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Solutions of the equations of Stokesian dynamics for point particles are found for periodic boundary
conditions with three particles per unit cell of a simple cubic lattice. Two particles per cell move
with equal velocity, but three particles per cell usually lead to irregular motion. For a class of initial
conditions with special symmetry motions are found that are periodic in time as well as in space. It
is shown that there is a range of stability in which the motions are robust under perturbation. © 2005
American Institute of Physics. �DOI: 10.1063/1.2008827�
I. INTRODUCTION

The evolution and steady-state structure of sedimenting
suspensions have recently been investigated by many
authors.1 The properties of such systems are determined by
hydrodynamic interactions between individual particles, but
collective effects play a dominant role. The interplay be-
tween the dynamics of small numbers of particles on the
microscopic level and collective many-particle effects can be
studied in spatially periodic systems with a small number of
particles per unit cell. Instabilities of sedimenting infinite
regular arrays of particles have been studied by Crowley.2,3

Time-periodic stable motion of small clusters of particles in
an infinite incompressible viscous fluid has been analyzed
theoretically,4–7 numerically,8 and experimentally.9 In the fol-
lowing we search for time-periodic stable motion of small
clusters of particles in periodic boundary conditions. Peri-
odic boundary conditions are widely used in numerical simu-
lation of suspensions.10,11

Spatially periodic solutions of the steady-state Stokes
equations for a viscous incompressible fluid were first stud-
ied by Hasimoto.12 He considered regular arrays of spheres,
in particular, the three cubic lattices, settling at constant
speed under the influence of gravity. The fluid satisfies stick
boundary conditions at the surface of each sphere. In the
frame of the array the fluid moves on average with constant
velocity, driven by a constant pressure gradient. Hasimoto,
and later Zick and Homsy,13 and Sangani and Acrivos,14 cal-
culated the friction per particle as a function of the sphere
radius. In the following we consider systems with more than
one particle per unit cell of a simple cubic lattice and find
solutions of the Stokes equations, in combination with the
equations of Stokesian dynamics, that are periodic in both
space and time. For simplicity we restrict attention to the
point particle limit, but it is clear that corresponding periodic
solutions can be found for spheres.

Recently one of us studied linear waves in settling arrays
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of point particles15 and the corresponding question of stabil-
ity of Hasimoto’s solution. The linear wave solutions are
periodic in space and time, but are limited to small ampli-
tude. Here we consider large amplitude motions, but allow
only a small number of particles per unit cell. The simplest
case of two particles per unit cell is a direct generalization of
Hasimoto’s solution for point particles. We show that the pair
settles steadily, with speed and direction depending on the
relative distance of the pair in the basic unit cell.

For three particles per unit cell the motion becomes
much more complicated8 and cannot be found analytically.
Numerically the motion is found to be irregular for most
initial configurations. Special situations are of interest, where
initially the distance vector of one pair is parallel to one of
the horizontal axes of the cubic lattice and the members of
this pair are at equal distance to the third particle. By sym-
metry the configuration keeps this character during the mo-
tion, and numerically the motion is found to be periodic. In
our numerical work we have studied mostly the case where
the initial triangle is horizontal and equilateral. Beyond a
certain critical size we find solutions where the columns of
horizontal pairs pass the columns of apex particles. We show
that the periodic motion is neutrally stable for sizes of the
initial triangle less than the critical size.

Similar periodic solutions for three point particles in in-
finite fluid were found by Hocking4 and studied further by
Caflisch, Lim, Luke, and Sangani.5 Our solutions tend to
theirs in the limit where the interparticle distances are much
smaller than the lattice length. Golubitsky, Krupa, and Lim6

have provided a mathematical study of sedimentation of
clusters in infinite fluid in the point particle approximation,
with particular emphasis on periodic solutions in the neigh-
borhood of an equilibrium point where the particles settle
without relative motion. A more detailed analysis of such
periodic motions of three particles in infinite fluid has been
given by Lim and McComb.7 Much of both works can be
transcribed to the case of periodic boundary conditions by

the replacement of the Oseen tensor by the Hasimoto tensor.
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II. SEDIMENTATION IN PERIODIC BOUNDARY
CONDITIONS

We consider sedimentation of a dilute system of identi-
cal spherical particles of radius a in a viscous incompressible
fluid in periodic boundary conditions. In particular, we con-
sider a simple cubic lattice of cells with side length L and
volume �c=L3 per cell, and choose a Cartesian coordinate
system with x, y, and z axes directed along the axes of the
cubic lattice. There are N particles per unit cell, and a force
K=−Kez in the negative z direction acts on each particle.
Particle configurations are repeated periodically in the cubic
lattice. We shall consider the point limit a�L and situations
with at most four particles per unit cell.

The fluid velocity � and pressure p satisfy the linear
Navier-Stokes equations,

��2� − � p = − F�r�, � · � = 0, �1�

where F�r� is the force density acting on the fluid. In point
approximation the force density is given by

F�r� = �
nj

K��r − Rnj
� , �2�

where the sum is over the lattice cells, denoted by n
= �nx ,ny ,nz� with nx, ny, and nz running through all integers,
and the N particles in each cell, labeled j. Again in point
approximation, Hasimoto’s solution12 for fluid velocity and
pressure takes the form

�H�r� = − uS + �
j=1

N

TH�r − R j� · K ,

�3�

pH�r� =
N

�c
K · r + �

j=1

N

QH�r − R j� · K ,

where the positions �R j� are located in the basic unit cell.
Furthermore, �c=L3 is the volume of the unit cell, and the
Green functions TH�r� and QH�r� have the periodicity of the
lattice. The Hasimoto tensor TH�r� is given by

TH�r� =
1

4�2�
�
n

�1 − n̂n̂

�n�2
exp�2�in · r� , �4�

where n̂=n / �n� and the prime on the summation sign indi-
cates that the term n=0 is omitted. An efficient scheme of
numerical calculation of the Hasimoto tensor has been pro-
posed by Cichocki and Felderhof.16 The Hasimoto tensor has
the property

	
�c

TH�r�dr = 0, �5�

so that −uS in Eq. �3� is the mean fluid velocity in the unit
cell. To lowest order in the ratio a /L it is related to the force
K by K=�uS, where �=6��a is the friction coefficient of a
single particle. The Hasimoto tensor gives the additional
flow pattern due to a single point particle and its periodic
images. At small vector distance r the Hasimoto tensor be-

comes identical with the Oseen tensor T�r� given by
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T�r� =
1

8��

1 + r̂r

r
. �6�

Hasimoto considered a single particle per unit cell and cal-
culated the tensor TH�r� explicitly. In the chosen frame the
single particle does not change position and may be taken at
the origin.

For more than one particle per unit cell the instantaneous
particle velocities are given by

u j = − K�
k�j

N

TH�R j − Rk� · ez �j = 1, . . . ,N� �7�

and the configuration changes in time accordingly. The equa-
tions of motion of the Stokesian dynamics read

dR j

dt
= u j�R1, . . . ,RN� �j = 1, . . . ,N� . �8�

We recall that in the frame considered the mean fluid veloc-
ity is −uS, so that in the frame where on average the fluid is
at rest the velocity of particle j is u j +uS, with uS=K /6��a.

The Hasimoto tensor has the property

TH�r� = TH�− r� , �9�

so that, in particular, for two particles per unit cell with vec-
tor distance r=R1−R2 the two velocities are equal

u1 = u2 = TH�r� · K . �10�

Hence the vector distance r remains constant in time, and the
pair just translates at constant velocity. The same property
holds for two particles in infinite fluid. Alternatively the pair
motion may be viewed as the motion of two interlaced
simple cubic lattices that do not move relative to each other.
For more than two particles per unit cell the cubic lattices in
general move relative to each other in complicated fashion. It
clearly suffices to restrict attention to the motion of particles
in the basic unit cell.

It is worthwhile to consider the common velocity of a
pair as a function of distance. In Fig. 1 we plot the vertical
velocity component Uz as a function of distance D in units
UL=K /8��L for two particles separated horizontally in the
direction of the x axis. Of course, in this case the velocities
u1=u2 are directed vertically. On account of periodicity it
suffices to consider distances less than 0.5L. It is remarkable

FIG. 1. Plot of the vertical velocity Uz�d� of a pair of particles settling at
constant distance D in the direction of the x axis in the unit cell of a simple
cubic lattice with lattice distance L as a function of d=D /L.
that for small distance D the velocity is downward, but for
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D�0.2723L the velocity is upward. The reason is that the
particles are slowed down due to the flow patterns of the
periodic images. For the small distance D=0.1L the velocity
is Uz=−6.228UL, compared to U0z=−10UL for two particles
in infinite space, as calculated from the Oseen tensor T�r�,
given by Eq. �6�. The upward velocity for D�0.2723L
means that in the frame of the fluid the pair moves at a speed
less than the Stokes velocity of a single particle. Similar
behavior is found for horizontal separations in other direc-
tions. For example, for the diagonal direction the velocity is
upward for D�0.2702L. A pair of particles separated along
the vertical direction always moves downward, but again the
velocity is smaller than for an isolated pair in infinite fluid.
For example, for D=0.5L the velocity is Uz=−1.9161UL,
compared to U0z=−4UL for the isolated pair.

We also consider a pair with distance vector directed
along the body diagonal of the unit cell. This case is particu-
larly interesting, since for D= 1

2

3L=0.866L the configura-

tion corresponds to a body-centered-cubic lattice. In Fig. 2
we plot the two components Ux and Uz of the common ve-
locity as a function of separation D. The vertical component
changes sign at D=0.3903L. The horizontal component van-
ishes at D= 1

2

3L. The vertical component then equals

Uz� 1
2

3L�=1.069 248UL. This corresponds precisely to the

difference in velocity of the simple cubic and body-centered-
cubic point lattices, as calculated by Hasimoto12 for finite
sphere radius a. The difference is given by

Ubcc − Usc = −
K

6��a
�Qbcc − Qsc� , �11�

with Q factors given by, to order a /L,

Qbcc = 1 − 1.791 858 5�1/3, Qsc = 1 − 1.760 118 9�1/3,

�12�

where � is the volume fraction occupied by particles, and the
prefactors17,18 correspond to the constant term in Hasimoto’s
function S1�r�, as given in his Table 1. We have calculated
the prefactors with greater accuracy than in Refs. 12 and 17.
For a lattice with volume 	0 of the unit cell the volume
fraction is �=4�a3 /3	0. In our case the volume fraction of
the simple cubic lattice is 4�a3 /3L3, and that of the body-
centered lattice is 8�a3 /3L3. In the velocity difference in Eq.

FIG. 2. Plot of the components Ux�d�=Uy�d� �dashed curve� and Uz�d�
�solid curve� of the velocity of a pair separated at distance D in the direction
of the body diagonal of the simple cubic lattice as a function of d=D /L.
�11� the sphere radius a cancels, and one gets
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Ubcc − Usc = 4
3 �1.791 858 5�8�/3�1/3

− 1.760 118 9�4�/3�1/3�UL

= 1.069 248UL, �13�

as found above from the motion of a pair.
Similarly we consider four particles in the basic unit cell

positioned at time t=0 at the points
�0,0 ,0� , �0.5,0.5,0�L , �0.5,0 ,0.5�L, and �0,0.5,0.5�L. This
configuration corresponds to a face-centered-cubic lattice.
One finds that the velocities of all four points are equal and
directed in the z direction with value Uz=2.330 086UL. This
may be compared again with Hasimoto’s calculation of the
mean fluid velocity to first order in a /L. As in Eq. �13� one
finds

Ufcc − Usc = 4
3 �1.791 747 2�16�/3�1/3

− 1.760 118 9�4�/3�1/3�UL = 2.330 086UL,

�14�

in agreement with the motion of four particles in the simple
cubic lattice.

III. THREE PARTICLES PER UNIT CELL

In this section we consider the motion of three particles
in the basic unit cell of the simple cubic lattice. Explicitly the
equations of motion read

dR1

dt
= TH�R1 − R2� · K + TH�R1 − R3� · K ,

dR2

dt
= TH�R2 − R1� · K + TH�R2 − R3� · K ,

�15�
dR3

dt
= TH�R3 − R1� · K + TH�R3 − R2� · K .

It is convenient to introduce the two relative coordinates

r1 = R3 − R1, r2 = R2 − R1. �16�

These satisfy the equations of motion,

dr1

dt
= TH�r1 − r2� · K − TH�r2� · K ,

�17�
dr2

dt
= TH�r1 − r2� · K − TH�r1� · K .

We shall consider solutions with special symmetry for which
the initial triangle is isosceles with the unequal side parallel
to either the x axis or the y axis. It follows from symmetry
that the triangle retains these properties in the course of time.
Without loss of generality we choose the point R2 as the apex
and the vector r1 parallel to the x axis. Besides the reflection
symmetry shown in Eq. �9� the Hasimoto tensor has the sym-
metry properties
THxz�− x,y,z� = − THxz�x,y,z� ,
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THyz�− x,y,z� = THyz�x,y,z� ,

�18�
THzz�− x,y,z� = THzz�x,y,z� ,

as well as

THxz�x,y,− z� = − THxz�x,y,z� ,

THyz�x,y,− z� = − THyz�x,y,z� ,

�19�
THzz�x,y,− z� = THzz�x,y,z� .

In particular, in the xy plane,

THxz�x,y,0� = THyz�x,y,0� = 0. �20�

For the isosceles triangles under consideration the relative
coordinates r1 and r2 can be expressed as

r1 = �2x2,0,0�, r2 = �x2,y2,z2� , �21�

with three independent coordinates �x2 ,y2 ,z2�. It is easily
seen that for K=−Kez the equations of motion �17� reduce to

dx2

dt
= KTHxz�x2,y2,z2� ,

dy2

dt
= − KTHyz�x2,y2,z2� ,

�22�
dz2

dt
= KTHzz�2x2,0,0� − KTHzz�x2,y2,z2� .

In infinite fluid the same equations hold with the Hasimoto
tensor TH replaced by the Oseen tensor T given by Eq. �6�.
In that case there is a constant of the motion, x2�t�y2�t�=A,
first found by Hocking.4 This implies geometrically that the
area of the triangle spanned by the three points projected on
a horizontal plane remains constant in time. In periodic
boundary conditions this constant does not apply, and the
solution of the three coupled equations �22� must be found.

In our numerical work we consider, in particular, situa-
tions for which the initial triangle is horizontal and equilat-
eral. By translational invariance one of the corners may be
taken to be at the origin, so that we may choose as initial
configuration the points �0,0 ,0� , �D /2 ,D
3/2 ,0�, and
�D ,0 ,0�, labeled as 1, 2, and 3. By symmetry the side 13
remains parallel to the x axis in the course of time, and the
triangle remains isosceles with equal sides 12 and 23, but it
does not remain horizontal. At the initial time the three ve-
locities are directed in the z direction, but the velocity of the
apex particle 2 differs from that of particles 1 and 3. The
coordinates x2, y2, and z2 introduced in Eq. �21� take the
values �D /2 ,D
3/2 ,0� at time t=0.

Numerically we find that for d=D /L
0.4242 the solu-
tion �x2�t� ,y2�t� ,z2�t�� of Eq. �22� is purely periodic. For d
�0.4242 the coordinate z2�t� has an additional linear contri-
bution Uzt. The period T�d� can be determined from the pe-
riodic motion of x2�t� or y2�t�. The velocity Uz then follows

from
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Uz =
K

T
	

0

T

�THzz�2x2�t�,0,0� − THzz�x2�t�,y2�t�,z2�t���dt

�23�

and is found to equal Uz=L /T. Hence the motion z2�t�
modulo L is also periodic.

The positions of particles 1 and 2 at time t are found
from Eq. �15� as

R1�t� = R1�0� + 	
0

t

�TH�r1�t�� + TH�r2�t��� · Kdt ,

�24�

R2�t� = R2�0� + 	
0

t

�TH�r2�t�� + TH�r1�t� − r2�t��� · Kdt

and similarly for particle 3. The motion with the above initial
condition is periodic in the horizontal directions. The vertical
motion is a superposition of a periodic motion with the same
period and a linear motion, so that each of the three particles
performs a spiraling motion. There are now two steady ve-
locities U1z=U3z and U2z. From Eqs. �15� and �16� we have

U1z = −
K

T
	

0

T

�THzz�r1�t�� + THzz�r2�t���dt �25�

and similarly

U2z = −
K

T
	

0

T

�THzz�r2�t�� + THzz�r1�t� − r2�t���dt . �26�

These are the time-averaged particle velocities in the chosen
frame, where the mean fluid velocity is −uSez. Both veloci-
ties are equal for d
0.4242. Since U2z−U1z=Uz we have

�U2z − U1z�T = nL , �27�

with n=0 for d
0.4242 and n=1 for d�0.4242.
In Fig. 3 we plot the two velocities U1z and U2z as func-

tions of dimensionless distance d=D /L. We call d0=0.4242
the doubling point. In Fig. 4 we plot the period T as a func-
tion of d. It follows from Eq. �27� that the period diverges at
d=d0+. Numerically it diverges also at d=d0−. The differ-
ence of steady velocities for d�d0 implies that during a
period the columns of particles labeled as 1 and 3 pass the
columns labeled as 2. One can determine the two velocities

FIG. 3. Plot of the average vertical velocities U1z�d� �lower curve� and
U2z�d� �upper curve� of two of the particles at the corners of a triangle that
is initially horizontal and equilateral with side length D=dL.
numerically very accurately by plotting the projection of a
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spiral on a vertical plane and adjusting the velocity of the
coordinate frame in the vertical direction until one gets a
closed curve.

There are two more special points in Fig. 3. At d
=0.2712 the common velocity U1z=U2z turns from negative
to positive. For d
0.2712 the triangle moves down faster
than a single particle and slower for 0.2712
d
d0. For d
�d0 the motion changes in character, and one has passing
columns. For d0
d
0.7674 the three particles on average
move slower than a single particle would, and for 0.7674

d
1 only the apex particle 2 on average moves slower
than a single particle, but particles 1 and 3 move faster. The
last feature can be understood from the proximity of particles
in the neighboring cells at the left and right, giving rise to
fast moving pairs. For d close to unity the velocity of the pair
1,3 is predominantly in the −z direction and much larger than
the velocity of particle 2. Hence the period of motion is
determined by the average speed of the fast close pair in
nearly rectilinear motion, and Eq. �27� is satisfied with n
=1. For the largest value of d considered, d=0.99, we indeed
find n=1.

At the doubling point the motion changes significantly.
Not only are there two distinct steady velocities Uz1 and Uz2

for d�d0, but the amplitude of the deviation from steady
motion also increases. In Fig. 5 we plot the projection of the

FIG. 4. Plot of the period T�d� of the motion of three particles that are
initially at the corners of a horizontal equilateral triangle with side length
D=dL.

FIG. 5. Plot of the projection on the yz plane of the periodic deviation from

uniform motion for d=0.420 �small figures� and d=0.430 �large figures�.
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points R1�t� and R2�t� onto the yz plane during one period for
initial equilateral triangles of sides d=0.42 and d=0.43, with
the steady displacement subtracted for both particles. The
amplitude for d=0.42 is much smaller. In Fig. 6 we show the
positions of the triangle with sides d=0.42 at t=0 for times
t=0, 1

4T , 1
2T , 3

4T ,T. In Fig. 7 we show the corresponding tri-
angles for d=0.43 at t=0.

We consider again the more general case of isosceles
triangles. We denote the solution of the equations of motion
�22� with initial conditions x2�0�=x20, y2�0�=y20, and z2�0�
=0 as r2h�t�. It depends parametrically on the initial values
�x20,y20�. The solution has the properties

x2h�− t� = x2h�t�, x2h�t + T� = x2h�t� ,

�28�
y2h�− t� = y2h�t�, y2h�t + T� = y2h�t� ,

FIG. 6. Plot of the motion of three particles that are initially at the corners
of a horizontal equilateral triangle with side length D=dL for d=0.42. The
triangle formed by the particle positions is shown at times t
=0,T /4 ,T /2 ,3T /4 ,T. The motion is in the upward direction in the frame in
which a single particle per unit cell would be motionless.
FIG. 7. As in Fig. 6 for d=0.43.
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z2h�− t� = − z2h�t�, z2h�t + T� = nL + z2h�t� ,

with period T�x20,y20� depending on the initial position in
the plane z2=0. These properties follow from the symmetries
given by Eqs. �9�, �18�, and �19�. We recall that
Uz�x20,y20�=nL /T�x20,y20�.

An approximate representation of the relative motion is
given by

x2c�t� = x21 + �x20 − x21�cos�2�t/T� ,

�29�
y2c�t� = y21 + �y20 − y21�cos�2�t/T� ,

z2c�t� = Uzt + �z21 − nL/4�sin�2�t/T� ,

with the abbreviation r21=r2h�T /4�. We also denote r22

=r2h�T /2�. The approximate representation �29� uses a single
harmonic and the symmetry properties �28�. The actual mo-
tion is anharmonic. The approximation described by Eq. �29�
has been chosen such that at the beginning and end of each
period, and at one-quarter of the period, the particle positions
coincide with those of the actual motion. By symmetry the
positions then coincide at three quarters of the period as well.
The approximate motion described by Eq. �29� takes place in
the vertical plane given by the equation

x2 − x21

x20 − x21
=

y2 − y21

y20 − y21
. �30�

In this plane and in a frame moving with velocity Uz in the
vertical direction the approximate motion is along an ellipse
centered at �x21,y21,Uzt�. A measure of the deviations from
the approximate orbit given by Eq. �29� is found by compari-
son of the actual values at half period r22 with the corre-
sponding r2c�T /2�. We define

�xj =
x2j

x20
, �yj =

y2j

y20
, j = 1,2,

�31�

TABLE I. List of values characterizing the motion of three point particles th
D=dL. The period T is measured in units 8��L2 /K, the velocities Uz1 and U
as fractions of L. The remaining quantities are dimensionless and explained

d T Uz1 Uz2 x20

0.1 0.050 −12.455 −12.455 0.05

0.2 0.212 −2.528 −2.528 0.1

0.3 0.531 0.654 0.654 0.15

0.4 1.321 2.060 2.060 0.2

0.42 1.952 2.220 2.220 0.21

0.425 4.317 1.894 2.125 0.2125

0.43 3.197 1.815 2.128 0.215

0.45 2.464 1.793 2.199 0.225

0.5 2.063 1.896 2.380 0.25

0.6 1.371 1.802 2.532 0.3

0.7 0.729 1.000 2.372 0.35

0.8 0.346 −0.729 2.158 0.4

0.9 0.129 −5.839 1.909 0.45
Downloaded 01 Sep 2005 to 134.94.165.201. Redistribution subject to
�z = �z21 − �1/4�nL�/L .

Here 2x20=d is the width of the triangle at time t=0, when it
is horizontal and isosceles, and �x1 is the ratio of the width at
one-quarter of the period to the initial width. Similarly �x2 is
the ratio of the width at half period to the initial width. Fur-
thermore y20 is the height of the triangle at time t=0, and �y1

is the ratio of the projection of the height on the horizontal
plane at one-quarter of the period to the initial height. Simi-
larly �y2 is the ratio of the projection of the height at half
period to the initial height. We note that it follows from Eq.
�28� that z2h�T− t�=nL−z2h�t�, so that at half the period
z2h�T /2�=nL /2. In particular, for the purely periodic motions
with Uz=0 at half period z2h�T /2�=0. Finally, �z is a mea-
sure of the rise of the apex above the horizontal plane at
one-quarter of the period, with the steady motion subtracted.
In Table I we list typical values for the orbits corresponding
to triangles that are initially horizontal and equilateral with
sides d. Similar data are easily obtained for triangles that are
initially isosceles.

IV. STABILITY

In this section we analyze the stability of the periodic
motion of three points initially forming an isosceles horizon-
tal triangle with unequal side parallel to the x axis. To inves-
tigate stability it suffices to study the relative motion of par-
ticles. We consider first the equations of motion �22�. These
equations correspond to a limited class of perturbed motions
in which the triangles remain isosceles with unequal side
parallel to the x axis. The motion described by Eq. �22� nu-
merically appears to be orbitally stable, since the orbits are
periodic in space and depend continuously on the initial con-
ditions in the horizontal plane at z=0, except at a doubling
point �d=d0 for the equilateral triangle�. On the other hand,
the relative motion of three points described by Eq. �17� can
still be unstable, since a wider class of perturbations is al-
lowed. In particular, for points initially at the vertices of

e initially at the corners of a horizontal equilateral triangle with side length
measured in units UK=K /8��L, and the distances x20 and y20 are measured

q. �31�.

x1 �x2 y20 �y1 �y2 �z

00 1.000 0.087 1.000 1.000 0

01 1.002 0.173 0.999 0.998 0

07 1.014 0.260 0.993 0.986 0.003

53 1.107 0.346 0.957 0.915 0.019

11 1.205 0.364 0.916 0.851 0.027

80 1.931 0.368 0.806 0.485 −0.237

47 1.902 0.372 0.828 0.495 −0.219

11 1.791 0.390 0.860 0.542 −0.186

81 1.525 0.433 0.910 0.712 −0.122

07 1.218 0.520 1.016 1.038 −0.044

56 1.109 0.606 1.030 1.062 −0.020

25 1.045 0.693 1.017 1.032 −0.009

06 1.011 0.779 1.005 1.010 −0.003
at ar

z2 are
in E

�

1.0

1.0

1.0

1.0

1.1

1.2

1.2

1.2

1.1

1.1

1.0

1.0

1.0
equilateral triangles the motion described by Eq. �17� is un-
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stable when the sides of the initial triangle are larger than
d0L, even though Eq. �22� implies stability. Stability of the
motions considered can be investigated by the method of the
Floquet theory.19

In preparation of the study of Eq. �17� we first apply the
Floquet theory to the motion described by Eq. �22�. We de-
note the solution of the equations of motion �22� for which
we wish to investigate stability by r2

*�t�. A solution of Eqs.
�22� with slightly different initial conditions is expressed as

r2�t� = r2
*�t� + ��t� . �32�

Linearizing Eq. �22� for small deviations ��t� we obtain a set
of three linear equations of motion. In vector form

d�

dt
= A�t� · ��t� , �33�

with time-dependent 3
3 matrix A�t� given by

A�t� = � P2xx�t� P2xy�t� P2xz�t�
− P2yx�t� − P2yy�t� − P2yz�t�

2P1zx�t� − P2zx�t� − P2zy�t� − P2zz�t�
� , �34�

where the 3
3 matrix P2�t� is given by P2�t�=P�r2
*�t�� with

the tensor P�r� defined in terms of derivatives of the
Hasimoto tensor as

P���r� = K
�TH�z�r�

� r�

, �35�

with �� ,��= �x ,y ,z�. From the symmetry properties �28� of
the solution r2

*�t� and the properties �18� and �19� of the
Hasimoto tensor it follows that

P2���t� = − P2���T − t� for ���� = �xx�,�yy�,�xy�,�yx�,�zz� ,

�36�
P2���t� = P2���T − t� for ���� = �xz�,�zx�,�yz�,�zy� .

The 3
3 matrix P1�t� is defined by P1�t�=P�r1
*�t�� with

r1
*�t�= �2x2

*�t� ,0 ,0�. Only the elements P1xz�t� and P1zx�t� of
this matrix are nonvanishing, and they have the properties
P1xz�t�= P1xz�T− t� and P1zx�t�= P1zx�T− t�.

In the Floquet theory19 a set of three independent solu-
tions of Eq. �33� is collected in the fundamental matrix �3�t�
that is the solution of the matrix equation

d�3

dt
= A�t� · �3�t� , �37�

with initial condition �3�0�=I3, where I3 is the 3
3 identity
matrix. The characteristic matrix E3 is defined by

E3 = �3�T� . �38�

The motion r2
*�t� is unstable if some of the eigenvalues of E3

are greater than unity in absolute value. In our case we find
that the three eigenvalues equal unity. This is an example of
a situation sometimes called neutrally stable.20 By definition
neutral stability means that the absolute value of each eigen-
value is not larger than unity. The nature of the characteristic
matrix can be argued from the geometrical properties of the

solutions as follows.
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We can make the dependence of the solution r2�t� on the
initial conditions r2�0�=r20 explicit by writing the solution as
r2�r20, t�. With this notation the matrix �3�t� can be ex-
pressed as

�3�t� = 
 �r2�r20,t�
�r20



r2
*
. �39�

In words, the matrix �3�t� incorporates the ratio of the dif-
ference of solutions after time t to small variations of the
initial conditions in the direction of the x2, y2, and z2 axes.
The initial condition �3�0�=I is clearly satisfied. We con-
sider, in particular, the solution r2

*�t�=r2h�t�, defined above
Eq. �28�, which passes through the plane z2=0 at time t=0. It
follows from Eqs. �20� and �22� that for this solution the
velocity vector �2�t�=dr2�t� /dt is perpendicular to the plane
z2=0 at times t=0 and t=T. Consider first the neighboring
orbit corresponding to an infinitesimal change dx20 of the
initial point in the x2 direction. For the purely periodic mo-
tions the point is back at its initial position after a time
T�x20+dx20,y20�. The difference in position with the point
�x20,y20,0� after time T�x20,y20� arises from the difference in
orbit and from the difference in period. To first order the
point at time T�x20,y20� has x2 and y2 coordinates �x20

+dx20,y20�, but z2 coordinate given by the partial derivative
−�T�x20,y20� /�x20 times the velocity component �2z�T�
=�2z�0�. Similar considerations hold for changes of the initial
point in the y2 direction. A change in the z2 direction simply
corresponds to a shift along the original orbit. Hence the
matrix E3 takes the form

E3 = � 1 0 0

0 1 0

Qx Qy 1
� , �40�

with Qx and Qy given by −�2z�0��T�x20,y20� /�x20 and
−�2z�0��T�x20,y20� /�y20, respectively. The matrix E3 clearly
has three eigenvalues equal to unity. Similar considerations
hold for the solutions of Eq. �22� for which Uz equals L /T.

The matrix A�t� in Eq. �37� is periodic in time, A�t+T�
=A�t�, and the fundamental matrix �3�t� satisfies19

�3�t + T� = �3�t� · E3. �41�

The fundamental matrix has columns �3�t�
= �f1�t� , f2�t� , f3�t�� consisting of solutions of Eq. �33� satis-
fying the initial conditions

f1�0� = �1

0

0
�, f2�0� = �0

1

0
�, f3�0� = �0

0

1
� . �42�

It follows from Eqs. �40� and �41� that these solutions have
the properties

f1�t + T� = f1�t� + Qx Tf3�t� ,

�43�
f2�t + T� = f2�t� + Qy f3�t� , f3�t + T� = f3�t� .

Hence f3�t� is periodic, but f1�t� and f2�t� are not. We note
that the solution f3�t� can be identified with f3�t�

=�2�t� /�2z�0�. The linear combinations
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��t� = Qy f1�t� − Qx f2�t� ,

�44�

��t� =
Qx

Qx
2 + Qy

2 f1�t� +
Qy

Qx
2 + Qy

2 f2�t� −
t

T
f3�t� .

clearly are periodic, and satisfy the differential equations

d�

dt
= A�t� · ��t�,

d�

dt
= A�t� · ��t� −

1

T
f3�t� . �45�

Solving Eq. �44� for f1�t� and f2�t� one finds

f1�t� =
Qy

Qx
2 + Qy

2��t� + Qx���t� +
t

T
f3�t�� ,

�46�

f2�t� =
− Qx

Qx
2 + Qy

2��t� + Qy���t� +
t

T
f3�t�� .

Hence the solutions f1�t� and f2�t� grow approximately lin-
early with time. The growth is due to the dependence of the
period T on �x20,y20�, as for Poincaré stable periodic orbits.19

The properties derived above are confirmed by numerical
calculation.

In order to study stability under a wider class of pertur-
bations we must return to the equations of motion �17�. We
denote the periodic solution of these equations corresponding
to initial conditions of a horizontal isosceles triangle at t=0
by �r1

*�t� ,r2
*�t��, with again r1

*�t�= �2x2
*�t� ,0 ,0�. A solution of

Eqs. �17� with slightly different initial conditions is ex-
pressed as

r1�t� = r1
*�t� + �1�t�, r2�t� = r2

*�t� + �2�t� . �47�

Linearizing Eqs. �17� for small deviations X�t�
= ��1�t� ,�2�t�� we obtain a set of six linear equations of mo-
tion. In vector form

dX

dt
= B�t� · X�t� , �48�

with time-dependent 6
6 matrix B�t� given by

B�t� = � − P12�t�
− P12�t� + P1�t�

P12�t� + P2�t�
P12�t�

� , �49�

with P12�t�=P�r1
*�t�−r2

*�t��. A set of six independent solu-
tions of Eq. �48� is collected in the fundamental matrix �6�t�
that is the solution of the matrix equation

d�6

dt
= B�t� · �6�t� , �50�

with initial condition �6�0�=I6, where I6 is the 6
6 identity
matrix. The characteristic 6
6 matrix E6 equals �6�T�, as
in Eq. �38�. The numerical integration of Eq. �50� becomes
numerically inaccurate near the doubling point. This is re-
lated to the fact that the multipliers �Qx ,Qy� diverge at the
transition point, as is evident from the expressions given be-
low Eq. �40� and the fact that the period T diverges at the
transition.

We can improve the analysis by making use of symme-
tries. It is easily shown that the matrix P1�t� has the proper-

ties

Downloaded 01 Sep 2005 to 134.94.165.201. Redistribution subject to
P1xx�t� = P1xy�t� = P1yx�t� = P1yy�t� = P1zz�t� = 0, �51�

and that the matrices P12�t� and P2�t� are related by

�P12xx P12xy P12xz

P12yx P12yy P12yz

P12zx P12zy P12zz
� = �− P2xx P2xy P2xz

P2yx − P2yy − P2yz

P2zx − P2zy − P2zz
� .

�52�

As a consequence, five of the elements of the 3
3 matrix in
the upper right-hand corner of the matrix B�t� in Eq. �48�
vanish. By a similarity transformation B��t�=S ·B�t� ·S−1 we
can obtain an even simpler matrix of the form

B��t� = �C�t� 0

D�t� A�t�
� . �53�

The 6
6 matrix S can be taken to have the form

S =�
1 0 0 − 2 0 0

0 1 0 0 0 0

0 0 1 0 0 0

b 0 0 1 − 2b 0 0

0 0 0 0 1 0

0 0 0 0 0 1

� , �54�

with any value of b. The 3
3 matrix C�t� in Eq. �53� then
has elements

C = �− P2xx P2xy P2xz − 2P1xz

− P2yx P2yy P2yz

− P2zx P2zy P2zz
� . �55�

Evidently the solution �6��t� of the transformed Eq. �50�
takes the same form as the matrix B��t� in Eq. �53�. There-
fore three eigenvalues of the transformed characteristic ma-
trix E6� have already been found from the solution of Eq. �37�
and are equal to unity. The remaining three eigenvalues can
be found from the solution of the three equations,

d�3�

dt
= C�t� · �3��t� . �56�

In this way the eigenvalues of E6� are found with greater
numerical accuracy than from Eq. �50�. The product of the
eigenvalues is exactly equal to unity, because the integral of
Tr C�t� over the period vanishes,19 as follows from the sym-
metry properties �36�. For the triangles that are initially equi-
lateral with base parallel to one of the axes of the periodic
cube we find numerically that for d
d0 the three eigenval-
ues of the matrix E3� corresponding to the solution of Eq.
�56� are numerically equal to unity. For d�d0 one of the
eigenvalues is larger than unity. The analysis shows that the
solution of Eq. �17� for such initial triangles is neutrally
stable for d
d0 and unstable for d�d0. Numerically this is
noticeable by the fact that the solution of Eqs. �17� becomes
irregular after a limited number of periods. For d
0.4242
we find numerically that the motion remains periodic for

many periods.
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V. DISCUSSION

We have found interesting solutions of the equations of
the Stokesian dynamics for point particles in periodic bound-
ary conditions. If there are two particles per unit cell of a
simple cubic lattice they move steadily with equal velocity.
Three particles per unit cell move in complicated fashion,
usually irregularly, but solutions periodic in time can be
found for initial conditions with symmetry corresponding to
that of the lattice. We have investigated numerically the pe-
riodic motion of three point particles located initially at the
vertices of an equilateral horizontal triangle with one side
parallel to the x axis of the cubic cell. For triangles with side
dL less than a critical size d0L the motion is neutrally stable.

Such stable solutions of the equations of the Stokesian
dynamics are of relevance to the theory of sedimentation. In
these solutions the particles move coherently in complicated
fashion with the same mean sedimentation velocity and a
periodic internal motion of the three-particle cluster. If ini-
tially the particles are sufficiently widely separated, but the
motion is still stable, the mean sedimentation velocity is less
than that of a single particle. In this case the solution de-
scribes a situation of hindered settling.

If the initial equilateral triangle is too large, with side
length dL�d0L, the two base particles team up with partners
in neighboring cells, and we get separate motion of a base
pair and a single particle with different mean vertical veloci-
ties and with periodic motions superimposed. The corre-
sponding solutions are unstable.

Since in computer simulations often periodic boundary
conditions are employed, the solutions found here may pro-
vide a useful test for the algorithms used. Clearly it would be
of interest to extend the calculation to equal-sized spheres
with radius comparable to the lattice distance. Since such
situations involve the same symmetries as for point particles,
we may expect periodic solutions of similar nature. Although
the hydrodynamic interactions for spheres are far more dif-
ficult to treat, we expect that a calculation employing the
method of induced force multipoles21 is feasible. Caflisch,
Lim, Luke, and Sangani,5 have extended the calculation for
three point particles in infinite space to three equal-sized

spheres.
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