dr inż. Janusz Będkowski

Zakład Technologii Inteligentnych (ZTI)
Zespół Systemów Inteligentnych (ZeSI)
stanowisko: adiunkt
telefon: (+48) 22 826 12 81 wew.: 429
pokój: 438
e-mail: jbedkows

Ostatnie publikacje
1.Będkowski J., Röhling T., Hoeller F., Shulz D., Schneider F.E., Benchmark of 6D SLAM (6D Simultaneous Localisation and Mapping) Algorithms with Robotic Mobile Mapping Systems, Foundations of Computing and Decision Sciences, ISSN: 0867-6356, DOI: 10.1515/fcds-2017-0014, Vol.42, No.3, pp.275-295, 2017

Streszczenie:

This work concerns the study of 6DSLAM algorithms with an application of robotic mobile mapping systems. The architecture of the 6DSLAM algorithm is designed for evaluation of different data registration strategies. The algorithm is composed of the iterative registration component, thus ICP (Iterative Closest Point), ICP (point to projection), ICP with semantic discrimination of points, LS3D (Least Square Surface Matching), NDT (Normal Distribution Transform) can be chosen. Loop closing is based on LUM and LS3D. The main research goal was to investigate the semantic discrimination of measured points that improve the accuracy of final map especially in demanding scenarios such as multi-level maps (e.g., climbing stairs). The parallel programming based nearest neighborhood search implementation such as point to point, point to projection, semantic discrimination of points is used. The 6DSLAM framework is based on modified 3DTK and PCL open source libraries and parallel programming techniques using NVIDIA CUDA. The paper shows experiments that are demonstrating advantages of proposed approach in relation to practical applications. The major added value of presented research is the qualitative and quantitative evaluation based on realistic scenarios including ground truth data obtained by geodetic survey. The research novelty looking from mobile robotics is the evaluation of LS3D algorithm well known in geodesy.

Słowa kluczowe:

Mobile robot, Mobile mapping system, Iterative Closest Point, Least Square Surface Matching, Normal Distribution Transform, LUM, 6DSLAM, CUDA

Afiliacje autorów:

Będkowski J.-IPPT PAN
Röhling T.-Fraunhofer-Institut f¨ur Kommunikation (DE)
Hoeller F.-Fraunhofer-Institut f¨ur Kommunikation (DE)
Shulz D.-Fraunhofer-Institut f¨ur Kommunikation (DE)
Schneider F.E.-Fraunhofer-Institut f¨ur Kommunikation (DE)
15p.
2.Będkowski J., Röhling T., Online 3D LIDAR Monte Carlo localization with GPU acceleration, Industrial Robot: An International Journal, ISSN: 0143-991X, DOI: 10.1108/IR-11-2016-0309, Vol.44, No.4, pp.442-456, 2017

Streszczenie:

*Purpose*

This paper aims to focus on real-world mobile systems, and thus propose relevant contribution to the special issue on “Real-world mobile robot systems”. This work on 3D laser semantic mobile mapping and particle filter localization dedicated for robot patrolling urban sites is elaborated with a focus on parallel computing application for semantic mapping and particle filter localization. The real robotic application of patrolling urban sites is the goal; thus, it has been shown that crucial robotic components have reach high Technology Readiness Level (TRL).

*Design/methodology/approach*

Three different robotic platforms equipped with different 3D laser measurement system were compared. Each system provides different data according to the measured distance, density of points and noise; thus, the influence of data into final semantic maps has been compared. The realistic problem is to use these semantic maps for robot localization; thus, the influence of different maps into particle filter localization has been elaborated. A new approach has been proposed for particle filter localization based on 3D semantic information, and thus, the behavior of particle filter in different realistic conditions has been elaborated. The process of using proposed robotic components for patrolling urban site, such as the robot checking geometrical changes of the environment, has been detailed.

*Findings*

The focus on real-world mobile systems requires different points of view for scientific work. This study is focused on robust and reliable solutions that could be integrated with real applications. Thus, new parallel computing approach for semantic mapping and particle filter localization has been proposed. Based on the literature, semantic 3D particle filter localization has not yet been elaborated; thus, innovative solutions for solving this issue have been proposed. Recently, a semantic mapping framework that was already published was developed. For this reason, this study claimed that the authors’ applied studies during real-world trials with such mapping system are added value relevant for this special issue.

*Research limitations/implications*

The main problem is the compromise between computer power and energy consumed by heavy calculations, thus our main focus is to use modern GPGPU, NVIDIA PASCAL parallel processor architecture. Recent advances in GPGPUs shows great potency for mobile robotic applications, thus this study is focused on increasing mapping and localization capabilities by improving the algorithms. Current limitation is related with the number of particles processed by a single processor, and thus achieved performance of 500 particles in real-time is the current limitation. The implication is that multi-GPU architectures for increasing the number of processed particle can be used. Thus, further studies are required.

*Practical implications*

The research focus is related to real-world mobile systems; thus, practical aspects of the work are crucial. The main practical application is semantic mapping that could be used for many robotic applications. The authors claim that their particle filter localization is ready to integrate with real robotic platforms using modern 3D laser measurement system. For this reason, the authors claim that their system can improve existing autonomous robotic platforms. The proposed components can be used for detection of geometrical changes in the scene; thus, many practical functionalities can be applied such as: detection of cars, detection of opened/closed gate, etc. […] These functionalities are crucial elements of the safe and security domain.

*Social implications*

Improvement of safe and security domain is a crucial aspect of modern society. Protecting critical infrastructure plays an important role, thus introducing autonomous mobile platforms capable of supporting human operators of safe and security systems could have a positive impact if viewed from many points of view.

*Originality/value*

This study elaborates the novel approach of particle filter localization based on 3D data and semantic mapping. This original work could have a great impact on the mobile robotics domain, and thus, this study claims that many algorithmic and implementation issues were solved assuming real-task experiments. The originality of this work is influenced by the use of modern advanced robotic systems being a relevant set of technologies for proper evaluation of the proposed approach. Such a combination of experimental hardware and original algorithms and implementation is definitely an added value.

Słowa kluczowe:

3D laser, Monte Carlo localization, Parallel computing, Particle filter localization, Semantic mapping, Unmanned ground vehicle

Afiliacje autorów:

Będkowski J.-IPPT PAN
Röhling T.-Fraunhofer-Institut f¨ur Kommunikation (DE)
15p.
3.Będkowski J., Majek K., Majek P., Musialik P., Pełka M., Nüchter A., Intelligent Mobile System for Improving Spatial Design Support and Security Inside Buildings, Mobile Networks and Applications, ISSN: 1383-469X, DOI: 10.1007/s11036-015-0654-8, Vol.21, No.2, pp.313-326, 2016

Streszczenie:

This paper concerns the an intelligent mobile application for spatial design support and security domain. Mobility has two aspects in our research: The first one is the usage of mobile robots for 3D mapping of urban areas and for performing some specific tasks. The second mobility aspect is related with a novel Software as a Service system that allows access to robotic functionalities and data over the Ethernet, thus we demonstrate the use of the novel NVIDIA GRID technology allowing to virtualize the graphic processing unit. We introduce Complex Shape Histogram, a core component of our artificial intelligence engine, used for classifying 3D point clouds with a Support Vector Machine. We use Complex Shape Histograms also for loop closing detection in the simultaneous localization and mapping algorithm. Our intelligent mobile system is built on top of the Qualitative Spatio-Temporal Representation and Reasoning framework. This framework defines an ontology and a semantic model, which are used for building the intelligent mobile user interfaces. We show experiments demonstrating advantages of our approach. In addition, we test our prototypes in the field after the end-user case studies demonstrating a relevant contribution for future intelligent mobile systems that merge mobile robots with novel data centers.

Słowa kluczowe:

Intelligent mobile system, 3D object recognition, Qualitative representation and reasoning, 3D mapping

Afiliacje autorów:

Będkowski J.-IPPT PAN
Majek K.-Institute of Mathematical Machines (PL)
Majek P.-Institute of Mathematical Machines (PL)
Musialik P.-Institute of Mathematical Machines (PL)
Pełka M.-Institute of Mathematical Machines (PL)
Nüchter A.-Julius-Maximilians-University Würzburg (DE)
30p.
4.Będkowski J., Majek K., Musialik P., Adamek A., Andrzejewski D., Czekaj D., Towards terrestrial 3D data registration improved by parallel programming and evaluated with geodetic precision, Automation in Construction, ISSN: 0926-5805, DOI: 10.1016/j.autcon.2014.07.013, Vol.47, pp.78-91, 2014

Streszczenie:

In this paper a quantitative and qualitative evaluation of proposed ICP-based data registration algorithm, improved by parallel programming in CUDA (compute unified device architecture), is shown. The algorithm was tested on data collected with a 3D terrestrial laser scanner Z + F Imager 5010 mounted on the mobile platform PIONNER 3AT. Parallel implementation enables data registration on-line, even using a laptop with a standard hardware configuration (graphic card NVIDIA GeForce 6XX/7XX series). Robustness is assured by the use of CUDA-enhanced fast NNS (nearest neighbor search) applied for ICP (iterative closest point) with SVD (singular value decomposition) solver. The evaluation is based on the reference ground truth data registered with geodetic precision. The geodetic approach extends our previous work and gives an accurate benchmark for the algorithm. The data were collected in an urban area under a demolition scenario in a real environment. We compared four registration strategies concerning data preprocessing, such as subsampling and vegetation removal. The result is the analysis of measured performance and the accuracy of the geometric maps. The system provides accurate metric maps on-line and can be used in several applications such as mobile robotics for construction area modelling or spatial design support. It is a core component for our future work on mobile mapping systems.

Słowa kluczowe:

Iterative closest point, Data registration, Mobile mapping, CUDA parallel programming, Spatial design support

Afiliacje autorów:

Będkowski J.-other affiliation
Majek K.-Institute of Mathematical Machines (PL)
Musialik P.-Institute of Mathematical Machines (PL)
Adamek A.-Warsaw University of Technology (PL)
Andrzejewski D.-Warsaw University of Technology (PL)
Czekaj D.-Warsaw University of Technology (PL)
40p.
5.Będkowski J., Intelligent mobile assistant for spatial design support, Automation in Construction, ISSN: 0926-5805, DOI: 10.1016/j.autcon.2012.09.009, Vol.32, pp.177-186, 2013

Streszczenie:

This paper describes the methodology behind intelligent mobile assistant for spatial design support. The assistant gathers data and provides computational support for spatial assistance system on the basis of making intelligent spatial decisions. The main idea behind the assistant is to create a semantic model of the environment and performing preliminary spatial reasoning to provide cognitive feedback. The main goal is to support the designer in his task by perceiving and evaluating spatial design intent. Simultaneously the assistant allows for on-line modeling of real structured environment. It improves the conception–modeling–evaluation–remodeling cycle. This paper also contains an empirical evaluation of the proposed methodology. The results of the experiments performed using the prototype of Mobile Spatial Assistance System (MSAS) are shown. To conclude, the article presents the new methodology behind spatial support systems, which provides designers with cognitive assistance.

Słowa kluczowe:

Semantic mapping, Spatial reasoning, Mobile embodiment for spatial design support system, On-line cognitive feedback

Afiliacje autorów:

Będkowski J.-other affiliation
40p.
6.Będkowski J., Understanding 3D shapes being in motion, JOURNAL OF AUTOMATION, MOBILE ROBOTICS AND INTELLIGENT SYSTEMS, ISSN: 1897-8649, Vol.7, No.1, pp.42-46, 2013

Streszczenie:

This paper concerns a classification problem of 3 D shapes being in motion. The goal is to develop the system with real-time capabilities to distinguish basic shapes (corners, planes, cones, spheres etc.) that are moving in front of RGB-D sensor. It is introduced an improvement of SoA algorithms (normal vector computation using PCA Principal Component Analysis and SVD Singular Value Decomposition, PFH – Point Feature Histogram) based on GPGPU (General Purpose Graphic Processor Unit) computation. This approach guarantee on-line computation of normal vectors, unfortunately computation time of the PFH for each normal vector is still a challenge to obtain on-line capabilities, therefore in this paper it is shown how to find a region of movement and to perform the classification process assuming the decreased amount of data. Proposed approach can be a starting point for further developments of the systems able to recognize the objects in the dynamic environments.

Słowa kluczowe:

RGB-D camera, point cloud, normal vector estimation, point feature histogram, parallel programming

Afiliacje autorów:

Będkowski J.-other affiliation
8p.
7.Majek K., Pełka M., Będkowski J., Cader M., Masłowski A., Projekt autonomicznego robota inspekcyjnego, POMIARY - AUTOMATYKA - ROBOTYKA. PAR, ISSN: 1427-9126, Vol.2, pp.278-282, 2013

Streszczenie:

W artykule przedstawiono projekt autonomicznego robota inspekcyjnego. Ze względu na fakt, że komercyjne rozwiązania nie oferują satysfakcjonującej funkcjonalności w stosunkowo niskiej cenie zdecydowano się zaprojektować autonomicznego robota inspekcyjnego na bazie komercyjnej platformy wyposażonej w autorskie rozwiązanie laserowego systemu pomiarowego 3D. Projekt lasera 3D wykonano z wykorzystaniem technik szybkiego prototypowania metodą druku 3D. Autonomiczny robot mobilny nawigowany jest na podstawie systemu IMU (Inertial Measurement Unit) ze zintegrowanym GPS (Global Positioning System). Opracowane rozwiązanie dostarcza użytkownikowi danych w postaci map lokalnych 3D wraz z częściową analizą semantyczną (obliczanie wektorów normalnych dla chmury punktów metodą PCA Principal Component Analysis) w trybie on-line. Przeprowadzono eksperymenty weryfikujące poprawność działania systemu. W rezultacie powstało nowoczesne stanowisko badawcze, które może być wykorzystane do kolejnych badań z wykorzystaniem mobilnych systemów inspekcyjnych.

Słowa kluczowe:

robot inspekcyjny, laserowy system pomiarowy 3D, PCA (Principal Component Analysis)

Afiliacje autorów:

Majek K.-Institute of Mathematical Machines (PL)
Pełka M.-Institute of Mathematical Machines (PL)
Będkowski J.-other affiliation
Cader M.-Industrial Research Institute for Automation and Measurements (PL)
Masłowski A.-other affiliation
4p.
8.Będkowski J., Qualitative Spatio-Temporal Representation and Reasoning for robotic applications, POMIARY - AUTOMATYKA - ROBOTYKA. PAR, ISSN: 1427-9126, Vol.2, pp.300-303, 2013

Streszczenie:

This paper discusses the methodology of Qualitative Spatio-Temporal Representation and Reasoning (QSTRR) for robotic applications. The goal is to develop reasoning mechanism that will allow modelling the environment and performing spatiotemporal decisions. A new approach is related to environment modelling based on robot’s perception, therefore new concepts (spatial entities) are obtained automatically, and then used in reasoning. This paper presents the results of the three experiments. Each experiment focuses on different robotic applications, such as mobile spatial assistive intelligence for spatial design, spatial design used for robotic arm integration with the environment and supervision of a teleoperated robot. Each of the experiments is considered as the proof of concept of the proposed methodology. Thus, it can be efficiently used for developing sophisticated robotic application where human-robot interaction and integration are considered as an important goal.

Słowa kluczowe:

qualitative reasoning, mobile robot, industrial robot, semantic modelling

Afiliacje autorów:

Będkowski J.-other affiliation
4p.
9.Będkowski J., Majek K., Nüchter A., General Purpose Computing on Graphics Processing Units for Robotic Applications, Journal of Software Engineering for Robotics, ISSN: 2035-3928, Vol.4, No.1, pp.23-33, 2013

Streszczenie:

This paper deals with research related with the improvements of state of the art algorithms used in robotic applications based on parallel computation. The main goal is to decrease the computational complexity of 3D cloud of points processing in applications as: data filtering, normal vector estimation, data registration, and point feature histogram calculation. The presented results improve the efficiency of existing implementations with minimal lost of accuracy. The main contribution is a regular grid decomposition originally implemented for nearest neighborhood search. This data structure is the basis for all presented methods, it provides an efficient method for decreasing the time of computation. The results are compared with well-known robotic frameworks such as PCL and 3DTK.

Afiliacje autorów:

Będkowski J.-other affiliation
Majek K.-Institute of Mathematical Machines (PL)
Nüchter A.-Julius-Maximilians-University Würzburg (DE)
10.Będkowski J., Naruniec J., On-line range images registration with GPGPU, OPTO-ELECTRONICS REVIEW, ISSN: 1230-3402, Vol.21, No.1, pp.52-62, 2012

Streszczenie:

This paper concerns implementation of algorithms in the two important aspects of modern 3D data processing: data registration and segmentation. Solution proposed for the first topic is based on the 3D space decomposition, while the latter on image processing and local neighbourhood search. Data processing is implemented by using NVIDIA compute unified device architecture (NIVIDIA CUDA) parallel computation. The result of the segmentation is a coloured map where different colours correspond to different objects, such as walls, floor and stairs. The research is related to the problem of collecting 3D data with a RGB−D camera mounted on a rotated head, to be used in mobile robot applications. Performance of the data registration algorithm is aimed for on−line processing. The iterative closest point (ICP) approach is chosen as a registration method. Computations are based on the parallel fast nearest neighbour search. This procedure decomposes 3D space into cubic buckets and, therefore, the time of the matching is deterministic. First technique of the data segmentation uses accelrometers integrated with a RGB−D sensor to obtain rotation compensation and image processing method for defining prerequisites of the known categories. The second technique uses the adapted nearest neighbour search procedure for obtaining normal vectors for each range point.

Słowa kluczowe:

3D data registration, image segmentation, GPGPU

Afiliacje autorów:

Będkowski J.-other affiliation
Naruniec J.-Warsaw University of Technology (PL)
25p.
11.Będkowski J., Masłowski A., De Cubber G., Real time 3D localization and mapping for USAR robotic application, Industrial Robot: An International Journal, ISSN: 0143-991X, Vol.39, No.5, pp.464-474, 2012

Streszczenie:

Purpose – The purpose of this paper is to demonstrate a real time 3D localization and mapping approach for the USAR (Urban Search and Rescue) robotic application, focusing on the performance and the accuracy of the General-purpose computing on graphics processing units (GPGPU)-based iterative closest point (ICP) 3D data registration implemented using modern GPGPU with FERMI architecture. Design/methodology/approach – The authors put all the ICP computation into GPU, and performed the experiments with registration up to 106 data points. The main goal of the research was to provide a method for real-time data registration performed by a mobile robot equipped with commercially available laser measurement system 3D. The main contribution of the paper is a new GPGPU based ICP implementation with regular grid decomposition. It guarantees high accuracy as equivalent CPU based ICP implementation with better performance. Findings – The authors have shown an empirical analysis of the tuning of GPUICP parameters for obtaining much better performance (acceptable level of the variance of the computing time) with minimal lost of accuracy. Loop closing method is added and demonstrates satisfactory results of 3D localization and mapping in urban environments. This work can help in building the USAR mobile robotic applications that process 3D cloud of points in real time. Practical implications – This work can help in developing real time mapping for USAR robotic applications. Originality/value – The paper proposes a new method for nearest neighbor search that guarantees better performance with minimal loss of accuracy. The variance of computational time is much less than SoA.

Słowa kluczowe:

Robotics, Search and rescue, Mapping, Data handling, Data registration, Point to point, Iterative closest point, General-purpose computing on graphics processing units

Afiliacje autorów:

Będkowski J.-other affiliation
Masłowski A.-other affiliation
De Cubber G.-other affiliation
20p.
12.Będkowski J., Masłowski A., Improvement of Control and Supervision of Web Connected Mobile Robots Using PPU Computation, JOURNAL OF AUTOMATION, MOBILE ROBOTICS AND INTELLIGENT SYSTEMS, ISSN: 1897-8649, Vol.6, No.2, pp.3-7, 2012

Streszczenie:

The paper concerns the research related to the improvement of control and supervision of web connected mobile robots using Physic Processing Unit (PPU). PPU computations taken into the consideration include rigid body dynamics, collision detection and raycasting. The result is improved by Human Machine Interface that allows performing semantic simulation during multi robot task execution. Semantic simulation engine provides tools to implement the mobile robot simulation, which is based on real data delivered by robot’s observations in INDOOR environment. The supervision of real objects such as robots is performed by association with its virtual representation in the simulation, therefore events such as object intersection, robot orientation - pitch and roll are able to be monitored. The simulation can be integrated with real part of the system with an assumption of robust localization of real entities, therefore Augmented Reality capabilities are available.

Słowa kluczowe:

semantic mapping, Human Machine Interface, mobile robot

Afiliacje autorów:

Będkowski J.-other affiliation
Masłowski A.-other affiliation
7p.
13.Ostrowski I., Majek K., Adamek A., Musialik P., Będkowski J., Masłowski A., Mobilny system tworzenia przestrzennej dokumentacji semantycznej, POMIARY AUTOMATYKA KONTROLA, ISSN: 0032-4140, Vol.58, No.12, pp.1117-1120, 2012

Streszczenie:

W artykule przedstawiono mobilny system tworzenia przestrzennej dokumentacji semantycznej. Zaproponowano nową metodę filtracji oraz rejestracji danych wykorzystującą obliczenia równoległe (NVIDIA FERMI). Opracowany system informatyczny umożliwia gromadzenie danych przestrzennych z wykorzystaniem geodezyjnego systemu pomiarowego 3D oraz pozwala na etykietowanie obiektów. Tworzona mapa semantyczna jest dostępna z poziomu dowolnego urządzenia mobilnego (laptop, smartphone, tablet).

Słowa kluczowe:

mapa semantyczna, przestrzenna dokumentacja semantyczna, skanowanie laserowe, chmura punktów, obliczenia równoległe, wizualizacja

Afiliacje autorów:

Ostrowski I.-other affiliation
Majek K.-Institute of Mathematical Machines (PL)
Adamek A.-Warsaw University of Technology (PL)
Musialik P.-Institute of Mathematical Machines (PL)
Będkowski J.-other affiliation
Masłowski A.-other affiliation
7p.
14.Będkowski J., De Cubber G., Masłowski A., 6DSLAM with GPGPU computation, POMIARY - AUTOMATYKA - ROBOTYKA. PAR, ISSN: 1427-9126, Vol.2, pp.275-280, 2012

Streszczenie:

The main goal was to improve a state of the art 6D SLAM algorithm with a new GPGPU-based implementation of data registration module. Data registration is based on ICP (Iterative Closest Point) algorithm that is fully implemented in the GPU with NVIDIA FERMI architecture. In our research we focus on mobile robot inspection intervention systems applicable in hazardous environments. The goal is to deliver a complete system capable of being used in real life. In this paper we demonstrate our achievements in the field of on line robot localization and mapping. We demonstrated an experiment in real large environment. We compared two strategies of data alingment - simple ICP and ICP using so called meta scan.

Słowa kluczowe:

6D SLAM, parallel computation

Afiliacje autorów:

Będkowski J.-other affiliation
De Cubber G.-other affiliation
Masłowski A.-other affiliation
5p.
15.Będkowski J., Masłowski J., GPGPU computation in mobile robot applications, International Journal on Electrical Engineering and Informatics, ISSN: 2085-6830, Vol.4, No.1, pp.15-26, 2012

Streszczenie:

The paper concerns the results related with GPGPU computing applied for mobile robotics applications. The scalable implementation of the point to point and point to plane 3D data registration methods with an improvement based on regular grid decomposition is shown. 3D data is delivered by mobile robot equipped with 3D laser measurement system for IND OOR environments. Presented empirical analysis of the implementation shows the On-Line computation capability using modern graphic processor unit NVIDIA GF 580. In the paper the discussion concerning the comparison between these two methods is given. It will be shown why the point to plain ICP implementation can achieve better performance than the point to point approach. We show parallel vector computation that is used for semantic objects identifications and for loop closing detection.

Słowa kluczowe:

Data registration, parallel computing, point to point, point to plane, mobile robot

Afiliacje autorów:

Będkowski J.-other affiliation
Masłowski J.-other affiliation

Lista ostatnich monografii
1.
422
Będkowski J., Qualitative Spatio-Temporal Representation and Reasoning for Robotic Applications, Computer Science, Academic Publishing House EXIT, pp.1-206, 2015
Lista rozdziałów w ostatnich monografiach
1.
368
Będkowski J., Majek K., Masłowski A., Kaczmarek P., Nature - Inspired Mobile Robots, rozdział: Recognition of 3D Objects for Walking Robot Equipped with Multisense-SL Sensor Head, World Scientific, pp.797-804, 2013

Prace konferencyjne
1.Majek K., Będkowski J., Range Sensors Simulation Using GPU Ray Tracing, CORES 2015, The 9th International Conference on Computer Recognition Systems CORES, 2015-05-25/05-27, Wrocław (PL), DOI: 10.1007/978-3-319-26227-7_78, No.403, pp.831-840, 2016

Streszczenie:

In this paper the GPU-accelerated range sensors simulation is discussed. Range sensors generate large amount of data per second and to simulate these high-performance simulation is needed. We propose to use parallel ray tracing on graphics processing units to improve the performance of range sensors simulation. The multiple range sensors are described and simulated using NVIDIA OptiX ray tracing engine. This work is focused on the performance of the GPU acceleration of range images simulation in complex environments. Proposed method is tested using several state-of-the-art ray tracing datasets. The software is publicly available as an open-source project SensorSimRT.

Słowa kluczowe:

Ray tracing, RGB-D sensors, Simulation

Afiliacje autorów:

Majek K.-Institute of Mathematical Machines (PL)
Będkowski J.-other affiliation
2.Będkowski J., Pelka M., Majek K., Fitri T., Naruniec J., Open source robotic 3D mapping framework with ROS - Robot Operating System, PCL - Point Cloud Library and Cloud Compare, 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATICS, 2015-08-10/08-11, Legian-Bali (ID), DOI: 10.1109/ICEEI.2015.7352578, pp.644-649, 2015

Streszczenie:

We propose an open source robotic 3D mapping framework based on Robot Operating System, Point Cloud Library and Cloud Compare software extended by functionality of importing and exporting datasets. The added value is an integrated solution for robotic 3D mapping and new publicly available datasets (accurate 3D maps with geodetic precision) for evaluation purpose Datasets were gathered by mobile robot in stop scan fashion. Presented results are a variety of tools for working with such datasets, for task such as: preprocessing (filtering, down sampling), data registration (ICP, NDT), graph optimization (ELCH, LUM), tools for validation (comparison of 3D maps and trajectories), performance evaluation (plots of various outputs of algorithms). The tools form a complete pipeline for 3D data processing. We use this framework as a reference methodology in recent work on SLAM algorithms.

Słowa kluczowe:

Three-dimensional displays, Robot kinematics, Cameras, Mobile communication, Robot sensing systems, XML

Afiliacje autorów:

Będkowski J.-other affiliation
Pelka M.-Institute of Mathematical Machines (PL)
Majek K.-Institute of Mathematical Machines (PL)
Fitri T.-Institute of Mathematical Machines (PL)
Naruniec J.-Warsaw University of Technology (PL)
3.Musialik P., Majek K., Majek P., Pelka M., Będkowski J., Masłowski A., Typiak A., Accurate 3D mapping and immersive visualization for Search and Rescue, RoMoCo 2015, 10th International Workshop on Robot Motion and Control, 2015-07-06/07-08, Poznań (PL), DOI: 10.1109/RoMoCo.2015.7219728, pp.153-158, 2015

Streszczenie:

This paper concentrates on the topic of gathering, processing and presenting 3D data for use in Search and Rescue operations. The data are gathered by unmanned ground platforms, in form of 3D point clouds. The clouds are matched and transformed into a consistent, highly accurate 3D model. The paper describes the pipeline for such matching based on Iterative Closest Point algorithm supported by loop closing done with LUM method. The pipeline was implemented for parallel computation with Nvidia CUDA, which leads to higher matching accuracy and lower computation time. An analysis of performance for multiple GPUs is presented. The second problem discussed in the paper is immersive visualization of 3d data for search and rescue personnel. Five strategies are discussed: plain 3D point cloud, hypsometry, normal vectors, space descriptors and an approach based on light simulation through the use of NVIDIA OptiX Ray Tracing Engine. The results from each strategy were shown to end users for validation. The paper discusses the feedback given. The results of the research are used in the development of a support module for ICARUS project.

Słowa kluczowe:

Three-dimensional displays, Data visualization, Graphics processing units, Image color analysis, Computational modeling, Solid modeling, Pipelines

Afiliacje autorów:

Musialik P.-Institute of Mathematical Machines (PL)
Majek K.-Institute of Mathematical Machines (PL)
Majek P.-Institute of Mathematical Machines (PL)
Pelka M.-Institute of Mathematical Machines (PL)
Będkowski J.-other affiliation
Masłowski A.-other affiliation
Typiak A.-other affiliation
4.Majek K., Musialik P., Kaczmarek P., Będkowski J., Lesson Learned from Eurathlon 2013 Land Robot Competition, AUTOMATION 2014, Conference on Automation - Innovations and Future Perspectives, 2014-03-26/03-28, Warszawa (PL), DOI: 10.1007/978-3-319-05353-0_42, No.267, pp.441-451, 2014

Streszczenie:

This paper shows evaluation result of the mobile robotic system for Urban Search and Rescue performed during Eurathlon 2013 robotic competition by IAIR-IMM team. Our team was competing in two scenarios: a) Reconnaissance and surveillance in urban structures (USAR), b) Search and rescue in a smoke-filled underground structure. The main task for this system from our team point of view was to build 3D metric map of the environment and to find OPIs (Objects of Potential Interest). Therefore in this paper we described the vision system for objects recognition and 3D map building. The system is composed of mobile robot equipped with camera, 3D laser measurement system and base station composed of computer equipped with NVIDIA GPU for parallel processing of derived clouds of points. The main focus of the work was to improve the performance of the operator controlling the robot in harsh environment. We achieved satisfactory results that could be still improved in many aspects. In experimental part we demonstrated validation of vision recognition system and 3D maps built during preparation trials and during final competition. The best quantitative result of this work was 3rd place in USAR scenario. Unfortunately, we could not build the map in a smoke-filled underground structure, but the result is also very interesting for future developments.

Słowa kluczowe:

Eurathlon, mobile robot

Afiliacje autorów:

Majek K.-Institute of Mathematical Machines (PL)
Musialik P.-Institute of Mathematical Machines (PL)
Kaczmarek P.-other affiliation
Będkowski J.-other affiliation
5.Będkowski J., Pełka M., Musialik P., Masłowski A., Multi robot simulator for robot operator training in Tiramisu project, CLAWAR, 17th International Conference on Climbing and Walking Robots, 2014-07-21/07-23, Poznań (PL), pp.575-580, 2014

Streszczenie:

This article concerns current progress in the development of multi robot simulation for TIRAMISU project. This simulator is designed for training of UGV (Unmanned Ground Vehicles) operators in cooperative mission execution. The core components of the system are implemented using VORTEX physics simulation engine with OSG (Open Scene Graph) used for rendering. The engine provides an accurate physics simulation for robots working on a single stage. The main goal during development was to prepare a multi robot architecture for the simulation. The challenge was to integrate all simulation components into a common framework, therefore allowing the robots to interact with each other, without lose of simulation accuracy. Current version of the simulator has two types of robots: a) iRobot-PacBot b)LOCSTRA - a TIRAMISU robot for humanitarian demining. An example of multi robot scenario, transportation of UXO (UneXploded Ordnance), will be discussed.

Słowa kluczowe:

Humanitarian demining, mobile robot simulation, operator training

Afiliacje autorów:

Będkowski J.-other affiliation
Pełka M.-Institute of Mathematical Machines (PL)
Musialik P.-Institute of Mathematical Machines (PL)
Masłowski A.-other affiliation
6.Gonçalves R., Baptista R., Coelho A., Matos A., Vaz de Carvalho C., Będkowski J., Musialik P., Ostrowski I., Majek K., A game for robot operation training in Search and Rescue missions, REV2014, 11th International Conference on Remote Engineering and Virtual Instrumentation, 2014-02-26/02-28, Porto (PT), pp.262-267, 2014

Streszczenie:

Search and rescue (SAR) teams often face several complex and dangeroustasks, witch could be aided by unmanned robotic vehicles (UV). UV agents can potentially be used to decrease the risk in the loss of lives both of the rescuers and victims and aid in the search and transportation and survivors and in the removal of debris in a catastrophe scenario. Depending on the nature of a catastrophe and its geographical location, there are potentially three types of UV contemplates, their operators need prior training and certification. To train and certify the operators a tool (serious game) is under development. In this paper we will make an overview about our approach in its development. This game uses a typical client-server architecture where all client agents (virtual UVs and operator client interfaces) share the same immersive virtual environment which is generated through the merging of GIS data and a semantic model extracted from 3D lase data. There will be several types of scenarios suitable to several types of catastrophe situations.Each of these scenarios has its own mission plan for the trainees to follow. The game will also provide an interface for mission planning so that each mission plan will be carefully designed to accurately correspond to a matrix of skills. This matrix lists a set of common skills in various different UV operational case studies which will allow the certification of operators.

Afiliacje autorów:

Gonçalves R.-University of Porto (PT)
Baptista R.-INESC/USIG (PT)
Coelho A.-University of Porto (PT)
Matos A.-University of Porto (PT)
Vaz de Carvalho C.-Polytechnic of Porto (PT)
Będkowski J.-other affiliation
Musialik P.-Institute of Mathematical Machines (PL)
Ostrowski I.-other affiliation
Majek K.-Institute of Mathematical Machines (PL)