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Abstract

A novel methodology is proposed for estimating the strain hardening exponent

of a metal single crystal directly from the spherical indentation test, without the

need of solving the relevant inverse problem. The attention is focused on anisotropic

piling-up and sinking-in that occur simultaneously in different directions, in con-

trast to the standard case of axial symmetry for isotropic materials. To corre-

late surface topography parameters with the value of material hardening exponent,

a finite-element study of spherical indentation has been performed within a se-

lected penetration depth range using a finite-strain crystal plasticity model. It

is shown how the power-law hardening exponent can be estimated from the mea-

sured pile-up/sink-in pattern around the residual impression after indentation in a

(001)-oriented fcc single crystal of a small initial yield stress. For this purpose, a

new parameter of surface topography is defined as the normalized material volume

displaced around the nominal contact zone, calculated by integration of the local

residual height (positive or negative) over a centered circular ring. That indica-

tor can be easily determined from an experimental topography map available in a

digital form. Comparison is made with the estimates based on measurements of

the contact area and the slope of the load–penetration depth curve in logarithmic

coordinates. The proposed methodology is extended to estimation of the hardening

exponent simultaneously with the initial yield stress when the latter is not negligi-

ble. Experimental verification for a Cu single crystal leads to promising conclusions.
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1 Introduction

This paper develops a methodology for direct extraction of the strain hardening exponent

from the spherical indentation test performed on single crystals of ductile metals. The

major challenge is to avoid a typical but laborious identification procedure that involves

numerical solving of the relevant inverse problem afterwards. Instead of that, we propose

more straightforward estimation of that important plasticity parameter using only the

numerical simulation data to be provided beforehand.

Indentation is a convenient method for quick estimation of mechanical properties of

materials, especially at small (micro or nano) length scales when it is not easy to obtain

bulk material samples suitable for other experimental testing methods. The standard

purpose of indentation tests is to determine hardness and elastic stiffness modulus of the

material. It is highly desirable but less straightforward to extend the scope and to use

the information available from indentation tests for identification of plastic properties of

a ductile material.

Early attempts of such identification from the spherical indentation (Brinell) tests were

limited to empirical observations of macroscopically isotropic materials. Meyer (1908) has

revealed that the mean contact pressure increases with the ratio of contact radius to ball

diameter according to a power law. O’Neil (1944) has found that the relationship between

stress and plastic strain for the indented material can be fitted by a power law with the

same exponent n. Norbury and Samuel (1928) (see Alcala et al. (2000) for a more recent

account) have observed that the hardening exponent n is correlated with the amount of

pile-up or sink-in in vicinity of the residual impression. Tabor (1951) has summarized the

earlier findings and formulated a linear relationship between the mean contact pressure

beneath the indenter tip and the flow stress corresponding to a representative plastic

strain.

A progress in the theory has been made by Hill et al. (1989) who provided a theoret-

ical background for experimental observations mentioned above. They have proposed an

analytic similarity solution of the spherical indentation problem formulated in specially

scaled variables for a rigid-plastic material obeying a power-law potential. In particu-

lar, the current-to-nominal projected contact area ratio (known as c2 parameter), that

characterizes the degree of piling-up or sinking-in, has been found to remain constant

during indentation and dependent in a specified manner on the power-law exponent n

alone. Although the analytic solution neglects the initial yield stress and elasticity effects

– especially at small indentation loads, cf. (Mesarovic and Fleck, 1999; Taljat and Pharr,

2004)) – and finite deformation effects (at higher loads), it has established a firm basis

for further attempts to extract the material hardening curve from spherical indentation

tests in cases when those effects are not substantial.

Many papers have been devoted to identification of parameters of elastic-plastic poly-

crystalline materials, usually treated as isotropic, from indentation tests. Based on finite
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element simulations, corrections have been introduced to the fundamental formulae re-

sulting from the rigid-plastic idealization of Hill et al. (1989), to take into account the

effect of elastic deformation on the parameters measured in indentation experiments. The

corrected formulae were next used in identification procedures (Francis, 1976; Field and

Swain, 1995; Taljat et al., 1998; Kucharski and Mróz, 2001, 2004; Nayebi et al., 2002;

Cao and Lu, 2004; Cao et al., 2007; Ogasawara et al., 2009). The information on pile-up

or sink-in patterns, supplementary to that available from instrumented indentation load–

depth curves, was also used for identification purposes by inverse analysis, e.g., (Bolzon

et al., 2004; Lee et al., 2004; Bocciarelli et al., 2005). The above list of references is

only exemplary, nevertheless, it can be concluded that extracting elastic-plastic material

properties from indentation tests is a challenge till now, even in the case of isotropic

materials.

In metal single crystals, the problem of identifying hardening parameters from inden-

tation tests is additionally affected by crystallographic anisotropy. The plastic anisotropy

is described by activity of a discrete number of crystallographic slip-systems governed in

essence by the Schmid rule. While indentation tests performed on single crystals have

been simulated in many papers by using the crystal plasticity theory (Wang et al., 2004;

Liu et al., 2005, 2008; Alcala et al., 2008; Casals and Forest, 2009; Chang et al., 2010;

Zambaldi and Raabe, 2010; Eidel, 2011; Zambaldi et al., 2012; Kucharski et al., 2014; Al-

cala et al., 2015; Renner et al., 2016), the problem of identification of material parameters

used in such simulations is still open. Usually, a satisfactory agreement of numerical and

experimental results has been obtained (Liu et al., 2008; Alcala et al., 2008; Zambaldi and

Raabe, 2010; Eidel, 2011; Zambaldi et al., 2012; Kucharski et al., 2014; Alcala et al., 2015;

Renner et al., 2016) by selecting suitable crystal plasticity models and their parameters

to fit the known experimental data. However, it is desirable to have a procedure for direct

estimation of some basic strain-hardening parameters of an anisotropic single crystal of

a ductile metal of unknown properties without the need of solving any inverse problem,

just by carrying out experimental indentation tests only and using the existing simulation

data. Such a procedure is proposed in the present paper.

The isotropic part of the crystal hardening rule is typically separated from the aniso-

tropic part described by the slip-system cross-hardening matrix, cf. (Peirce et al., 1982;

Asaro, 1983). The isotropic hardening curve in the mutlislip case at moderate strains

(stage III) can be expected to be governed approximately by the Voce law, cf. (Kocks

and Mecking, 2003). However, the curvature of an initial part of that curve is described

in the simplest way by a power-law hardening curve, within the usual tolerances. As

noted by Saimoto (2006), during tensile deformation, [001] oriented crystals in Cu and Al

do not strictly manifest a linear Stage II but a slightly non-linear one with a power-law

exponent being about 0.8. The exponent need not be the same in the multislip case during

compression. Of course, a single hardening parameter cannot reflect the complexity of

the actual dislocation interactions, cf. (Kubin et al., 2008).
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The major aim of this paper is to develop a methodology for estimating directly from

indentation tests the power-law hardening exponent n for a virgin metal crystal of a low

value of initial flow stress (of the order of 1 MPa). It is emphasized that exponent n

is treated here as a basic parameter of the material in a certain range of plastic strain.

The methodology is based on spherical indentation in an fcc single crystal along with

measurements of the residual pile-up/sink-in topography that is far from axial symmetry.

A new quantitative indicator of the value of n is introduced as the normalized material

volume displaced around the nominal (spherical) contact zone, calculated by integration

of a local residual height (positive or negative) over a centered circular ring. The indi-

cator represents an extension of the 2D pile-up or sink-in area in the axial crosssection

of an axially symmetric impression for an isotropic material to a generic 3D case for an

anisotropic crystal when a single axial cross-section is no longer adequate. The proposed

indicator can be determined, using an easily programmable subroutine, from an experi-

mental topography map in a digital form which is commonly available nowadays. It can be

regarded as an alternative to a more standard parameter, namely, the current-to-nominal

projected contact area ratio, which is also investigated below but whose accurate mea-

surement in experiments may be less straightforward. To correlate surface topography

parameters with the value of material hardening exponent n, a finite-element study of

spherical indentation has been performed for different values of n and within a selected

indentation depth range at finite deformation.

The second, related aim of this paper is to extend the above methodology developed

for a virgin crystal to a more general case when the initial yield shear stress, τ0, is no

longer negligible. In that case, identification of n is to be done jointly with τ0, the latter

being normalized by the flow stress corresponding to a representative plastic strain. The

basic concept of that two-parameter identification is presented below; a more detailed

analysis is beyond the scope of this paper and will be presented elsewhere.

The final aim here is to verify the proposed procedure by predicting the uniaxial stress-

strain curve and comparing it with an experimental one. For that purpose, one more

parameter is needed that defines the stress magnitude. It is determined by adjusting the

stress multiplier for each n so that the calculated load–penetration depth, P–h, curve

in normalized coordinates (h/R, P/R2) goes through a representative experimental point

(hexp/Rexp, Pexp/R
2
exp) in the indentation test for the crystal. Results of such verification

are presented for a Cu single crystal.

It is pointed out that the plastic behaviour of a single crystal is examined here on

the scale where size effects do not play an essential role (the penetration depth is above

one micrometer). A separate problem, not covered in this paper, is the effect of strain

gradients which are associated with creation of geometrically necessary dislocations and,

consequently, can cause size-effects in indentation tests, cf. (Ashby, 1970; Nix and Gao,

1998; Faghihi and Voyiadjis, 2012; Kucharski et al., 2016). A study of size effects is

beyond the scope of this work.

4



2 Crystal plasticity model for spherical indentation

2.1 Single-crystal plasticity model

Elastic-plastic finite deformation of a single crystal is here modeled using the well-known

constitutive framework of crystal plasticity (Hill and Rice, 1972; Asaro, 1983), and the

specific model employed in this work is briefly described below. The model has been

intentionally simplified as much as possible so that, firstly, the indentation effects studied

in the sequel are not influenced by the complex constitutive dependencies and, secondly,

the number of parameters is minimized. It must be realized that indentation offers rather

limited possibilities of estimating multiple unknown material parameters simultaneously.

Therefore, we have chosen the commonly used power-law hardening exponent as a single

basic parameter of a virgin metal crystal for estimation in a certain range of plastic

strain. For similar reasons, equal hardening of all slip systems has been assumed since

the description of more physical anisotropic latent hardening would require at least one

more parameter to be involved.

As it is standard in crystal plasticity, a set of crystallographic slip systems is consid-

ered, and plastic slip on each system of index α is governed by the corresponding resolved

shear stress τα (to be defined later). In the classical Schmid law, the slip system can be

active only if the resolved shear stress τα reaches the corresponding threshold value τ cα
governed by a hardening rule. Here we adopt a three-parameter power-hardening law,

τ cα = τ c = C(Γ0 + Γ)n, Γ̇ =
N∑
α=1

|γ̇α|, (1)

where Γ =
∫ t
0

Γ̇ dt is the accumulated total plastic slip, and γ̇α denotes the slip rate on slip

system α. The classical Taylor cross-hardening matrix has been assumed so that all slip

systems harden equally, i.e. τ cα = τ c for all α. Besides the power-law hardening exponent

n that constitutes the main concern of this paper, the hardening law involves two other

parameters, C and Γ0. It is convenient in the further discussion to replace C and Γ0 with

two out of three other related parameters, namely

τ0 = CΓn0 , τ# = C(Γ0 + Γ#)n, κ = τ0/τ# , (2)

where τ0 is the initial yield shear stress at Γ = 0 and τ# is the flow shear stress at

Γ = Γ#, see Fig. 1. The choice of the reference value Γ#, to be fixed throughout the

paper, is discussed in Section 2.2. We examine the case when all the above parameters

are strictly positive. At fixed Γ# and for a given value of n, parameter Γ0 is in one-to-

one correspondence to κ = (1 + Γ#/Γ0)
−n, and for given values of n and κ the stress

multiplier C = C# can be determined by specifying τ#, cf. formula (12)3. We note that a

two-parameter hardening law corresponding to τ0 = 0 (and Γ0 = 0) would be a reasonable

choice for a virgin high-purity metal crystal. However, such a model would anyway require

some regularization at Γ = 0 to avoid the resulting numerical singularity.
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Figure 1: Parametrization of the power-law hardening curve.

A viscous-type kinetic equation is assumed to govern the slip rates γ̇α,

γ̇α =
λ̇

τ c

(τα
τ c

)2m−1

, (3)

where m � 1 is an integer so that Eq. (3) holds for both positive and negative τα and

γ̇α. However, the plastic multiplier λ̇ ≥ 0 is eliminated here by adopting a single yield

condition (Arminjon, 1991; Gambin, 1992; Kowalczyk and Gambin, 2004) expressed in

terms of the resolved shear stresses τα on all slip systems, α = 1, . . . , N ,

F =

[
N∑
α=1

(τα
τ c

)2m ]1/(2m)

− 1 ≤ 0. (4)

This yield condition provides a regularization of the individual (Schmid) yield conditions

|τα| ≤ τ c, formulated for each slip system α, that are recovered in the limit as m→∞.

The finite strain formulation is based on the multiplicative decomposition of the de-

formation gradient F into elastic part Fe, which describes the lattice stretch and rotation,

and plastic part Fp,

F = FeFp, Ce =
T

FeFe, Lp = Ḟp
−1

Fp. (5)

The elastic right Cauchy–Green tensor Ce and the plastic velocity gradient Lp are de-

fined accordingly, both in a locally unstressed, intermediate configuration of fixed lattice

orientation. A superimposed mark −1, T or −T over a tensor symbol denotes an inverse,

transpose or transposed inverse, respectively.

In view of small elastic strains, the anisotropic elastic response is simply described by

assuming the St. Venant–Kirchhoff finite elasticity model formulated in the intermediate

configuration,

Se = LEe, Ee = 1
2
(Ce − 1), (6)

where Se is the corresponding second Piola–Kirchhoff stress tensor, and L is a positive-

definite, fourth-order tensor of elastic moduli.
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Finally, the (generalized) resolved shear stress τα on slip system α is defined (Hill and

Rice, 1972; Asaro, 1983) in terms of the Mandel stress tensor M as follows:

τα = M · (sα ⊗ nα), M = CeSe =
T

Feτ
−T

Fe, (7)

where the unit vectors nα and sα specify, respectively, the slip-plane normal and the slip

direction for slip system α, both in the intermediate configuration, and τ is the Kirchhoff

stress. Eq. (7) defines a finite-strain counterpart to the classical Schmid stress. With all

the above definitions, it can be shown that the overall plastic deformation, expressed in

terms of the plastic velocity gradient Lp, is governed by a rate-independent associated

flow rule of Mandel’s type (Mandel, 1971),

Lp = λ̇
∂F

∂M
=

N∑
α=1

γ̇α sα ⊗ nα, (8)

accompanied by the usual complementarity conditions: λ̇ ≥ 0 and λ̇F = 0. At the same

time, Lp is equal to the sum of shear-rate contributions of individual slip systems, which

is typical for the crystal plasticity models.

2.2 Geometric and material parameters in spherical indentation

During the spherical indentation test, the indentation load P and penetration depth h

increase from zero to maximum values Pmax and hmax, respectively. Upon unloading from

the turning point (Pmax, hmax), P decreases to zero and h to a residual value hres > 0.

The indenter is modeled as a rigid sphere of radius R. The nominal contact radius with

the indented half-space is a =
√
h(2R− h) by elementary geometry, and its values corre-

sponding to hmax and hres are denoted by amax and anom, respectively (Fig. 2). The actual

contact radius of the indenter with the deformed anisotropic crystal depends strongly on

the in-plane direction and can differ substantially from its nominal value.

We will consider indentation in an fcc single crystal of a pure metal. Neglecting an

easy-glide stage in compression, it is assumed that the crystal obeys the elastic-plastic

constitutive relationships given in Section 2.1 with the power-hardening law (1) whose

exponent is to be identified in the spherical indentation test. Since the representative

amount of accumulated plastic strain under a spherical indenter is related to the ratio

hres/R, the identification of n from spherical indentation can concern a certain range of

plastic strain only. For macroscopically isotropic polycrystals, the representative strain

εr at the periphery of a contact zone has been estimated by the classical Tabor formula

εr = 0.2aiso/R (Tabor, 1951), where aiso is the radius of the contact area projected on the

initial planar surface of the indented specimen. For anisotropic single crystals investigated

here, the real projected contact area is far from being circular. However, the nominal

contact area Anom can still be determined from

Anom = πa2nom, anom =
√
hres(2R− hres), (9)
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Figure 2: Geometrical parameters in spherical indentation: indenter radius R, maximum

penetration depth hmax at the maximum load Pmax, and the residual depth hres after

unloading. Nominal contact radii corresponding to hmax and hres are denoted by amax and

anom, respectively. It is stressed that the actual impression topography is not axisymmetric

due to crystal anisotropy.

so that, by elementary geometry, Anom is the cross-section area of the spherical indenter

cut by the initially planar surface of the material when the penetration depth equals to

hres.

In this paper, the attention is focused on spherical indentation in a (001)-oriented fcc

single crystal up to a penetration depth from the range 0.01 ≤ hmax/R ≤ 0.12; study of

other crystal orientations and penetration depths is postponed to a separate paper. For

indentation in a ductile crystal in the fully plastic range, elastic springback effect is small

and the residual depth can be expected to be close to hmax. As no better estimate for

single crystals is available at present, the Tabor formula with anom substituted in place

of aiso can be used to estimate roughly the strain range to which the estimated value of

n might apply. This yields, for instance, εr ≈ 0.1 for hres/R ≈ 0.12. Taking into account

that for compression of an fcc crystal in [001] direction in the symmetric case the ratio

of compressive logarithmic plastic strain ε to accumulated plastic shear Γ on all active

{111}〈011〉 slip-systems is equal to ε/Γ = 1/
√

6 ≈ 0.408, the identified value of n may be

expected to correspond roughly to a value of Γ ≈ 0.23 for hmax/R = 0.12.

It is commonly known that virgin fcc single crystals of high-purity metals exhibit

usually a very small value of the initial yield stress. As the initial yield stress τ0 in the

present elastic-plastic model cannot be taken equal to zero (cf. Section 2.1), we begin with

assuming a low initial value of τ0 = 1 MPa and will examine the possibilities to identify

the hardening exponent n from spherical indentation under this assumption. The effect

of other values of τ0 on the identified value of n will be studied afterwards.

Preliminary numerical studies have revealed that the value of indentation load cor-

responding to the selected maximum penetration depth hmax/R = 0.12 depends for

τ0 = 1 MPa only moderately on n if the shear stress τ is the same for different n at

Γ of the order of 0.1 (i.e. at about a half of the value Γ ≈ 0.23 mentioned above). This
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has motivated our choice of the representative value of Γ# in Eq. (2) as Γ# = 0.1, kept

fixed throughout this paper. A realistic value of τ at Γ = 0.1 for a single crystal of pure

Cu has been adopted as τ# = 40 MPa. However, the numerical results to be expressed

in non-dimensional quantities are not sensitive to the value of τ# but rather to the ratio

κ = τ0/τ#, and become precisely invariant with respect to proportional scaling of τ0 and

τ# at fixed Γ# if the elastic moduli are also scaled accordingly.

In the numerical calculations reported on here, elasticity effects are calculated using

the standard elastic constants corresponding to cubic anisotropy of Cu (c11 = 170 GPa,

c12 = 124 GPa, c44 = 75 GPa), which corresponds to directional Young’s modulus in the

[001] direction E[001] = c11 − 2c212/(c11 + c12) ≈ 65 GPa. This gives E[001]/τ0 ≈ 6.5 · 104

and E[001]/τ# ≈ 1.6 · 103, while 0.14 < amax/R < 0.5 within the assumed range of

0.01 ≤ hmax/R ≤ 0.12. Hence, by analogy to the numerical results for isotropic materials

(Mesarovic and Fleck, 1999; Taljat and Pharr, 2004), the surface deformation can be

expected here to be dominated by plasticity and only slightly dependent on anisotropic

elastic properties. It follows that the identification procedure proposed below, if verified

positively for Cu, can be applicable to a wider spectrum of fcc metal crystals.

In accord with the present aim to keep the number of free factors as low as possible,

frictionless contact is assumed in the present simulations of spherical indentation. It has

been checked numerically that the effect of friction on the value of n estimated in Section

4 is not substantial.

2.3 Finite-element implementation

Simulations of spherical indentation, reported in Section 3, have been carried out using

the finite element (FE) method. The computational model developed for that purpose is

briefly described below.

The crystal plasticity model of Section 2.1 has been implemented in a displacement-

based FE code. Incremental constitutive equations have been obtained by applying the

implicit backward-Euler time integration scheme. In order to consistently treat plas-

tic incompressibility, the incremental flow rule employs the exponential map integrator

(Miehe, 1996; Steinmann and Stein, 1996). The resulting incremental equations are solved

using the classical return-mapping algorithm (Simo and Hughes, 1998). This standard

treatment is possible due to the regularization of the yield condition by Eq. (4).

However, for a large value of the regularization exponent m (the value of m = 20

has been used in the computations), the incremental equations become highly nonlinear

which may cause convergence problems for the Newton method that is applied to solve

to incremental constitutive equations. A robust algorithm has thus been developed by

employing a kind of continuation method in which the exponent m is increased gradually

from m = 1, and each intermediate converged solution is used as an initial guess for the

Newton iterations corresponding to the subsequent increased value of m.
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Computer implementation of the crystal plasticity model has been performed using

AceGen, a code generation system that combines the symbolic algebra capabilities of

Mathematica (www.wolfram.com) with an automatic differentiation (AD) technique and

advanced expression optimization techniques (Korelc, 2002). Details concerning the re-

lated automation of FE code generation can be found in (Korelc, 2009; Korelc and Stup-

kiewicz, 2014).

In the present FE model, the spherical indenter is modeled as a rigid sphere, fric-

tionless contact is assumed, and unilateral contact constraints are enforced using the

augmented Lagrangian method (Alart and Curnier, 1991; Lengiewicz et al., 2011). The

corresponding nodal Lagrange multipliers constitute the global unknowns, and the non-

linear FE equations are solved using the Newton method simultaneously with respect to

all unknowns, i.e. displacements and Lagrange multipliers. The tangent operator required

by the Newton method is obtained by exact linearization of the nonlinear FE equations,

and this is achieved by applying the AD technique available in AceGen.

(a) (b)

Figure 3: Spherical indentation in a (001)-oriented fcc crystal: (a) finite element mesh;

(b) vicinity of the contact zone with the color map denoting the distribution of the ac-

cumulated total plastic slip Γ (the map corresponds to hmax/R = 0.12, n = 0.6 and

τ0 = 1 MPa).

The FE mesh used in the computations is shown in Fig. 3 along with a sample result of

simulations where the calculated distribution of locally accumulated slip Γ on all slip sys-

tems is displayed. Spherical indentation of (001)-oriented fcc crystals is only considered,

hence, by exploiting the related symmetry, the actual computational domain is reduced to

one quarter of the problem. The size of the computational domain is set proportional to

the maximal nominal contact radius amax =
√
hmax(2R− hmax), see Fig. 2. Specifically,

the computational domain is a cube of the side length of 18amax. The mesh is refined
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towards the center of the contact zone (located at a vertex). The part of the contact sur-

face with the finest mesh, where the actual contact occurs, is a square of the side length

of 1.5amax.

Hexahedral eight-node elements are used and the so-called F-bar formulation is em-

ployed in order to avoid volumetric locking effects (de Souza Neto et al., 1996). The

computations are carried out using AceFEM, a flexible FE code that is integrated with

AceGen.

3 Simulations of spherical indentation in fcc single

crystal in [001] direction

3.1 Effects of the hardening exponent n

3.1.1 Indentation curve

The common result of an instrumented indentation test is the load–penetration depth

(P–h) curve. The effect of the power-law hardening exponent n on the load–depth curve

for spherical indentation into an fcc single crystal in [001] direction, simulated numerically

for the material model described above for a small value of initial yield stress, τ0 = 1 MPa,

is presented in Fig. 4. It can be seen that the curvature of the loading branch is correlated

with n, although the differences are not significant. The possibility of identifying the value

of n from logarithmic P–h plots will be discussed in more detail in Section 3.2. However,

identification of n in that way may be not accurate, especially if the initial yield stress is

not very small.

n = 0.4

n = 0.6

n = 0.8

n = 1.0

0 5 10 15 20
0

2

4

6

8

10

h, Μm

P
,N

Τ0 = 1 MPa, Τ# = 40 MPa

R = 200 Μm, G# = 0.1

Figure 4: Load–penetration depth curves calculated for spherical indentation in fcc single

crystal in [001] direction for different values of hardening exponent n, for a low value of

the initial yield stress (κ = τ0/τ# = 0.025).

The results shown in Fig. 4 and subsequent results reported for τ0 = 1 MPa correspond
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to n = 0.4, 0.6, 0.8, 1.0. The results corresponding to n = 0.2 are not reported because

the extremely high initial hardening rate at Γ = 0 for n = 0.2 requires regularization to

avoid numerical problems, and this regularization makes the results visibly inconsistent

with the remaining results. Actually, a minor regularization was needed also for n = 0.4,

apparently introducing no visible inconsistency.

3.1.2 Pile-up and sink-in pattern after indentation

We focus now attention on the possibility of identifying the power-law hardening exponent

from indentation tests by analysing the deformed surface topography. In the spherical

indentation tests into isotropic (polycrystalline) ductile metals, the correlation between

the power-law hardening exponent n and the pile-up or sink-in amount in the fully plastic

range is well known (Norbury and Samuel, 1928; Hill et al., 1989; Alcala et al., 2000). In

turn, in the case of elastic-plastic indentation, numerical simulations have revealed that

the amount of pile-up and sink-in depends not only on n but also on the penetration

depth and ratio E/σy, where E and σy are, respectively, the elastic modulus and the yield

stress of the material indented, cf. (Mesarovic and Fleck, 1999; Taljat and Pharr, 2004).

Recently, Renner et al. (2016) have concluded, in agreement with Chang et al. (2010)

and Zambaldi et al. (2012), that pile-up dimensions provide a very good strain-hardening

indicator for a single crystal.

The correlation between the value of n and deformed surface topography is exam-

ined here in the case of anisotropic fcc single crystals of ductile metals of a small value

of τ0 = 1 MPa = 0.025 τ# and 0.01 ≤ hmax/R ≤ 0.12, with the intention to have a

fully plastic range in vicinity of the indenter, cf. Section 2.2. The finite element simula-

tions have been performed for different values of the hardening exponent n and different

maximum penetration depths hmax, the latter only slightly greater than the respective

residual depths hres found upon unloading. Resulting 3D maps of residual impressions for

n = 0.4, 0.6, 0.8, 1.0 and hmax/R = 0.01, 0.02, 0.05, 0.12 are shown in Fig. 5. The vertical

range (−0.1 ≤ z/hres ≤ 0.1) has been adjusted such that the pile-up and sink-in topogra-

phy is shown in sufficient detail. The maps are thus cropped at the level of z = −0.1hres

so that the spherical part of the impression created by direct contact with the indenter is

not visible.

The most important qualitative observation of the results shown in Fig. 5 is that the

surface topography after indentation:

(i) depends strongly on the hardening exponent n, showing less piling-up and more

sinking-in with increasing n, and

(ii) only slightly depends on the maximum penetration depth hmax in the range 0.01÷
0.12R for a small value of κ = τ0/τ# = 0.025.
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Figure 5: Maps of residual impressions after spherical indentation in an elastic-

plastic fcc crystal in [001] direction up to maximum penetration depth hmax/R =

0.01, 0.02, 0.05 and 0.12, calculated for the hardening exponent n = 0.4, 0.6, 0.8 and 1.0

and κ = τ0/τ# = 0.025. The in-plane (horizontal) position is normalized by the nominal

residual radius anom, while the pile-up (positive) and sink-in (negative) height is normal-

ized by the residual depth hres. In all cases the normalized maps are shown within the

box [−3, 3]× [−3, 3]× [−0.1, 0.1], and the color scale is used to visualize the normalized

height z/hres ∈ [−0.1, 0.1].

The tendency (i) is also visualized in Fig. 6 which shows a top view of the residual impres-

sions from the last column of Fig. 5 corresponding to hmax/R = 0.12. The tendency (i) is

to some extent qualitatively similar to the well-known effect of the hardening exponent on

the pile-up/sink-in behaviour of an isotropic material, with the clear distinction that here

the surface topography is far from being axisymmetric. The quantitative visualization of

the observations (i) and (ii) shown in Figs. 5 and 6 for the anisotropic ductile crystal has

not been found in the literature.

It can be concluded that, at least in the case of a small initial value of the flow

stress, which is typical for virgin fcc single crystals of pure metals, just a quick look at

13



n = 0.4 n = 0.6 n = 0.8 n = 1.0

Figure 6: Top view of the residual impressions from the last column of Fig. 5 corresponding

to hmax/R = 0.12. Note the distinction between the material contour at the level of the

initially planar surface (solid line) and the nominal contact area contour indicated by a

central circle of radius anom (dashed line).

the experimental surface topography (cf. Fig. 14) after spherical indentation may be

sufficient to extract a rough estimate of the value of n. For more refined estimation

purposes, quantitative indicators can be used that are examined in the next section.

3.2 Hardening exponent indicators

3.2.1 Slope of indentation curve in logarithmic scale

In the rigid-plastic small-strain analysis of spherical indentation by Hill et al. (1989), a

power-hardening law for the material with an exponent n corresponds to a power-type

expression with an exponent 1 + n
2

for the indentation load as a function of the increasing

penetration depth. It is natural to check whether plastic anisotropy, a low but finite

initial yield stress, elasticity and finite deformation effects do not destroy that power-type

relationship.

The results of FE simulations of the spherical indentation test in [001] direction for

τ0 = 1 MPa are shown in Fig. 7 as the double logarithmic plots of P–h relationships

for the loading branch, expressed in the normalized variables taken as the ratios of the

current to maximum values. A least-squares fit to each of the sequences of numerical

points calculated in the range 0.01 ≤ hmax/R ≤ 0.12 for the material hardening exponent

n = 0.4, 0.6, 0.8 and 1.0, by Hill’s et al. (1989) analytic relationship

P

Pmax

=

(
h

hmax

)1+
np

2

(10)

with one adjustable parameter np, is also shown in the figure. It can be seen that the

power-type fit is quite good, in spite of the effects of elasticity and finite deformation taken

into account in the FE simulations. However, the fitting values of np for the numerical

P–h curves deviate from the values of n assumed for the material in the simulations,
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especially for higher n. Moreover, the numerical plots are rather close to each other, so

that the accuracy of identification of n from those plots may be not satisfactory.
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Figure 7: Double logarithmic point plots in normalized coordinates of the numerical P–

h relationships for the loading branch in spherical indentation in fcc single crystal for

different values of n and a low initial yield stress τ0 = 1 MPa. Analytic fits according to

Eq. (10) are displayed by solid lines.

If the initial yield stress τ0 is higher, e.g., for a prestressed crystal, then the numerical

plots analogous to those shown in Fig. 7 become still closer to each other, and their slope

depends on the initial yield stress as well as on h/R. Such plots are omitted here as it is

hard to identify from them the actual hardening exponent.

3.2.2 Contact area

The value of contact area is one of the basic indentation-test parameters required to

determine the fundamental material characteristics like hardness and Young’s modulus.

An approximate value of the contact area in spherical indentation is provided by its

nominal value defined by formula (9), frequently simplified further by neglecting the

subtracted term hres as a small fraction of 2R. The actual-to-nominal contact area ratio,

known as c2 parameter, is most commonly used as a measure of pile-up or sink-in amount

correlated with the value of hardening exponent n in axially symmetric cases (Norbury

and Samuel, 1928; Hill et al., 1989; Alcala et al., 2000). The question thus arises whether

an analogous correlation exists in case of spherical indentation into ductile single crystals

where the pile-up/sink-in behaviour is much more complex and far from axial symmetry.

The present numerical simulations provide an affirmative answer in case of a small

value of initial yield stress. From the FE computations, it is known which material

elements have been in contact with the indenter at the maximum load, therefore it is

straightforward to determine the respective contact area and its projection A on the

initial planar surface of the indented material.
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The results of finite element simulations for τ0 = 1 MPa and different values of the

hardening exponent n are shown in Fig. 8. As expected from the general correlation of

the pile-up/sink-in pattern with the hardening exponent n visible in Fig. 5, there is a

strong dependence of the value of the actual-to-nominal contact area ratio A/Anom on n,

while the dependence of the ratio A/Anom on the residual penetration depth hres is only

slight.
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Figure 8: Projected contact area A vs residual depth hres normalized by nominal contact

area Anom and indenter radius R, respectively. The markers indicate numerical results

calculated for spherical indentation in fcc single crystal in [001] direction for κ = 0.025

and different values of hardening exponent n.

In principle, just one value of experimental contact area A measured after spherical

indentation up to a penetration depth from the range 0.05 ≤ hmax/R ≤ 0.12, say, suffices

for approximate identification of hardening exponent n for the indented metal crystal.

This can be done by comparing the experimental value of A/Anom with that obtained

by linear interpolation between the flat portions of the plots in Fig. 8. The so-extracted

value of n is associated with a given value of the ratio κ = τ0/τ#. The diagram in Fig. 8,

although calculated for a low value of κ = 0.025, still changes slightly if τ0 is reduced

further at fixed τ# = 40 MPa. For instance, if τ0 is reduced to a (rather unrealistic)

value of 0.01 MPa then the minimum value of the ratio A/Anom found for n = 1 (linear

hardening) decreases by 11% to 0.507, closely to the theoretical Hertz value of 0.5 for linear

isotropic elasticity and to the numerical value of 0.508 obtained by Hill et al. (1989) for

an isotropic rigid–linearly hardening solid.

There are some difficulties in using A/Anom as the hardening exponent indicator. In

spite of mesh refinement in the contact zone, the effect of FE discretization of the contact

surface on A has not yet been fully eliminated, which can be seen from certain irregularities

of the plots in Fig. 8. Irregularities appeared as more pronounced for higher values of

κ, therefore the related results are not presented here. On the other hand, experimental

measurements of the real contact area may also be not straightforward.
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Those difficulties motivated the search for another indicator that would be less sensitive

to contact area determination. A new quantitative indicator for identification of n from

pile-up/sink-in behaviour in spherical indentation tests is proposed below.

3.2.3 Ring-based pile-up/sink-in volume

From Fig. 5 it can be observed that the higher n the less pronounced piling-up and the

more pronounced sinking-in in respective sectors around the central depression. This

suggests that the total volume (taken positive for piling-up and negative for sinking-in)

of the material displaced around the area pushed down directly by the indenter can serve

as a good indicator of the value of n. After a number of trials, it is proposed, as the best

indicator from those examined, to calculate the volume described above as an integral of a

local residual height (positive or negative) over a centered circular ring of internal radius

anom and external radius 2anom. The internal radius has been chosen equal to anom in order

to eliminate from the ring-based volume the depression enforced directly by contact with

the indenter. The external radius of 2anom has been selected more arbitrarily as a possibly

optimal value for diminishing sensitivity of the ring-based volume to factors other that the

plastic properties of the material, for instance, to imperfections inevitable in experiment.

No clear reason has been found for complicating the simplest integer multipliers (1, 2)

of the proposed radii (anom, 2anom). Finally, the volume calculated as above, denoted by

Vring[a, 2a], is normalized by the (positive) volume Vcap[0, a] of the spherical segment (cap)

of the indenter beneath the nominal planar surface when the penetration depth is equal

to the residual depth hres.

Figure 9: Illustration of the ring-based pile-up/sink-in volume Vring. The red and blue

parts of the residual impression surface denote, respectively, the positive (pile-up) and

negative (sink-in) regions within the ring-based hollow cylinder that contribute to the

V̄ring parameter defined by Eq. (11).

To summarize, we propose to use as the indicator of n after spherical indentation the
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following normalized ring-based pile-up/sink-in volume:

V̄ring =
Vring[a, 2a]

Vcap[0, a]
, Vring[a, 2a] =

∫ 2a

a

∫ 2π

0

z(r, ϕ) r dϕ dr , (11)

calculated in cylindrical coordinates (r, ϕ, z) using the surface z(r, ϕ) formed by mate-

rial points lying initially on the planar surface z = 0 of the indented material, where

Vcap[0, a] = πh2res(R − hres/3) by elementary geometry. The proposal is illustrated in

Fig. 9.

The value of V̄ring can be determined in a straightforward manner from a digitized

map of the impression, which nowadays is easily available, from both FE simulations and

experimental measurements.

The results of FE simulations performed for three different values of the initial yield

stress τ0 and for the displayed range of the hardening exponent n and penetration depth

are presented in Fig. 10.

Several interesting conclusions can be drawn from Fig. 10. Let us discuss first the case

of small initial yield stress τ0 = 1 MPa presented in Fig. 10a (recall that τ# = 40 MPa

at Γ# = 0.1 has been adopted in all calculations). A strong correlation exists between

the values of V̄ring indicator and hardening exponent n in case of spherical indentation

into a single crystal of a small initial yield stress corresponding to κ = 0.025. Hence, for

τ0 of that order, identification of the value of n from Fig. 10a alone is straightforward

(by interpolation) if just one value of V̄ring is known for some hres/R, and such n is only

slightly dependent on the indentation depth hres from the range 0.05 ≤ hres/R ≤ 0.12,

say. The influence of smaller values of hres/R on V̄ring becomes more essential for n > 0.6.

The situation changes for higher values of κ as shown in Figs. 10b and c. The effect

of hres/R on V̄ring is no longer negligible, while the sensitivity of V̄ring to n decreases

significantly as the indentation depth decreases to hres/R = 0.01. Figure 10 provides

thus the possibility of extracting at least the order of magnitude of the initial yield stress

from the value of V̄ring obtained from the spherical indentation experiment performed to

a penetration depth hres/R ≈ 0.01.

An important general conclusion is that the value of hardening exponent n can be

identified with a good accuracy only if the ratio κ = τ0/τ# is given or estimated simulta-

neously with n. As the ranges of V̄ring in Figs. 10a,b,c only partially overlap, especially at

small penetration depths, the provided V̄ring plots versus hres/R for different n and κ offer

the possibility to identify roughly, by interpolation, an unknown pair (n, κ) from several

values of V̄ring determined experimentally for different depths hres/R. The identification

would be more accurate from V̄ring diagrams for a more dense spectrum of values of κ,

but our first task is to verify the proposed identification procedure experimentally. Such

an experimental verification by spherical indentation in a pure copper crystal is presented

below.
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Figure 10: The ring-based pile-up/sink-in volume parameter V̄ring versus the residual

depth hres normalized by indenter radius R. V̄ring is defined by formula (11) as the

normalized total pile-up (positive) and sink-in (negative) volume over the ring of radii

[anom, 2anom] on the nominal planar surface. The markers indicate numerical results cal-

culated for spherical indentation in fcc single crystal in [001] direction for different values

of hardening exponent n, for (a) κ = 0.025, (b) κ = 0.25, (c) κ = 0.5.

19



4 Experimental estimation of n

4.1 Experimental procedure

The spherical indentation tests have been performed on (001)-oriented high-purity cop-

per single crystals. The CSM Open Platform equipment has been used to perform the

indentation tests. The MHT micro-indenter was applied in micro-scale to measure load–

penetration depth curves. The displacement resolution and load resolution are 0.3 nm and

100µN, respectively, and the radius of the applied tip was nominally 200µm and effec-

tively Rexp = 190µm for h > 10µm. The range of maximum loads was 0.25–11 N, and the

load was applied in the quasi-static regime. To measure the deformed surface topography

in the microscale, the scanning profilometer (Hommel-Etamic T8000 Nanoscan) was used,

of vertical resolution less than 1 nm and lateral resolution of 0.1µm and 0.5µm in x- and

y-direction, respectively.

High-purity (99.9999%) Cu single crystals, produced by the Czochralski method, were

acquired from MaTecK GmbH (Germany). The crystals were cut into samples by spark

erosion and wire saw to give a (001)-oriented planar surface. The surface was mechanically

polished, then electro-polished, and finally carefully cleaned with distilled water and iso-

propyl alcohol. Next, a number of micro-indentation tests were performed. To be sure that

the hardened surface layer generated in the polishing process is removed, electro-polishing

and cleaning were repeated until the load–penetration depth curves were consistent in two

subsequent steps.

4.2 Estimation of n for a virgin Cu single crystal

4.2.1 Indentation curves

From a series of spherical indentation tests performed on virgin (as-received) Cu single

crystals, two representative experimental P–h point plots for the loading branch have been

selected; other experimental P–h curves have been found to lie within that range. The

two plots are shown in Fig. 11 in normalized coordinates in log–log scale and compared to

the fitting lines from Fig. 7. The linear character of the experimental log–log relationship

can readily be seen. By fitting the formula (10) using the two experimental data point

sets, the extracted values of np are 0.414 and 0.472. Next, by linear interpolation between

the closest fitting lines shown in Fig. 11, the respective values of the hardening exponent

nexp estimated in that way from the spherical indentation experiment are 0.44÷ 0.50.

It is emphasized that the solid lines in Fig. 11 and thus the above identification of

n refer to the low value of τ0 = 1 MPa used in the FE simulations. This order of τ0 is

consistent with the experiment performed on a virgin Cu single crystal, see Section 4.4.

Nevertheless, as already mentioned in Section 3.2.1, the accuracy of identification of n

from P–h plots alone may be not satisfactory.

20



æ
æ
æ
æ
ææ
ææ
æ
æ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
æææ
ææ
ææ
ææ
ææ
æææ
æææ
æææ
ææ
æææ
æææ
æææ
æææ
æææ
æææ
æææ
æææ
æææ
æææ
æææ
æææ
æææ
ææææ
æææ
æææ
ææææ
æææ
æææ
ææææ
ææææ
ææææ
ææææ
ææææ
ææææ
ææææ
ææææ
ææææ
ææææ
ææææ
æææææ
ææææ
æææææ
æææææ
æææææ
æææææ
æææææ
æææææ
æææææ
æææææ
æææææ
æææææ
æææææ
æææææ
ææææææ
æææææ
ææææææ
ææææææ
ææææææ
ææææææ
ææææææ
ææææææ
ææææææ
ææææææ
æææææææ
æææææææ
æææææææ
æææææææ
æææææææ
æææææææ
æææææææ
æææææææ
ææææææææ
ææææææææ
ææææææææ
ææææææææ
ææææææææ
ææææææææ
ææææææææ
ææææææææ
æææææææææ
æææææææææ
æææææææææ
æææææææææ
æææææææææ
æææææææææ
æææææææææ
ææææææææææ
ææææææææææ
ææææææææææ
ææææææææææ
æææææææææææ
ææææææææææ
æææææææææææ
æææææææææææ
æææææææææææ
æææææææææææ
æææææææææææ
ææææææææææææ
ææææææææææææ
ææææææææææææ
ææææææææææææ
æææææææææææææ
ææææææææææææ
æææææææææææææ
æææææææææææææ
æææææææææææææ
æææææææææææææ
ææææææææææææææ
ææææææææææææææ
ææææææææææææææ
ææææææææææææææ
æææææææææææææææ
æææææææææææææææ
æææææææææææææææ
æææææææææææææææ
ææææææææææææææææ
ææææææææææææææææ
ææææææææææææææææ
æææ

æ
æ
ææ
æ
æ
æ
æ
æ
æ
æ æ
æ
ææ
ææ
æ
ææ
ææ
ææ
æ
ææ
æ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
æææ
ææ
æææ
æææ
ææ
æææ
ææ
æææ
æææ
æææ
æææ
æææ
æææ
æææ
æææ
æææ
æææ
æææ
æææ
ææææ
æææ
ææææ
æææ
ææææ
æææ
ææææ
ææææ
ææææ
ææææ
ææææ
ææææ
ææææ
ææææ
ææææ
ææææ
ææææ
æææææ
æææææ
æææææ
æææææ
æææææ
æææææ
æææææ
æææææ
æææææ
æææææ
æææææ
æææææ
æææææ
æææææ
ææææææ
ææææææ
ææææææ
ææææææ
ææææææ
ææææææ
ææææææ
ææææææ
ææææææ
ææææææ
æææææææ
æææææææ
æææææææ
æææææææ
æææææææ
æææææææ
æææææææ
æææææææ
ææææææææ
ææææææææ
ææææææææ
ææææææææ
ææææææææ
ææææææææ
ææææææææ
æææææææææ
ææææææææ
æææææææææ
æææææææææ
æææææææææ
æææææææææ
æææææææææ
ææææææææææ
ææææææææææ
ææææææææææ
ææææææææææ
ææææææææææ
ææææææææææ
æææææææææææ
æææææææææææ
æææææææææææ
æææææææææææ
æææææææææææ
æææææææææææ
ææææææææææææ
ææææææææææææ
ææææææææææææ
ææææææææææææ
æææææææææææææ
æææææææææææææ
æææææææææææææ
æææææææææææææ
ææææææææææææææ
ææææææææææææææ
ææææææææææææææ
ææææææææææææææ
æææææææææææææææ
æææææææææææææææ
æææææææææææææææ
æææææææææææææææ
æææææææææææææææ
ææææææææææææææææ
ææææææææææææææææ
æææææææææææ

np=0.376 for n=0.4

np=0.573 for n=0.6

np=0.731 for n=0.8

np=0.864 for n=1.0

np=0.414 for exp2

np=0.472 for exp1

0.10 1.000.500.20 0.300.15 0.70

0.05

0.10

0.20

0.50

1.00

h�hmax

P
�P

m
ax

Figure 11: Double logarithmic plots of two representative experimental P–h curves for

spherical indentation, expressed in non-dimensionalized variables and compared to the

fitting lines from Fig. 7.

4.2.2 Contact area

While in numerical simulations the maximal contact area can be calculated directly

(within an approximation due to FE discretization of the contact surface), determining it

from experiments is less straightforward.

(a) (b)

Figure 12: Top view of the projected contact area after spherical indentation in a (001)-

oriented virgin Cu single crystal for (a) hres = 4.1µm (optical micrograph), (b) hres =

21.7µm (micrograph simulated from measured 3D topography).

The surface topography generated in spherical indentation tests in single crystals is

rather complex, as in the same impression both pile-up and sink-in sectors occur, and

consequently the contact radius depends strongly on the direction. The main problem in

determination of contact area from experiments is in proper identification of the contact

boundary on the residual impressions. In the investigations reported here, two approaches

were applied: optical microscopy and scanning profilometry. We have observed that for

shallow impressions, the contact boundary is sufficiently distinct in an optical micrograph,
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Fig. 12a. At greater loads, when the height of pile-up is important, the depth of focus in

the optical microscope was not sufficient to show the whole boundary distinctly. Then,

the exact scan of impressions was made and the commercial software Hommel Map was

applied to generate the acquired images. Next, the “photo simulation” option of Hommel

Map was used for imaging the residual impression, Fig. 12b. In such an image, the contact

boundary can be clearly seen and the projected area can be measured.

n = 0.4

n = 0.6

n = 0.8

n = 1.0

ççç
ç
ç

ç exp.

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.5

0.6

0.7

0.8

0.9

1.0

hres�R

A
�A

no
m

Figure 13: Projected contact area A vs residual depth hres normalized by nominal contact

area Anom and indenter radius R, respectively. Experimental results for spherical inden-

tation in a (001)-oriented virgin Cu single crystal are marked by circles and compared

with numerical results from Fig. 8.

Figure 13 shows the comparison of the experimental area values for spherical inden-

tation in a virgin Cu single crystal with the numerical results from Fig. 8 obtained

for τ0 = 1 MPa. It can be seen that the value of n identified from the experimen-

tal contact area in the spherical indentation tests within the penetration depth range

hres/Rexp = 0.08÷0.12 is nexp ≈ 0.6. It becomes somewhat higher for smaller penetration

depths (corresponding to a smaller effective strain for which n is identified). However,

the values measured in the latter range were less accurate as the real indenter radius was

found to be not constant near the indenter tip. Therefore, those values have not been

used for identification purposes.

4.2.3 Ring-based pile-up/sink-in volume

The experimentally observed pile-up and sink-in patterns after indentation to different

penetration depths hres in the range between 10 and 22 µm are visually very similar to

each other, as shown in Fig. 14. This is consistent with the slight dependence of surface

topography on the value of penetration depth in the numerical simulations visualized

in Fig. 5, and confirms the possibility of identifying the value of n using the surface
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topography. Actually, by visual inspection, the experimental pile-up/sink-in patterns of

Fig. 14 are found to be very similar to those numerical patterns of Fig. 5 that correspond

to n = 0.6. Below, the volume-based parameter V̄ring is used for a quantitative and more

objective assessment of this similarity.

Figure 14: Experimental pile-up and sink-in patterns after spherical indentation in a (001)-

oriented virgin Cu single crystal up to the penetration depths hres ≈ 10, 15 and 22µm

(from left to right; all dimensions are given in µm). For consistency with Fig. 5, the

horizontal range is set to ±3anom and the vertical range is set to ±0.1hres.
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Figure 15: The ring-based pile-up/sink-in volume parameter V̄ring versus the residual

penetration depth normalized by indenter radius R. Experimental results for spherical

indentation in a virgin Cu single crystal are marked by circles and compared with numer-

ical results from Fig. 10a.

Figure 14 has been generated from digital 3D maps of residual impressions, cf. Sec-

tion 4.1. By relatively straightforward post-processing of those maps, respective values

of the pile-up and sink-in volume indicator defined by Eq. (11) have been determined.

The comparison to simulation results from Fig. 10 is shown in Fig. 15. The experimental

points for 0.05 < hres/R < 0.12 lie in the range of 0.5 < n < 0.6; values of V̄ring for
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smaller hres are not shown as they are somewhat less reliable in view of the deviations in

geometry of the real indenter tip from a perfect sphere, as mentioned earlier. The value

of n identified from the experimental values of the pile-up/sink-in volume indicator in

the spherical indentation tests within the penetration depth range hres/R = 0.05 ÷ 0.12

is thus nexp = 0.55 ± 0.05. It is in satisfactory agreement with nexp ≈ 0.6 from the con-

tact area estimations and lies somewhat above the range 0.44÷ 0.50 determined from the

load–depth curves in logarithmic coordinates, all for a virgin Cu single crystal.

4.3 Estimation of n for a prestressed Cu single crystal

When a metal crystal is examined not in a virgin state but after a certain prestrain

which significantly increases the initial dislocation density, the initial yield stress after

prestrain is not negligible in comparison to the flow stress level at further strain of the

order of Γ# = 0.1. Accordingly, a power-law hardening curve starting from zero stress

after prestrain no longer provides a good approximation of the actual material behaviour.

From the analysis of simulation results presented in Section 3, it has been found that,

for a crystal with a non-negligible initial yield stress, the pile-up/sink-in volume indicator

V̄ring can provide better chances to identify the hardening exponent than the other two

indicators (the slope of logarithmic P–h plots and the contact area) examined for spherical

indentation. The experimental values of V̄ring determined from the spherical indentation

tests performed as in Section 4.2 but on the crystal subjected first to compressive prestress

of 38 MPa in [001] direction are of the order of V̄ring ≈ +0.2. Those values do not fit the

range of the numerical diagrams in Fig. 10 neither for κ = 0.025 nor for κ = 0.5, but fit the

mid diagram for κ = 0.25, as shown in Fig. 16. More refined identification would require

calculations performed for intermediate values of κ which have not yet been examined.

The mean value of n identified from Fig. 16 for the prestressed crystal is nexp ≈ 0.5±
0.1, keeping in mind that the associated value of κ = 0.25 is identified here only roughly.

Nevertheless, the value of nexp ≈ 0.5 ± 0.1 for the prestressed crystal is in agreement

with nexp ≈ 0.55± 0.05 for the same but virgin crystal. More precise identification would

require reliable experimental values of V̄ring for smaller values hres/R ≈ 0.01 and also

numerical diagrams of V̄ring for intermediate values of κ, which is left for future study.

4.4 Verification by simple compression test

Finally, it is of primary interest to check whether the value of nexp identified from spherical

indentation provides good description of the experimental stress–strain curve.

In the FE computations, the constitutive multiplier C in formula (1) was adjusted

using formulae (2) to a given ratio κ = τ0/τ# by taking the value of τ# prescribed

arbitrarily as τ# = 40 MPa. For identification of n alone, it is the value of the ratio

κ = τ0/τ# that is essential, as discussed in detail above. In turn, for the purpose of

predicting the complete stress–strain curve for the material, the value of C is to be
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Figure 16: The ring-based pile-up/sink-in volume parameter V̄ring versus the residual

penetration depth normalized by indenter radius R. Experimental results for spherical

indentation in a prestressed Cu single crystal in [001] direction are marked by circles and

compared with numerical results from Fig. 10b for κ = 0.25.

identified from experimental indentation data. This is done by adjusting now the value

of C in formula (1) for each n so that the calculated P–h curve in normalized coordinates

(h/R, P/R2) goes through a representative experimental point (hexp/Rexp, Pexp/R
2
exp) in

the indentation test for the crystal. Explicitly, the resulting parameter C is

C := r C# , r =
Pexp

P (hexp/Rexp)

R2

R2
exp

, C# = κτ#

(κ− 1
n − 1

Γ#

)
(12)

for given n and κ, where the numerical function P (h/R) for the prescribed pair (Γ# =

0.1, τ# = 40 MPa) and κ = 0.025 can be read off from the plots in Fig. 4 for each given

n. From Eqs. (2) for prescribed Γ# it follows that the value of Γ0 is independent of the

scaling by r, while the above scaling by r applies also to τ0 := rτ0 and τ# := rτ#. The

effect of the related scaling of elastic constants by r is here negligible, which has been

confirmed by additional FE computations (not reported here).

The representative values taken from the indentation tests reported on above are

hexp = 22.7µm, Pexp = 7.9 N for the virgin Cu crystal, and hexp = 17.0µm, Pexp = 7.3 N

for the prestressed Cu crystal (in each case Rexp = 190µm). Clearly, in the assumed

absence of an intrinsic characteristic length of the material, for the purposes of identifi-

cation of the stress–strain curve neither hexp nor Rexp need to be close to the values used

in numerical calculations, only their ratio hexp/Rexp matters.

The comparison of the predicted and experimental uniaxial true stress–true strain

curves in [001] direction for the virgin and prestressed Cu single crystals is shown in

Figs. 17 and 18, respectively. The predicted curves correspond to a theoretical elastic-

plastic response, whose plastic part is governed by the (non-regularized) Schmid rule

and hardening law (1) and (2) with the scaling factor r found from Eq. (12), and elastic
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Figure 17: Comparison of the experimental uniaxial true stress–true strain curve for

compression of a virgin Cu crystal in [001] direction with theoretical curves predicted for

two values of n extracted from Figs. 13 and 15 and corresponding to κ = 0.025. The

stress magnitude has been adjusted for each n according to Eq. (12).
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Figure 18: Diagram analogous to Fig. 17 but for a Cu crystal prestressed to 38 MPa in

uniaxial compression in [001] direction. The theoretical curves correspond to κ = τ0/τ# =

0.25.

response is defined by E[001] . The experimental stress–strain curve in Fig. 17 was obtained

by compressing a 5× 5× 10 mm virgin crystal sample between flat steel platens (a PTFE

tape and a molybdenum disulfide-based solid lubricant were used to reduce friction). The

experimental curve in Fig. 18 has been reproduced from that in Fig. 17 for a virgin crystal

by shifting it horizontally by the plastic prestrain of 0.021 corresponding to the prestress

of 38 MPa.

From Fig. 17 it is clear that the experimental stress–strain curve, as it might be

expected, does not follow precisely the power-law hardening for any constant n in the

examined range. In turn, in Fig. 18 it is visible that the value of the initial yield stress
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adopted is somewhat too small. Nevertheless, the agreement in both cases can be re-

garded as satisfactory within the strain range correlated to the maximum penetration

depth hmax ≈ 0.12R, cf. the discussion in Section 2.2. This also shows that the simple

constitutive assumptions adopted in Section 2.1 are apparently adequate for the present

purposes. Clearly, if the value of n is needed as a material parameter corresponding to a

wider strain range then a higher penetration depth should be applied.

If the theoretical stress–strain curves shown in Figs. 17 and 18 are replaced with

the numerical ones corresponding to the FE model used then the stresses are reduced

by ∼ 5% for m = 20 due to the regularization involved in the single yield condition

(4). While this reduction would slightly improve the agreement with the experimental

stress–strain curves, it is related to an unfavorable feature of the adopted viscous-type

regularization (3) which implies that eight slip systems are simultaneously active during

uniaxial compression along the high-symmetry [001] direction. In reality, the number

of simultaneously active slip systems is expected to be lower due to the latent hardening

effect. For instance, this is predicted by the incremental energy minimization treatment of

rate-independent multislip in non-regularized crystal plasticity (Petryk and Kursa, 2013,

2015), whose application to FE simulations of spherical indentation is not attempted here.

5 Conclusion

A novel procedure has been developed for estimation of the power-law hardening exponent

of an anisotropic fcc single crystal from the spherical indentation test, with the focus on

residual pile-up/sink-in topography and without the need of solving the relevant inverse

problem afterwards. The procedure is based on the results of the finite-element study

of spherical indentation in an elastic-plastic fcc single crystal. Three indicators of the

hardening exponent have been examined in detail. Respective diagrams have been pro-

vided for a (001)-oriented crystal within the penetration depth range hres/R = 0.01÷0.12.

They enable direct estimation of the hardening exponent n corresponding roughly to the

value of the accumulated plastic shear up to Γ ≈ 0.23 for that penetration depth range.

This can be done by measurements of these indicators after carrying out the experimen-

tal test(s) of spherical indentation, without the necessity of performing further numerical

simulations.

The finite element simulations have shown that, in qualitative terms, the influence of

the hardening exponent on spherical indentation characteristics is to some extent similar

to that observed in the case of isotropic materials. Specifically, with increasing n, the

curvature of the loading branch of the load–penetration depth curve increases, the contact

area decreases, and the overall pile-up volume decreases. This is described quantitatively

by the respective three indicators examined. Unlike in the isotropic case, these indicators

of n take fully into account the complex residual surface topography with distinct pile-up

and sink-in sectors formed simultaneously around the central spherical depression.
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A new indicator of hardening exponent n has been elaborated as the normalized pile-

up/sink-in volume calculated by integration of the local residual height (positive or neg-

ative) over a centered circular ring. This indicator has turned out to be also useful for

estimating the normalized initial yields stress from the indicator values for smaller pene-

tration depths, and for extracting n subsequently from the indicator values measured for

larger penetration depths from the examined range. If the initial yield stress is known

to be sufficiently small then the diagrams provided for the more familiar indicators – the

contact area and the slope of the load-depth curve in logarithmic coordinates – can also

be used for extracting n, under certain reservations discussed earlier.

The identification procedure developed has been verified against experimental data

obtained for a high-purity Cu single crystal. By adjusting the stress magnitude through

a suitable fit of the experimental indentation load at a selected penetration depth, the

complete hardening curve in the range of strains corresponding to spherical indentation

has been predicted. Its agreement with the experimental stress–strain curve in uniaxial

compression of a virgin Cu crystal has been found satisfactory. Finally, the estimation

procedure has been applied to a prestressed Cu single crystal of a non-negligible initial

yield stress, and consistent results have been obtained.

In the penetration depth range examined, the surface deformation was found to

be dominated by plasticity and thus only slightly sensitive to the changes in material-

dependent elastic moduli. Hence, the proposed estimation procedure may be applicable

to a wider spectrum of fcc metal crystals, but confirmation of this hypothesis requires

further study.
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