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Abstract
Spatially-resolved modeling of deformation twinning and its interaction with plastic slip is achieved by coupling the phase-
field method and crystal plasticity theory. The intricate constitutive relations arising from this coupling render the resulting
computational model prone to inefficiencies and lack of robustness. Accordingly, together with the inherent limitations of
the phase-field method, these factors may impede the broad applicability of the model. In this paper, our recent phase-
field model of coupled twinning and crystal plasticity is the subject of study. We delve into the incremental formulation
and computational treatment of the model and run a thorough investigation into its computational performance. We focus
specifically on evaluating the efficiency of the finite-element discretization employing various element types, and we examine
the impact of mesh density. Since the micromorphic regularization is an important part of the finite-element implementation,
the effect of the micromorphic regularization parameter is also studied.

Keywords Deformation twinning · Microstructure · Phase-field method · Crystal plasticity · Finite element method

1 Introduction

The phase-field method is an effective computational appr-
oach that has been actively used in the last few decades
to model and study the microstructure evolution in various
material processes. These include, but are not limited to,
solidification and grain growth [e.g., 1–5], displacive phase
transformation [e.g., 6–9] and ferroelectric/ferromagnetic

We dedicate this paper to Professor Jörg Schröder on the occasion of
his 60th birthday, with which we would like to honour his notable
contributions to the mechanics community. The numerous scientific
achievements of Jörg Schröder include those related to refined
constitutive modelling of complex materials and to development of
efficient finite-element formulations for variety of problems. Both
aspects are addressed in our work on phase-field modelling of
deformation twinning and crystal plasticity.

B Stanisław Stupkiewicz
sstupkie@ippt.pan.pl

Przemysław Sadowski
psad@ippt.pan.pl

Mohsen Rezaee-Hajidehi
mrezaee@ippt.pan.pl

1 Institute of Fundamental Technological Research (IPPT),
Polish Academy of Sciences, Pawińskiego 5B, 02-106
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phase separation [e.g., 10–13], see also the recent review [14].
The strength of the phase-field method lies in its ability to
model complex microstructural patterns without the explicit
tracking of the microstructural interfaces. In the context of
theAllen–Cahn-type phase-fieldmodels, eachmaterial phase
is characterized by a non-conserved order parameter which
typically represents the phase volume fraction. The evolu-
tion of the order parameters, and thus the evolution of the
material interfaces, is then described by the time-dependent
Ginzburg–Landau equation which drives the system towards
an energy-minimizing configuration [15].

On the computational side, the phase-field method neces-
sitates the use of a reasonably fine computational grid in
order to properly resolve the diffuse interfaces and describe
the interfacial energy effects, and thereby, to effectively cap-
ture the subtle microstructural features. This computational
demand, which is more severe in the finite-element analysis
rather than in the FFT-based analysis, has often limited the
applications of the phase-fieldmodels to small computational
domains or excessively diffuse microstructures. In response
to this limitation, efforts have been directed towards devel-
opingmore advanced phase-fieldmodels that retain accuracy
while being computationally less restrictive, such as the sharp
phase-field method [16, 17], length-scale-insensitive phase-
field formulation [18], and the hybrid diffuse–semisharp
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approach [19], and also towards developing computational
frameworks that enable large-scale simulations [20–22].

On the other hand, the incorporation of various physi-
cal mechanisms responsible for microstructural changes into
the computational model can be achieved via integrating the
phase-field method with other theoretical approaches. The
combination of the phase-field method and crystal plastic-
ity theory constitutes a class of multi-physics models that
are intended to describe coupled micromechanical processes
such as deformation twinning and dislocation slip [23–25].
From the computational standpoint, the strong coupling
between the inelasticmechanisms introduces additional com-
plexities to the constitutive equations. Therefore, to ensure
the feasibility of the devised models, it is of particular impor-
tance to assess the computational performance and strive for
optimal efficiency. This is the subject of the present work.

Afinite-element-based phase-fieldmodel of coupled twin-
ning and crystal plasticity has been developed in our previous
work [26], which is specifically tailored to magnesium with
an HCP crystal structure. The formulation of the model is
based on the finite-deformation theory with a stretch-based
kinematics of the deformation twinning and its constitutive
relations assume a viscous evolution with a finite rate-
independent threshold on the thermodynamic driving forces.
The structure of the model follows the variational principle
and its finite-element implementation leverages the aug-
mented Lagrangian treatment of themixed-type (viscous and
rate-independent) evolution laws and the micromorphic reg-
ularization. The latter allows to restructure the model into
a global–local problem and thus significantly facilitates the
finite-element implementation.

The theoretical foundation of the model has been exten-
sively discussed in [26] and the capability of the model in
capturing the essential features of the twin microstructures
has been demonstrated. However, limited attention has been
devoted to the incremental formulation of the model and to
its finite-element treatment. In the present paper, the related
aspects are discussed in detail.

Secondly, we thoroughly examine the performance of
the resulting computational model. We focus particularly
on the efficiency and accuracy of the finite-element dis-
cretization employing different element types and on the
impact of mesh density on the simulation results. To our
knowledge, these aspects have not been systematically inves-
tigated in the framework of phase-field models coupled with
crystal plasticity. In fact, even in the broader context of stan-
dard phase-field modeling, the related aspects are seldom
explored, see [27]. At the same time, special attention has
been given to the proper averaging of the material proper-
ties and to the calculation of the mechanical fields within the
diffuse interfaces [28–32].

A notable feature of our implementation is the use of the
penalty method for the micromorphic regularization, rather

than the Lagrange-multiplier method, as adopted in [33]. As
such, we also examine the effect of the micromorphic regu-
larization parameter on the computational performance and
simulation results.

Our simulations employ a setup of four differently-
oriented grains. This setup, though relatively simple, enables
us to capture effectively the twin nucleation, twin transmis-
sion through the grain boundaries, and most importantly,
the complex interaction between twinning and plastic slip.
Hence, it is considered as a reasonably sophisticated repre-
sentative example to test the computational performance in
different settings.

The paper is organized as follows. It begins with the pre-
sentation of the model in Sect. 2. In Sect. 3, the incremental
formulation of the model is discussed in detail, followed by
its computational treatment and finite-element implementa-
tion. Finally, the results of a comprehensive computational
study are presented and discussed in Sect. 4.

2 Phase-fieldmodel of deformation
twinning and crystal plasticity

In this section, the recently-developed finite-strain phase-
field model of coupled twinning and crystal plasticity is
briefly presented as a basis for the subsequent discussion
of its incremental formulation and finite-element treatment
in Sect. 3. For a more detailed background, argument and
discussion, the reader is referred to [26].

2.1 Preliminaries

In the finite-deformation framework adopted in this work,
the basic kinematic quantity is the deformation gradient,
F = ∇ϕ, defined as the gradient (taken in the reference
configuration) of the deformation mapping ϕ that takes a
material point from the reference configuration to the current
configuration. The deformation gradientF is multiplicatively
decomposed into its elastic part Fe and inelastic part Fin,

F = FeFin. (1)

In the present context, the inelastic deformation described
by Fin may result from deformation twinning and from plas-
tic slip in both the matrix and the twin, as detailed later. Prior
to the onset of twinning, plastic slip in the matrix is the only
mechanism of inelastic deformation, thus Fin = Fm, where
Fm results from the plastic deformation in the matrix and
is governed by the classical flow rule of crystal plasticity
(collective action of plastic slip on crystallographic slip sys-
tems in the matrix). If the twin boundary is treated as a sharp
(zero-thickness) interface, then a material point experiences
a strain jump as the twin boundary passes through it. Let
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Fig. 1 Scheme of the {101̄2}〈1̄011〉 tensile twinning in HCP crystal
structure of magnesium. a The (101̄2) and (1̄012) twin planes of two
conjugate twinning systems within the hexagonal unit cell. b Defor-
mation twinning modeled as a displacive transformation involving the

stretch Utw of the matrix lattice followed by a rigid-body rotation R(i)
tw .

c Three equivalent slip systems (one basal and two pyramidal) within
the (1̄21̄0) plane. For more details, see [26]

us denote the corresponding deformation gradient by Ftw.
Subsequently, this material point belongs to the twin (the
product phase of the twinning transformation), and further
inelastic deformation results from the plastic deformation
in the twin. This deformation is described by the respective
deformation gradientFp that is governed by the classical flow
rule of crystal plasticity, however, the slip systems are those
of the twin that are different from those of the matrix. The
inelastic deformation gradient takes then the following form:
Fin = FpFtwFm, where FtwFm is a fixed prior deformation
(Ḟm = 0, Ḟtw = 0) and only Fp evolves.

2.2 Stretch-based kinematics of deformation
twinning

Twinning is a deformation mechanism that is conventionally
described by simple shear on specific crystallographic twin-
ning systems. In most cases, in particular in HCP, FCC and
BCC crystals, twinning systems can be grouped into pairs of
conjugate twinning systems that have the same shear plane
and are crystallographically equivalent. Focusing on HCP
crystals (although the reasoning applies equally to FCC and
BCC crystals), let us consider one pair of conjugate twinning
systems indexed by i = 1, 2. To fix attention, consider the
{101̄2}〈1̄011〉 tensile twinning in magnesium and a pair of
conjugate twinning systems with the (101̄2) and (1̄012) twin
planes, as illustrated in Fig. 1a.

Denoting by m(i) and a(i) the unit vectors that specify,
respectively, the twin plane normal and the twinning shear
direction (m(i) · a(i) = 0), the deformation gradient describ-
ing the simple shear deformation associated with twinning
takes the form

F(i)
tw = I + γtwa

(i) ⊗ m(i), (2)

where γtw denotes the twinning shear [34],

γtw = α2 − 1

α
=

√
3a

c
− c√

3a
,

α =
√
3a

c
> 1, (3)

with c/a <
√
3 for magnesium.

Polar decomposition of the deformation gradient F(i)
tw into

a symmetric stretch tensor U(i)
tw and a rotation tensor R(i)

tw
yields

F(i)
tw = R(i)

twU
(i)
tw . (4)

It can be checked that the stretch tensors of the conjugate
twins are equal and that the rotation tensors are the inverse
of each other, thus

U(1)
tw = U(2)

tw = Utw,

R(1)
tw = (

R(2)
tw

)T = Rtw. (5)

Accordingly, we have

F(1)
tw = RtwUtw,

F(2)
tw = RT

twUtw. (6)

It follows that the two conjugate twinning systems, each char-
acterized independently by a simple shear mechanism, can
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be equivalently treated as a single deformation mechanism
characterized by a volume preserving stretch Utw. This for-
mulation is particularly beneficial in the case of phase-field
modeling of twinning since it leads to a reduced number of
order parameters (3 instead of 6 in HCP, 6 instead of 12 in
FCC and BCC) with an obvious reduction of the computa-
tional cost, considering that the order parameters are global
unknowns. Note that, upon adopting the stretch-based kine-
matics of twinning, the rotation (Rtw orRT

tw) which is needed
to achieve compatibility between the matrix and the twin is
naturally included in the elastic deformation gradient Fe in
Eq. (1) and becomes a part of the solution of the problem. It is
stressed that the above stretch-based kinematics of twinning
and the conventional shear-based kinematics are equivalent
in the sharp-interface framework, but they are not fully equiv-
alent in the diffuse-interface framework of the phase-field
method, see the detailed discussion in [26].While the conven-
tional shear-based kinematics dominates in the literature, the
stretch based kinematics has only a few applications, by Liu
et al. [35] in a small-strain phase-field model of twinning and
also more recently by Bruzy et al. [36] in a crystal-plasticity
model of plastic slip and twinning.

2.3 Diffuse-interface kinematics of plastic slip and
twinning

The presentation below is limited to the case of a single
twin deformation variant that represents two crystallographic
twinning systems, as discussed in Sect. 2.2. Concerning the
kinematics, the extension to the general case of several twin
variants is immediate, however, development and computer
implementation of the corresponding complete phase-field
model is more involved and will not be discussed here.

In the diffuse-interface framework of the phase-field
method, a continuous order parameter η is introduced such
that η = 0 represents the matrix, η = 1 represents the twin,
0 < η < 1 represents a diffuse matrix–twin interface, and η

satisfies the constraint 0 ≤ η ≤ 1.
Consider first the case of twinning only. Within a diffuse

interface, the inelastic deformation gradient Fin = Ftw must
be specified for the intermediate values of η between 0 and 1.
Here, the following logarithmic mixing rule is adopted [9],

Ftw(η) = exp(η logUtw), ḞtwF
−1
tw = η̇ logUtw, (7)

where the rate form (7)2 results from the property of the ten-
sor exponential: d

dt exp(tA) = A exp(tA) for an arbitrary
tensor A. Note that the above mixing rule preserves the vol-
ume, i.e., det Ftw = detUtw = 1 for 0 ≤ η ≤ 1.

In the general case of twinning and plasticity, consistent
with the logarithmic mixing rule (7), the following evolution

law for Fin is adopted [26],

Lin = ḞinF
−1
in = (1 − η)

ns∑

s=1

γ̇ s
ms

s
m ⊗ nsm

+ η

ns∑

s=1

γ̇ s
p s

s
p ⊗ nsp + η̇ logUtw, (8)

where the unit vectors ssm and nsm denote, respectively, the
slip direction and slip plane normal of the slip system s in
the matrix, γ̇ s

m denotes the corresponding slip rate, and ns is
the number of slip systems. Likewise, ssp, n

s
p and γ̇ s

p denote
the respective quantities in the twin (product). For η = 0 and
η̇ = 0, Eq. (8) reduces to the classical flow rule of crystal
plasticity in the matrix, and that for the twin is recovered for
η = 1 and η̇ = 0.

The vectors specifying the slip systems in the twin (ssp,
nsp) are related to those in the matrix (ssm, n

s
m) by a 180

◦ rota-
tion about vector t which is oriented at 45◦ with respect to
the basal plane, namely ssp = Rm→pssm and nsp = Rm→pnsm,
whereRm→p = 2t⊗t−I. In the Cartesian coordinate system
defined such that the x1 and x2 axes are oriented, respectively,
along the [1̄010] and [0001] crystallographic axes, the com-

ponents of vector t are
√
2
2 (±1, 1, 0)C, see [26] for details.

2.4 Free energy and dissipation potential

The total (isothermal) free energy ψ comprises the elastic
strain energy ψe, the stored plastic energy ψh, and the (inter-
facial) energy ψ� of diffuse twin boundaries,

ψ(F,Fin, γ̄ , η,∇η) = ψe(Fe, η) + ψh(γ̄ ) + ψ�(η,∇η)

+I[0,1](η), (9)

where Fe = FF−1
in , γ̄ is the accumulated plastic slip,

˙̄γ = (1 − η)

ns∑

s=1

|γ̇ s
m| + η

ns∑

s=1

|γ̇ s
p |, (10)

and I[0,1] denotes the indicator function that imposes the
bound constraint 0 ≤ η ≤ 1.

The individual components of the total free energy are
specified as follows. The elastic strain energy ψe is adopted
as a quadratic function of the logarithmic elastic strain He

(Hencky-type energy),

ψe(Fe, η) = 1

2
He · L(η)He,

He = 1

2
log(Ce), Ce = FT

eFe, (11)

where L(η) = (1 − η)Lm + ηLp is the fourth-order elastic
stiffness tensor. Here, Lm and Lp are the elastic stiffness
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tensors of the matrix and twin, respectively, which are
symmetry-related through the rotation Rm→p (i.e., Lp =
Rm→p ◦Lm). The Hencky-type strain energy is adopted here
as a simple and general way to achieve a good behavior of
the anisotropic elastic strain energy for a sufficiently large
range of elastic strains. See [37, 38] for a general approach
to construct anisotropic polyconvex energies.

The stored plastic energy ψh is, for simplicity, adopted in
the form that accounts for the linear isotropic hardening,

ψh(γ̄ ) = 1

2
H γ̄ 2, (12)

where H ≥ 0 is the hardening parameter.
In the phase-field framework, the energy of the diffuse

twin boundaries ψ� is defined as a function of the order
parameter η and its gradient ∇η. Here, the so-called double-
obstacle potential is adopted [39],

ψ�(η,∇η) = � f η(1 − η) + κ∇η · ∇η,

� f = 4�

π

, κ = 4�


π
, (13)

where� f is the height of the energy barrier for the formation
of the twin interface and κ characterizes the gradient energy
of the twin interface. Both parameters can be expressed in
terms of �, the interfacial energy density (per unit area), and

, the interface thickness parameter. Note that the theoretical
thickness of an equilibrium (stress-free) interface is equal to
π
 [39, 40].

Since the double-obstacle potential (13) is employed in the
model, it is crucial to enforce the bound constraint 0 ≤ η ≤ 1
(note the first term in ψ� that tends to −∞ for η → ±∞).
For this purpose, the indicator function I[0,1] is included in
the free energy function (9), which is defined as

I[0,1](η) =
{
0 if 0 ≤ η ≤ 1,

+∞ otherwise.
(14)

To avoid the complexity stemming from the non-
differentiability of I[0,1], in the derivations in the reminder
of Sect. 2, the indicator function I[0,1] is approximated by its
regularized counterpart I ε[0,1] which is convex and continu-
ously differentiable and converges to I[0,1] for ε → ∞. Note,
however, that in the actual implementation the bound con-
straint 0 ≤ η ≤ 1 is enforced exactly using the augmented
Lagrangian method, as detailed in Sect. 3.

The free energy specified by Eq. (9) depends, through
the interfacial energy term ψ� , on the gradient of the
order parameter, ∇η. Accordingly, the order parameter is
a non-local variable, which makes the direct computer
implementation of themodel difficult. To facilitate the imple-
mentation, the micromorphic approach is adopted [41, 42]

in which a new variable χ , the micromorphic counterpart
of η, is introduced into the model. The micromorphic vari-
able χ is enforced to be close to η through a penalty term
ψpen that is added to the free energy, and the gradient of χ

is used to approximate the gradient of η in the interfacial
energy contribution, thus ψ�(η,∇η) ≈ ψ�(η,∇χ). Upon
the micromorphic regularization, the free energy takes the
following form,

ψμ(F,Fin, γ̄ , η, χ,∇χ)

= ψe(Fe, η) + ψh(γ̄ ) + ψ�(η,∇χ)

+ψpen(η, χ) + I ε[0,1](η), (15)

where

ψpen(η, χ) = 1

2
εμ(η − χ)2, (16)

and εμ is the micromorphic penalty parameter. As a result,
the order parameter η becomes a local variable, and the cor-
responding evolution equation can be solved locally at each
material point (i.e., at each Gauss point in the finite-element
implementation), as discussed below. Clearly, the micromor-
phic variable χ is a global variable so the above treatment
does not affect the size of the problem.

For future use, the rate of change of the free energy is
expressed in the following form, see [26] for details,

ψ̇μ(Ḟ, γ̇, η̇, χ̇ ,∇χ̇ )

= P · Ḟ − (1 − η)

ns∑

s=1

(
τ smγ̇ s

m + q|γ̇ s
m|)

− η

ns∑

s=1

(
τ sp γ̇ s

p + q|γ̇ s
p |

)
− (τ̄tw + fη)η̇

− fχ χ̇ − f∇χ · ∇χ̇ , (17)

as a function of the rate quantities which include the slip
rates that are gathered in the vector γ̇ = {γ̇m, γ̇p} with
γ̇m = {γ̇ 1

m, . . . , γ̇
ns
m } and γ̇p = {γ̇ 1

p , . . . , γ̇
ns
p }. Note that the

dependence on the current state is not indicated to make the
notation more compact. In Eq. (17), P = JσF−T is the first
Piola–Kirchhoff stress tensor, σ is the Cauchy stress tensor,
and J = det F. Further, the thermodynamic driving forces
conjugate to γ̄ , η, χ , and ∇χ are defined as

q = −∂ψμ

∂γ̄
, fη = −∂ψμ

∂η
, fχ = −∂ψμ

∂χ
,

f∇χ = − ∂ψμ

∂∇χ
. (18)

The resolved shear stresses τ sm and τ sp are defined as the

projections of the Mandel stress M = JFT
e σF−T

e on the
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respective slip systems, and the Schmid-type resolved stress
for twinning τ̄tw is defined accordingly in terms of logUtw,

τ sm = M · (ssm ⊗ nsm),

τ sp = M · (ssp ⊗ nsp),

τ̄tw = M · logUtw. (19)

To complete the specification of the constitutive functions,
the dissipation potential D ought to be defined. The dissi-
pation potential comprises contributions from twinning and
from plastic slip in the matrix and in the twin,

D(γ̇, η̇) = Dm(γ̇m) + Dp(γ̇p) + Dtw(η̇), (20)

and each contribution is assumed to include rate-independent
and viscous parts. Specifically, the plastic slip contributions,
Dm and Dp, are adopted in the following form,

Dm(γ̇m) = (1 − η)

ns∑

s=1

τ c,sm

(
|γ̇ s

m| + (γ̇ s
m)2

2γ̇0

)
,

Dp(γ̇p) = η

ns∑

s=1

τ c,sp

(

|γ̇ s
p | + (γ̇ s

p )2

2γ̇0

)

, (21)

where τ
c,s
m and τ

c,s
p are the critical resolved shear stresses that

characterize the rate-independent thresholds for the plastic
slip on each slip system in the matrix and in the twin, respec-
tively, and γ̇0 is the reference slip rate. Analogously, the
twinning contribution to the dissipation potential is adopted
in the following form,

Dtw(η̇) = τ ctwγtw

(
|η̇| + η̇2

2η̇0

)
, η̇0 = πv0

8

, (22)

where τ ctw is the critical resolved shear stress for twinning,
and η̇0 is the reference rate that can be expressed in terms
of v0, the reference interface propagation speed, and 
, the
interface thickness parameter.

The rate-dependent contribution to the dissipation poten-
tial D is treated here mostly as a regularization of the main,
rate-independent part. In the applications, the loading rate is
thus adjusted such that the viscous effects are not much pro-
nounced. This is illustrated in Sect. 4.4. In order to capture
physically-sound rate effects, the viscous part of the dissi-
pation potential (the terms quadratic in γ̇ and η̇) should be
replaced by an adequate power law.

2.5 Variational formulation of themodel

The variational formulation of the model follows the usual
procedure in which the governing equations of the rate-
problem are obtained by minimization of the global rate

potential encompassing the rate of free energy and the dissi-
pation potential [9, 40, 43–45].

The functional of the total potential energy E is defined
as a sum of the total free energy functional � = ∫

B ψμdV
and the potential of external loads � (assumed conservative)
so that E = � + �. Here, B denotes the domain occupied
by the body in the reference configuration. The rate of the
potential energy has thus the following form,

Ė[ϕ̇, γ̇, η̇, χ̇ ] = �̇[ϕ̇, γ̇, η̇, χ̇ ] + �̇[ϕ̇],
�̇[ϕ̇, γ̇, η̇, χ̇ ] =

∫

B
ψ̇μ(∇ϕ̇, γ̇, η̇, χ̇ ,∇χ̇ )dV , (23)

and the global rate-potential � is defined as a sum of the
potential energy rate Ė and total dissipation potential D,

�[ϕ̇, γ̇, η̇, χ̇ ] = Ė[ϕ̇, γ̇, η̇, χ̇ ] + D[γ̇, η̇],
D[γ̇, η̇] =

∫

B
D(γ̇, η̇)dV . (24)

The complete evolution problem can now be formulated
as a global minimization problem. Specifically, at each time
instant, the current state is known, and the problem is to find
the rate-solution {ϕ̇∗, γ̇∗, η̇∗, χ̇∗} that minimizes the global
rate-potential �, namely

{ϕ̇∗, γ̇∗, η̇∗, χ̇∗} = arg min
ϕ̇,γ̇,η̇,χ̇

�[ϕ̇, γ̇, η̇, χ̇ ]. (25)

Thanks to the micromorphic regularization, the free
energy ψμ does not depend on the spatial gradient of η, see
Eq. (15), and thus η can be considered a local variable so
that the minimization with respect to η̇ can be performed
locally, at eachmaterial point. This is a great advantage of the
micromorphic formulation considering the complexity of the
minimization with respect to η̇ (note the non-smoothness of
the dissipation potential, the need for an adequate treatment
of the bound constraint 0 ≤ η ≤ 1, and the strong coupling
in the evolution of η and plastic slips). In the finite-element
implementation, this complexity can be handled much more
efficiently locally, at each Gauss point, than on the global
level.

The slip rates γ̇ are also local variables and minimization
with respect to γ̇ can also beperformed locally. The following
local minimization problem can thus be formulated,

{γ̇∗, η̇∗} = argmin
γ̇,η̇

π(Ḟ, γ̇, η̇, χ̇ ,∇χ̇ ), (26)

whereπ is the local rate-potential defined such that the global
rate-potential is obtained as � = ∫

B πdV + �̇, i.e.,

π(Ḟ, γ̇, η̇, χ̇ ,∇χ̇ ) = ψ̇μ(Ḟ, γ̇, η̇, χ̇ ,∇χ̇ ) + D(γ̇, η̇). (27)
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Upon solving the local minimization problem (26), the
reduced local potential π red can be defined,

π red(Ḟ, χ̇ ,∇χ̇ ) = π(Ḟ, γ̇∗, η̇∗, χ̇ ,∇χ̇ ), (28)

and the global variables ϕ̇ and χ̇ can then be found by min-
imizing the reduced global potential �red,

{ϕ̇∗, χ̇∗} = argmin
ϕ̇,χ̇

�red[ϕ̇, χ̇ ],

�red[ϕ̇, χ̇ ] =
∫

B
π red(∇ϕ̇, χ̇ ,∇χ̇ )dV + �̇[ϕ̇]. (29)

To reveal the structure of the actual problem to be solved,
let us briefly discuss the governing equations resulting from
the above variational formulation. The local rate-potential
π is a convex, but non-smooth function of γ̇ and η̇. The
non-smoothness results from the rate-independent contribu-
tions to the dissipation potential, see Eqs. (21) and (22), and
from the evolution law for the accumulated plastic slip γ̄ ,
see Eqs. (10) and (17). Accordingly, the following inclu-
sions express the necessary and sufficient conditions for the
minimum of π with respect to γ̇ and η̇,

0 ∈ ∂γ̇π(Ḟ, γ̇, η̇, χ̇ ,∇χ̇ ), 0 ∈ ∂η̇π(Ḟ, γ̇, η̇, χ̇ ,∇χ̇ ), (30)

where ∂γ̇π and ∂η̇π are the subdifferentials of π [46]. These
inclusions yield the following evolution equations for the
individual slip rates γ̇ s

k (where k ∈ {m, p}, with ‘m’ and ‘p’
denoting the matrix and the twin, respectively) and for η̇,

γ̇ s
k = γ̇0 sign(τ

s
k )

〈|τ sk | − (τ
c,s
k + H γ̄ )〉

τ
c,s
k

,

η̇ = η̇0 sign(τ̄tw + fη)
〈|τ̄tw + fη| − τ ctwγtw〉

τ ctwγtw
, (31)

where 〈x〉 = 1
2 (x + |x |) represents the Macauley bracket.

It follows that a Perzyna-type flow rule is obtained with a
rate-independent threshold and plastic slip rate (or twinning
rate) proportional to the overstress.

On the global level, the reduced global potential �red is
minimized with respect to the fields of ϕ̇ and χ̇ . The condi-
tion of stationarity of the global potential �red with respect
to ϕ̇ has the following form,

0 = δϕ̇�red[ϕ̇, χ̇ ]
=

∫

B
P · ∇δϕ dV −

∫

∂Bt
t̄ · δϕ dS ∀ δϕ, (32)

which is recognized as the virtual work principle, i.e., a weak
form of the mechanical equilibrium equation with δϕ as the
test function that vanishes on the Dirichlet boundary. Here,
to fix attention, the potential of the external loads has been

assumed as � = ∫
∂Bt

t̄ · ϕ dS, which corresponds to the

traction t̄ prescribed on the boundary ∂Bt .
The condition of stationarity of�red with respect to χ̇ has

the following form,

0 = δχ̇�red[ϕ̇, χ̇ ]
=

∫

B

(
εμ(χ − η)δχ + 2κ∇χ · ∇δχ

)
dV ∀ δχ, (33)

which is a weak form of the Helmholtz-type PDE,1

χ − 
2μ∇2χ = η, 
μ =
√
2κ

εμ

, (34)

with 
μ as the corresponding characteristic length scale [41].
Since the global rate-potential� does not involve any bound-
ary terms involving the micromorphic variable χ , there is
no boundary term in the weak form (33). This corresponds
to the standard homogeneous Neumann boundary condition,
∇χ ·ν = 0, on the entire boundary ∂B with the outward nor-
mal ν. Other types of boundary conditions, in particular, the
periodic boundary conditions used in the numerical exam-
ples, can be easily included in the framework (the details are
omitted for brevity).

3 Incremental formulation and
finite-element treatment

In Sect. 3.1, the phase-field model described in Sect. 2 is
transformed to the incremental form to make it amenable
to finite-element implementation. Subsequently, in Sect. 3.2,
we present the augmented Lagrangian treatment of the non-
smooth minimization problem. In Sect. 3.3, we discuss the
different ways to solve the quasi-minimization problem.
Finally, we elaborate on the finite-element discretization of
the model in Sect. 3.4 and outline its computer implementa-
tion in Sect. 3.5.

3.1 Incremental (finite-step) formulation of the local
minimization problem

In order to effectively solve the evolution problem, the rate
equations discussed in Sect. 2.5 must be transformed to an
incremental (finite-step) form. Consider thus a typical time
increment tn → tn+1 = tn + �t such that the solution at
the previous time t = tn is known and the goal is to find the
solution at the current time t = tn+1. The superscripts n and
n+1 will be used to denote the quantities at the previous and

1 We acknowledge an oversight in our previous work [26], where the
factor of 2 preceding κ and the power of 2 of the internal length scale

 were erroneously omitted from Eqs. (57) and (58).
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current time steps, respectively. By applying the backward-
Euler scheme, the rate variables are approximated in terms
of the respective increments, for instance, η̇ ≈ �η/�t =
(ηn+1 − ηn)/�t .

Integration of the inelastic deformation gradientFin, accu-
mulated plastic slip γ̄ and dissipation potential D requires
some attention. The evolution law for Fin, cf. Eq. (8), is
integrated using the volume-preserving exponential mapping
[e.g. 47],

Fn+1
in = exp(�t Ln+1

in )Fn
in, (35)

where

�t Ln+1
in =

(
1 − η̃n+1

) ns∑

s=1

�γ s
ms

s
m ⊗ nsm

+ η̃n+1
ns∑

s=1

�γ s
p s

s
p ⊗ nsp + �η log(Utw). (36)

Consistent with the implicit backward-Euler scheme, the
value of η is taken at tn+1 and the corresponding value is
denoted by η̃n+1. The reason to distinguish η̃n+1 from the
actual value ηn+1 = ηn + �η is discussed below. Similarly,
the accumulated plastic slip is integrated as, cf. Eq. (10),

γ̄ n+1 = γ̄ n + (1 − η̃n+1)

ns∑

s=1

|�γ s
m| + η̃n+1

ns∑

s=1

|�γ s
p |.

(37)

Finally, the time-discrete dissipation potential �D ≈ �t D
is defined as

�D(�γ,�η; η̃n+1)

= �Dm

(
�γm; η̃n+1

)
+ �Dp

(
�γp; η̃n+1

)

+�Dtw(�η), (38)

where

�Dm(�γm; η̃n+1)

= (1 − η̃n+1)

ns∑

s=1

τ c,sm

(
|�γ s

m| + (�γ s
m)2

2�t γ̇0

)
, (39)

�Dp(�γp; η̃n+1)

= η̃n+1
ns∑

s=1

τ c,sp

(

|�γ s
p | + (�γ s

p )2

2�t γ̇0

)

, (40)

�Dtw(�η) = τ ctwγtw

(
|�η| + �η2

2�t η̇0

)
. (41)

Here and below, the variable η̃n+1 is placed after a semicolon
as an argument of a function to indicate its special status.

Our goal now is to reformulate the problem of minimiza-
tion of the local rate-potential π , Eq. (26), in the finite-step
setting. The minimization of π is performed with respect to
the rates γ̇ and η̇, which can be formally rewritten as themin-
imization with respect to the increments�γ and�η through
the substitution γ̇ = �γ/�t and η̇ = �η/�t . This, how-
ever, must be done with care to preserve the consistency of
the incremental finite-step problem with the reference rate-
problem. Let us thus introduce the following time-discrete
approximation of the rate-potential π ,

π(∇ϕ̇, γ̇, η̇, χ̇ ,∇χ̇ )

∣∣∣
t=tn+1

≈ 1

�t
�π

(
f,�γ,�η; η̃n+1) ,

(42)

where

�π(f,�γ,�η; η̃n+1) = ψn+1
μ

(
f,�γ,�η; η̃n+1

)
− ψn

μ

+�D
(
�γ,�η; η̃n+1

)
, (43)

and vector f has been introduced which gathers the variables
that are not the arguments in the local minimization problem,

f = {Fn+1, χn+1,∇χn+1}. (44)

Note also that the dependence of�π on the known quantities
from the previous time step t = tn is not indicated to make
the notation more compact.

In Eq. (43),ψn
μ is the (known) free energy at tn andψn+1

μ is
the free energy at tn+1 that is evaluated according to Eq. (15)
with Fn+1

in specified by Eqs. (35) and (36) and with γ̄ n+1

specified by Eq. (37),

ψn+1
μ (f,�γ,�η; η̃n+1)

= ψμ(Fn+1,Fn+1
in , γ̄ n+1, ηn+1, χn+1,∇χn+1), (45)

so that η̃n+1 appears as an independent argument of ψn+1
μ .

Even though η̃n+1 = ηn+1, the dependence on η̃n+1 is indi-
cated explicitly in order to distinguish this variable from
ηn+1 = ηn + �η that enters the equation for ψn+1

μ through
ψ� , ψpen and I[0,1], and also through the dependence of
L on η in ψe. The reason for this treatment is that, in the
time-discrete setting, the minimization with respect to η̇ is
transformed to the minimization with respect to�η, and set-
ting η̃n+1 = ηn + �η and performing a full minimization
with respect to �η would cause an inconsistency with the
rate problem. This can be most easily illustrated by consid-
ering the dissipative driving force as the derivative of �D
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with respect to �η, namely

∂

∂�η
�D(�γ,�η; η̃n+1) �= ∂

∂�η
�D̃(�γ,�η), (46)

where �D is given by Eqs. (38)–(41), while �D̃ is defined
as

�D̃(�γ,�η) = �D(�γ,�η; ηn + �η). (47)

Clearly, the left-hand side expression in Eq. (46) gives the
correct dissipative driving force for twinning, i.e., that result-
ing solely from �Dtw, while the right-hand side expression
includes additional incorrect terms resulting from the differ-
entiation of �Dm and �Dp with respect to η̃n+1. Similar
incorrect contributions would occur if ψn+1

μ was differenti-
ated with respect to η̃n+1.

Accordingly, to preserve consistency with the prob-
lem (26) of minimization of the rate-potential π , the incre-
mental (finite-step) evolution problem is formulated as the
followingminimization problemwhich is not a standard opti-
mization problem, but rather a quasi-optimization problem,

{�γ∗,�η∗} = arg min
�γ,�η

�π(f,�γ,�η; ηn + �η∗). (48)

Note that �π depends on both �η, the variable with respect
to which the minimization is performed, and �η∗, the actual
solution of the minimization problem. The peculiarity of the
quasi-minimization problem is that the function that is mini-
mized depends on the solution, as indicated in Eq. (48). This
results here from the transition from the rate-problem to the
incremental (finite-step) problem, see also [9]. Similar quasi-
optimization problems, though not related to the finite-step
setting, appear in frictional contact problems [48] and in non-
potential problems in rate-independent plasticity [49].

3.2 Augmented Lagrangian treatment

Theminimization problem (48) is non-smooth due to the rate-
independent dissipation contributions to �D, see Eqs. (38)–
(41), due to the absolute value function in the expression
for γ̄ n+1, see Eq. (37), and due to the indicator function
I[0,1](η) enforcing the bound constraint 0 ≤ η ≤ 1. An effi-
cient computational scheme for this problem is developed by
using the augmented Lagrangian method, which transforms
the non-smooth minimization problem (48) to a smooth and
unconstrained saddle-point problem, see [50] for details,

{�γ∗,�η∗,μ∗, λ∗}
= min

�γ,�η
max
μ,λ

L(f,�γ,�η,μ, λ; ηn + �η∗), (49)

with the following Lagrange function L ,

L
(
f,�γ,�η,μ, λ; η̃n+1

)

= ψn+1
μ

(
f,�γ,�η; η̃n+1

)
− ψn

μ

+�Dvisc
(
�γ,�η; η̃n+1

)
+

(
1 − η̃n+1

)

×
ns∑

s=1

lγ
(
�γ s

m, μs
m

) + η̃n+1
ns∑

s=1

lγ
(
�γ s

p , μs
p

)

+lη(�η, λ), (50)

where�Dvisc is the part of the dissipation potential �D that
gathers the viscous (and smooth) dissipation contributions,

�Dvisc(�γ,�η; η̃n+1)

= (1 − η̃n+1)

ns∑

s=1

τ c,sm
(�γ s

m)2

2�t γ̇0
+ η̃n+1

ns∑

s=1

τ c,sp

(�γ s
p )2

2�t γ̇0

+τ ctwγtw
�η2

2�t η̇0
, (51)

while the rate-independent contributions are handledby func-
tions lγ and lη, to be specified below.

In addition to the primal variables �γ and �η, the
Lagrange function L depends on the Lagrange multi-
pliers μ = {μm,μp} and λ. Each vector of multipli-
ers μk = {μ1

k, . . . , μ
ns
k } (k ∈ {m, p}) is associated

with the corresponding vector of slip increments �γk =
{�γ 1

k , . . . ,�γ
ns
k }. Likewise, the scalar multiplier λ is asso-

ciated with the order parameter η.
As in the case of the quasi-minimization problem (48), the

saddle-point problem is, in fact, a quasi-saddle-point problem
in which the Lagrange function L depends on the solution
�η∗, and hence the dependence of L on η̃n+1 is indicated in
Eq. (50), similar to �π in Eq. (43). This is further discussed
below.

Function lη is responsible for handling the inequality con-
straints 0 ≤ η ≤ 1 and the rate-independent part of �Dtw,
i.e., the term τ ctwγtw|�η| in Eq. (41). The following form of
lη is adopted after [50],

lη (�η, λ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

l(1)η if λ̂ ≤ �η�η− − τ ctwγtw,

l(2)η if �η�η− − τ ctwγtw < λ̂ < −τ ctwγtw,

l(3)η if −τ ctwγtw ≤ λ̂ ≤ τ ctwγtw,

l(4)η if τ ctwγtw < λ̂ < �η�η+ + τ ctwγtw,

l(5)η if �η�η+ + τ ctwγtw ≤ λ̂,

(52)

with

l(1)η = λ(�η − �η−) + �η

2
(�η − �η−)2 − τ ctwγtw�η−,

l(2)η = − 1

2�η

(
λ2 + 2τ ctwγtwλ̂ + (τ ctwγtw)2

)
,
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l(3)η =
(
λ + �η

2
�η

)
�η,

l(4)η = − 1

2�η

(
λ2 − 2τ ctwγtwλ̂ + (τ ctwγtw)2

)
,

l(5)η = λ(�η − �η+) + �η

2
(�η − �η+)2 + τ ctwγtw�η+,

where λ̂ = λ + �η�η is the augmented Lagrange multiplier,
�η > 0 is a regularization parameter, and �η− = −ηn ≤ 0
and �η+ = 1 − ηn ≥ 0 are the bounds for the increment
of the order parameter, �η− ≤ �η ≤ �η+. Note that a
single Lagrange multiplier is used to handle both the rate-
independent dissipation and the bound constraint.

The rate-independent dissipation associated with plastic
slip is handled by function lγ which can be seen as a special
case of function lη specified above. Since no bound con-
straints are enforced on slip increments, lγ involves only
three branches that correspond to the second, third, and fourth
branches of lη. Function lγ is thus defined as follows,

lγ (�γ s
k , μs

k) =

⎧
⎪⎪⎨

⎪⎪⎩

l(1)γ if μ̂s
k < −τ

c,s
k ,

l(2)γ if −τ
c,s
k ≤ μ̂s

k ≤ τ
c,s
k ,

l(3)γ if τ
c,s
k < μ̂s

k,

(53)

with

l(1)γ = − 1

2�γ

(
(μs

k)
2 + 2 τ

c,s
k μ̂s

k + (τ
c,s
k )2

)
,

l(2)γ =
(
μs
k + �γ

2
�γ s

k

)
�γ s

k ,

l(3)γ = − 1

2�γ

(
(μs

k)
2 − 2 τ

c,s
k μ̂s

k + (τ
c,s
k )2

)
,

where μ̂s
k = μs

k + �γ �γ s
k is the augmented Lagrange mul-

tiplier, and �γ > 0. For each pair (�γ s
k , μs

k), function
lγ (�γ s

k , μs
k) introduces the augmentedLagrangian treatment

of the corresponding term τ
c,s
k |�γ s

k | in the dissipation poten-
tial �Dk , cf. Eqs. (39)–(40).

Note that the non-smoothness of the terms |�γ s
k | in the

expression for γ̄ n+1 in Eq. (37) can be naturally treated using
the corresponding Lagrange multiplier μs

k (or μ̂s
k),

|�γ s
k | = sign(μs

k)�γ s
k . (54)

Since the ill-conditioning of sign(μs
k) at μ

s
k ≈ 0 occurs only

when �γ s
k = 0, the product of the two terms behaves well.

The solution of the saddle-point problem (49) is found by
solving the nonlinear equationQ = 0 expressing the station-
arity of L with respect to the primal variables (�γ,�η) and
Lagrange multipliers (μ, λ),

Q(f,h) = ∂L(f,�γ,�η,μ, λ; η̃n+1)

∂{�γ,�η,μ, λ}
∣∣
∣∣
η̃n+1=ηn+�η

= 0.

(55)

For future use, the unknowns are here assembled in vector h,

h = {�γ,�η,μ, λ}. (56)

Consistent with the quasi-optimization structure of the min-
imization problem (48) and of the resulting saddle-point
problem (49), η̃n+1 is treated as an independent variable
when L is differentiatedwith respect to�η, and only after the
differentiation, η̃n+1 is substituted by ηn + �η, as indicated
in Eq. (55).

The essence of the augmented Lagrangian technique is in
enforcing state-dependent constraints on either the primal or
dual variables. Consider, for instance, function lη defined by
Eq. (52) which involves five branches, each corresponding
to a different state that is determined in terms of the aug-
mented Lagrange multiplier λ̂. The first and the last branch
correspond to the active bound constraints. The second and
the fourth branch correspond to, respectively, the backward
and forward transformation. Finally, the third branch corre-
sponds to a halted transformation. Depending on the state,
the condition of stationarity of L with respect to the Lagrange
multiplier λ enforces the condition�η = �η± (active bound
constraint),�η = 0 (halted transformation), or λ = ±τ ctwγtw
(forward or backward transformation). For more details, the
reader is referred to [50], and related applications of the aug-
mented Lagrangian method can be found in [40, 42].

It can be checked that equation Q = 0 is ill-posed when
ηn+1 = 0 or ηn+1 = 1. Consider, for instance, the deriva-
tive of L with respect to �γ s

p . Since all the terms in L that
involve �γ s

p , see Eqs. (36), (37), (50), and (51), are premul-

tiplied by η̃n+1, the resulting derivative of L is identically
equal to zero when η̃n+1 = 0. A well-posed formulation
can be obtained by scaling the corresponding equations by
1/ηn+1.A similar argument applies to thederivative of L with
respect to �γ s

m when ηn+1 = 1, and a remedy is to scale the
corresponding equations by 1/(1 − ηn+1). Accordingly, the
unknowns are grouped into three vectors hm = {�γs

m,μs
m},

hp = {�γs
p,μ

s
p}, and hη = {�η, λ}, and the Lagrange func-

tion is formally rewritten as L = L(f,hm,hp,hη; η̃n+1).
The following scaled local residual is then introduced,

Q̂ (f,h) = {Q̂m, Q̂p,Qη} = 0, (57)

where
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Q̂m = 1

1 − ηn+1Qm

= 1

1 − ηn+1

∂L(f,hm,hp,hη; ηn+1)

∂hm
, (58)

Q̂p = 1

ηn+1Qp = 1

ηn+1

∂L(f,hm,hp,hη; ηn+1)

∂hp
, (59)

Qη = ∂L(f,hm,hp,hη; η̃n+1)

∂hη

∣∣∣∣
η̃n+1=ηn+�η

, (60)

and ηn+1 = ηn + �η. Note that the special treatment of
η̃n+1 resulting from the quasi-optimization structure of the
minimization problem (48) is needed only when the differ-
entiation with respect to �η is performed, and thus concerns
only Qη in Eq. (60). The scaling-based approach presented
above follows that developed in [50] in the context of a
macroscopic model of pseudoelasticity.

The modified stationarity condition (57) can now be
solved using the Newton method. At each Newton iteration,
a linear problem is solved and the solution is updated accord-
ing to

hi+1 = hi + �hi , �hi = −
(

∂Q̂
∂h

)−1

Q̂(f,hi ). (61)

Once a converged solution is obtained, the unknown vector
h is an implicit function of f, thus h = h(f). The sensitivity
of hwith respect to f is then computed in a standard way [51,
52],

∂h
∂f

= −
(

∂Q̂
∂h

)−1
∂Q̂
∂f

. (62)

This sensitivity will be used to compute the global tangent
matrix.

3.3 Approximation of the quasi-minimization
problem

As discussed in Sect. 3.1, in order to preserve consistency
with the rate evolution problem (26), the incremental (finite-
step) problem (48) is formulated as a quasi-minimization
problem. The quasi-optimization structure of the incremental
problem does not lead to any major difficulties in its practi-
cal application and computer implementation. Nevertheless,
below we briefly discuss two approximate approaches that
lead to genuine minimization problems. In both cases, the
augmented Lagrangian treatment of the non-smooth mini-
mization follows exactly the route outlined in Sect. 3.2 and
is not discussed in detail.

In the first approach, the variable η̃n+1 as an argument of
the incremental potential �π is replaced by the correspond-

ing value from the previous time step, ηn , thus

{�γ∗,�η∗} = arg min
�γ,�η

�π(f,�γ,�η; ηn). (63)

At the current time tn+1, ηn is known and, for a suffi-
ciently small time increment, can be considered as a good
approximation of ηn+1. Accordingly, the solution of themin-
imization problem (63) will approximate the solution of the
quasi-minimization problem (48).

In the second approach, a full minimization of �π with
respect to�η is performed, considering also the dependence
of �π on η̃n+1 with η̃n+1 = ηn + �η, thus

{�γ∗,�η∗} = arg min
�γ,�η

�π(f,�γ,�η; ηn + �η). (64)

This will generate additional terms in the driving force for
transformation, see e.g. Eq. (46), and thus result in an inexact
solution.

We have performed a series of computations with the aim
to examine the effects introduced by the above approxima-
tions. The problem considered in Sect. 4 has been used for
that purpose and also a simple problem of growth and prop-
agation of a single twin nucleus (see Sect. 5.3 in [26]). The
latter could be solved with significantly coarser mesh and
larger time steps. The results of those additional studies indi-
cate that the above approximations do not visibly affect the
results (we do not report the corresponding results since the
differences are insignificant and even hard to detect). How-
ever, this may not be a generally valid conclusion. Hence,
the consistent formulation is preferred here, and it is thus
employed in the numerical examples.

3.4 Finite-element approximation

The variational framework developed in Sect. 2.5 for the rate-
evolution problem leads to the global minimization problem
for the fields ϕ̇ and χ̇ , cf. Eq. (29). However, in the incre-
mental setting, a quasi-minimization problem is obtained, as
discussed in Sect. 3.1 in the context of the local minimiza-
tion problem (48). The quasi-optimization structure is then
transferred also to the global incremental problem. Although
this path could be followed in the development of the finite-
element formulation for the global problem, a more compact
formulation is presented below that takes theweak forms (32)
and (33) as the starting point. An alternative formulation
that is even more compact and also more convenient for the
finite-element implementation is discussed at the end of this
section.

Consider thus the two governing equations: the virtual
workprinciple, Eq. (32), and theweak formof theHelmholtz-
type PDE for the micromorphic variable χ , Eq. (33); and
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rewrite them in the following compact form,

Gu[u, δu;χ,h] = 0 ∀ δu, (65)

Gχ [χ, δχ;u,h] = 0 ∀ δχ, (66)

where the deformation mapping ϕ has been replaced by the
displacement u (note that ϕ = X + u and δϕ = δu) in
accordance with the common practice in the displacement-
based finite element method. Here and in the following, the
superscript (n + 1) denoting the current time step is omitted
for brevity, since all quantities refer to the current time step.
Since the stress tensor P in Eq. (32) depends on �γ and
�η (both contained in h), and the order parameter η (also
contained inh) directly enters the weak form (33), the depen-
dence of Gu and Gχ on h is explicitly indicated in Eqs. (65)
and (66).

The global fields of u and χ are approximated using the
respective finite-element basis functions N (u)

i and N (χ)
i ,

uh =
∑

i

N (u)
i ui = N(u) · pu, (67)

χh =
∑

i

N (χ)
i χi = N(χ) · pχ , (68)

where ui and χi denote the respective nodal values, and
pu = {u1,u2, . . .} and pχ = {χ1, χ2, . . .} are the respective
global vectors. The discretized weak forms are then obtained
by substituting in Gu and Gχ the fields of u and χ by their
approximations uh and χh ,

Gh
u(pu, δpu;pχ ,H) = Gu[uh, δuh;χh,h(fh)] = 0 ∀ δpu,

(69)

Gh
χ (pχ , δpχ ;pu,H) = Gχ [χh, δχh;uh,h(fh)] = 0 ∀ δpχ .

(70)

Here fh denotes the approximation of f evaluated in terms of
uh and χh , h(fh) denotes the local unknowns evaluated in
terms of fh , and H = {h1,h2, . . .} denotes the vector com-
posed of the local vectors hg (g = 1, 2, . . .) at all integration
(Gauss) points.

Since the discretized weak forms Gh
u and Gh

χ are linear in
δpu and δpχ , respectively, they can be equivalently written
in terms of the respective global residual vectors Ru and Rχ ,

Gh
u(pu, δpu;pχ ,H) = Ru(pu;pχ ,H) · δpu = 0 ∀ δpu,

(71)

Gh
χ (pχ , δpχ ;pu,H) = Rχ (pχ ;pu,H) · δpχ = 0 ∀ δpχ .

(72)

Following the standard argument, this leads to the following
set of coupled nonlinear algebraic equations,

Ru(pu;pχ ,H) = 0, Rχ (pχ ;pu,H) = 0. (73)

In the monolithic solution scheme adopted in this work, both
equations are solved simultaneouslywith respect to all global
unknowns, hence

R(p,H) = 0, R = {Ru,Rχ }, p = {pu,pχ }. (74)

The above residual form of the discretized global equa-
tions can be derived in an alternative way, which is actually
followed in our computer implementation. Consider thus the
following functional of potential energy, cf. Eq. (23),

E[ϕ, χ,h] =
∫

B
ψn+1

μ (f,h)dV + �[ϕ], (75)

that corresponds to the incremental formulation at tn+1 with
ψn+1

μ (f,h) = ψn+1
μ (f,�γ,�η; ηn +�η) and η̃n+1 = ηn +

�η, cf. Eq. (45). The discretized form of E is obtained by
introducing the finite-element approximation (67), thus

Eh(p,H) = E[ϕh, χh,hh], (76)

where, as above, p = {pu,pχ } and H = {h1,h2, . . .}.
It can be checked that stationarity of E with respect to

ϕ yields the virtual work principle (32) and stationarity with
respect toχ yields the weak form (33). In the discrete setting,
this corresponds to stationarity of Eh with respect to p [52,
53], which thus defines the residual R, cf. Eq. (74),

R(p,H) = ∂Eh(p,H)

∂p
= 0. (77)

The unknown in the nonlinear equation R = 0 is the
global vector p, while the local variables assembled in vector
H = {h1,h2, . . .} are governed by the local equations that
are solved at each integration (Gauss) point, cf. Eq. (57),

Q̂g(fg(pe),hg) = 0, g = 1, 2, . . . . (78)

Here the subscript g refers to the Gauss point, and pe denotes
a subset of the global vector p, specifically those unknowns
on which the e-th element explicitly depends. Recall that
vector fg comprises the deformation gradient F as well as the
micromorphic variable χ and its gradient ∇χ , cf. Eq. (44),
and the dependence of fg on pe is through the finite-element
approximation (67).

The complete problem has the structure of a (path-
dependent) coupled system [51] (or locally-coupled system
in the terminology of [52]). The solution is obtained using the
Newton method in an iterative–subiterative scheme, just like
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in the classical elastoplasticity [51]. The local problems (78)
are solved in the inner loops at individual Gauss points, and
the global problem (77) is solved in the outer loop.

In practice, the global residual R is computed at the ele-
ment level,

R =
∑

e

Re, Re =
∑

g

wgRg,

Rg = Jg
∂ψμ(fg,hg)

∂fg

∂fg
∂pe

, (79)

where the first summation corresponds to the assembly of
the element contributions and the second summation corre-
sponds to the numerical integration over the element volume
with wg denoting the Gauss-point weight and Jg denoting
the Jacobian of the transformation from the reference coor-
dinate system to the global one. This operation is performed
at each global iteration, and the Gauss-point contribution Rg

is computed after the corresponding local problem Q̂g = 0
is solved, thus yielding hg = hg(fg).

The global tangent matrix K is also computed at the ele-
ment level. Considering that Rg = Rg(pe,hg) and hg =
hg(fg(pe)), linearization of Rg with respect to pe gives the
following formula for the tangent matrix,

K =
∑

e

Ke, Ke =
∑

g

wgKg,

Kg = ∂Rg

∂pe
− ∂Rg

∂hg

(
∂Q̂g

∂hg

)−1 ∂Q̂g

∂fg

∂fg
∂pe

, (80)

where the derivative of the implicit dependence of hg on fg
has been accounted for according to Eq. (62). The tangent
matrix has the classical structure of the consistent tangent
operator in elastoplasticity [51, 52], here applied to a coupled
problem involving the displacement u and the micromorphic
variable χ as the global unknown fields.

One of the goals of the detailed analysis carried out
in Sect. 4 is to examine the performance and computa-
tional efficiency of several finite-element approximations.
The implementation and the analysis are limited to 2D prob-
lems and to quadrilateral elements. Since the problem at hand
is a coupled problem, various combinations of the approxi-
mations of the displacement u and micromorphic variable χ

can be adopted.Concerning the displacement, three basic ele-
ment topologies are considered, namely four-node element
with bilinear shape functions (Q1), eight-node element with
serendipity shape functions (Q2s), and nine-node element
with quadratic shape functions (Q2).

The same class of shape functions is utilized for themicro-
morphic variable. However, it is essential to note that we
restrict the interpolation order of the micromorphic variable
to not surpass that of the displacement. The rationale behind

this choice stems from the fact that although a higher dis-
cretization order of the micromorphic variable increases the
resolution of the order parameter and thus of the interfa-
cial energy, such a heightened resolution deems unnecessary
in view of the relatively lower resolution of the strains and
stresses. At the same time, spurious stress oscillations may
arise due to inconsistent approximations of the deformation
gradients F and Ftw, which are dictated, respectively, by the
discretization order of the displacement and the micromor-
phic variable. It is noteworthy that the spurious oscillations
may also appear when employing the same discretization
order for the two fields, particularly, in the case of low-order
bilinear interpolation [31], but, as confirmed in our simula-
tion results, the corresponding effects do not make a visible
overall contribution if the mesh is sufficiently fine. In the
case of bilinear shape functions for the two fields, adopting
a constant Ftw within the element would eliminate the issue
[9], which is, however, not pursued here.

In analogy to the displacements, the interpolation order of
the micromorphic variable is denoted by H1, H2s, and H2,
so that, for instance, Q1H1 denotes the element with bilinear
shape functions used for both the displacement and themicro-
morphic variable. Considering that the bilinear elements are
known to be prone to locking, the F-bar formulation [54] is
also considered, and the corresponding element is denoted
by Q1H1-Fbar.

By default, the full Gaussian quadrature is used, namely
2 × 2 Gauss integration for Q1 elements and 3 × 3 Gauss
integration for Q2s and Q2 elements (the quadrature order
is specified with respect to the order of interpolation of the
displacement field). In the case of the serendipity elements
(Q2s), a reduced 2 × 2 Gauss integration is also considered.
This is indicated by an ‘R’ at the end of the element name so
that, for instance, Q2sH1-R denotes the Q2sH1 element with
reduced integration. Altogether, eight different combinations
of the shape functions and integration order are used in the
computational study, and these are illustrated in Fig. 2.

3.5 Computer implementation

Implementation and finite-element computations have been
performed using the AceGen/AceFEM system [52, 53]. The
implementation is largely facilitated by the automatic dif-
ferentiation (AD) technique used in AceGen, and the above
formulation, Eqs. (75)–(80), is particularly suitable for the
AD-based approach.

All computations have been carried out on the samework-
station so that the wall-clock time can be used as a measure
of the computational cost. The workstation is equipped with
two CPUs (Intel Xenon CPU E5-2680 v3 @2.50GHz, each
with 12 cores) and with 128 GB RAM. Assembly of element
quantities (residual vector and tangent matrix) is fully par-
allelized, and all computer resources are used at this stage.
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Fig. 2 Elements used in the computational study

On the other hand, a direct solver (Intel MKL PARDISO)
is employed to solve the system of linear equations at each
Newton iteration. As it is well known, direct linear solvers
have inherent limitations in terms of scalability.

In the computational scheme, the evolution problem is
solved using an adaptive time incrementation algorithm. In
this algorithm, the next time increment is adjusted based
on the current convergence behavior. Specifically, the time
increment is increased or decreased if the current number of
iterations needed to achieve a converged solution is, respec-
tively, smaller or larger than the prescribed (desired) number
of iterations (which is set to 8 in our computations). If con-
vergence cannot be achieved, the time increment is halved.
The number of time steps needed to complete the simulation
is thus an indicator of the robustness of the computational
model (the smaller the number of time steps, the more robust
the model, since the solution procedure can carry on with
larger time increments).

4 Study of performance and efficiency

In Sect. 4.1, we showcase the simulation results for a repre-
sentative element type andmesh density. In Sect. 4.2, with the
aim to evaluate the computational performance of the model,
we report and discuss the simulation results for different ele-
ment types andmesh densities. In Sect. 4.3,we investigate the
sensitivity of the results and model’s efficiency to the micro-
morphic regularization parameter εμ. Finally, in Sect. 4.4, we
briefly examine the rate sensitivity effects.

4.1 Microstructure evolution in a periodic unit cell

The computational study reported below is carried out for
a representative 2D problem of a periodic unit cell with
four grains. The setup corresponds to the example studied
in detail in Sect. 5.5 in [26]. Considering that the present
study involves a large number of simulations, the computa-
tional cost has been reduced by employing a smaller unit cell
with the size of 3×3 µm2 containing four grains (instead of
5× 5 µm2 with 10 grains as in [26]) so that the grain size is
approximately maintained. Otherwise, all material and pro-

Fig. 3 Periodic four-grain unit cell: loading scheme and initial grain
orientation

cess parameters are identical to those in [26]. The setup of
the problem is briefly discussed below.

The unit cell under consideration is shown in Fig. 3.
With reference to magnesium (HCP structure), a 2D plane-
strain analysis is carried out within the (1̄21̄0) plane which
is the shear plane of two conjugate twinning systems of
the {101̄2}〈1̄011〉 family. As discussed in Sect. 2.2, the two
conjugate twinning systems are represented by a single
twin deformation variant, and accordingly by a single order
parameter η and its micromorphic counterpart χ . Each grain
is oriented differently. The grain orientation is characterized
by the angle between the global x2 axis and the local [0001]-
axis (c axis). Specifically, grains G1, G2, G3 and G4 are set
at angles 0◦, 15◦, 30◦, and − 45◦ respectively, as illustrated
in Fig. 3.

In addition to twinning, plastic slip on three slip systems
is considered. One (easy) basal slip system with the (0001)
slip plane and [1̄010] slip direction is considered, which is an
equivalent slip system that represents two co-planar crystal-
lographic basal slip systems with the [2̄110] and [1̄1̄20] slip
directions. Moreover, two symmetric equivalent (hard) pyra-
midal slip systems with the (101̄1) and (1̄011) slip planes are
considered, each representing two co-planar crystallographic
〈a + c〉 pyramidal slip systems.

123



Computational Mechanics

Table 1 Material parameters

c11 c33 c12 c13 c44 γtw τ ctw τ cbas τ cpyr H � 
 εμ v0 γ̇0

[GPa] [GPa] [GPa] [GPa] [GPa] [-] [MPa] [MPa] [MPa] [MPa] [J/m2] [nm] [GPa] [nm/s] [s−1]

63.5 66.5 25.9 21.7 18.4 0.129 15 15 150 400 0.15 10 5 500 1

Fig. 4 Microstructure evolution in the four-grain unit cell during isochoric tension. Evolution of the local lattice orientation angle θlat is shown at
selected values of the equivalent overall strain ε̄eq

The material parameters used in the simulations are pro-
vided in Table 1. Here, ci j are the elastic constants, and τ cbas
and τ cpyr denote the critical resolved shear stresses (equal for
the matrix and for the twin) for the basal and pyramidal slip
systems, respectively. For the c/a ratio of 1.624, the value
typical for magnesium, the twinning shear is γtw = 0.129.
See [26] for the references and additional comments on the
selection of the parameter values.

The unit cell is subjected to isochoric tension along the x2-
axis. This is accomplished by prescribing a constant overall

(macroscopic) velocity gradient L̄ = ˙̄FF̄−1 in the form,

L̄ =
√
3

2
d̄

(−1 0
0 1

)
, (81)

where d̄ = 0.01 s−1. At the same time, periodic boundary
conditions are enforced (using Lagrange multipliers) on the
displacement field (periodicity of the displacement fluctua-
tion) and on themicromorphic variableχ . Since twins in each
grain are independent, a separate field of the micromorphic

variable is defined for each grain with the homogeneous nat-
ural boundary condition enforced on the grain boundaries.
Note that a regular mesh of quadrilateral elements is used
(see the next section for details), so that the grain boundaries
have a step-like appearance.

To illustrate the microstructure evolution due to coupled
twinning and plastic slip, Fig. 4 shows a series of snapshots
of the local lattice orientation angle θlat that is defined as the
angle between the global x2-axis and the local c axis (the
orientation angle θlat is represented by a 180◦-periodic color
scale). The individual snapshots are labeled by the equivalent
overall strain ε̄eq = ( 23 H̄ · H̄)1/2 which is defined in terms
of the overall logarithmic strain H̄ . Since twinning is asso-
ciated with a rotation by 90◦ ± 3.7◦, the distribution of θlat
clearly depicts the progress of the twinning transformation.
The results are here reported for the Q2sH1-R element and
for the finest mesh considered.

Figure 5 illustrates the inhomogeneity of deformation
and stress within the unit cell and within the individual
grains. In addition to the lattice orientation angle θlat (selected
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Fig. 5 Inhomogeneity of deformation illustrated by (from the top): lattice orientation angle θlat , Cauchy stress components σ22 and σ12, and
accumulated plastic slip γ̄ at selected stages of deformation

snapshots from Fig. 4), shown is the distribution of the accu-
mulated plastic slip γ̄ and two components of the Cauchy
stress σ. While inhomogeneity of plastic deformation in
a polycrystalline aggregate is a well-known phenomenon,
microstructure evolution due to twinning is here an additional
contribution, and this is captured by the spatially-resolved

modeling using the phase-field method. In fact, deformation
twinning leads to a severe inhomogeneity in the microstruc-
ture. This can be observed not only directly in the grains
undergoing twin transformation, such as grain G1 in which
the interaction between plastic slip and twinning intensifies
the microstructure inhomogeneity, but also in the neighbor-
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Table 2 The total number of
elements, displacement nodes
and degrees of freedom for six
mesh densities (MD1 to MD6)
and all element types
considered, cf. Fig. 2

MD1 MD2 MD3 MD4 MD5 MD6
No. of elements 4900 10,000 19,600 40,000 78,400 160,000

Q1H1(-Fbar) No. of nodes 5,041 10,201 19,881 40,401 78,961 160,801

No. of d.o.f 15,919 31,736 61,223 123,457 240,033 486,900

Q2sH1(-R) No. of nodes 14,981 30,401 59,361 120,801 236,321 481,601

No. of d.o.f 36,079 72,536 140,743 285,057 555,873 1,130,100

Q2H1 No. of nodes 19,881 40,401 78,961 160,801 314,721 641,601

No. of d.o.f 45,879 92,536 179,943 365,057 712,673 1,450,100

Q2sH2s(-R) No. of nodes 14,981 30,401 59,361 120,801 236,321 481,601

No. of d.o.f 46,668 93,662 181,516 367,304 715,816 1,454,590

Q2H2 No. of nodes 19,881 40,401 78,961 160,801 314,721 641,601

No. of d.o.f 61,368 123,662 240,316 487,304 951,016 1,934,590

Fig. 6 Effect of element type and mesh density on the macroscopic stress–strain response represented by the equivalent stress σ̄eq as a function
of the equivalent strain ε̄eq. Each panel corresponds to the element type indicated in the bottom-right corner. The shaded areas are enlarged in the
insets

ing grain, i.e., grain G4 with no twin transformation, where
a visible inhomogeneous deformation is induced as a result
of twin impinging at the grain boundary.

4.2 Effect of element type andmesh density

A detailed study of the effect of element type and mesh den-
sity on the performance of the computationalmodel is carried
out in this section. To this end, a set of six regular finite-
element meshes of increasing density is considered starting
from a coarse mesh of 70× 70 elements (MD1, element size
h = 43nm) to the finest mesh of 400× 400 elements (MD6,
h = 7.5nm). Table 2 provides the number of displacement

nodes and the number of degrees of freedom (see Fig. 2) for
each mesh density and for each element type.

Figures 6 and 7 depict the macroscopic response obtained
for all elements and all mesh densities. The response is pro-
vided in terms of the equivalent macroscopic stress σ̄eq =
( 32 s̄ · s̄)1/2, where s̄ is the deviator of the macroscopic Cauchy
stress σ̄ , as a function of the equivalent macroscopic strain
ε̄eq. Enlarged views of the plateaus are shown in the insets.
Each panel in Fig. 6 corresponds to one of the element types
and includes the equivalent stress–strain curves obtained for
all six mesh densities. On the other hand, each panel in
Fig. 7 corresponds to a selected mesh density and includes
the curves obtained for all element types.
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Fig. 7 Effect of element type and mesh density on the macroscopic stress–strain (σ̄eq–ε̄eq) response. Each panel corresponds to the mesh density
indicated in the bottom-right corner. The shaded areas are enlarged in the insets

The first observation from Figs. 6 and 7 is that, with mesh
refinement, all responses converge to (nearly) the same out-
come. The converged response is characterized by several
stress drops that are associated with abrupt events, mostly
nucleation of twins. The first stress peak and the subsequent
largest stress drop at ε̄eq ≈ 0.01 are associated with the
first two twins that appear in grains G1 and G3, see the first
snapshot in Fig. 4. After this first stress drop, the deforma-
tion is characterized by a stress plateau with much weaker
stress drops that accompany further evolution of the twin
microstructure, cf. Fig. 4.After the plateau, say at ε̄eq ≈ 0.07,
a hardening stage can be observed which is associated with
activation of hard pyramidal slip systems as a result of satu-
ration of twinning (all grains are fully twinned except grain
G4 which is oriented unfavorably and does not twin at all).

As indicated above, the stress drops correspond to abrupt
microstructure evolution events, hence the pattern of the
irregularities in the stress–strain response is, in fact, a kind of
representation (a fingerprint) of the underlying microstruc-
ture evolution. Accordingly, the same sequence of stress
drops in two stress–strain responses suggests that they cor-
respond to the same sequence of microstructure evolution
events. This is confirmed by Fig. 8 which compares the
microstructure represented by the lattice orientation angle θlat
at ε̄eq = 0.04 and at ε̄eq = 0.08 for all elements and for three
selected mesh densities. For the finest mesh (MD=6), only
very minor differences can be seen, which is consistent with
the corresponding converged stress–strain response obtained
for all elements, as shown in Fig. 7. On the other hand,
differences in the microstructures obtained for the coarsest
mesh (MD1) are visible, see, e.g., grain G1 at ε̄eq = 0.04
and grain G3 at ε̄eq = 0.08. Here, the differences arise not
only among the element types but also in comparison to the
microstructure obtained for the finest mesh (MD6). For the
intermediate mesh density (MD3), only the microstructures
predicted by the low-order elements (Q1H1 and Q1H1-Fbar)

are inconsistent with the microstructure of the finest mesh,
while those predicted by the remaining elements are in a
reasonable agreement with it.

Figures 6, 7, and 8 consistently show that the conver-
gence with mesh refinement is visibly poorer in the case of
the two low-order elements (Q1H1 and Q1H1-Fbar). It fol-
lows from Fig. 6 that in both cases a correct sequence of the
microstructure evolution events is obtained only for the two
finest meshes (MD5 and MD6). In the case of the remain-
ing elements (Q2 and Q2s displacement interpolation), the
sequence of the events is represented with a reasonable accu-
racy already for MD3. Of course, for the same mesh density,
the low-order elements have a smaller number of degrees of
freedom, hence a direct comparison of the overall computa-
tional efficiency is not straightforward, as discussed below.

The computational cost is illustrated in Fig. 9which shows
the total wall-clock time as a function of the number of
degrees of freedom, as well as its two ingredients, namely
the total linear-solver time and the total assembly time, the
latter involving mostly the computation of element quanti-
ties (element contributions to the residual vector and tangent
matrix). Note that, in each case (element type and mesh den-
sity), the simulation has been completed with a different total
number of time steps, see Fig. 10, as a result of the adaptive
time incrementation algorithm employed.

The numbers reported in Fig. 9 concern the total compu-
tational cost. Each computation time is the product of the
respective cost of one Newton iteration and the total number
of iterations, while the total number of iterations is roughly
proportional to the number of time steps. The cost of one
Newton iteration is approximately constant for a fixed ele-
ment type and mesh density and depends on various factors.
For instance, the assembly timeper iteration is proportional to
the number ofGauss points and is thus lower for the quadratic
elements with reduced integration (Q2sH1-R, Q2sH2s-R)
than for the fully integrated quadratic elements. The linear-
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Fig. 8 Comparison of themicrostructure obtained for all element types and for three selectedmesh densities (MD1,MD3,MD6) at two representative
stages of deformation (ε̄eq = 0.04 and ε̄eq = 0.08)
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Fig. 9 Computational efficiency: a the total wall-clock time, b linear-solver time and c assembly time as a function of the total number of degrees
of freedom

Fig. 10 Robustness: the number of time steps needed to complete the
simulation (an adaptive time incrementation algorithm is used) as a
function of the total number of degrees of freedom. The line legend is
provided in Fig. 9

solver time naturally depends on the number of degrees of
freedom, but it may also be affected by the sparsity of the
tangent matrix, etc.

FromFig. 10 it follows that the robustness of the computa-
tionalmodel with different element types varies significantly.
At the same time, overall, the differences in the total compu-
tational cost are visible, but not large, see Fig. 9a, particularly
for higher mesh densities that deliver reliable results in terms
of both microstructure evolution and stress–strain response.
Elements Q2sH1-R and Q2H1 appear to be the most effi-
cient, except for the finest mesh (MD6), for which element
Q2H2 is characterized by a slightly lower cost. Of course,
the above comparison is specific to the details of the compu-
tational scheme outlined in Sect. 3.5.

In the above study, the element size has been varied
between h = 43nm for MD1 and h = 7.5nm for MD6.

It follows that for 
 = 10nm, as used in all computations,
the ratio of 
 to h ranges from 
/h = 0.23 for MD1 to

/h = 1.33 for MD6. Considering that the theoretical thick-
ness of the diffuse interface is π
 [39, 40], this corresponds
to π
/h = 0.73 for MD1 and π
/h = 4.19 for MD6. Ear-
lier studies suggest that at least 3–4 elements per interface
thickness are needed to accurately resolve the profile of the
diffuse interface [22, 27], although this condition concerns
piecewise-linear approximation of the order parameter (i.e.,
H1 elements in the present study), and this ratio is expected to
be smaller for quadratic (H2s and H2) elements. Clearly, the
above condition is satisfied only for the finest meshes used in
the present study. However, as discussed above, acceptable
results can be obtained also for the meshes that would be
considered too coarse according to the above condition. The
good performance of the present model for the meshes that
seem to be too coarse may be attributed to the micromor-
phic formulation, Eqs. (15) and (16). More specifically, as
a result of the penalty regularization, an additional diffuse-
ness of the interface is introduced which provides a kind of
a regularization to the problem at hand.

4.3 Effect of themicromorphic regularization

In this section, we study the effect of the micromorphic
penalty parameter εμ on the response and robustness of the
model. The results reported above correspond to εμ = 5GPa,
the value used in our previous work [26] and selected based
on theoretical considerations and prior experience [42, 55].
Here, parameter εμ is varied in a wide range between 0.05
and 50GPa, and the corresponding results are reported below
for the element Q2sH1-R and for the mesh density varied
between MD2 and MD5. Note that this element was used in
our previous study [26] and exhibited a good performance,
which is also corroborated here, as shown in Sect. 4.2.
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Fig. 11 Effect of the micromorphic penalty parameter εμ on the macroscopic stress–strain response (σ̄eq–ε̄eq) for selected mesh densities

Figure 11 shows the effect of εμ on the macroscopic
stress–strain response. It can be seen that, for εμ = 0.5GPa
and higher, the response is practically insensitive to εμ,
except for the coarse mesh (MD2). As discussed in Sect. 4.2,
a good agreement of the fine features of the stress–strain
response indicates that also the microstructure evolution pro-
ceeds along a similar path, and this is illustrated in Fig. 12.
Compared to higher values of εμ, small differences in the
microstructure can be seen for εμ = 0.05GPa, while those
for εμ = 0.5GPa and 5GPa are practically identical, except
for the coarse mesh (MD2) which is too coarse to deliver a
correct microstructure regardless of the value of εμ. Increas-
ing εμ to 50GPa does not affect the microstructure (not
included in Fig. 12), while the computational cost increases
significantly.

Figure 13 shows the effect of the micromorphic penalty
parameter on the number of time steps needed to complete
the simulation. Recall that an adaptive time incrementation
algorithm is used, and the computational cost is directly pro-
portional to the number of time steps. It follows that for all
mesh densities the number of time steps is the lowest for
εμ = 0.5GPa. This value seems thus to be optimal in terms
of efficiency, especially considering its ability to yield rea-
sonably accurate results, as discussed above. Note, however,
that somewhat higher values of εμ may be preferable to guar-
antee a higher accuracy, at the expense of a slightly higher
computational cost, as for εμ = 2GPa. Interestingly, for
εμ = 2GPa, the number of time steps is practically insensi-
tive to the mesh density.

4.4 Rate sensitivity

The form of the dissipation potential D, Eqs. (20)–(22), spec-
ifies the evolution equations in the form of Perzyna-type
overstress model with linear viscosity, see Eq. (31). As dis-
cussed in Sect. 2.4, the loading rate—here specified by the

overall strain rate d̄, see Eq. (81)—is adopted such that the
corresponding rate-effects are not much pronounced. This is
illustrated in Fig. 14 which shows the macroscopic stress–
strain response for the overall strain rate d̄ varied between
0.001 s−1 and 0.1 s−1 (the reference value used in the pre-
ceding computations is d̄ = 0.01 s−1). Note that the rate
effects could be equivalently examined by scaling the refer-
ence slip rate γ̇0 and reference interface propagation speed
v0. The results are reported here for the element Q2sH1-R
and for two representative mesh densities (MD3, MD4).

It follows from Fig. 14 that indeed the stress–strain
response does not change significantlywhen the overall strain
rate d̄ is decreased from the reference value of 0.01 s−1

to 0.001 s−1, particularly for the finer mesh MD4. Also,
the twin microstructure that develops during deformation
shows very minor differences (the corresponding results are
thus not shown). On the other hand, when d̄ is increased
to 0.03 s−1 and to 0.1 s−1, significant changes in the
stress–strain response are observed, and those changes are
accompanied by visible changes in the twin microstructure
(not shown). This confirms our earlier observation that the
overall stress–strain response may serve as a fingerprint of
the underlying microstructure evolution.

Figure 15 shows the total number of time steps as a func-
tion of the overall strain rate d̄ . Note that, for a given element
type andmesh density, the computational cost (the total wall-
clock time) is proportional to the number of time steps, hence
the number of time steps can be used as a measure of com-
putational efficiency. As expected, when d̄ is decreased, the
number of time steps increases so that the use of the viscous
regularization is associated with the common efficiency–
accuracy trade-off. Overall, the results in Figs. 14 and 15
indicate that the rate effects in our main simulations are mild,
and reduction of those effects would lead to an increase in
computational cost.
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Fig. 12 Comparison of the microstructure at ε̄eq = 0.05 obtained for three values of the micromorphic penalty parameter εμ = {0.05, 0.5, 5}GPa
and for four mesh densities (MD2, MD3, MD4 and MD5): lattice orientation angle θlat (top) and order parameter η (bottom)
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Fig. 13 The total number of time steps as a function of the micromor-
phic penalty parameter εμ

5 Conclusion

A comprehensive numerical study has been carried out to
assess the computational performance of the phase-field
model of coupleddeformation twinning and crystal plasticity.
The model was first presented in [26] where its capability in
capturing the evolutionof the twinmicrostructurewas shown.
In this paper, the specific issues addressed are the incremen-
tal formulation and computational treatment of the model,
as well as the model’s efficiency with regard to the choice
of elements in the finite-element discretization, mesh den-
sity, and micromorphic regularization parameter. A series of
2D simulations have been performed for a periodic unit cell
containing four grains, leading to several key observations:

Fig. 15 The total number of time steps as a function of the overall strain
rate d̄

• For the finestmesh density, all the element types converge
to practically the same solution.

• Despite coarse meshes fail to capture the details of the
microstructure and mechanical response, which is espe-
cially evident for low-order discretizations (Q1H1 and
Q1H1-Fbar), the produced results maintain reasonable
qualitative resemblance to those from finer mesh densi-
ties.

• Low-order elements display the largest variation in com-
putational efficiency as a function ofmesh density. As the
mesh becomes finer, different element types yield simi-
lar robustness. Overall, the computational study indicates
that Q2sH1-R and Q2H1 element types exhibit the supe-
rior efficiency.

Fig. 14 Effect of the overall strain rate d̄ on the macroscopic stress–strain response (σ̄eq–ε̄eq)
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• The sensitivity of the simulation results to the micromor-
phic regularization parameter εμ suggests that coarser
meshes are more susceptible to the changes in εμ. The
corresponding study of computational efficiency high-
lights two characteristic points: one at εμ = 0.5 GPa,
demonstrating the optimal performance and results of
acceptable quality, and the other at εμ = 2 GPa, where
no discernible change in robustness is visible across dif-
ferent mesh densities.

• The rate sensitivity analysis confirms that our simulation
results are not markedly influenced by rate effects.
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