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Abstract

Stress-induced martensitic transformation in polycrystalline NiTi under tension often proceeds

through formation and propagation of macroscopic phase transformation fronts, i.e., diffuse in-

terfaces that separate the transformed and untransformed domains. A gradient-enhanced 3D finite-

strain model of pseudoelasticity is developed in this work with the aim to describe the related

phenomena. The underlying softening response is regularized by enhancing the Helmholtz free en-

ergy of a non-gradient model with a gradient term expressed in terms of the martensite volume

fraction. To facilitate finite-element implementation, a micromorphic-type regularization is then

introduced following the approach developed recently in the 1D small-strain context. The complete

evolution problem is formulated within the incremental energy minimization framework, and the

resulting non-smooth minimization problem is solved by employing the augmented Lagrangian tech-

nique. In order to account for the thermomechanical coupling effects, a general thermomechanical

framework, which is consistent with the second law of thermodynamics and considers all related

couplings, is also developed. Finite-element simulations of representative 3D problems show that

the model is capable of representing the loading-rate effects in a NiTi dog-bone specimen and com-

plex transformation patterns in a NiTi tube under tension. A parametric study is also carried out to

investigate the effect of various parameters on the characteristics of the macroscopic transformation

front.

Keywords: Phase transformation, Softening, Strain localization, Micromorphic regularization,

Finite-element method

1. Introduction

Shape-memory alloys (SMAs) exhibit spectacular properties, for instance, the shape-memory

effect and pseudoelasticity, which facilitates numerous advanced applications of this class of mate-
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sstupkie@ippt.pan.pl (Stanis law Stupkiewicz)

Preprint submitted to International Journal of Plasticity



rials. The unique properties of SMAs result from the martensitic phase transformation that can

be induced by varying the temperature or stress, and the related reversible strain due to the phase

transformation or martensite variant rearrangement is the basic mechanism of inelastic deformation.

The thermomechanical behaviour of SMAs is complex, and numerous models have been developed

with the aim to describe the relevant effects at various scales, see, e.g., the review papers (Patoor

et al., 2006; Lagoudas et al., 2006; Cissé et al., 2016).

One of the interesting features of polycrystalline SMAs is that the stress-induced transformation

and the related deformation field are often nonuniform, even if the geometry and loading promote a

uniform deformation. This, in particular, concerns polycrystalline NiTi under predominantly tensile

loading (NiTi is commercially the most successful SMA, hence the importance of the related effects).

The martensitic transformation proceeds then through formation and propagation of macroscopic

transformation fronts, i.e., diffuse interfaces that separate transformed and untransformed domains.

In the case of NiTi strips under tension, the typical appearance of the macroscopic transfor-

mation fronts is in the form of planar interfaces that are inclined with respect to the loading axis

(Shaw and Kyriakides, 1997; Pieczyska et al., 2006; Zhang et al., 2010; Kim and Daly, 2011) and

the transformation pattern resembles then the Lüders bands characteristic, for instance, for low-

carbon steels (Butler, 1962). Localized transformation is also observed in NiTi wires under tension

(Churchill et al., 2009; Sedmák et al., 2016). Macroscopic transformation fronts of a more complex

form, for instance, helical bands and multi-prong fronts, have been observed in NiTi tubes under

uniaxial tension or under combined loading conditions (Sun and Li, 2002; Reedlunn et al., 2014;

Bechle and Kyriakides, 2016). The transformation is nonuniform also in NiTi tubes under bending,

in which diamond-like patterns are formed (Bechle and Kyriakides, 2014; Reedlunn et al., 2014).

In all cases mentioned above, the transformed and untransformed domains are separated by

diffuse interfaces of finite thickness, which can be revealed by full-field measurements, e.g., by

the digital image correlation (DIC) technique (Kim and Daly, 2011; Bechle and Kyriakides, 2014;

Reedlunn et al., 2014) or by 3D synchrotron X-ray diffraction imaging (Sedmák et al., 2016). Two

factors are expected to govern the interface thickness, namely the grain size and the specimen

geometry, e.g., the tube thickness or the wire diameter. The related dependencies deserve more

detailed experimental and theoretical studies, even if some related issues have already been discussed

(e.g., He and Sun, 2009; Dong et al., 2016).

It is now agreed that the complex transformation patterns result from the intrinsic softening

response, common for NiTi in tension. However, the softening response cannot be directly observed

because it leads to strain localization, and the transformation proceeds then through propagation

of macroscopic transformation fronts. The fronts propagate at an approximately constant load (in

nearly isothermal conditions), so that the corresponding overall response of a specimen typically
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exhibits a stress plateau. The overall specimen response is clearly distinct from and should not be

confused with the intrinsic material response. This has been clearly demonstrated by Hallai and

Kyriakides (2013) in the experiment in which the softening response of NiTi has been extracted

from the overall response of a uniformly deforming laminate composed of NiTi and steel sheets, the

latter of a known hardening elastoplastic response.

Modelling and simulation of strain localization and related transformation patterns is not

straightforward because softening leads to ill-posedness of the corresponding boundary value prob-

lems. In computational practice, the difficulties are less severe than, for instance, in softening

plasticity or damage, because the softening persists only in a bounded range of strains (typically

of the order of several percent), and an apparent hardening is recovered after the transformation

is completed. Accordingly, successful finite-element simulations of transformation patterning have

been reported, which employ a local up-down-up material model with no additional regularization

(Jiang et al., 2017a,b). This approach relies on a kind of natural regularization that results from

the 3D effects, i.e., from the energy of elastic strains that ensure compatibility at macroscopic

transformation fronts. However, the 3D effects do not fully regularize the problem, and the solution

may depend on mesh size and mesh orientation, and the load–displacement response may exhibit

spurious oscillations, see Mazière and Forest (2015). Furthermore, according to our experience,

severe convergence problems may be encountered that spoil the robustness of the computational

scheme. Note also that the regularizing 3D effects are lacking in 1D and 2D (plane stress) problems.

A possible remedy to the softening-related problems discussed above is to directly introduce the

energy of macroscopic transformation fronts or, equivalently, a characteristic length-scale into the

constitutive model. This can be achieved by enhancing the free energy with a higher-gradient term

that represents the energy of the interface, typically expressed in terms of the strain gradient (Ren

and Truskinovsky, 2000; Chang et al., 2006) or the gradient of the martensite volume fraction (Alessi

and Bernardini, 2015; León Baldelli et al., 2015; Rezaee-Hajidehi and Stupkiewicz, 2018). The latter

approach has also been adopted by Qiao et al. (2011) with the aim to model the size effects rather

than transformation patterning. Note that the above models are restricted to the 1D setting.

As a consequence of introducing the higher-gradient energy term, the transformation criterion

becomes non-local in the sense that it involves, for instance, the Laplacian (i.e. the second spatial

derivative) of the martensite volume fraction, and the computational treatment of the problem

is then not immediate. In order to facilitate the finite-element implementation, a micromorphic-

type regularization of the model has been introduced by Rezaee-Hajidehi and Stupkiewicz (2018),

following the approach originally developed by Mazière and Forest (2015) for simulation of Lüders

bands in plasticity, and this approach is further developed in this work in the 3D setting. A similar

approach has been employed by Junker and Hackl (2014) to regularize their micromechanical model
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of SMAs.

Another class of models relies on introducing a non-local counterpart of the martensite volume

fraction that is governed by a Helmholtz-type partial differential equation, as in the so-called implicit

gradient models of softening plasticity and damage (e.g., Peerlings et al., 1996). The non-local

martensite volume fraction is then introduced directly into the transformation criterion (Duval

et al., 2011; Armattoe et al., 2014; Badnava et al., 2014, 2018). The models of this type lack the

variational structure of the models discussed earlier.

Transformation patterning has also been modelled using a phase-field type approach (He and

Sun, 2010a; Wendler et al., 2017). In this approach, the volume fraction of martensite is governed by

the evolution equation of the Ginzburg–Landau type, while the transformation strain of the marten-

site phase is prescribed and fixed, which is a restrictive assumption in the case of polycrystalline

SMAs.

In this paper, the gradient-enhanced model developed by Rezaee-Hajidehi and Stupkiewicz

(2018) in the 1D setting is extended to the 3D finite-strain setting. The distinctive features of the

adopted approach include the incremental energy minimization framework and the micromorphic

regularization of the gradient-enhanced model, which facilitates straightforward finite-element im-

plementation of the model. The 3D finite-strain constitutive framework follows that developed by

Stupkiewicz and Petryk (2013) with additional refinements concerning distinct elastic moduli of

austenite and martensite and deformation-dependent hardening/softening response. Furthermore,

the thermomechanical coupling is included in the model so that, in particular, the effect of the load-

ing rate on the transformation pattern and overall response can be modelled in a physically sound

manner (cf. Chang et al., 2006; Wendler et al., 2017; Badnava et al., 2018; Rezaee-Hajidehi and

Stupkiewicz, 2018). A general thermomechanical formulation of the micromorphic model is thus

developed that is consistent with the second law of thermodynamics and encompasses all possible

couplings.

To show the capabilities of the model, three numerical examples are analyzed. The effect of the

loading rate on the transformation pattern and pseudoelastic response of a NiTi dog-bone specimen

under uniaxial tension is studied, and the results are compared to those obtained in the experiment

(Zhang et al., 2010). Next, with reference to the experiment of Bechle and Kyriakides (2016),

the complex transformation pattern in a NiTi tube under uniaxial tension is examined. Finally, a

detailed study is carried out showing the effect of strip thickness, tension–compression asymmetry

and transverse isotropy on the thickness and inclination angle of the macroscopic transformation

front in a NiTi strip under uniaxial tension.

The paper is organized as follows. The gradient-enhanced model and its micromorphic regular-

ization are introduced in Sections 2.1 and 2.2, respectively, and the governing equations that result
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from the conditions of stationarity of the global incremental minimization problem are derived in

Section 2.3. In Section 2.4, the model is extended by introducing the most essential thermome-

chanical couplings in a manner consistent with the general thermomechanical framework that is

presented in Appendix B. Finite-element implementation of the model is discussed in Section 3,

and numerical examples are reported in Section 4. The simplified case of the non-gradient 1D model

is discussed in Appendix A as an illustration of the present constitutive framework.

2. Finite-strain model of pseudoelasticity

The gradient-enhanced model presented in this section is a generalization of the non-gradient

finite-strain model of pseudoelasticity of Stupkiewicz and Petryk (2013). The gradient enhancement

and its micromorphic regularization are introduced in Sections 2.1 and 2.2, respectively, following

the approach developed by Rezaee-Hajidehi and Stupkiewicz (2018). Secondly, the most essential

thermomechanical couplings are introduced in Section 2.4 in a manner consistent with the general

framework presented in Appendix B. Additionally, the constitutive description is refined so that

distinct elastic moduli of austenite and martensite are accounted for, as well as the deformation-

dependent hardening/softening response, Section 2.1.1.

2.1. Gradient-enhanced model

The deformation gradient F = ∇ϕ, where ϕ maps the material points from the reference

configuration to the current configuration, x = ϕ(X), and ∇ denotes the spatial gradient with

respect to the reference configuration, is multiplicatively decomposed into its elastic part F e and

transformation part F t,

F = F eF t. (1)

The configuration of undeformed austenite is adopted as the reference configuration so that F t = I

in the fully austenitic state. Furthermore, it is assumed here that the martensitic transformation

is isochoric so that F t satisfies the condition detF t = 1. This assumption can be easily relaxed,

cf. Stupkiewicz and Petryk (2013), in order to account for the non-zero volume changes which are,

however, typically very small.

The transformation deformation gradient F t admits the standard polar decomposition, F t =

RtU t, where U t is the (symmetric) transformation stretch tensor, and Rt is the rotation tensor,

(Rt)T = (Rt)−1. Following Stupkiewicz and Petryk (2013), the transformation stretch U t is

expressed in terms of the logarithmic transformation strain et, thus

U t = exp et, (2)
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where et is a symmetric traceless tensor, tr et = 0, so that the condition detF t = detU t = 1 is

automatically satisfied in view of the standard property of the tensor exponential. If the material

is elastically isotropic, the rotation tensor Rt can be left unspecified as it does not enter the final

constitutive equations, see below. Otherwise, Rt = I can be assumed thus leading to F t = U t.

The set P of admissible transformation strains, cf. Sadjadpour and Bhattacharya (2007), Stup-

kiewicz and Petryk (2013), is now defined in terms of the logarithmic transformation strain et,

P = {et: g(et) ≤ 0}, (3)

where g is a function such that g(0) < 0, g(ret) is a continuously increasing function of r > 0 for

et 6= 0, and g(et) = 0 defines a smooth, closed and convex hypersurface in the deviatoric space.

Features like tension–compression asymmetry and anisotropy due to crystallographic texture can

be described by adequately specifying the constitutive function g(et), see Section 2.1.1.

Pseudoelasticity is associated with the stress-induced transformation in which the martensite

variants are preferably oriented with respect to the applied stress. Accordingly, it is assumed that

the martensite is fully oriented so that the transformation strain et can be defined in terms of the

volume fraction of martensite η and the transformation strain ēt of the fully oriented martensite,

viz.

et = ηēt, 0 ≤ η ≤ 1, P̄ = {ēt: g(ēt) = 0}. (4)

Here, P̄ is the set of limit transformation strains. Note that the volume fraction η is constrained

between the physically-relevant limit values of η = 0 (pure austenite) and η = 1 (pure martensite).

The split of et into the product of η and ēt in Eq. (4) is unique for et 6= 0, while et = 0 corresponds

to η = 0, ēt being indeterminate. Due to this indeterminacy, the case of η ≈ 0 requires a special

treatment in the computational scheme, as discussed in Section 3.2. For the same reason, the set

P̄ has been defined by Stupkiewicz and Petryk (2013) such that the constraint on ēt is multiplied

by η so that it is automatically satisfied for η = 0.

In the isothermal case, the Helmholtz free energy function (density per unit reference volume)

is adopted in the following form,

φ(F , ēt, η,∇η) = φ0(η) + φel(F , ē
t, η) + φint(ē

t, η) + φgrad(∇η), (5)

where φ0 represents the chemical energy contribution, φel is the elastic strain energy, φint is the

internal interaction energy, and φgrad is the gradient term. Upon eliminating the gradient term

φgrad, the local model of pseudoelasticity developed by Stupkiewicz and Petryk (2013) is recovered.

The specific constitutive functions adopted for the individual free-energy contributions are provided

later.
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The global Helmholtz free energy functional Φ is defined as the integral over the body domain

B in the reference configuration,

Φ[ϕ, ēt, η] =

∫
B

φ(∇ϕ, ēt, η,∇η)dV, (6)

and the functional of potential energy E is defined as

E [ϕ, ēt, η] = Φ[ϕ, ēt, η] + Ω[ϕ], (7)

where Ω represents the potential of the external loads, which are assumed conservative. As an

example, Ω is here defined in terms of the surface traction t∗ prescribed on the boundary ∂Bt,

Ω[ϕ] = −
∫
∂Bt

t∗ ·ϕ dS. (8)

To complete the model, the rate-independent dissipation potential is defined in the following

form

D(η̇) = fc|η̇|, fc > 0, (9)

where fc is the critical driving force. The dissipation potential (9) describes the dissipation due

to forward (η̇ > 0) and reverse (η̇ < 0) transformation only. The dissipation associated with the

evolution of ēt, i.e. with reorientation of martensite, is not included in the model so that the model

is more suitable for predominantly proportional loading–unloading paths.

The global dissipation potential is now formulated in the incremental form that corresponds to

the typical time increment tn → tn+1 = tn + ∆t,

∆D[η] =

∫
B

D(η − ηn)dV, (10)

where the local incremental potential D(∆η) = fc|∆η| with ∆η = η−ηn results from the application

of the backward-Euler integration scheme to the rate-potential (9). Here and in the following, the

subscript n denotes the quantities corresponding to the previous time instant tn, while the subscript

n+ 1 indicating the quantities at the current time instant tn+1 is omitted for the sake of brevity.

Finally, the time-discrete evolution problem for the unknown fields of ϕ, ēt and η at t = tn+1 is

formulated as the following incremental energy minimization problem (cf. Ortiz and Repetto, 1999;

Petryk, 2003; Miehe, 2011; Stupkiewicz and Petryk, 2013; Rezaee-Hajidehi and Stupkiewicz, 2018;

Tůma et al., 2018)

{ϕ, ēt, η} = arg min
ϕ,ēt,η

Π[ϕ, ēt, η], (11)

where the global incremental potential Π comprises the increments in the potential energy and

dissipation, as well as the terms enforcing the constitutive constraints, viz.

Π[ϕ, ēt, η] = E [ϕ, ēt, η]− E [ϕn, ē
t
n, ηn] + ∆D[η] + I[0,1][η] + IP̄ [ēt]. (12)

7



The term I[0,1][η] enforces the bound constraint on η through the indicator function I[0,1](η),

I[0,1][η] =

∫
B

I[0,1](η)dV, I[0,1](η) =

0 if 0 ≤ η ≤ 1,

+∞ otherwise,

(13)

and the term IP̄ [ēt] enforces ēt to belong to the set P̄, cf. Eq. (4),

IP̄ [ēt] =

∫
B

IP̄(ēt)dV, IP̄(ēt) =

0 if ēt ∈ P̄,

+∞ otherwise.

(14)

2.1.1. The constitutive functions

The Helmholtz free energy function φ employed in this study, Eq. (5), is an extension of the

one employed by Stupkiewicz and Petryk (2013) and includes some extra features. The individual

components of φ are specified in the following.

The chemical energy contribution φ0 is obtained as the weighted average of the free energy

densities of pure austenite phase φa
0 and pure martensite phase φm

0 in a reference stress-free state,

i.e.,

φ0(η) = (1− η)φa
0 + ηφm

0 = φa
0 + ∆φ0η, (15)

where ∆φ0 = φm
0 − φa

0 is the chemical energy of transformation. The free energy density terms φa
0

and φm
0 , and thus also ∆φ0, depend on the temperature. This dependence is not reflected here, as

only the isothermal case is considered. The thermomechanical model is discussed in Section 2.4.

Assuming elastic isotropy, the elastic strain energy φel is adopted in the following neo-Hookean

form,

φel(F , ē
t, η) =

1

2
µ(η)(tr b̂e − 3) +

1

4
κ(det be − 1− log(det be)), b̂e = (det be)−1/3be, (16)

where be is the elastic left Cauchy–Green tensor,

be = F e(F e)T = F (Ct)−1FT, Ct = (F t)TF t, (17)

and b̂e is the volume-preserving part of be, det b̂e = 1. In view of Eq. (2), we have Ct = exp(2et)

and (Ct)−1 = exp(−2et), so that be is finally expressed as

be = F exp(−2ηēt)FT. (18)

The shear modulus is here assumed different for the austenite and martensite phases, and in Eq. (16)

it is thus a function of η, µ = µ(η), while the bulk modulus κ = κa = κm is assumed identical for

both phases. Adopting the Voigt scheme (e.g. Auricchio et al., 2014; Cissé et al., 2017), the overall

shear modulus µ is given by

µ(η) = (1− η)µa + ηµm, (19)
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where µa and µm are, respectively, the shear moduli of the austenite and martensite phases. In

this simple model, the shear modulus µ is the apparent modulus that may represent, in an ap-

proximate manner, also inelastic mechanisms such as the R-phase transformation in the austenitic

state and detwinning in the martensitic state. Accordingly, the apparent moduli µa and µm may be

significantly lower than the true elastic moduli of the respective phases. The related inelastic defor-

mation mechanisms are approximately volume-preserving, and hence the bulk modulus is assumed

constant.

The interaction energy φint is assumed in the following form,

φint(ē
t, η) =

1

2
H(ēt)η2, (20)

where the state-dependent coefficient H controls the hardening/softening behaviour and is assumed

to depend on the transformation strain ēt through the following function,

H(ēt) = HT −
(εT − ε(ēt))(HT −HC)

εT − εC
, ε(ēt) =

√
2

3
tr(ēt)2, (21)

where HT and HC are the hardening moduli corresponding to uniaxial tension and compression,

respectively, and ε(ēt) is the equivalent strain. In uniaxial tension and compression, we have

ε(ēt) = εT and ε(ēt) = εC, respectively. The form (20) of the interaction energy is motivated by

the frequent experimental evidence that NiTi exhibits softening in tension (HT < 0) and hardening

in compression (HC > 0), while εT > εC.

Finally, the gradient term φgrad is taken as

φgrad(∇η) =
1

2
G∇η · ∇η, (22)

where G is a positive parameter, and the gradient ∇η is determined with respect to the reference

configuration. The gradient-enhancement could be alternatively formulated in the current configu-

ration as the quadratic form of the spatial gradient of η. However, for relatively small strains, the

difference is negligible, see Geers et al. (2003).

The gradient term φgrad introduces energy associated with the gradient of the volume fraction η.

In particular, in the case of a softening response (for H < 0), strain localization leads to formation of

Lüders-like bands and macroscopic transformation fronts. The related high gradients of the volume

fraction η are then penalized, and the gradient term φgrad governs the energy of the macroscopic

transformation fronts. As shown by Rezaee-Hajidehi and Stupkiewicz (2018), for a constant H < 0,

parameter G > 0 defines a characteristic length λ = π
√
−G/H, which specifies the thickness of the

diffuse interface (macroscopic transformation front). Therefore, a regularization is introduced by

the present gradient enhancement to the otherwise ill-posed problem in the softening case H < 0.

In the present model, the hardening/softening parameter H(ēt) is no longer a constant, but the

regularizing effect of the gradient term is similar.
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A suitable function g that defines the set of admissible transformation strains is specified here

by considering a transversely isotropic material with tension–compression asymmetry. Following

the study of Sadjadpour and Bhattacharya (2007), see also Stupkiewicz and Petryk (2013), the

function g is adopted as

g(et) =
[
(−I2)3/2 − bI3 − cI3

4

]1/3
− a, (23)

where the invariants Ik are expressed as

I2 = −1

2
tr(et)2, I3 = det et, I4 = m · etm, (24)

with m as the axis of the rotational symmetry. Recall that et is traceless, thus I1 = tr et = 0.

In function g, the tension–compression asymmetry is controlled by parameter b, and transverse

isotropy by parameter c. The case of b = c = 0 corresponds to an isotropic material with no

tension–compression asymmetry.

The material parameters a, b and c in Eq. (23) can be expressed in terms of the transformation

strains in uniaxial tension and compression along the symmetry axis m and in the perpendicular

direction. Specifically,

a = εT

[ 3
√

3

4(1 + α3)

]1/3
, b =

√
3

6

9α3β3 − 7α3 + 7β3 − 9

(1 + α3)(1 + β3)
, c =

2
√

3

3

α3 − β3

(1 + α3)(1 + β3)
, (25)

where α = εT/εC and β = ε∗T/ε
∗
C, with εT and εC as, respectively, the maximum tensile and

compressive strains along m, and ε∗T and ε∗C as, respectively, the maximum tensile and compressive

strains in the direction perpendicular to m. In SMAs, the transformation strain is typically higher

in tension than in compression, thus usually α > 1 and β > 1, see e.g. Orgéas and Favier (1995).

To illustrate the constitutive response predicted by the present model, a simplified case of

the non-gradient 1D small-strain model is discussed in Appendix A, see also Rezaee-Hajidehi

and Stupkiewicz (2018). The predicted pseudoelastic response is sketched in Fig. 1(a). In the

pseudoelastic range considered here, the typical stress-strain response consists of the initial elastic

branch that corresponds to the elastic loading of pure austenite, followed by the transformation

branch that exhibits hardening for H > 0 or softening for H < 0. The stress-induced transformation

starts when the stress reaches the transformation stress, which is given by Eq. (A.6) in the 1D case

discussed in Appendix A. In the case of softening, the boundary value problem is ill-posed, which is

regularized here by the gradient term φgrad in the free energy function (5). Once the transformation

is completed (η = 1), further loading leads to elastic straining of pure martensite. Upon unloading,

the reverse transformation proceeds once the respective transformation criterion is satisfied, cf. Eq.

(A.6).
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(a) (b) (c)

Figure 1: (a) Schematic of the pseudoelastic stress–strain response, (b) the graph of the non-smooth function D̄(η) =

D(η − ηn) + I[0,1](η) and (c) its subdifferential ∂D̄(η).

2.2. Micromorphic regularization

Due to the presence of the Laplacian of η in the transformation criterion, see Rezaee-Hajidehi

and Stupkiewicz (2018), it is not convenient to directly implement the gradient-enhanced model

presented in Section 2.1. Accordingly, a micromorphic regularization of the model is performed

here by introducing a micromorphic variable η̆, which is the counterpart of the volume fraction of

martensite η. For a comprehensive description of the micromorphic approach, the reader is referred

to Forest (2016), see also Mazière and Forest (2015).

Referring to the original form (5), the Helmholtz free energy is now adopted as

φ(F , ēt, η, η̆,∇η̆) = φ0(η) + φel(F , ē
t, η) + φint(ē

t, η) + φgrad(η, η̆,∇η̆), (26)

where φgrad is the gradient term that, upon the micromorphic regularization, takes the following

form,

φgrad(η, η̆,∇η̆) =
1

2
G∇η̆ · ∇η̆ +

1

2
χ(η − η̆)2. (27)

The first term represents the gradient of the new global variable η̆, and the second term enforces

a penalization to the deviation of η̆ from η, with χ > 0 as a new model parameter. An indication

on how to determine the value of parameter χ such that the deviation is sufficiently small can be

found in Rezaee-Hajidehi and Stupkiewicz (2018), where the analytical solution is provided for the

profile of the diffuse interface for the model with and without the micromorphic regularization.

In the micromorphic framework, the potential energy E is defined as,

E [ϕ, ēt, η, η̆] = Φ[ϕ, ēt, η, η̆] + Ω[ϕ], Φ[ϕ, ēt, η, η̆] =

∫
B

φ(∇ϕ, ēt, η, η̆,∇η̆)dV, (28)

and the time-discrete evolution problem with ϕ, ēt, η and η̆ as the unknown fields is formulated

as,

{ϕ, ēt, η, η̆} = arg min
ϕ,ēt,η,η̆

Π[ϕ, ēt, η, η̆], (29)
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where Π is the micromorphic incremental potential that, in analogy to Eq. (12), is defined as,

Π[ϕ, ēt, η, η̆] = E [ϕ, ēt, η, η̆]− E [ϕn, ē
t
n, ηn, η̆n] + ∆D[η] + I[0,1][η] + IP̄ [ēt]. (30)

2.3. Stationarity conditions

In this section, we show that the conditions of stationarity of the micromorhpic incremental

potential Π, Eq. (30), which are the necessary conditions for the minimum of Π in the minimization

problem (29), yield the evolution equations for the internal variables ēt and η, as well as the

global governing equations for ϕ and η̆. The fields of ēt and η enter the micromorphic incremental

potential Π through the free energy function φ, Eq. (26), that depends on ēt and η, but not on

their gradients. Accordingly, minimization with respect to ēt and η can be performed locally

(pointwise). Minimization with respect to ϕ and η̆ must be performed globally because Π depends

on the respective gradients.

The pointwise minimization problem for the local values of ēt and η is thus formulated as follows,

{ēt, η} = arg min
ēt,η

π(F , ēt, η, η̆,∇η̆), (31)

where the local incremental potential π takes the following form,

π(F , ēt, η, η̆,∇η̆) = φ(F , ēt, η, η̆,∇η̆)−φ(Fn, ē
t
n, ηn, η̆n,∇η̆n)+D(η−ηn)+I[0,1](η)+IP̄(ēt), (32)

so that Π[ϕ, ēt, η, η̆] =
∫
B
π(∇ϕ, ēt, η, η̆,∇η̆)dV . The remaining arguments of π, i.e. {F , η̆,∇η̆},

are the independent parameters in the minimization problem (31), and the solution {ēt, η} depends

on {F , η̆,∇η̆}.

Consider first the minimization of π with respect to η. It is apparent that the local incremental

potential π is a non-smooth function of η in view of the terms D(η − ηn) and I[0,1](η). Following

the approach of Rezaee-Hajidehi and Stupkiewicz (2018), see also Tůma et al. (2018), the necessary

conditions for the minimum of π with respect to η can be written in the form of the following

inclusion,

fη ∈ ∂D̄(η), D̄(η) = D(η − ηn) + I[0,1](η), (33)

where fη is the thermodynamic driving force conjugate to η,

fη = −∂φ
∂η
, (34)

and D̄(η) is the non-smooth part of π, as illustrated in Fig. 1(b). The subdifferential ∂D̄(η), which

is illustrated in Fig. 1(c), is a generalization of the derivative to non-smooth functions (Rockafellar,

1970; Morreau, 1974). In the computational treatment in Section 3, the non-smooth minimization

problem (31) is transformed into an equivalent smooth saddle-point problem by using the augmented

Lagrangian method, cf. Stupkiewicz and Petryk (2013).

12



It has been tacitly assumed here that π is convex in η so that the minimum exists and is unique.

In the simple case of the 1D small-strain model, the condition for convexity in η can be easily

derived, see Rezaee-Hajidehi and Stupkiewicz (2018). Specifically, the convexity is ensured if the

softening modulus H < 0 is not excessively large in absolute value, namely H > −Eε2T, where E

is the Young’s modulus, and εT is the transformation strain. In practical terms, this condition is

not restrictive and is satisfied for realistic values of model parameters. In the present case, the

condition for convexity of π with respect to η is more involved, and thus it is not discussed here.

The minimization of the local incremental potential π with respect to ēt can be performed

by introducing a Lagrangian function L in which the equality constraint g(ēt) = 0, which enters

π through the indicator function IP̄(ēt), is introduced directly using the Lagrange multiplier ω,

namely L = φ + ωg(ēt). Note that the free energy function φ included in L is the only remaining

term in π that depends on ēt. The corresponding stationarity condition ∂L/∂ēt = 0 yields then

the following necessary condition for the minimum of π with respect to ēt,

fēt = ω
∂g(ēt)

∂ēt
, (35)

where fēt is the thermodynamic driving force conjugate to ēt,

fēt = − ∂φ
∂ēt

. (36)

Accordingly, the condition (35) renders the driving force fēt normal to the surface of limit trans-

formation strains g(ēt) = 0, see also Section 3.2.

Minimization with respect to the fields of ϕ and η̆ is performed globally. The condition of

stationarity of Π with respect to ϕ is

0 = δϕΠ[ϕ, ēt, η, η̆] = δϕE [ϕ, ēt, η, η̆] =

∫
B

P · ∇δϕdV −
∫
∂Bt

t∗ · δϕdS ∀ δϕ, (37)

which is recognized as the virtual work principle, i.e. the weak form of the mechanical equilibrium,

with δϕ as the admissible virtual displacement satisfying δϕ = 0 on the boundary ∂Bϕ, on which

the Dirichlet boundary condition is prescribed for ϕ, while P is the first Piola–Kirchhoff stress

defined as,

P =
∂φ

∂F
. (38)

Following the standard procedure, the equilibrium equation in the strong form, along with the

boundary condition on ∂Bt, are obtained from Eq. (37) in the following form,

∇ · PT = 0 in B, Pν = t∗ on ∂Bt, (39)

where∇· denotes the divergence operator in the reference configuration, thus (∇·PT)i = ∂Pij/∂Xj ,

and ν is the unit outward normal to the boundary in the reference configuration.

13



Finally, the condition of stationarity of Π with respect to η̆ is

0 = δη̆Π[ϕ, ēt, η, η̆] = δη̆E [ϕ, ēt, η, η̆] =

∫
B

(
G∇η̆ · ∇δη̆ − χ(η − η̆)δη̆

)
dV ∀ δη̆. (40)

Again, following the standard procedure, the strong form of Eq. (40) is derived as

η̆ − `2∇2η̆ = η, ` =

√
G

χ
, (41)

where ` is the internal length-scale parameter associated with the averaging operation delivered by

Eq. (41). Assuming that the homogeneous Neumann boundary condition, ∇η̆ · ν = 0, holds on the

entire boundary ∂B, Eq. (41) implies that
∫
B
ηdV =

∫
B
η̆dV .

The Helmholtz-type partial differential equation (41) is formally the same as the one employed

for the regularization of damage or softening plasticity in the so-called implicit-gradient approach,

cf. Peerlings et al. (1996). Here, it results in a natural way from the micromorphic approach, cf.

Forest (2009), see also Mazière and Forest (2015).

The derived weak forms in Eqs. (37) and (40) form the basis for the finite-element implementa-

tion of the mechanical part of the problem with ϕ and η̆ as the global unknowns. Minimization with

respect to ēt and η can be performed locally, which is the beneficial feature of the micromorphic

regularization introduced in Section 2.2. In the finite-element treatment, this leads to a nested

iterative-subiterative scheme in which ēt and η are the local unknowns that are determined at the

integration (Gauss) points, while ϕ and η̆ are global unknowns. The computational treatment of

the problem is discussed in Section 3.

2.4. Thermomechanically coupled model

In this section, a simple thermomechanically coupled model is introduced in which only two most

essential thermomechanical couplings are accounted for. This model is utilized in the numerical

examples presented in this paper, see Section 4. The model is a special case of the general model

that includes all possible thermomechanical couplings, which is derived in Appendix B.

Firstly, the dependence of the chemical energy contribution φ0 on the temperature T is intro-

duced into the model,

φ0(η, T ) = φa
0(T ) + ∆φ0(T )η, ∆φ0(T ) = φm

0 (T )− φa
0(T ), (42)

see Eq. (15). The free energy of each pure phase in a reference stress-free state is adopted in the

following form (Raniecki et al., 1992; Helm, 2007),

φα0 (T ) = uα0 − sα0T + %0c
α
(
T − T0 − T log

T

T0

)
, α ∈ {a,m}, (43)

where the superscript α denotes austenite or martensite, uα0 is the internal energy, sα0 is the en-

tropy, %0c
α is the specific heat (assumed here temperature-independent), and T0 is the reference

14



temperature. Recall that the free energy φ is here the density per unit volume in the reference

configuration, and the reference configuration is that of the undeformed austenite. Accordingly, all

the material parameters introduced above, including those that correspond to the martensite phase,

are the densities per unit volume of austenite. In the general case, when the phase transformation

does not preserve volume (i.e. detU t 6= 1), the parameters that correspond to the martensite phase

(um
0 , sm

0 , cm) are thus obtained by adequate scaling of the respective densities per unit volume of

martensite. This is not the case here, as we assume that detU t = 1.

Assuming equal specific heat capacities of pure austenite and martensite phases, ca = cm = c,

the chemical energy of transformation ∆φ0 is obtained as a linear function of the temperature T ,

∆φ0(T ) = −∆u∗ + ∆s∗T = ∆s∗(T − Tt), (44)

where ∆u∗ = ua
0 − um

0 > 0, ∆s∗ = sa
0 − sm

0 > 0, and Tt = ∆u∗/∆s∗ is the transformation

(equilibrium) temperature. The remaining contributions to the Helmholtz free energy (φel, φint,

φgrad) are here considered temperature-independent.

Secondly, the latent heat of transformation and the heat due to the intrinsic dissipation are

introduced into the heat conduction equation as the internal heat source (per unit reference volume),

Ṙ = ∆s∗T η̇ + fc|η̇|. (45)

Here, the term ∆s∗T > 0 is the latent heat of transformation, thus the first term of Ṙ is positive

during the forward transformation (η̇ > 0) and negative during the reverse transformation (η̇ < 0).

The heat conduction equation is formulated in the reference configuration, cf. e.g. Holzapfel

(2006),

%0cṪ +∇ ·Q = Ṙ, Q = JF−1q, (46)

where Q is the nominal heat flux, q is the Cauchy heat flux, and J = detF . For an isotropic

material, the Fourier’s law is formulated in the current configuration in terms of the Cauchy heat

flux q, or equivalently in the referential description employing the nominal heat flux Q,

q = −k∇xT, Q = −KC−1∇T, (47)

where ∇x denotes the gradient in the current configuration, k > 0 is the thermal conductivity

coefficient, the transformation rule K = Jk defines the thermal conductivity coefficient K relative to

the reference configuration, and C = FTF is the right Cauchy–Green tensor. The heat conduction

equation is accompanied by the following boundary conditions

T = T ∗ on ∂BT , Qν = Qν on ∂Bq, (48)

where T ∗ is the temperature prescribed on the boundary ∂BT , and Qν is the heat flux prescribed

on the boundary ∂Bq. In the case of the convective boundary condition, the heat flux is given by
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Qν = h(T − T∞), where h > 0 is the heat convection coefficient and T∞ is the temperature of the

surrounding.

Following the standard procedure, the weak form of the heat conduction problem specified by

Eqs. (46)–(48) is obtained as∫
B

(
(%0cṪ − Ṙ)δT +K∇T ·C−1∇δT

)
dV +

∫
∂Bq

QνδTdS = 0 ∀ δT, (49)

where the test function δT vanishes on ∂BT . The time-discrete formulation is obtained by applying

the backward-Euler scheme so that Ṫ = (T − Tn)/∆t and Ṙ = (∆s∗T (η − ηn) + fc|η − ηn|)/∆t.

3. Finite-element implementation

3.1. Augmented Lagrangian treatment of the non-smooth minimization problem (31)

The main difficulty in the finite-element implementation of the minimization problem (31) is

the non-differentiability of the term D̄(η) = D(η − ηn) + I[0,1](η) in the local incremental poten-

tial π, Eq. (32). Following Stupkiewicz and Petryk (2013), the augmented Lagrangian method is

here employed so that the non-smooth minimization problem (31) is transformed to an equivalent

smooth, unconstrained saddle-point problem

{ēt, η, λ, ω} = arg min
ēt,η

max
λ,ω
L(F , T, ēt, η, η̆,∇η̆, λ, ω), (50)

where λ1 and ω are Lagrange multipliers, the Lagrange function L is defined as

L(F , T, ēt, η, η̆,∇η̆, λ, ω) = φ(F , T, ēt, η, η̆,∇η̆) + lt(η, λ) + ω η g(ēt), (51)

and lt is a continuously differentiable function of η and λ that replaces the non-differentiable function

D̄ in π. The essential feature of the augmented Lagrangian treatment is that a single Lagrange

multiplier λ is used to handle the non-smooth dissipation potential and to enforce the bound

constraints 0 ≤ η ≤ 1. For the details, the reader is referred to Stupkiewicz and Petryk (2013), see

also Tůma et al. (2018). For the sake of conciseness, the expression for lt is not provided here.

The last term in L in Eq. (51) enforces the equality constraint g(ēt) = 0 using the usual Lagrange

multiplier technique, where ω is the corresponding Lagrange multiplier. The constraint is multiplied

by η in order to facilitate the adequate treatment of the case of η ≈ 0, as explained in Section 3.2,

see also Stupkiewicz and Petryk (2013).

The solution of the saddle-point problem (50) is found by solving the conditions of stationarity

of L that are the necessary conditions for the minimum of π. Since the augmented Lagrangian (51)

is smooth, the stationarity conditions

Q(F ,h) = 0, (52)

1Not to be confused with the diffuse interface thickness λ used in Sections 2.1.1 and 4.3.
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where

Q(F ,h) =
∂L(F ,h)

∂h
, F = {F , T, η̆,∇η̆}, h = {ēt, η, λ, ω}, (53)

can be solved directly at each integration point for the current local variables h, while the current

control variables F are treated as known. The nonlinear equations (52) are solved in an iterative

manner by using the Newton method. The implicit derivative of the solution h with respect to

the control variables F , which is needed to obtain the consistent tangent in the complete iterative-

subiterative scheme, is obtained in the standard manner, cf. Stupkiewicz and Petryk (2013), see

also Michaleris et al. (1994) and Korelc (2009) for the general context.

3.2. Treatment of the case of η ≈ 0

Consider the condition of stationarity of the Lagrangian L with respect to ēt, viz.

∂L
∂ēt

= 0,
∂L
∂ēt

=
∂φ

∂ēt
+ ωη

∂g(ēt)

∂ēt
= −fēt + ωη

∂g(ēt)

∂ēt
, (54)

where fēt is the thermodynamic driving force conjugate to ēt, cf. Eq. (36). We note that φel depends

on ēt only through et = ηēt, cf. Eqs. (16) and (18), and φint involves the term η2. Accordingly, fēt

vanishes for η = 0, and the stationarity condition (54) is ill-posed for η ≈ 0. Following Stupkiewicz

and Petryk (2013), the stationarity condition (54) is equivalently written as

∂L
∂ēt

= η
( ∂φ
∂et

+ ω
∂g(ēt)

∂ēt

)
= 0, (55)

in view of et = ηēt. The first term in the parentheses is now non-zero for a non-zero stress also when

η = 0, which can be checked in a straightforward manner in the small-strain case, see Stupkiewicz

and Petryk (2013), while the corresponding derivation is more involved in the finite-strain case, and

it is thus omitted here. Accordingly, upon scaling by 1/η, the stationarity condition (55) delivers

a well-posed equation for ēt for arbitrary η. Note that the equality constraint g(ēt) = 0 has been

multiplied by η prior to introducing it to the Lagrangian L in Eq. (51), which facilitates the specific

form (55) of the stationarity condition.

The vector h of local unknowns is now split,

h = {h1,h2}, h1 = {ēt, ω}, h2 = {η, λ}, (56)

and so is the local residual,

Q̂(F ,h) = {Q̂1,Q2} = 0, Q̂1 =
1

η

∂L
∂h1

, Q2 =
∂L
∂h2

, (57)

such that the part corresponding to h1 is scaled by 1/η, as discussed above. Solution of the modified

stationarity conditions Q̂ = 0 proceeds then as described in Section 3.1.
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3.3. Finite-element discretization

The complete thermomechanically coupled problem involves three unknown global fields (ϕ, η̆,

T ). The respective governing equations in weak form, Eqs. (37), (40) and (49), constitute the basis

for the finite-element implementation, as briefly described below.

Let us write the virtual work principle (37) in the following compact form

Gϕ[ϕ, δϕ; η̆, T ] = 0 ∀ δϕ, (58)

in which η̆ and T are included as additional arguments to indicate the coupling with the remaining

global subproblems, while the dependence on the local variables ēt and η is not indicated. Likewise,

the weak form (40) of the Helmholtz-type partial differential equation (41) is written as

Gη̆[η̆, δη̆;ϕ, T ] = 0 ∀ δη̆, (59)

again with ϕ and T as the additional arguments indicating the respective couplings. Finally, upon

the time discretization, the weak form (49) of the heat conduction equation is expressed as

GT [T, δT ;ϕ, η̆] = 0 ∀ δT, (60)

with ϕ and η̆ as the additional arguments.

The finite element approximation of the global fields of ϕ, η̆ and T is introduced in the standard

manner,

ϕh =
∑
i

N
(ϕ)
i ϕi, η̆h =

∑
i

N
(η̆)
i η̆i, Th =

∑
i

N
(T )
i Ti, (61)

where ϕi, η̆i and Ti denote the respective nodal values, and N
(ϕ)
i , N

(η̆)
i and N

(T )
i are the corre-

sponding basis functions. In the present implementation, isoparametric hexahedral elements are

used with triquadratic shape functions for the placement ϕ (i.e. 27 nodes per element), and with

trilinear shape functions for the fields of η̆ and T (i.e. 8 nodes per element).

Upon applying the Galerkin method, so that δϕh =
∑
iN

(ϕ)
i δϕi, etc., and substituting the

finite-element approximation (61) into the weak forms (58)–(60), the discretized weak forms are

obtained as

Ghϕ(U, δU;H,T) = Gϕ[ϕh, δϕh; η̆h, Th] = 0 ∀ δU, (62)

Ghη̆ (H, δH;U,T) = Gη̆[η̆h, δη̆h;ϕh, Th] = 0 ∀ δH, (63)

GhT (T, δT;U,H) = GT [Th, δTh;ϕh, η̆h] = 0 ∀ δT, (64)

where U, H and T are the global vectors of nodal unknowns ui, η̆i and Ti, respectively, where ui =

ϕi−Xi is the nodal displacement which is the actual unknown in the finite-element implementation.
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Since Ghϕ, Ghη̆ and GhT are linear in the variations δU, δH and δT, respectively, we have

Ghϕ(U, δU;H,T) = Rϕ(U;H,T) · δU = 0 ∀ δU, (65)

Ghη̆ (H, δH;U,T) = Rη̆(H;U,T) · δH = 0 ∀ δH, (66)

GhT (T, δT;U,H) = RT (T;U,H) · δT = 0 ∀ δT, (67)

which implies the following residual form of the discretized incremental governing equations,

Rϕ(U;H,T) = 0, Rη̆(H;U,T) = 0, RT (T;U,H) = 0. (68)

A monolithic scheme is employed to solve the coupled nonlinear equations (68) so that they are

solved simultaneously with respect to all unknowns using the Newton method with the correspond-

ing residual form reading

R̄(Ū) = 0, R̄ = {Rϕ,Rη̆,RT }, Ū = {U,H,T}. (69)

The automatic differentiation (AD) technique implemented in the AceGen system (Korelc, 2009;

Korelc and Wriggers, 2016) is used to obtain the exact algorithmic tangent required by the New-

ton method. The constitutive description is based on the logarithmic transformation strain, cf.

Eq. (18), and hence the matrix exponential and its first and second derivatives are needed in the

implementation of the model. The closed-form representation of the matrix exponential (Korelc

and Stupkiewicz, 2014; Hudobivnik and Korelc, 2016), which is available in AceGen, is used for that

purpose. The computations are carried out using AceFEM, a flexible finite-element environment

that is interfaced with AceGen. A direct linear solver (Intel MKL PARDISO) has been used in all

computations reported below.

4. Numerical examples

4.1. NiTi dog-bone specimen in tension

In this subsection, the effect of the loading rate on the macroscopic response and on the pattern

of Lüders-like bands is studied for a NiTi dog-bone specimen in tension with reference to the

experimental study of Zhang et al. (2010). The same experiment has been simulated in our earlier

work using a 1D model (Rezaee-Hajidehi and Stupkiewicz, 2018), and the respective results are

reported below for comparison.

The geometry and finite-element mesh are depicted in Fig. 2. The loading is applied by pre-

scribing the overall elongation at the ends of the specimen with a constant loading velocity. At

the same time, each end is constrained to behave as a rigid plane that is allowed to rotate with

respect to the axis normal to the specimen plane so that the in-plane bending is prevented. This

19



(a) (b) (c)

Figure 2: NiTi dog-bone specimen in tension: (a) the geometry, (b) the mesh and (c) the average stress–normalized

elongation response corresponding to four representative loading rates. The mesh used in the computations was three

times finer than that shown in figure (b), as schematically indicated in the inset.

approximates the loading applied in the experiment through pin-hinge connectors. After reaching

the maximum overall elongation of 2.35 mm, the specimen is unloaded. As in the experiment, the

nominal loading rate, defined as the velocity at the grips normalized by the gauge length L, is varied

between 1.1 × 10−4 and 1.1 × 10−1 s−1. The elongation δ, which is used later to characterize the

average stress–normalized elongation response, is determined for the gauge segment of the length

L = 30 mm.

Considering that the grips effectively act as heat sinks, the temperature is prescribed at both

ends to the initial temperature T0 = 296 K. In order to account for the heat exchange between the

specimen and the surrounding, a value of the heat convection coefficient typical for stagnant air is

adopted, h = 6 W/(m2 K). Note that, depending on the ambient environment, the effect of heat

convection varies considerably. For a stagnant air, the effect of heat convection is small, and the

transient response is mostly controlled by the heat conduction (Iadicola and Shaw, 2004; He and

Sun, 2010b).

The material parameters of the NiTi alloy, assumed here isotropic, are provided in Table 1.

With the exception of the elastic moduli κ and µ and the transformation strain in compression εC,

which are not apparent in the 1D model, the material parameters are here adopted equal to those

used in the 1D simulations in our previous work (Rezaee-Hajidehi and Stupkiewicz, 2018), so that a

direct comparison of 1D and 3D results is possible and meaningful. The shear modulus µ, assumed
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Table 1: Material parameters used for the simulation of the NiTi dog-bone specimen.

κ µ H fc Tt ∆s∗ %0 c K εT εC G χ

[GPa] [GPa] [MPa] [MPa] [K] [MPa/K] [kg/m
3
] [J/(kg K)] [W/(m K)] [-] [-] [Pa m2] [MPa]

133 12 −2.2 6.8 224 0.24 6500 440 18 0.049 0.035 0.014 116

identical for austenite and martensite, corresponds to the Young’s modulus E = 35 GPa, as in the

previous work, and to the bulk modulus κ = 133 GPa, which is in the typical range for NiTi. The

maximum transformation strains in tension and in compression are adopted as εT = 0.049 and

εC = 0.035, respectively. The former is taken from the previous work, the latter corresponds to

the typical ratio α = εT/εC = 1.4. Note that the tension–compression asymmetry does not visibly

influence the response, since the specimen is here loaded in tension only. For the same reason, the

softening modulus H is here assumed independent of the deformation mode, i.e. HT = HC = H.

As discussed in detail by Rezaee-Hajidehi and Stupkiewicz (2018), parameter G = 0.014 Pa m2,

which controls the gradient effects, corresponds to the theoretical thickness of the interface equal

to 0.25 mm (for H = −2.2 MPa), see Section 4.3. The micromorphic regularization parameter χ =

116 MPa ensures that the micromorphic variable η̆ approximates the volume fraction η sufficiently

well (the averaging length scale `, Eq. (41), is equal to 0.011 mm which is small compared to the

interface thickness of 0.25 mm).

The gauge segment of the specimen is discretized with 21 elements across the width, 3 elements

through the thickness, and 240 elements along the length, while the mesh gets coarser towards

the grip segments which do not transform. Note that, for better visualization, the mesh shown in

Fig. 2b is three times coarser than that actually used in the computations. The total number of

elements is 20 664, and the total number of degrees of freedom is 650 999. The related computational

cost strongly depends on the loading rate. In the case of the highest loading rate, the complete

loading-unloading cycle is completed in 179 steps with the average of 6–7 iterations per step. Note

that an adaptive time stepping procedure is used. In terms of the computation time, the complete

simulation takes then less than 5 hours on a 10-core workstation (Intel Core i7-6950X CPU with 128

GB RAM). In the case of the lowest loading rate, 820 steps are needed to complete the simulation

with the total computation time of nearly 21 hours.

To trigger the nucleation of the phase transformation, a small indentation, with the depth of

0.02 of the specimen thickness, is imposed at the top tapered end of the specimen, see Fig. 2b.

It has been checked that without the imperfection, due to the symmetry of the specimen, the

transformation initiates simultaneously at both ends of the gauge segment, which is not realistic.

The nucleation stress is then slightly higher than in the case with imperfection. As shown below,

despite the imperfection, nearly symmetric transformation patterns develop for higher loading rates.
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The results obtained for four representative loading rates (out of the total of eleven cases simu-

lated) are presented in detail in Figs. 3–6. For each loading rate, the corresponding figure shows the

average stress–normalized elongation curve and the series of snapshots that illustrate the transfor-

mation pattern represented by the evolution of η and the evolution of temperature. Each average

stress–normalized elongation curve is compared to the one predicted by the 1D model (Rezaee-

Hajidehi and Stupkiewicz, 2018) and to the experimental one (Zhang et al., 2010). Here, the

average stress is the nominal stress, i.e. the axial force divided by the initial cross-section area, and

the elongation δ is normalized by the gauge length L so that ε̄ = δ/L represents the average axial

strain within the gauge segment.

The complex rate-dependent response illustrated in Figs. 3–6 is the result of the interplay

between the instabilities and strain localization caused by the intrinsic softening response of the

material on one hand and the thermomechanical coupling and transient heat conduction effects

on the other hand. Recall that the latent heat of transformation is released during the forward

transformation and absorbed during the reverse transformation. The related increase of temperature

during the forward transformation is then more pronounced for higher loading rates, with nearly

adiabatic conditions at the highest loading rate, while the response is nearly isothermal for the

lowest loading rate, as there is then enough time for the heat to flow to the grips which act as heat

sinks. The local increase of temperature leads to the increase of the transformation stress, because

the chemical energy of transformation ∆φ0 increases with increasing temperature, cf. Eqs. (44)

and (A.6). As a result, the hardening-type behaviour is observed for higher loading rates. This is

illustrated in Fig. 2c which compares the average stress–normalized elongation curves predicted for

the four selected loading rates.

The second major coupling effect is related to the strain localization which leads to the tem-

perature inhomogeneity. The local increase of temperature caused by nucleation of a martensite

band may hinder the transformation in that region due to the related increase of the transformation

stress. The transformation may then proceed in another region where the temperature and thus

also the transformation stress are lower. This leads to the development of complex transformation

patterns, depending on the loading rate and transient heat conduction effects.

For the lowest loading rate of 3.3× 10−4 s−1, Fig. 3, the transformation initiates at the imper-

fection at the stress of approximately 400 MPa, which is identical for all strain rates, see Fig. 2c.

Initially, the martensite band is inclined with the inclination angle of approximately 57◦ with re-

spect to the loading axis. Subsequently, the inclined interface transforms to a butterfly-shaped

interface and the latter pattern remains for the rest of the loading stage. The interface pattern

changes so as to avoid the lateral misalignment caused by the local kinking at the inclined interface

and, consequently, to reduce the resulting bending moment. The butterfly-shaped pattern can be
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Figure 3: The average stress–normalized elongation curves (left), the transformation pattern (upper-right) and the

evolution of the relative temperature θ = T − T0 (lower-right) for the loading rate 3.3 × 10−4 s−1.

Figure 4: The average stress–normalized elongation curves (left), the transformation pattern (upper-right) and the

evolution of the relative temperature θ = T − T0 (lower-right) for the loading rate 3.3 × 10−3 s−1.
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Figure 5: The average stress–normalized elongation curves (left), the transformation pattern (upper-right) and the

evolution of the relative temperature θ = T − T0 (lower-right) for the loading rate 3.3 × 10−2 s−1.

Figure 6: The average stress–normalized elongation curves (left), the transformation pattern (upper-right) and the

evolution of the relative temperature θ = T − T0 (lower-right) for the loading rate 1.1 × 10−1 s−1.
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interpreted as a representation of the so-called criss-cross pattern that is often seen in the exper-

iment, see e.g. Shaw and Kyriakides (1997), Zhang et al. (2010), Kim and Daly (2011), which,

however, does not form because the finite-element mesh is too coarse (Shaw, 2000). Our auxiliary

simulations confirm that, upon mesh refinement, the butterfly-shaped pattern is substituted by the

criss-cross pattern. During unloading, the reverse transformation proceeds by a backward motion of

the two butterfly-shaped interfaces which convert into inclined interfaces at the end of the process.

For the loading rate of 3.3×10−3 s−1, Fig. 4, again the transformation starts at the imperfection.

However, shortly after that, the second martensite domain forms at the other end of the specimen

as a result of the temperature increase in the first domain, and then the third domain nucleates in

the middle. Subsequently, the three domains expand, while maintaining the inclined pattern, and

finally coalesce at the end of the loading stage. During unloading, the reverse transformation starts

by nucleation of the bands of austenite in the middle where the temperature is the highest. Then,

the austenite domains grow at the expense of the martensite domains until the latter disappear.

As the loading rate is further increased, the number of martensite domains increases. Apart from

that, for high loading rates, the responses are qualitatively similar to each other, and the interfaces

are predominantly inclined, sometimes accompanied by secondary features.

The average stress–normalized elongation curves, both numerical and experimental, display

kinks that accompany the nucleation and annihilation events. Specifically, during the forward

transformation, nucleation of martensite bands and annihilation of austenite bands is associated

with a stress drop. Likewise, during the backward transformation, nucleation of austenite bands

and annihilation of martensite bands is associated with a stress rise. The respective effects have

been illustrated and discussed in detail by Zhang et al. (2010).

Figure 7 shows the maximum number of martensite domains during loading as a function of

the loading rate. The dependence is approximately linear on the log-log plot, which indicates a

power-law-type relationship. Power-law fitting gives the exponent of 0.49 which is very close to the

exponent of 0.5 obtained by fitting the experimental data (cf., Zhang et al., 2010) and also resulting

from the theoretical considerations (cf., He and Sun, 2010b). For comparison, the results of the 1D

model (Rezaee-Hajidehi and Stupkiewicz, 2018) are also included in Fig. 7.

The average stress–normalized elongation curves show a reasonably good agreement with the

experimental curves, see Figs. 3–6. The differences are more pronounced at higher loading rates,

particularly during the reverse transformation. Note, however, that the constitutive model, with its

intrinsic trilinear response, see Fig. 1a, is too simple to describe the complex constitutive behaviour

of pseudoelastic NiTi. Also, it is recalled that the material parameters are here taken directly from

the 1D model (Rezaee-Hajidehi and Stupkiewicz, 2018) without any tuning or fitting. The average

stress–normalized elongation curves predicted by the 3D and 1D models show small differences, see
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Figure 7: The maximum number of martensite domains during loading as a function of the loading rate: predictions

of the 3D and 1D models are compared to the experimental data of Zhang et al. (2010). The dashed lines depict the

power-law fit of the respective model predictions, which are characterized by the exponent close to 0.5.

Figure 8: The average stress hysteresis as a function of the loading rate.

Figs. 3–6, which are mostly due to the finite-deformation effects included in the present 3D model.

In fact, the results obtained for the small-strain version of the 3D model, which are not reported

here, are very close to the results of the 1D model.

The dependence of the average stress hysteresis on the loading rate is shown in Fig. 8. The

average stress hysteresis is here defined as the area of the hysteresis loop on the average stress–

normalized elongation curve divided by εT, the maximum transformation strain in tension. In

agreement with the experiment, the dependence is non-monotonic with the maximum at the loading

rate of 2× 10−1 s−1. For high loading rates, the stress hysteresis predicted by the model is visibly

higher than in the experiment. The predictions of the 1D model (Rezaee-Hajidehi and Stupkiewicz,

2018), also shown in Fig. 8, are similar to those of the 3D model.

In order to examine the effect of mesh density on the results, additional computations have been

performed for selected loading rates using a coarser and a finer mesh. In the case of the coarse mesh,
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the gauge segment is discretized into 120×10×2 elements, i.e. the element size is approximately twice

larger than in the case of the reference mesh of 240×21×3 elements, so that the total number of

degrees of freedom is 122 657. In the case of the fine mesh, the gauge segment is discretized into

480×42×4 elements so that the in-plane mesh density is twice that of the reference mesh, while the

through-the-thickness density is only slightly increased to avoid an excessive increase of the total

number of degrees of freedom, which is now equal to 3 294 517. Note, however, that the unknown

fields do not exhibit significant changes in the normal direction, hence the in-plane mesh density is

more important for an accurate resolution of the transformation patterns formed.

Figure 9 shows the results obtained for the loading rate of 3.3× 10−3 s−1. The average stress–

normalized elongation curves obtained for the three mesh densities show only minor differences.

In the enlarged views in Fig. 9, the differences are visible during nucleation of the three bands of

martensite during forward transformation (each nucleation event is associated with a stress drop)

and during nucleation of the two bands of austenite during reverse transformation (each nucleation

event is associated with a stress rise). Likewise, small differences are visible at the instants of

annihilation of the austenite and martensite bands, as indicated by the arrows in Fig. 9. The

transformation pattern is not significantly affected by the mesh density either. Figure 9 shows

representative transformation patterns corresponding to the instants marked by 4 and 12 in Fig. 4.

In the case of the fine mesh, the appearance seems different, however, rotation by 180◦, as indicated

in Fig. 9, reveals that the transformation pattern is indeed essentially identical.

In the case of the loading rate of 3.3×10−2 s−1, the effect of mesh density on the average stress–

normalized elongation curve is also negligible, see Fig. 10. Small differences are only observed

during annihilation events, i.e. at the end of the forward and reverse transformations. Similarly,

the transformation pattern is slightly influenced by the mesh density. The pattern corresponding

to the instant marked by 3 is identical for the three mesh densities. Though some differences can

be observed at the later stages, the important features, such as the number of martensite bands,

are preserved. During the reverse transformation, the effects are qualitatively similar, and the

corresponding details are not provided here for brevity.

4.2. NiTi tube in tension

In this subsection, the simulation is carried out for the problem of uniaxial tension of a pseudo-

elastic NiTi tube. The problem has been studied experimentally by Bechle and Kyriakides (2016),

and its extensive computational study has been performed by Jiang et al. (2017b). Earlier experi-

mental investigations of uniaxial and combined tension of NiTi tubes include those of Sun and Li

(2002), Feng and Sun (2006), Reedlunn et al. (2014), and others.

Figure 11 depicts the geometry and the finite-element mesh used in the simulation. Following

Jiang et al. (2017b), idealized boundary conditions are applied in the simulation, since the actual
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Figure 9: The effect of mesh density for the loading rate of 3.3×10−3 s−1. The average stress–normalized elongation

curves obtained for three mesh densities are shown (left) along with the enlarged view of the events of nucleation

of martensite bands during loading (center, top) and austenite bands during unloading (center, bottom). The

transformation patterns at the instants marked by 4 and 12 are also shown (right), cf. Fig. 4.

Figure 10: The effect of mesh density for the loading rate of 3.3×10−2 s−1: the average stress–normalized elongation

curve (left) and the transformation pattern during the forward transformation (right).

28



(a) (b) (c)

Figure 11: NiTi tube in tension: (a) the geometry, (b) the mesh and (c) the average stress–normalized elongation

response. The mesh used in the computation was four times finer than that in figure (b), as schematically indicated

in the inset. The average stress σ is calculated as the axial force divided by the initial cross-section area of the tube.

boundary conditions used in the experiment are too complex to be fully reproduced. Specifically, the

axial displacement is prescribed on the top of the tube with a constant loading rate of 5×10−5 s−1,

as in the experiment. After reaching the maximum elongation of 3.7 mm, the specimen is unloaded.

Concerning the lateral displacements at both ends, rotation of the tube with respect to its axis is

constrained, and a uniform expansion or contraction is allowed by applying the following boundary

condition: xiYi − yiXi = 0, where (Xi, Yi) and (xi, yi) are, respectively, the reference and current

placement of the i-th node within the plane normal to the axis. To approximate the effect of the

grips, the temperature of both ends is fixed to the ambient temperature T0 = 296 K. In view of

the low loading rate, which results in nearly isothermal conditions, the heat convection effect is

neglected.

The material is considered isotropic and the material parameters are adopted as follows. The

bulk modulus κ = 133 GPa is adopted. The different shear moduli for pure austenite and pure

martensite phases, i.e., µa = 21 GPa and µm = 8 GPa, are fitted, respectively, to the corresponding

branches in the experimental response, see the black curve in Fig. 11c. The material parameters

∆s∗ = 0.24 MPa/K, Tt = 211 K, fc = 6.8 MPa, εT = 0.05, and HT = −2.8 MPa are calibrated

such that the average stress–normalized elongation curve in the simulation correctly reproduces the

experimental one, cf. Fig. 11c. In particular, the softening modulus HT is adopted so as to approx-

29



imately match the softening tensile stress-strain curve determined by Hallai and Kyriakides (2013)

and used by Jiang et al. (2017b). The hardening modulus in compression HC = 10 MPa, which

does not visibly affect the overall response in tension, is adopted based on the typical homogeneous

response of NiTi under compression (Reedlunn et al., 2014; Bechle and Kyriakides, 2014). Note that

the difference in the elastic moduli of austenite and martensite introduces additional softening in

the intrinsic stress–strain response. The parameters α = 1.4, % = 6500 kg/m3, c = 440 J/(kg K) and

K = 18 W/(m K) are taken as those in the dog-bone simulation, Section 4.1. Finally, the parameter

G = 0.01 Pa m2 is adopted such that the theoretical thickness of the interface is equal to 0.2 mm,

while the parameter χ = 293 MPa is sufficiently large to ensure that the micromorphic variable η̆

approximates well the volume fraction η (the corresponding averaging length ` = 0.006 mm is small

compared to the interface thickness).

The tube is discretized with 147 elements in the circumferential direction, one element through

the thickness and 370 elements along the height, giving the total number of 54 684 elements and

2 178 246 degrees of freedom (recall that quadratic elements are used). For better visualization, the

mesh shown in Fig. 11b is four times coarser than the actual mesh used in the simulation. The

associated computational cost is quite high. A single Newton iteration takes about 49 seconds of

which the solution of the linear system takes about 42 seconds (recall that a direct solver is used).

Furthermore, a relatively small time step is needed to resolve the fine features of the transformation

pattern evolution, so that the total number of time steps exceeds 3700. As a result, the complete

simulation takes about 18 days on a 10-core workstation (Intel Core i7-6950X CPU with 128 GB

RAM).

To trigger the nucleation of the phase transformation, a small imperfection, in the form of a

uniform indentation with the depth of 0.02 of the tube thickness, is imposed at the top of the tube,

see Fig. 11b.

The markers that are superimposed on the average stress–normalized elongation response in

Fig. 11c correspond to the snapshots presented in Fig. 12, which show the transformation pattern

in the deformed configuration. To track the transformation pattern completely, the front view with

0◦ rotation, the side view with 90◦ rotation and the back view with 180◦ rotation are presented.

The martensite bands nucleate at the imperfection forming two helix-shaped bands winding

around the tube in opposite directions and colliding at the back of the tube. Albeit the imperfection

is symmetric, the transformation does not nucleate symmetrically, see the back-view snapshots 2

and 3 in Fig. 12. The nucleation event is associated with a stress overshoot followed by a sudden

stress drop. The related effects, not visible in the experimental curve, but often encountered in other

experiments, see e.g. Li and Sun (2002), are highly sensitive to the experimental setup, specimen

geometry, type and strength of the imperfection (Churchill et al., 2009).
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Figure 12: The transformation pattern of the NiTi tube: the front view (top), the side view (middle) and the back

view (bottom). Since the transformation patterns of snapshots 10 and 11 are identical, only snapshot 10 is presented.
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Figure 13: Detailed view of the formation and coalescence of martensite prongs during loading: the front view (top),

the side view (middle) and the back view (bottom).

After the nucleation, in the neighbourhood of point 4, a stress drop is observed on the average

stress–normalized elongation curve. In Fig. 12, this corresponds to the complete transformation

of the top part of the tube. Henceforth, the transformation propagates in a prong-like pattern

in which the prongs form at the front of the tube, then propagate around the tube helically and

eventually coalesce into the martensite domain at the back of the tube. This periodic event is

shown in the expanded view of the transformation pattern in Fig. 13. The two successive prongs

circle the tube in opposite directions with an inclined angle of approximately ±57◦ with respect to

the tube axis, in agreement with the experimental observations (Li and Sun, 2002; Feng and Sun,

2006; Reedlunn et al., 2014). From Fig. 13 it can be readily seen that the transformation does

not propagate symmetrically and changes its orientation as a new prong forms or coalesces. The

martensite domain propagates with the same periodic pattern until the complete transformation

of the tube. The pattern of the quasi-symmetric multi-prong interface illustrated in Fig. 13 is

essentially identical to that predicted by Jiang et al. (2017b). It is evident from Fig. 11c that, due to

the nearly isothermal conditions, the average stress is almost constant in the plateau region, except

for the stress drops in the neighbourhood of point 4 and at the end of the forward transformation.

During unloading, similar to the loading stage, a stress rise in the neighbourhood of point 13

is observed, which is associated with the complete reverse transformation of the top part of the
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Figure 14: Detailed view of the steady-state propagation of the multi-prong transformation front during unloading.

Each prong propagates along a helical path, as indicated by the white dashed line.

tube. Hereafter, the stress is almost constant, and the reverse transformation proceeds in the form

of helical prongs that propagate in a different manner than those during loading. Fig. 14 shows

the expanded view of the reverse transformation during the steady-state propagation. In this case,

all helical prongs propagate simultaneously, in the same direction following helical paths inclined

at the angle of approximately 57◦ with respect to the tube axis, and eventually annihilate at the

bottom of the tube. The helical trajectory of the prongs is more apparent when the helix of one of

the propagating prongs is superimposed on the transformation pattern, see the white dashed curve

in Fig. 14. The annihilation of the martensite domains at the bottom of the tube, which completes

the reverse transformation, is associated with a sudden stress rise.

As also discussed by Bechle and Kyriakides (2016), the very low loading rate leads to a nearly

uniform temperature distribution in the tube during both loading and unloading. The maximum

temperature increase during loading is obtained as θ = 2.2 K, while for unloading, the minimum

temperature decrease of θ = −2.0 K is recorded.

The transformation pattern obtained, Figs. 12–14, is qualitatively similar to that observed in

the experiment (Bechle and Kyriakides, 2016), see also Feng and Sun (2006) and Reedlunn et al.

(2014). This, in particular, concerns formation of the multi-prong transformation front and helical

propagation path of individual prongs. However, as illustrated by the computational study of

Jiang et al. (2017b), the details of the complex transformation pattern are influenced by the model

parameters, e.g., the softening modulus, and are sensitive to the imperfection, e.g., to its position

and symmetry.

The latter effect is illustrated in Fig. 15. The quasi-symmetric pattern shown in Fig. 12 has been

obtained for a symmetric imperfection, cf. Fig. 11b. The transformation pattern is different when

an asymmetric imperfection is introduced. Specifically, it initiates with a single helical band, and

the transformation proceeds then by elongation and thickening of this single band. At a later stage

(not shown here), the helical band converts into a single martensite domain with a multi-prong
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Figure 15: The effect of imperfection, boundary conditions and mesh density (see text) on the transformation patterns

at the initial stage of transformation. Each snapshot number specifies the elongation, as indicated by the respective

marker in Fig. 11c, see also Fig. 12. Snapshots 3a correspond to an intermediate elongation, ε̄ = 0.012.

interface of the type shown in Fig. 14. A single helical pattern develops also when the imperfection

is symmetric but the boundary conditions are changed such that free rotation is allowed at the

bottom, see Fig. 15. The orientation of the helical band is here different and results from a random

numerical imperfection, since the problem is otherwise symmetric (in the case of the asymmetric

imperfection, the orientation of the helical band is induced by the orientation of the imperfection).

Note that the transformation pattern with a single helical band, as predicted here by changing the

imperfection or the boundary conditions, has been observed experimentally in NiTi tubes under

tension by Li and Sun (2002).

Figure 15 illustrates also the effect of mesh density on the transformation pattern. The three

cases discussed above have been simulated using a coarser mesh of 74×185×1 elements and 550 708

degrees of freedom, i.e. twice coarser in the circumferential and axial directions than the reference

mesh of 147×370×1 elements. In the original case, indicated as ‘symmetric imperfection’ in Fig. 15,
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the initial pattern (snapshots 2 and 3) is correctly represented by the coarse mesh. However, at

the later stage, the coarse mesh is not capable of representing the fine features of the multi-prong

interface. In the case of asymmetric imperfection, a helical band forms, but it increases more in

thickness than in length, as compared to the case of the reference mesh, and ultimately converts

into a single domain (not shown here), as in the other coarse-mesh cases. On the contrary, in the

case of free rotation, the helical band characteristic for the reference mesh does not form, and the

pattern is symmetric, similar to the case of constrained rotation. In summary, the coarse mesh is

too coarse to correctly represent the fine details of the transformation pattern that are obtained

using the reference mesh. Computations have not been attempted for an even finer mesh because

of a prohibitively high computational cost.

4.3. Parametric study of the features of the inclined macroscopic transformation front

In our previous study (Rezaee-Hajidehi and Stupkiewicz, 2018), it has been demonstrated that,

in the 1D small-strain setting, the theoretical thickness λ of the diffuse interface (macroscopic phase

transformation front) is a function of the softening modulus H < 0 and the gradient parameter

G > 0 through the relation λ = π
√
−G/H. It has also been shown that, upon the micromorphic

regularization, the thickness λ̆, where λ̆ ≤ λ, of the corresponding interface additionally depends

on the regularization parameter χ, see Eq. (55) in Rezaee-Hajidehi and Stupkiewicz (2018), and

λ̆ approaches λ as χ increases. In the examples studied in the present paper, the parameter χ

has been set in such way that λ̆/λ ≥ 0.9 so that the micromorphic regularization does not visibly

influence the interface profile, see Figs. 5 and 6b in Rezaee-Hajidehi and Stupkiewicz (2018).

In the 3D setting, apart from the regularization resulting from the gradient term in the free en-

ergy, additional regularization is introduced due to the 3D geometry of the problem, in particular,

due to the thickness of the specimen under study, see Mazière and Forest (2015). Accordingly, the

aim of this numerical example is to examine the impact of the 3D effects on the characteristics of

the macroscopic transformation front, namely the interface thickness and the inclination angle. Ad-

ditionally, the influence of tension–compression asymmetry and transverse isotropy on the interface

characteristics is studied.

The analysis is here carried out for a NiTi strip in uniaxial tension. Figure 16 depicts the

geometry and the finite-element mesh. The strip is loaded by prescribing the overall elongation

at its top end, while the transversal displacements of both ends are fully constrained. The strip

is loaded up to the maximum elongation of 0.625 mm, which results in a partial transformation

of the strip. To suppress the formation of more martensite bands, which might occur at higher

loading rates, the strip is pulled with a constant low loading rate of 10−5 s−1. Like in the previous

examples, the temperature at both ends is set to the initial temperature T0 = 296 K.
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(a) (b) (c)

Figure 16: NiTi strip in tension: (a) the geometry, (b) the mesh and (c) the expanded view of the martensite band

obtained for the strip with the thickness t = 0.1 mm at selected elongations δ.

To study the 3D effects, strips with different thicknesses, ranging from t = 0.02 mm to t =

0.5 mm, are considered. The material parameters are adopted as those in the dog-bone example,

Section 4.1, except that the softening modulus H = −5 MPa is chosen, the gradient parameter

G = 0.046 Pa m2 is set to give the theoretical interface thickness λ = 0.3 mm, and the regularization

parameter χ = 262 MPa is adopted such that sufficient regularization is applied (we have λ̆/λ = 0.9

and ` = 0.013 mm).

The mesh is finer in the lower part, where the band nucleates, and coarser in the upper part.

The lower part of the strip is discretized with 79 elements across the width, 2 elements through the

thickness, and 167 elements along the length. Note that, for a better visualization, the mesh shown

in Fig. 16b is two times coarser than the one used in the simulation. The total number of elements

is 29 862 with 990 345 degrees of freedom. To trigger the nucleation of the martensite band, a small

imperfection, an indent with the depth of 0.02 of the strip thickness, is imposed at a distance equal

to the width of the strip far from the bottom end, see Fig. 16b.

The interface thickness and the inclination angle are determined for the upper interface, which

is not influenced by the boundary conditions at the bottom of the strip, see Fig. 16c. To this end,

three equally spaced longitudinal profiles of the volume fraction η are taken at a fixed elongation

δ = 0.375 mm. For each profile, the position of the interface and its thickness in the longitudinal
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direction are determined by fitting a sine function to the profile. The positions are used to calculate

the inclination angle, which is then used to determine the average interface thickness in the direction

normal to the interface.

Figure 16c shows an expanded view of the martensite band obtained for the strip thickness

t = 0.1 mm (and for α = β = 1.4). At the onset of transformation, the martensite band forms

an angle of 55.5◦ with the strip axis, which is close to the theoretical angle of 54.74◦ for the

necking-type discontinuity in thin sheets (Nadai, 1950; Hill, 1952), which has also been observed

experimentally in NiTi strips under tension (e.g., Shaw and Kyriakides, 1997; He and Sun, 2010a)

and predicted numerically (e.g., Shaw, 2000; He and Sun, 2010a; Jiang et al., 2017c; Wendler et al.,

2017). The upper snapshots in Fig. 16c illustrate the actual nucleation event. A band of partially

transformed material appears at the imperfection and grows towards the other side of the strip at

fixed orientation. Once the band spans the whole strip width, the transformation strain within the

band starts to increase, and, once the transformation is complete, the interfaces (mostly the top

one) start to propagate. The inclination angle remains fairly constant as the elongation reaches

δ = 0.375 mm. At the further stage, the interface gradually changes its orientation and reaches 61◦

at δ = 0.558 mm. The results obtained for the other thicknesses show that the effect of the strip

thickness on the inclination angle is negligible.

The effect of the strip thickness on the interface thickness is shown in Fig. 17. As it is evident,

the thicker the strip, the more regularization is provided, and consequently, the thicker the interface.

On the other hand, as the strip thickness approaches zero, the accompanying regularization effect

diminishes, and the interface thickness approaches the theoretical limit λ̆, see the dashed line in

Fig. 17.

Next, the effect of tension–compression asymmetry and transverse isotropy is investigated. These

properties are introduced in the model through the material parameters α and β in the function g

that specifies the set of limit transformation strains, see Eqs. (23) and (25). Figure 18 shows the

effect of parameters α and β on the inclination angle. Four cases are considered. In the case of

an isotropic material, we have β = α, and parameter α, which specifies the tension–compression

asymmetry, is varied between 0.7 and 1.4, even if the range of α > 1 is physically more relevant. In

the case of transverse isotropy, β 6= α, three cases are investigated, namely the symmetry axis m

oriented along the x-, y- and z-directions, see Fig. 16a, parameter α is set to 1.4, and parameter β

is varied between 0.7 and 1.4. The three cases are denoted as x-, y- and z-transversely isotropic,

respectively. Note that the range of admissible values of parameters α and β is constrained by the

required convexity of function g, cf. Section 2.1.1, and the adopted range between 0.7 and 1.4 is

close to those limits.

For α ≥ 1 and β ≥ 1, the inclination angle is weakly influenced by parameters α and β. In this
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Figure 17: The dependence of the interface thickness on the thickness of the strip, both normalized by the theoretical

thickness λ. The interface thickness is determined at the elongation δ = 0.375 mm. The dashed line represents the

thickness λ̆ that follows from the analytical solution obtained for the micromorphic 1D model, see Rezaee-Hajidehi

and Stupkiewicz (2018).

(a) (b)

Figure 18: The effect of tension–compression asymmetry and transverse isotropy on the inclination angle. The dotted

lines depict the theoretical predictions (see text).
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range, the maximum deviation with respect to the reference case α = β = 1.4 is below 3◦. Overall,

for the y- and z-transversely isotropic cases, the inclination angle does not vary significantly and the

maximum change of the inclination angle is, respectively, about −4◦ and 2◦ at β = 0.7. On the other

hand, for the isotropic and x-transversely isotropic cases, the inclination angle deviates considerably,

and the interface tends to be perpendicular to the loading axis in the limit of α = β = 0.7 and

β = 0.7, respectively.

The dotted lines in Fig. 18 indicate the theoretical predictions of the inclination angle. Fol-

lowing the classical approach (Nadai, 1950; Hill, 1952), the interface between the transformed and

untransformed zones is considered, and the inclination angle is found such that the inelastic elon-

gation along the interface is equal to zero. In the isotropic and z-transversly isotropic cases, under

uniaxial stress, the contraction along the x- and y-directions is equal to one half of the elongation

along the z-direction (the theoretical analysis is here carried out using the small-strain framework),

and the classical result of 54.74◦ is obtained, cf. Fig. 18a. In the x- and y-transversely isotropic

cases, the transformation strain within the band is determined from the stationarity condition (35).

Specifically, the transformation strain ēt is found such that the uniaxial stress is normal to the

surface g(ēt) = 0. The resulting orientation angle depends then on parameter β, see Fig. 18b.

The isotropic case is recovered for β = α. The inclination angle increases as β decreases in the

x-transversely isotropic case, and the trend is opposite in the y-transversely isotropic case. The

limiting case of transformation strain vanishing along the x- and y-direction has been examined

by Wendler et al. (2017), and the respective inclination angles have been found equal to 90◦ and

45◦, respectively, in agreement with the trends observed in Fig. 18 (note, however, that the limiting

cases of Wendler et al. (2017) cannot be achieved in the case of the present model).

In all cases, the finite-element results match well the theoretical predictions. The small sys-

tematic deviation visible in Fig. 18 may be caused by the boundary conditions that may induce

the stress which is not exactly uniaxial. A significant deviation is only observed in the isotropic

and x-transversely isotropic cases when, respectively, α and β are close to 0.7. The isotropic case

with α close to 0.7 corresponds to tension–compression asymmetry with the transformation stress

in tension higher than that in compression. The transformation (yield) surface in the stress space,

which is not available in a closed form, but can be determined numerically, exhibits then a sharp,

even if smooth, vertex at the state corresponding to uniaxial tension. Accordingly, a small deviation

of the stress tensor from the uniaxial stress may cause a significant change of the transformation

strain, which may explain the observed deviation.

The effect of the tension–compression asymmetry and transverse isotropy on the interface thick-

ness has also been examined. This effect has been found negligible.
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5. Conclusions

A gradient-enhanced 3D finite-strain model of pseudoelasticity has been developed for the sim-

ulation of transformation patterns in polycrystalline shape memory alloys. This has been achieved

by enhancing the non-gradient model of pseudoelasticity (Stupkiewicz and Petryk, 2013) follow-

ing the approach developed recently by Rezaee-Hajidehi and Stupkiewicz (2018). In particular,

a micromorphic-type regularization (cf. Mazière and Forest, 2015) has been applied in order to

facilitate the finite-element implementation.

The formulation employs the incremental energy minimization framework. In view of the rate-

independent dissipation and constitutive inequality constraints, the resulting minimization problem

is non-smooth, and the augmented Lagrangian method is used to efficiently handle the related diffi-

culties (cf. Stupkiewicz and Petryk, 2013). Furthermore, thanks to the micromorphic regularization,

the non-smooth subproblem is solved locally at the Gauss points, and the non-smoothness does not

influence the problem at the global level.

A general thermomechanical formulation has also been developed for the micromorphic model at

hand. The general model is thermodynamically consistent and considers all related couplings. In the

model actually employed in the finite-element computations, only two most essential couplings are

accounted for. Firstly, the latent heat of transformation and the dissipated energy are introduced

into the heat conduction equation as a source term. Secondly, the chemical energy is assumed

to depend on the resulting local temperature thus influencing the transformation criterion. As

illustrated by the NiTi dog-bone example, this suffices to correctly represent the loading-rate effects.

To illustrate the potential of the model, three 3D numerical examples have been analyzed. It has

been shown that the model can effectively reproduce complex transformation patterns, including

multiple inclined interfaces as well as butterfly-shaped interfaces in a NiTi dog-bone specimen

and multi-prong interfaces in a NiTi tube under uniaxial tension. The capability of the model in

capturing the major thermomechanical coupling effects has also been illustrated. This, in particular,

concerns the effect of the loading rate on the number of martensite bands and the transition from

a plateau-type response at low loading rates to an apparent hardening response at higher rates.

A detailed study of the characteristics of the macroscopic transformation front has also been

performed for a NiTi strip under uniaxial tension. It has been shown that the inclination angle

is influenced by the tension–compression asymmetry and transverse isotropy, however, the effect is

not much pronounced in the physically relevant range of the material parameters. On the other

hand, these features do not influence the interface thickness, which only depends on the specimen

thickness. When the specimen thickness approaches zero, the interface thickness approaches the

theoretical thickness that is governed by the softening- and gradient-related parameters in the

Helmholtz free energy function.
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The focus of this work has been on strain localization, macroscopic transformation fronts, and

related phenomena. The monolithic, implicit computational scheme developed has proven effec-

tive in simulating relevant 3D boundary value problems and, in particular, in reproducing complex

transformation patterns. At the same time, the adopted constitutive description involves some sim-

plifications such as the underlying trilinear pseudoelastic stress–strain response and no dissipation

associated with reorientation of martensite. Addressing the related issues will be the topic of our

future work.

Appendix A. Local 1D model of pseudoelasticity

A local 1D version of the model presented in Section 2.1 is described here to demonstrate the

stress-strain response and the transformation criterion in this simple case. For details, including the

gradient-enhanced formulations in 1D, the reader is referred to Rezaee-Hajidehi and Stupkiewicz

(2018).

In the 1D small-strain setting, the total strain ε = ∇u is additively decomposed into its elastic

εe and transformation εt parts,

ε = εe + εt, εt = ηεT, (A.1)

where εT is the transformation strain of the fully oriented martensite, and it is here assumed

constant. Assuming further that the hardening modulus H is constant, the Helmholtz free energy

function (5) simplifies to

φ(ε, η) = φa
0 + ∆φ0η +

1

2
E(ε− ηεT)2 +

1

2
Hη2, (A.2)

where E is the Young’s modulus of elasticity which is assumed the same for austenite and martensite.

Note that the gradient term φgrad is absent in the local model.

Following the general procedure described in Section 2.1, the solution {u, η} at the current time

instant t = tn+1 is obtained by minimizing the global incremental potential Π[u, η] with respect to

the fields of u and η,

{u, η} = arg min
u,η

Π[u, η], Π[u, η] = E [u, η]− E [un, ηn] + ∆D[η] + I[η]. (A.3)

By minimizing Π[u, η] with respect to the displacement field u, for a fixed field of η, a stable

equilibrium is found which, in the absence of body forces, is expressed in the standard form,

∇ · σ = 0, σ = E(ε− ηεT). (A.4)

Minimization (A.3) with respect to η can be performed locally (pointwise), thus yielding the

volume fraction η as a function of the strain ε. The necessary condition for the minimum can be
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written in the form of the following inclusion, cf. Eq. (33),

fη ∈ ∂D̄(η), fη = −∂φ
∂η

= −∆φ0 + σεT −Hη, (A.5)

where fη is the thermodynamic driving force. When the transformation proceeds with ∆η 6= 0 and

0 < η < 1, inclusion (A.5)1 gives the following transformation criterion,

f = ±fc ⇔ σt
± =

∆φ0 ± fc +Hη

εT
, (A.6)

where σt
+ (σt

−) is the transformation stress associated with the forward (reverse) transformation.

Eq. (A.6) implies that the hardening/softening behaviour during transformation is controlled by

the parameter H, with hardening for H > 0 and softening for H < 0, cf. Fig. 1(a).

Appendix B. Thermomechanical formulation

Appendix B.1. General framework

In this appendix, a general thermomechanical formulation is developed for the micromorphic

model introduced in Section 2.2. In the micromorphic approach, the micromorphic variable η̆ is

treated as an additional internal degree of freedom for which a generalized balance of micromorphic

momentum is derived starting from the extended virtual work of internal and external forces. This

part is described very briefly below, and, for the details, the reader is referred to Forest (2009).

Subsequently, the balance of internal energy is analyzed in detail by following the thermodynamic

framework of Rajagopal and Srinivasa (2000), see also Hron et al. (2017), to arrive at the general

form of the heat conduction equation that is consistent with the second law of thermodynamics.

With reference to the constitutive framework introduced in Section 2.2, the Helmholtz free

energy density φ is here assumed to depend on the deformation gradient F = ∇ϕ, temperature T ,

internal variables ēt and η, and also on η̆, the micromorphic counterpart of η, and its gradient∇η̆, so

that φ = φ(F , ēt, η, η̆,∇η̆, T ). It is recalled that η and ēt are subject to the constitutive constraints

0 ≤ η ≤ 1 and g(ēt) = 0, respectively. Apart from that, the form of the free energy function φ

is here left unspecified. The special case of the constitutive equations introduced in Section 2 is

discussed in Appendix B.2. The derivations are here carried out in the referential description so

that, in particular, the gradient denoted by ∇ is evaluated in the reference configuration.

Following the micromorphic approach of Forest (2009), the placement ϕ and the micromorphic

variable η̆ are treated as independent degrees of freedom. Accordingly, the extended virtual work

(or virtual power) of internal and external (contact) forces, respectively, P(i) and P(c), is formulated

for any subdomain D of the body B in the following form,

P(i) =

∫
D

(P · ∇δϕ+ a δη̆ + b · ∇δη̆)dV, P(c) = −
∫
∂D

(t · δϕ+ acδη̆)dS, (B.1)
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where δϕ and δη̆ are the variations (or virtual velocities) of ϕ and η̆, respectively, P is the first

Piola–Kirchhoff stress tensor, and t is the nominal traction vector. Furthermore, a and b are the

generalized stresses associated with the micromorphic variable η̆ and its first gradient ∇η̆, and ac

is a generalized traction. For simplicity, body forces and generalized body forces are not considered

here. Accordingly, the generalized principle of virtual work reads

P(i) + P(c) = 0 ∀D, ∀ δϕ, ∀ δη̆, (B.2)

which, upon applying the divergence theorem, yields the standard balance of momentum equation

and the generalized balance of micromorphic momentum equation, viz.

∇ · PT = 0, ∇ · b− a = 0 in D, (B.3)

as well as the boundary conditions for the standard and generalized tractions,

t = Pν, ac = b · ν on ∂D, (B.4)

where ν is the unit outer normal to ∂D.

As the next step, the balance of internal energy is formulated such that it includes the power of

the generalized forces a and b, cf. Eq. (B.1)1,

%0ė = P · Ḟ + a ˙̆η + b · ∇ ˙̆η −∇ ·Q, (B.5)

where e is the internal energy density per unit mass and Q is the nominal heat flux.

The internal energy e (with the entropy s as an independent variable) and the Helmholtz free

energy φ (with the temperature T as an independent variable) are related by the following Legendre

transformation,

1

%0
φ(F , ēt, η, η̆,∇η̆, T ) = e(F , ēt, η, η̆,∇η̆, s(F , ēt, η, η̆,∇η̆, T ))− Ts(F , ēt, η, η̆,∇η̆, T ), (B.6)

which implies that

s = − 1

%0

∂φ

∂T
, (B.7)

where s is here defined as the density per unit mass. By taking the time derivative of Eq. (B.6)

and using Eq. (B.7), the rate of the internal energy e is obtained in the following form,

%0ė =
∂φ

∂F
· Ḟ +

∂φ

∂ēt
· ˙̄et +

∂φ

∂η
η̇ +

∂φ

∂η̆
˙̆η +

∂φ

∂∇η̆
· ∇ ˙̆η + %0T ṡ. (B.8)

Upon inserting ė given by Eq. (B.8) into the internal energy balance (B.5), dividing the resulting

equation by T , and using the identity,

∇ ·
(Q
T

)
=
∇ ·Q
T
− Q · ∇T

T 2
, (B.9)
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we get

%0ṡ+∇·
(Q
T

)
=

1

T

((
P − ∂φ

∂F

)
· Ḟ − ∂φ

∂ēt
· ˙̄et− ∂φ

∂η
η̇+
(
a− ∂φ

∂η̆

)
˙̆η+
(
b− ∂φ

∂∇η̆

)
·∇ ˙̆η−Q · ∇T

T

)
.

(B.10)

Equation (B.10) is recognized as the balance of entropy,

%0ṡ+∇ · js = ξ, (B.11)

where the entropy flux js and the entropy production rate ξ are of the form

js =
Q

T
, (B.12)

and

ξ =
1

T

((
P − ∂φ

∂F

)
· Ḟ − ∂φ

∂ēt
· ˙̄et − ∂φ

∂η
η̇ +

(
a− ∂φ

∂η̆

)
˙̆η +
(
b− ∂φ

∂∇η̆

)
· ∇ ˙̆η −Q · ∇T

T

)
. (B.13)

In order to satisfy the second law of thermodynamics, the entropy production rate ξ must be

non-negative. Constitutively, the following entropy production rate ξ̃ is chosen

ξ̃ =
1

T

(
fc|η̇|+

K∇T ·C−1∇T
T

)
≥ 0, (B.14)

which is non-negative because fc > 0, K > 0 and C is positive definite. The governing equations

are then obtained by requiring that ξ is equal to ξ̃. The specific form of ξ̃ in Eq. (B.14) is, in fact,

a constitutive assumption implying that the heat conduction and the phase transformation are the

only sources of entropy production, the remaining processes being non-dissipative.

Enforcing ξ = ξ̃ implies that the terms in the parentheses in front of Ḟ , ˙̆η and ∇ ˙̆η in Eq. (B.13)

must vanish, which yields the following relationships,

P =
∂φ

∂F
, a =

∂φ

∂η̆
, b =

∂φ

∂∇η̆
. (B.15)

The first relationship delivers the standard constitutive equation, cf. Eq. (38), while the second and

the third one define the generalized stresses a and b. Substituting a and b, Eq. (B.15)2,3, in the

micromorphic momentum balance equation (B.3)2 yields

δΦ

δη̆
=
∂φ

∂η̆
−∇ · ∂φ

∂∇η̆
= 0, Φ =

∫
B

φdV, (B.16)

which is recognized as the Euler–Lagrange equation that represents the condition of stationarity of

the free energy functional Φ with respect to η̆. It can be easily checked that, for the constitutive

functions specified in Section 2.1.1, Eq. (B.16) particularizes to the Helmholtz-type equation (41).

Furthermore, ξ = ξ̃ implies that the second term on the right-hand side of Eq. (B.13) vanishes,

i.e. ∂φ/∂ēt · ˙̄et = 0. Recall that evolution of ēt is constrained by the condition g(ēt) = 0, and
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thus the rate ˙̄et is tangent to the surface g(ēt) = 0, i.e. ∂g/∂ēt · ˙̄et = 0. It follows that the

thermodynamic driving force fēt = −∂φ/∂ēt, cf. Eq. (36), is normal to the surface g(ēt) = 0 and

hence the necessary condition (35) is implied.

Finally, by equating the terms involving ∇T in ξ and in ξ̃, the Fourier’s law is obtained, cf.

Eq. (47)2,

Q = −KC−1∇T. (B.17)

Likewise, by equating the terms involving η̇, the following transformation condition, expressed here

in terms of the thermodynamic driving force fη = −∂φ/∂η, cf. Eq. (34), is obtained,

fη = fc sign η̇ if η̇ 6= 0, (B.18)

which is consistent with the inclusion (33) derived in Section 2.3. If η̇ = 0, which includes the case

when the bound constraints 0 ≤ η ≤ 1 are active, the terms involving η̇ vanish both in ξ and in ξ̃.

Now, upon substituting Eqs. (B.7), (B.12), (B.14) and (B.17) into Eq. (B.11) and multiplying

by T , the following equation is obtained,

−T d

dt

( ∂φ
∂T

)
−∇ · (KC−1∇T ) = fc|η̇|. (B.19)

By inserting the time derivative of ∂φ/∂T , i.e.,

d

dt

( ∂φ
∂T

)
=

∂2φ

∂T∂F
· Ḟ +

∂2φ

∂T∂ēt
· ˙̄et +

∂2φ

∂T∂η
η̇ +

∂2φ

∂T∂η̆
˙̆η +

∂2φ

∂T∂∇η̆
· ∇ ˙̆η +

∂2φ

∂T 2
Ṫ , (B.20)

into Eq. (B.19), the general form of the heat conduction equation is finally derived,

−T ∂
2φ

∂T 2
Ṫ −∇· (KC−1∇T ) = fc|η̇|+T

( ∂2φ

∂T∂F
· Ḟ +

∂2φ

∂T∂ēt
· ˙̄et +

∂2φ

∂T∂η
η̇+

∂2φ

∂T∂η̆
˙̆η+

∂2φ

∂T∂∇η̆
·∇ ˙̆η

)
.

(B.21)

Concluding, the thermodynamic framework presented above delivers all the governing equa-

tions of the isothermal model that have been independently derived in Sections 2.2 and 2.3 using

the incremental energy minimization approach. Additionally, the general equation of heat conduc-

tion (B.21) has been derived, which includes all possible thermomechanical coupling terms (the

second term on the right-hand side). Though not explicitly indicated above, the framework admits

arbitrary temperature dependence of the material parameters.

Appendix B.2. Specific form of the heat conduction equation

We now assume that the Helmholtz free energy function φ is of the following form,

φ(F , ēt, η, η̆,∇η̆, T ) = φ0(η, T ) + φel(F , ē
t, η) + φint(ē

t, η) + φµgrad(η, η̆,∇η̆), (B.22)

so that the chemical energy contribution φ0 depends on the temperature, the remaining contri-

butions being temperature independent, cf. Eq. (26). Substituting the expressions for φa
0 and φm

0
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provided by Eq. (43) in Eq. (42), the chemical energy contribution φ0 is given by

φ0(η, T ) = ua
0 − sa

0T + ∆s∗(T − Tt)η + %0c̄
(
T − T0 − T log

T

T0

)
, (B.23)

where c̄ = (1 − η)ca + ηcm is the weighted average of the specific heat capacities ca and cm, and

∆s∗ and Tt are defined in Section 2.4.

Upon substituting Eq. (B.22) in the general heat conduction equation (B.21), the partial deriva-

tives present in Eq. (B.21) are obtained as

∂2φ

∂T 2
= −%0c̄

T
,

∂2φ

∂T∂η
= ∆s∗ + %0(ca − cm) log

T

T0
, (B.24)

while the other partial derivatives vanish

∂2φ

∂T∂F
= 0,

∂2φ

∂T∂ēt
= 0,

∂2φ

∂T∂η̆
= 0,

∂2φ

∂T∂∇η̆
= 0. (B.25)

Assuming further that the heat capacities are equal, thus ca = cm = c̄ = c, Eq. (B.24) simplifies to

∂2φ

∂T
= −%0c

T
,

∂2φ

∂T∂η
= ∆s∗, (B.26)

and the general heat conduction equation (B.21) particularizes to the specific form (46) introduced

in Section 2.4.
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