inż. Błażej Popławski

Zakład Technologii Inteligentnych (ZTI)
Pracownia Inżynierii Bezpieczeństwa (PIB)
stanowisko: doktorant
telefon: (+48) 22 826 12 81 wew.: 168
pokój: 411
e-mail: bpop

Ostatnie publikacje
1.Popławski B., Mikułowski G., Mróz A., Jankowski Ł., Decentralized semi-active damping of free structural vibrations by means of structural nodes with an on/off ability to transmit moments, MECHANICAL SYSTEMS AND SIGNAL PROCESSING, ISSN: 0888-3270, DOI: 10.1016/j.ymssp.2017.08.012, Vol.100, pp.926-939, 2018

Streszczenie:

This paper proposes, tests numerically and verifies experimentally a decentralized control algorithm with local feedback for semi-active mitigation of free vibrations in frame structures. The algorithm aims at transferring the vibration energy of low-order, lightly-damped structural modes into high-frequency modes of vibration, where it is quickly damped by natural mechanisms of material damping. Such an approach to mitigation of vibrations, known as the prestress-accumulation release (PAR) strategy, has been earlier applied only in global control schemes to the fundamental vibration mode of a cantilever beam. In contrast, the decentralization and local feedback allows the approach proposed here to be applied to more complex frame structures and vibration patterns, where the global control ceases to be intuitively obvious. The actuators (truss–frame nodes with controllable ability to transmit moments) are essentially unblockable hinges that become unblocked only for very short time periods in order to trigger local modal transfer of energy. The paper proposes a computationally simple model of the controllable nodes, specifies the control performance measure, yields basic characteristics of the optimum control, proposes the control algorithm and then tests it in numerical and experimental examples.

Słowa kluczowe:

Damping of vibrations, Smart structures, Semi-active control, Decentralized control, Truss-frame nodes

Afiliacje autorów:

Popławski B.-IPPT PAN
Mikułowski G.-IPPT PAN
Mróz A.-IPPT PAN
Jankowski Ł.-IPPT PAN
45p.

Prace konferencyjne
1.Mikułowski G., Popławski B., Wiszowaty R., Mróz A., Jankowski Ł., An investigation on a semi-active damping of forced structural vibrations by means of controllable structural nodes, ISMA 2018, The Leuven Conference on Noise and Vibration Engineering, 2018-09-17/09-19, Leuven (BE), pp.189-201, 2018

Streszczenie:

Vibration mitigation in space structures creates a unique class of a technical problem where resistant for outgassing and non-fluidic solutions are preferable. Additionaly, a vibration induced by time-varying excitations needs to be effectively reduced. The vibration mitigation task is speciffically difficult in the case of light, slender and inherently flexible structures of various types, such as supporting structures, deployable structures, modular structures or wide-span skeletal roofing structures. This study presents a concept of a vibration attenuation method based on semi-active joints and dedicated to frame structures under forced vibration excitation. The presented investigation contains an analysis of the problem of the optimal control of a structure fitted with semi-active structural members. Furthermore, an adequate model of the semi-active joints is developed and a numerical example is presented. Finally, the research provides an experimental verification of the developed control algorithms, which is conducted on a test stand in a laboratory environment.

Afiliacje autorów:

Mikułowski G.-IPPT PAN
Popławski B.-IPPT PAN
Wiszowaty R.-IPPT PAN
Mróz A.-other affiliation
Jankowski Ł.-IPPT PAN
2.Popławski B., Mikułowski G., Suwała G., Jankowski Ł., Optimization of actuator placement for vibration damping in the Prestress-Accumulation release control approach, WCSCM, 7th World Conference on Structural Control and Monitoring, 2018-07-22/07-25, Qingdao (CN), pp.818-827, 2018

Streszczenie:

This contribution proposes a quantitative criterion for optimization of actuator placement for the Prestress–Accumulation Release (PAR) strategy of mitigation of vibrations. The PAR strategy is a semi-active control approach that relies on controlled redistribution of modal energy into high-frequency high-order modes, where it is effectively dissipated by means of the natural mechanisms of material damping. The energy transfer is achieved by a controlled temporary removal of selected structural constraints. An example is a short-time decoupling of rotational degrees of freedom in a frame node, so that the bending moments are no longer transferred between the involved beams. If it such a decoupling is performed at the maximum of the shear/bending strain energy of adjacent beams, it results in an almost instantaneous energy release into high-frequency local vibrations and quick dissipation of energy. We propose and test a quantitative criterion for placement of such actuators. The criterion is based on local modal strain energy that can be released into high-order modes. The numerical time complexity is linear with respect to the number of actuators, which facilitates quick selection of placements in large structures.

Słowa kluczowe:

semi-active control, damping of vibrations, actuator placement, smart structures, Prestress-Accumulation Release (PAR)

Afiliacje autorów:

Popławski B.-IPPT PAN
Mikułowski G.-IPPT PAN
Suwała G.-IPPT PAN
Jankowski Ł.-IPPT PAN
3.Popławski B., Mikułowski G., Mróz A., Jankowski Ł., Decentralized algorithm for semi-active damping of forced vibrations using controllable truss-frame nodes, WCSCM, 7th World Conference on Structural Control and Monitoring, 2018-07-22/07-25, Qingdao (CN), pp.582-590, 2018

Streszczenie:

Semi-active systems for mitigation of vibrations proved to be effective in many applications. Their prominent advantage is that they combine strong points of passive and active damping systems. Proper design can ensure their reliability, which is what passive systems are praised for. A high effectiveness in vibration damping links them with active systems. At the same time they do not have many deficiencies of active systems. They are adaptive, so they can stay effective in different environmental conditions, which is the factor that eliminates passive systems from many implementations. Their mass and energy consumption is very low, and the controlled structure can stay in the safe configuration even in case of power supply failure, which puts them in contrast to many active systems. The mentioned attributes make them a good choice for many structures subjected to vibrations, especially when there is a strong emphasis on maximization of the efficiency/mass ratio of the damping system.

This contribution presents a decentralized closed-loop control strategy and applies it in a frame structure equipped with controllable truss-frame nodes. Such nodes can be switched between frame-like and truss-like states in a controllable manner. In the frame-like state the node transmits all forces and moments, while in the truss-like state only axial and shearing forces are transmitted. These nodes allow for structural reconfiguration, which can be utilized by semi-active control strategies for the purpose of vibration damping. The implemented control algorithm applies the Prestress-Accumulation Release (PAR) strategy based on the transmission of the accumulated potential energy to high modes of vibration, which are highly dissipative. Strain measurements are conducted locally on selected elements. A similar strategy proved its effectiveness in mitigation of free structural vibrations. This research studies the concept of its application to mitigation of forced structural vibrations, caused by variable external conditions.

Słowa kluczowe:

Semi-active damping, Truss-frame nodes, Prestress-Accumulation Release (PAR), Decentralized control

Afiliacje autorów:

Popławski B.-IPPT PAN
Mikułowski G.-IPPT PAN
Mróz A.-other affiliation
Jankowski Ł.-IPPT PAN
4.Popławski B., Mikułowski G., Mróz A., Sekuła K., Jankowski Ł., A decentralized strategy of structural reconfiguration in mitigation of vibrations, Procedia Engineering, ISSN: 1877-7058, DOI: 10.1016/j.proeng.2017.09.363, No.199, pp.1683-1688, 2017

Streszczenie:

This contribution proposes a decentralized closed-loop control algorithm for semi-active mitigation of free vibrations in frame structures. The control uses dedicated dissipative devices, which consist of two controllable structural nodes placed pairwise in both ends of selected structural beams. The nodes are capable of a controlled transition between the standard frame mode of operation (full moment-bearing ability) and the truss mode in which they do not bear any moments and constitute in fact structural hinges. Synchronous switching is equivalent to reconfiguration of the global structure by (dis)allowing the involved beams to transmit moments and to accumulate vibration energy in the form of their bending strain. Upon switching to the truss mode, the accumulated energy is released into high-frequency local vibrations, which undergo quick dissipation by standard mechanisms of material damping. The approach is illustrated in a numerical example and verified in a preliminary experimental test.

Słowa kluczowe:

Mitigation of vibrations, Semi-active control, Decentralized control, Structural reconfiguration

Afiliacje autorów:

Popławski B.-IPPT PAN
Mikułowski G.-IPPT PAN
Mróz A.-IPPT PAN
Sekuła K.-IPPT PAN
Jankowski Ł.-IPPT PAN
15p.
5.Popławski B., Mikułowski G., Mróz A., Jankowski Ł., Decentralized damping of vibrations in 2D frame structures using controllable nodes, SMART 2017, 8th Conference on Smart Structures and Materials, 2017-06-05/06-08, Madrid (ES), pp.94-103, 2017

Streszczenie:

Extensive research efforts have been recently devoted to semi-active structural control with its paradigms of smart self-adaptivity and low consumption of energy, which is used for local adaptation rather than to generate external control forces. Considered application areas include adaptive landing gears, seismic isolation systems, vehicle-track/span systems, power train electro-mechanical systems, damping of flexible space structures, vehicle crashworthiness, arctic engineering, wind turbines, etc. A part of the research concerns semi-active management of strain energy for damping of structural vibrations. Early works considered truss structures with stiffness-switched bars. They later evolved into either standalone one degree of freedom stiffness-switched dampers and isolators or investigations in triggering modal energy transfer to highly-damped high-order modes. The latter researches seem all to study the fundamental vibration mode of a cantilever beam with two detachable layers and differ mainly in the actuator technologies; the main idea is to employ actuators for a quick release of the vibration-related strain energy. This research extends the problem to general 2D frames. Controllable truss-frame nodes are incorporated into the structure. Thanks to their controllable ability to transmit moments, they allow for a quick transition between truss and frame modes. We propose a new, decentralized, closed-loop control strategy based on local energy measures. Vibration damping is more effective than in the previously studied control scheme based on a global energy measure, especially for higher vibration modes. Mitigation of vibrations will be presented in representative numerical examples, including a comparison to the global energy-based control strategy. Finally, results of experimental study, conducted on a structure analogous to the one from numerical simulations, will be demonstrated.

Słowa kluczowe:

Vibration damping, Smart structures, Semi-active control, PAR strategy, Decentralized damping strategy

Afiliacje autorów:

Popławski B.-IPPT PAN
Mikułowski G.-IPPT PAN
Mróz A.-IPPT PAN
Jankowski Ł.-IPPT PAN
6.Faraj R., Popławski B., Suwała G., Jankowski Ł., Holnicki-Szulc J., Mitigation of dynamic response in frame structures by means of smart joints, SMART 2017, 8th Conference on Smart Structures and Materials, 2017-06-05/06-08, Madrid (ES), pp.138-144, 2017

Streszczenie:

This paper discusses passive and semi-active techniques of structural control by means of smart joints, and then it proposes a specific smart joints system for frame structures and tests its capability in mitigation of free vibrations. Basically, the proposed solution modifies frame beams by addition of truss-type hinges, and its effectiveness relies on the softening effect that occurs in compression due to geometric nonlinearities and which triggers the highly-damped high-frequency response modes of the structure. First, the finite element (FE) model of the specific frame structure with geometrical nonlinearities is derived, and the proposed passive joints are described and incorporated into the model. Then, their principle of operation and effectiveness is examined numerically for the first two natural modes of vibrations with various initial displacement amplitudes. An objective function is proposed to assess joints placement, based on the efficiency in mitigation of the excited vibrations.

Słowa kluczowe:

Vibration Damping, Structure Response, Smart Structure, Structural Control

Afiliacje autorów:

Faraj R.-IPPT PAN
Popławski B.-IPPT PAN
Suwała G.-IPPT PAN
Jankowski Ł.-IPPT PAN
Holnicki-Szulc J.-IPPT PAN
7.Popławski B., Graczykowski C., Jankowski Ł., Controllable Truss-Frame Nodes in Semi-Active Damping of Vibrations, Advances in Science and Technology, ISSN: 1662-0356, DOI: 10.4028/www.scientific.net/AST.101.89, Vol.101, pp.89-94, 2017

Streszczenie:

In recent years, vibration damping strategies based on semi-active management of strain energy have attracted a large interest and were proven highly effective. However, most of published research considers simple one degree of freedom systems or study the same basic example (the first vibration mode of a cantilever beam) with the same control strategy. This contribution focuses on truss-frame nodes with controllable moment-bearing ability. It proposes and tests an approach that allows the control strategy to be extended to more complex structures and vibration patterns.

Słowa kluczowe:

adaptive impact absorption, smart structures, semi-active control, safety engineering

Afiliacje autorów:

Popławski B.-IPPT PAN
Graczykowski C.-IPPT PAN
Jankowski Ł.-IPPT PAN
8.Jankowski Ł., Graczykowski C., Pawłowski P., Mikułowski G., Ostrowski M., Popławski B., Faraj R., Suwała G., Holnicki-Szulc J., Adaptive Self-Protection against Shock and Vibration, Advances in Science and Technology, ISSN: 1662-0356, DOI: 10.4028/www.scientific.net/AST.101.133, Vol.101, pp.133-142, 2017

Streszczenie:

This contribution reviews the challenges in adaptive self-protection of structures. A proper semi-active control strategy can significantly increase structural ability to absorb impact-type loads and damp the resulting vibrations. Discussed systems constitute a new class of smart structures capable of a real-time identification of loads and vibration patterns, followed by a low-cost optimum absorption of the energy by structural adaptation. Given the always surging quest for safety, such systems have a great potential for practical applications (in landing gears, road barriers, space structures, etc.). Compared to passive systems, their better performance can be attributed to the paradigm of self-adaptivity, which is ubiquitous in nature, but still sparsely applied in structural engineering. Being in the early stages of development, their ultimate success depends on a concerted effort in facing a number of challenges. This contribution discusses some of the important problems, including these of a conceptual, technological, methodological and software engineering nature.

Słowa kluczowe:

adaptive impact absorption, smart structures, semi-active control, safety engineering

Afiliacje autorów:

Jankowski Ł.-IPPT PAN
Graczykowski C.-IPPT PAN
Pawłowski P.-IPPT PAN
Mikułowski G.-IPPT PAN
Ostrowski M.-IPPT PAN
Popławski B.-IPPT PAN
Faraj R.-IPPT PAN
Suwała G.-IPPT PAN
Holnicki-Szulc J.-IPPT PAN

Abstrakty konferencyjne
1.Popławski B., Mikułowski G., Wiszowaty R., Jankowski Ł., Semi-active mitigation of externally induced vibrations, SolMech 2018, 41st SOLID MECHANICS CONFERENCE, 2018-08-27/08-31, Warszawa (PL), No.P197, pp.1-2, 2018

Streszczenie:

Almost all man-made structures are exposed to vibration. Regardless of whether these are large structures such as bridges or skyscrapers, machines with rotating parts such as engine shafts, frame structures or vehicle suspensions, excessive vibrations can be very harmful. From the perspective of their effects they can be seen as very spectacular (e.g., a collapse of a bridge) or not worth much attention (e.g., a failure of a motor shaft), but in each of these cases, the effect is the destruction of the structure and a negative impact on the users of these devices.
Several approaches can be used by the designers to overcome this phenomenon. The most basic, but often sufficient, method is to introduce changes in the mechanical parameters of the system affecting the severity of vibration in operational conditions, i.e., its mass or stiffness. If such design changes cannot be realized, or if vibration problems are detected after the system is manufactured, or if a vibration suppression system must be used for other reasons, one of the three basic types of such systems can be used.
The primary choice is usually a passive vibration damping system. These are relatively simple systems whose mode of operation is the passive dissipation of the energy of structural vibrations. Their design and simple functionality ensures that they are highly reliable, but their simplicity is reflected, unfortunately, in their limited efficiency. Their flexibility may be also considered as insufficient: once configured, even a small change in the specific operating conditions can result in a drastic loss of performance. This indicates a rather narrow spectrum (frequency range) of correct system operation.
Active systems constitute a much more effective damping approach. In this case, vibration attenuation is achieved not by means of dampers, but by actuators integrated into the structure. This approach allows to achieve very good results of vibration mitigation over a wide range of excitation frequencies. High efficiency, however, is burdened with a much higher degree of complexity of such a system as compared to the passive systems. In order to develop such a system, it is necessary to design the controller and install actuators that implement the control algorithm. During the vibration suppression, the actuators themselves require a large energy supply, which can be troublesome in some cases.
The compromise between these damping systems are semi-active systems, where the actuators are used to affect structural properties instead of exerting large external forces. In terms of reliability, semi-active systems can be compared with passive systems, while in terms of the efficiency of damping with active ones. They also do not require large amounts of electric energy to implement the control algorithm. Despite being a relatively new research area with less established design and development procedures, their advantages seem to be large enough to attract a growing number of scientists and engineers.
This contribution presents a strategy for semi-active reduction of forced vibrations in frame structures. Analogous damping technique proved to be effective in damping of free vibrations. The control strategy is based on the Prestress Accumulation–Release (PAR) concept and uses specially designed semi-active rotational nodes. Successive decentralization of the damping system demonstrates that apart from the global mechanism of the energy dissipation based on the PAR, it is also possible to disperse it locally to individual beams that are separate elements of the damping system.

Afiliacje autorów:

Popławski B.-IPPT PAN
Mikułowski G.-IPPT PAN
Wiszowaty R.-IPPT PAN
Jankowski Ł.-IPPT PAN
2.Popławski B., Mikułowski G., Mróz A., Sekuła K., Jankowski Ł., A decentralized strategy of structural reconfiguration in mitigation of vibrations, EURODYN 2017, X International Conference on Structural Dynamics, 2017-09-10/09-13, Rome (IT), pp.114, 2017
3.Popławski B., Mikułowski G., Jankowski Ł., Semi-active damping of forced vibrations utilizing controllable truss-frame nodes, ICAST2017, The 28th International Conference on Adaptive Structures and Technologies, 2017-10-08/10-11, Kraków (PL), pp.1, 2017
4.Popławski B., Mikułowski G., Jankowski Ł., On-off damping of free vibrations and optimum actuator placement, SolMech 2016, 40th Solid Mechanics Conference, 2016-08-29/09-02, Warszawa (PL), pp.1-2, 2016