Thus, in contrast to simulations of
a single shear band triggered bymaterial softening, themesh-
dependence of the width of individual deformation bands is
not so crucial here.

For a rate-independent single crystal, an algorithm for
selection of active slip-systems at theGauss point level, based
on non-convex minimization of incremental work using the
trust region approach and the augmentedLagrangianmethod,
has been developed and effectively used in the FE calcula-
tions. The implemented algorithm may be a good alternative
to other algorithms encountered in the literature.
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