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Pawińskiego 5B, 02–106 Warsaw, Poland

Abstract

Significant research effort is concentrated worldwide on development of graphene-
based metal-matrix composites with enhanced thermomechanical properties. In this
work, we apply two classical micromechanical mean-field theories to estimate the
effective thermoelastic properties that can be achieved in practice for a copper–
graphene composite. In the modelling, graphene is treated as an anisotropic ma-
terial, and the effect of its out-of-plane properties, which are less recognized than
the in-plane properties, is studied in detail. To address the severe difficulties in
processing of graphene-based metal-matrix composites, the copper–graphene com-
posite is here assumed to additionally contain, due to imperfect processing, parti-
cles of graphite and voids. It is shown quantitatively that the related imperfections
may significantly reduce the expected enhancement of the effective properties. The
present predictions are also compared to the experimental data available in the
literature.
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1 Introduction

Exceptional properties of graphene make it a natural candidate for production
of composite materials with enhanced thermomechanical properties. In fact,
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simple estimates, such as the rule of mixtures, show that properties of popular
polymers and metals could be significantly improved even by a small addition
of graphene. However, the results obtained in practice are often not so spec-
tacular as one might expect. This may be due to difficulties in processing of
graphene-based composites, structural defects in the final products and in the
graphene itself, presence of contaminants and interactions between graphene
and the matrix material.

The aim of the present study is to estimate the effective thermomechanical
properties that can be achieved in practice for graphene-reinforced metal-
matrix composites, and specifically for copper–graphene composites. In par-
ticular, we show quantitatively that the expected gain in the effective proper-
ties can be significantly reduced for an imperfectly processed copper–graphene
composite that additionally contains particles of graphite and voids so that
the composite is effectively a multiphase composite. We also study the influ-
ence of out-of-plane properties of graphene and show that they significantly
affect the effective properties.

Pristine graphene (i.e., a single layer of hexagonally arranged carbon atoms)
exhibits outstanding in-plane thermal and mechanical properties. The in-plane
thermal conductivity reaching 5300 W/mK has been measured [1], and the in-
plane Young’s modulus of 1000 GPa is typically reported [2]. However, those
values refer to idealized conditions of measurements for individual graphene
platelets. Atomic defects [3], interfacial interactions with a substrate or ma-
trix material [4–7], and increased number of carbon layers [3,8,9] may lead to
significantly lower values measured in reality, c.f. [10]. In particular, it is distin-
guished between single-, double- and few- (between 3 and 10) layer graphene
as three different types of 2D crystals [11] with different chemical, physical
and mechanical properties.

Graphene-reinforced polymer-matrix composites are widely examined exper-
imentally and theoretically, e.g. [10,12–14]. The results indicate that polymer–
graphene composites are promising multifunctional materials with significantly
improved tensile strength, elastic modulus, and electrical and thermal conduc-
tivity. Note, however, that typical polymers are characterized by low elastic
stiffness and low thermal conductivity so that the contrast of properties is
very high and enhancement of thermomechanical properties is relatively easy
upon successful addition of even a small amount of graphene.

A different situation is encountered in the case of metal-matrix composites,
and here the progress is so far quite limited [8,15–17]. The reasons are twofold.
Firstly, metals are characterized by higher elastic stiffness and higher thermal
conductivity, hence the contrast of properties is lower than in the case of
polymer-matrix composites. Secondly, the technological difficulties in process-
ing of graphene-reinforced metal-matrix composites are more pronounced than
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in the case of polymer-matrix composites. The related difficulties include in-
homogeneous distribution of graphene platelets (they tend to segregate from
metal particles and form agglomerates due to van der Waals forces [18]), poros-
ity caused by agglomeration of graphene platelets and insufficient densification
of metal powders [19–21], relatively high processing temperature (over 1000°C
in the case of copper) at which graphene is easily decomposed or damaged dur-
ing traditional processes of powder metallurgy [18]. As a result, the potential
benefits of graphene may be easily lost or strongly reduced [19].

Moreover, it is difficult to produce a composite reinforced solely by the pristine
graphene. Depending on the processing technique, inclusions of graphene of
varying thickness can be obtained in practice. As already discussed, the prop-
erties of graphene depend strongly on the number of layers [8, 9, 11, 22], and
structures with more than approximately 10 layers are usually not treated as
graphene [11,22]. In particular, it is expected that, with increasing number of
layers, the properties of the structure would evolve from those of graphene to
those of graphite. To address this issue, in the present work we assume that a
graphene-based composite may additionally contain particles of graphite that
correspond to thicker graphene-like structures or to other carbon-based in-
clusions resulting from the processing of the composite. As the thermoelastic
properties of those particles, we adopt the properties of either crystalline or
polycrystalline graphite, and we study the influence of those particles on the
effective properties of the related graphene-based composites.

Effective thermomechanical properties of graphene-based composites are con-
trolled not only by its exceptionally high in-plane stiffness and thermal conduc-
tivity but also by the corresponding out-of-plane properties. Since graphene
originates from graphite which is highly anisotropic [23], it is expected to be
highly anisotropic as well. In particular, its out-of-plane properties are ex-
pected to be significantly lower than the corresponding in-plane properties,
just like in the case of crystalline graphite. However, the out-of-plane proper-
ties of graphene are less recognized, and they are significantly influenced by
interfacial interactions [4, 5, 18, 21, 24]. Considering the ambiguity concerning
the out-of-plane properties of graphene, their impact on the effective proper-
ties of isotropic and anisotropic composites has been examined in the present
work.

Clearly, the high in-plane properties of graphene could be optimally utilized if
the graphene platelets were preferentially oriented along a specified direction
thus leading to a macroscopically anisotropic composite. However, controlling
the orientation of graphene platelets and adequate processing of a bulk com-
posite material is difficult [8, 25, 26], particularly in the case of metal–matrix
composites [18, 21, 27, 28]. This is more feasible in the case of graphene de-
posited on thin films [29].
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Computational modelling of functional properties of graphene and simulation
of graphene–substrate or graphene–matrix interactions is an active area of
computational material science. Investigation of quantum and atomic-scale
effects requires application of adequate techniques, such as quantum chem-
istry, molecular dynamics and Monte-Carlo method, see e.g. [24,30–32]. How-
ever, those approaches typically concern highly idealized conditions, and they
are computationally demanding. Hence, applicability of those approaches to
predictive modelling of graphene-based composites is limited.

An alternative approach is to apply classical micromechanical mean-field the-
ories which are well developed, see [33–37], and proved highly successful in
predictive modelling of composite materials, as well as in multi-objective opti-
mization of their microstructure [38, 39]. The corresponding micromechanical
averaging schemes are relatively simple so that estimates of effective thermo-
mechanical properties can be obtained without excessive computational effort
at the cost that some nano-effects are neglected.

The approach mentioned above has been followed in several works concerned
with graphene-based composites. Often, the simplest rule of mixtures is used
[8, 21, 30, 40], which corresponds to the Voigt upper bound (or to the Reuss
lower bound in the case of the inverse rule of mixtures). The Mori–Tanaka
method [41] has been used in [26] to estimate the effective elastic properties of
nano-composites with graphene sheets dispersed in polymer matrix. However,
it has been assumed that the cross-plane elastic modulus of graphene is 100
times higher than the in-plane modulus [26]. This assumption has not been
justified and seems non-physical. In [19], the Halpin–Tsai model [42] has been
used to predict the effective Young’s modulus of a copper–graphene composite.
The aspect ratio of the inclusions has been taken into account, while graphene
has been modelled as an isotropic solid, i.e., its cross-plane modulus has been
assumed to be equal to the in-plane modulus. The effective medium approach
accounting for the interfacial thermal resistance [43] was used in [44, 45] to
estimate the effective properties of graphene-based composites.

The present work is concerned with micromechanical modelling of graphene-
based metal-matrix composites with the focus on copper–graphene composites.
One of the main goals of producing such composites is to enhance their ther-
moelastic properties, mostly the thermal conductivity. Accordingly, our aim
in this work is to study quantitatively the enhancement that can be achieved
in practice, and several factors are considered that may influence the overall
properties of a copper–graphene composite:

(1) In view of the ambiguity concerning the out-of-plane properties of graphene,
their impact on the effective properties is examined in detail.

(2) It is assumed that the copper–graphene composite may additionally con-
tain other types of inclusions as a result of imperfect processing. Specif-

4



Gn graphene platelets

spherical
SCGt DCGt

disc–shaped
crystalline graphite crystalline graphite

spherical
SGt DGt

disc–shaped
polycrystalline graphite polycrystalline graphite

spherical voids SV DV disc–shaped voids

1

Fig. 1. Types of inclusions considered in this work. The corresponding graphical
symbols and abbreviations are used throughout the paper.

ically, we consider inclusions of crystalline and polycrystalline graphite
and voids, all in either spherical or disc-like shape, see Fig. 1.

(3) The types of two-, three- and four-phase composites studied in the pa-
per are summarized in Figs. 2 and 3. Two general classes of composites
are considered: macroscopically isotropic composites that correspond to
random orientation of inclusions (Fig. 2) and transversely isotropic com-
posites in which the disc-shaped inclusions are perfectly aligned (Fig. 3).

For all microstructures discussed above, the effective thermoelastic properties
have been estimated using two classical mean-field models: the Mori–Tanaka
(MT) model [41,46] and the effective-medium-field (EMF) model [47].

The paper is organized as follows. The basic equations of the micromechanical
theory used in the present study are summarized in Section 2. The specific
assumptions adopted in the modelling and the material parameters character-
izing the individual phases are provided in Section 3.1. Micromechanical pre-
dictions for macroscopically isotropic two-phase and multiphase composites
are reported in Sections 3.2 and 3.3, respectively, while transversely isotropic
composites are studied in Section 3.4. Finally, a comparison to available ex-
perimental data is presented in Section 3.5.

2 Effective thermoelastic properties of multiphase composites

In this section, we provide the formulation and the basic equations that can
be applied to estimate the effective thermoelastic properties (elastic moduli,
thermal expansion coefficient and thermal conductivity) of a multiphase com-
posite. The focus is on materials composed of two or more types of inclusions
embedded in a matrix, where the type of an inclusion is specified by its proper-
ties and shape. The adopted micromechanical modelling approach is based on
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Cu–Gn Cu–Gn–DV Cu–Gn–SV

1

Fig. 3. Transversely isotropic composites with perfectly aligned disc-shaped inclu-
sions considered in this work, see the list of inclusion types in Fig. 1.

the Eshelby concept [48]. Accordingly, the shape of every inclusion is approx-
imated by an ellipsoid. All phases are thermoelastic and perfect bonding at
the inclusion-matrix interfaces is assumed, hence the displacement and tem-
perature are continuous at the interfaces.

The exposition below is aimed at providing the essential relationships of the
micromechanical theory, and a detailed derivation is not attempted here. The
details can be found, for instance, in [33–37].

A general equation for the effective elastic stiffness tensor of a multiphase
composite is given by [49]

C = v0C0A0 +
∑
n

vnCnAn, (1)

where v0, C0 and A0 denote, respectively, the volume fraction, the elastic
stiffness tensor and the strain concentration tensor of the matrix, while the
corresponding quantities for the n-th type of inclusion are denoted by vn, Cn

and An. With the above notation, the total volume fraction of inclusions is
defined as

v =
∑
n

vn = 1− v0 (2)

Considering that the volume fractions sum up to unity and the strain concen-
tration tensors average to the fourth-order unit tensor, Eq. (1) can be rewritten
as [50,51]

C = C0 +
∑
n

vn (Cn −C0)An. (3)

The strain concentration tensors An are fourth-order tensors that relate the
average strain in each phase to the macroscopic strain. They are found by
solving a microscopic problem and several analytical models that approximate
An have been developed, see e.g. [41,46,47,52]. Two specific models which are
applicable to multiphase composites are presented below and will be used in
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the following.

For completeness, we first mention two simplest averaging schemes that pro-
vide upper and lower bounds on effective properties. The Voigt (upper) bound
is obtained by assuming that the strain is uniform within the microstructure
so that the strain concentration tensors reduce to unit tensors. As a result, the
effective stiffness tensor is simply the volume average of the stiffness tensors of
individual phases, which is evident from Eq. (1). On the contrary, averaging
of the compliance tensors yields the Reuss (lower) bound which corresponds
to the assumption of uniform stress.

A wide class of more accurate estimates of the effective properties is based
on the Eshelby solution [48] of the problem of a single ellipsoidal inclusion
in an infinite matrix. The simplest model valid for the non-dilute case is the
Mori–Tanaka (MT) model [41, 46] in which each inclusion is embedded in an
infinite medium having the properties of the matrix phase and experiences a
far-field strain that is equal to the yet unknown average strain in the matrix.
The strain concentration tensor is then found to be given by [46]

AMT
n = Adil

n

[
v0I +

∑
k

vkA
dil
k

]−1

, (4)

where I is the fourth-order identity tensor and

Adil
n =

[
I + Sn (C0)

−1 (Cn −C0)
]−1

, (5)

is the strain concentration tensor for dilute inhomogeneities (which actually
can be directly used in the dilute limit, say, for the total volume fraction of
inclusions below 1% [53]).

In Eq. (5), Sn is the so-called Eshelby tensor which follows from the solution
of the Eshelby inclusion problem. The Eshelby tensor depends on the inclusion
shape and on the properties of the matrix in the considered inclusion problem.
The specific formulae for the components of the Eshelby tensor can be found
in [33,54].

In the case of the MT scheme, the Eshelby tensor depends on the known prop-
erties of the matrix phase, hence Eqs. (3), (4) and (5) specify explicit formulae
for the effective elastic stiffness tensor. As a result, the MT scheme is relatively
simple and is not numerically demanding. However, a direct application of the
MT scheme to a multiphase composite may be problematic, see [47, 50, 55].
In particular, the effective elastic stiffness tensor may lack diagonal symmetry
and may have an incorrect value at the dilute limit as well as at the unitary
reinforcement concentration. Some of the inconsistencies of the MT scheme
are not observed for special microstructures, for instance, for macroscopically
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isotropic multiphase composites and for multiphase composites with perfectly
aligned inclusions of similar shape.

The effective-medium-field (EMF) approximation proposed in [47] has been
specifically developed in order to consistently treat multiphase composites. In
the EMF scheme, it is assumed that each inclusion is embedded in an infinite
medium with the yet unknown effective properties of the composite (as in the
basic self-consistent scheme) and experiences a far-field strain equal to the
yet unknown average strain in the matrix (as in the MT scheme). The strain
concentration tensor is then found in the following form [47],

AEMF
n = ASC

n

[
v0I +

∑
k

vkA
SC
k

]−1

, (6)

and has the structure analogous to that of the MT scheme, Eq. (4), except
that Adil

n is now replaced by ASC
n that follows from the basic self-consistent

(SC) scheme [52],

ASC
n =

[
I + SnC

−1
(
Cn −C

)]−1
. (7)

Now, in addition to the inclusion shape, the Eshelby tensor depends on the
unknown effective properties of the composite. As a result, ASC

n depends on
C (both explicitly and through Sn), hence Eqs. (3), (6) and (7) specify now
a nonlinear equation for the effective stiffness tensor C that must be solved
numerically, for instance, using a fixed-point iteration method.

Following the route presented above for the effective elastic stiffness, the
following formula for the tensor of the effective thermal expansion is ob-
tained [37,47],

α = α0 +
∑
n

vn (αn −α0)Bn, (8)

where α0 and αn are the thermal expansion tensors of the matrix and the n-th
phase, respectively, and Bn is the stress concentration tensor, which is a fourth-
order tensor that relates the average stress in each phase to the macroscopic
stress. In the EMF approximation, the stress concentration tensor is given by

BEMF
n = BSC

n

[
v0I +

∑
k

vkB
SC
k

]−1

(9)

and
BSC

n =
[
I + C (I− Sn)

(
Dn −D

)]−1
, (10)

where Dn = C−1
n is the elastic compliance tensor of the n-th phase, and D =

C−1 is the effective elastic compliance tensor. The formulae corresponding to
the MT scheme are analogous to those in Eqs. (9)–(10) with the effective elastic
moduli C and D replaced by the elastic moduli of the matrix, respectively,
C0 and D0.
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Finally, the effective thermal conductivity tensor is given by the general equa-
tion [36]

κ = κ0 +
∑
n

vn (κn − κ0)Kn , (11)

where κ0 is the second-order thermal conductivity tensor of the matrix, κn

is the thermal conductivity tensor of the n-th type of inclusions, and Kn is
the temperature gradient concentration tensor for the n-th type of inclusions.
According to the considered micromechanical approximation scheme, the con-
centration tensor can be expressed via Eq. (4) and (6) with C, C0 and Cn

replaced by κ, κ0 and κn, respectively, and with the appropriate Eshelby
tensor corresponding to the heat conduction problem, see [56].

In general, non-spherical shape or anisotropic properties of inclusions may
lead to anisotropy of effective properties. In that context, two general types
of composites are considered in this work: composites with randomly oriented
anisotropic inclusions and composites with anisotropic inclusions aligned along
a preferential direction. In the later case, for perfectly aligned inclusions, the
composite exhibits transverse isotropy at the macroscale, and the effective
properties are then obtained by direct use of the equations presented above.

When the inclusions are randomly oriented, the composite is isotropic at the
macroscale, and the effective properties are obtained by averaging over all the
orientations of the inclusions. The general relation (3) takes then the form

C = C0 +
∑
n

vn 〈(Cn −C0)An〉 , (12)

where 〈Φ〉 denotes averaging of a tensorial quantity Φ over the whole orienta-
tion space, see [57]. Following [35,57,58], using the rules of tensor calculus, the
isotropic average of a fourth-order tensor Φ, satisfying the following symmetry
relations Φijkl = Φjikl = Φijlk, can be written as

〈Φ〉 = ΦhΛh + ΦsΛs , (13)

where

(Λh)ijkl = 1
3
δijδkl,

(Λs)ijkl = 1
2

(δikδjl + δilδjk)− 1
3
δijδkl,

Φh = 1
3
Φiijj,

Φs = 1
5

(
Φijij − 1

3
Φiijj

)
.

As a result, apart from the symmetries of Φ, the average tensor 〈Φ〉 possesses
also the major symmetry 〈Φ〉ijkl = 〈Φ〉klij.

The isotropic part of a second-order tensor φ can be obtained using a similar
averaging procedure,

〈φ〉 =
1

3
φii1 , (14)
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where 1 is the second-order identity tensor. This averaging procedure has been
used to compute the isotropic effective thermal conductivities.

3 Application to copper–graphene composites

3.1 Assumptions and material properties

The classical estimates discussed in the previous section will now be applied to
graphene-reinforced copper-matrix composites. As discussed in the Introduc-
tion, we assume that, due to the processing route, the composite includes not
only graphene but also graphite inclusions and voids. Several assumptions are
adopted in the present modelling. The first group of assumptions concerns the
general applicability of the MT and EMF averaging schemes, see Section 2:

(i) All inclusions are well approximated by an ellipsoidal shape so that the
concept of the Eshelby inclusion [48] can be used.

(ii) The inclusions are perfectly bonded to the matrix so that the displace-
ments and temperature are continuous at the inclusion-matrix interfaces.

(iii) Unless otherwise stated, the non-spherical and anisotropic inclusions are
oriented randomly so that the composite is macroscopically isotropic.

(iv) Disc-shaped inclusions are modelled as infinitely thin discs with the ellip-
soid semi-axes satisfying a1 = a2 and a3 → 0. The corresponding Eshelby
tensor is computed at the limit of a3 → 0, while the volume fraction is
to be understood to correspond to small, but finite a3.

The second group of assumptions is related to the specific class of composites
and inclusion types (see Figs. 1– 3) considered in this work:

(v) Graphene (Gn) inclusions are modelled as infinitely thin discs.
(vi) Two types of graphite inclusions are considered: crystalline graphite (CGt)

with highly anisotropic properties and polycrystalline graphite (Gt) with
isotropic properties. In both cases, the graphite inclusions are assumed
in spherical shape or as infinitely thin discs.

(vii) Voids of spherical (SV) or disc-like (DV) shape are modelled as inclusions
with elastic stiffness and thermal conductivity equal to zero.

(viii) All phases are assumed homogeneous with the properties specified in
Tables 1–3, see the comments below.

In the examples reported below, the effective properties are provided as a
function of the volume fraction of the inclusions ranging from 0 to 1. Clearly,
the volume fraction of graphene in a composite material is not expected to
exceed several percent. The results corresponding to higher volume fractions,
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though not relevant in practical applications, are provided for completeness
and to illustrate the relative dependencies between the actual effective proper-
ties of the composite and the reference properties of the matrix and individual
inclusions.

For the isotropic composites, the predicted effective properties are reported
below in terms of Young’s modulus E, coefficient of thermal expansion α
and thermal conductivity κ. For the transversely isotropic composites, the
predicted effective elastic properties are reported in terms of the directional
Young’s moduli E1 and E3 that correspond to a uniaxial stress state with the
tension axis, respectively, normal and parallel to the axis of symmetry (aligned
with the x3-axis). Relationships between the directional Young’s moduli and
the elastic constants for a transversely isotropic elastic material can be found
in [34]. The effective in-plane and cross-plane thermal conductivities (respec-
tively, κ11 and κ33) and the effective in-plane and cross-plane thermal expan-
sion coefficients (respectively, α11 and α33) are simply equal to the components
of the corresponding second-order effective tensors κ and α.

In the present modelling, the nano-effects are not considered, and graphene
is treated as a classical anisotropic solid. Since graphene exhibits isotropic
in-plane properties (due to the hexagonal lattice), the adequate anisotropy
class is the transverse isotropy. The in-plane properties of graphene are well
characterized, but the out-of-plane properties are not known. In fact, the out-
of-plane properties can be largely controlled by the interfacial phenomena
which are not considered in this work. The properties of a transversely isotropic
solid that represents graphene, as considered below, should thus be treated as
effective properties characterizing the overall behaviour of the graphene and
the graphene-matrix interfaces.

A simplified approach is adopted here to describe the out-of-plane elastic prop-
erties of graphene. We start by noting that the in-plane elastic modulus of
graphene, typically reported to be of the order of 1000 GPa [2], is very close
to the in-plane modulus of crystalline graphite. For instance, for the elastic
constants reported in [23], the in-plane elastic modulus of crystalline graphite
is equal to 1025 GPa. The crystalline graphite is transversely isotropic and ex-
hibits high anisotropy with the ratio of cross-plane elastic modulus E3 to the
in-plane modulus E1 equal to 0.035. The elastic stiffness tensor of crystalline
graphite, denoted by CCGt, is thus adopted as the lower bound for the stiffness
tensor of graphene. As the upper bound, we adopt the stiffness tensor, denoted
by CisoGn, corresponding to an isotropic solid with the Young’s modulus and
Poisson’s ratio equal to the respective in-plane moduli of crystalline graphite
equal to 1025 GPa and 0.16, respectively [23]. Finally, in the examples below,
we study the effect of out-of-plane properties of graphene by considering the
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Table 1
Elastic constants and thermal expansion coefficients of graphene treated as a trans-
versely isotropic solid, see the parametrization in Eq. (15). The case of η = 0
corresponds to crystalline graphite.

Elastic constants [GPa] Thermal expansion coeff. [10−6/K]

η c11 c12 c13 c33 c44 E3/E1 α11 = α22 α33

0 1060 180 15 36.5 4.5 0.035 -1 30

0.1 1064 184 35 142 48 0.14 -1.7 26

1 1097 217 217 1097 440 1 -8 -8

Table 2
Thermal conductivities in [W/mK] of graphene (Gn) and crystalline graphite (CGt),
see text.

κ11 = κ22 κ33

Gn 5000 {5, 50, 500, 5000}

CGt 2000 10

following parametrization of the elastic stiffness tensor,

CGn = (1− η)CCGt + ηCisoGn, (15)

so that η = 0 corresponds to the crystalline graphite with E3/E1 = 0.035
and η = 1 corresponds to E3/E1 = 1. Additionally, an intermediate value of
η = 0.1 is considered which corresponds to E3/E1 = 0.14.

The elastic constants used for graphene according to the parametrization (15)
are provided in Table 1. The coefficients of thermal expansion are treated
analogously, and the corresponding parameters are also provided in Table 1.

The in-plane thermal conductivity κ11 of the pristine, suspended graphene has
been reported in the range between 4840 and 5300 W/mK [1], and the value
of 5000 W/mK is adopted in this work. As the out-of-plane conductivity is
concerned, several values of κ33 are used in the present computations. The case
of κ33/κ11 = 1, corresponding to isotropic thermal conductivity, is adopted as
an upper bound, but more realistic, lower values of κ33/κ11 are also considered,
see Table 2. In-plane and out-of-plane thermal conductivities of crystalline
graphite [59] are also provided in Table 2. Note that thermal anisotropy of
crystalline graphite is very high (κ33/κ11 = 0.005), and it is expected that
graphene exhibits a high anisotropy as well.

To complete specification of material parameters used in the present study, the
parameters of isotropic polycrystalline graphite (Gt) and isotropic polycrys-
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Table 3
Properties of isotropic polycrystalline graphite (Gt) and isotropic copper matrix
(Cu).

Gt Cu

Young’s modulus [GPa] 10 120

Poisson’s ratio 0.16 0.34

Thermal expansion coeff. [10−6/K] 2.9 17

Thermal conductivity [W/mK] 100 400

talline copper are provided in Table 3. The properties adopted for copper are
representative for pure copper [60,61]. In particular, the thermal conductivity
of 400 W/mK is relatively high, and noticeably lower values can be encoun-
tered depending on the microstructure and purity. At the same time, the
properties of isotropic polycrystalline graphite are even more sensitive to the
variations in microstructure and quality. Young’s modulus at room tempera-
ture is typically reported between 4 and 16 GPa and the thermal conductivity
between 60 and 200 W/mK [59,62–64], so that intermediate values have been
adopted in the present study (Table 3). In any case, those properties are at
least one order of magnitude lower than the corresponding in-plane properties
of crystalline graphite, which is due to the very high anisotropy of graphite.

3.2 Micromechanical predictions for macroscopically isotropic two-phase com-
posites

We start by examining a perfect isotropic two-phase copper–graphene compos-
ite, i.e., a composite with no graphite inclusions and no voids. This reference
case is actually the theoretical limit of what can be achieved by adding ran-
domly oriented graphene to a copper matrix. Here and below, the effective
properties of the composite are normalized by the corresponding properties
of the matrix, denoted by ’0’ in the subscript, and representing the reference
material without any inclusions.

The normalized effective Young’s modulus E/E0, thermal expansion coeffi-
cient α/α0 and thermal conductivity κ/κ0 are shown in Fig. 4 as a function
of the volume fraction vGn of graphene. Here and throughout the paper, the
predictions of the MT model are denoted by solid lines and those of the EMF
model by dashed lines. We recall that the results corresponding to high volume
fractions are reported here even though the physically sound range of volume
fractions may be exceeded.

It is seen in Fig. 4 that the isotropic effective properties depend strongly on
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Fig. 4. Isotropic copper–graphene composite: influence of the out-of-plane properties
of graphene (E3 and κ33) on (a) effective Young’s modulus, (b) coefficient of thermal
expansion and (c) thermal conductivity. Here and throughout the paper, solid lines
correspond to the MT model, dashed lines correspond to the EMF model.

the out-of-plane properties of the graphene inclusions, even though the inclu-
sions are disc-shaped (a3 → 0). In fact, the stiffening effect due to the high
in-plane stiffness of graphene disappears for E3/E1 = 0.035, Fig. 4a. Simi-
larly, enhancement of the effective thermal conductivity vanishes for κ33/κ11
between 0.01 and 0.001, Fig. 4c.

In order to illustrate the performance of graphite as a reinforcement phase,
the effective properties of copper–graphite composites are provided in Fig. 5
for crystalline graphite (CGt) and in Fig. 6 for polycrystalline graphite (Gt).
The effect of inclusion shape is also illustrated in Figs. 5 and 6 by considering
spherical inclusions (SCGt and SGt) and randomly oriented disc inclusions
with a3 → 0 (DCGt and DGt). In the latter case, the symmetry axis of
transversely isotropic crystalline graphite is assumed normal to the discs.

In the case of crystalline graphite (CGt), the effective Young’s modulus does
not change significantly with increasing volume fraction of graphite for both
spherical and disc-shaped inclusions, Fig. 5a. At the same time, the effect of
inclusion shape on the effective thermal conductivity is significant, Fig. 5c. For
disc-shaped inclusions (DCGt), the thermal conductivity decreases by 50% for
vCGt = 0.2, while it increases by approximately 15% for the same volume frac-
tion of spherical inclusions. Note that the performance of crystalline graphite
is similar to that of graphene modelled as a highly anisotropic material. This,
of course, is a result of the assumptions adopted in Section 3.1.

In the case of polycrystalline graphite (Gt), Fig. 6, both the elastic modu-
lus and the thermal conductivity decrease with increasing volume fraction of
graphite both for spherical and disc-shaped inclusions, while the effect of shape
of inclusions is more significant in the case of elastic modulus. Referring to
the multiphase composites discussed below, it is thus expected that polycrys-
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Fig. 5. Isotropic copper–crystalline graphite composite: influence of the inclusion
shape on (a) effective Young’s modulus, (b) coefficient of thermal expansion and (c)
thermal conductivity.
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Fig. 6. Isotropic copper–polycrystalline graphite composite: influence of the inclu-
sion shape on (a) effective Young’s modulus, (b) coefficient of thermal expansion
and (c) thermal conductivity.

talline graphite would lower the thermoelastic properties of a copper–graphene
composite contaminated by polycrystalline graphite.

In all cases studied above, the effective coefficient of thermal expansion de-
creases with increasing volume fraction of graphene and graphite, which may
be beneficial in some applications. This is expected in view of the low, or even
negative, thermal expansion coefficient of graphene and graphite. The most
significant decrease is predicted for graphene with η = 1, i.e., for isotropic
elastic moduli and isotropic thermal expansion, see Table 1. For more realistic
properties of graphene and for graphite, the decrease is noticeably lower.

As it is well known, the difference between the predictions of the two averaging
schemes (MT and EMF) is not much pronounced at low volume fractions of
inclusions. Depending on the specific composite considered, the MT scheme
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appears sufficiently accurate when the volume fraction of inclusions does not
exceed several percent. Otherwise, the EMF scheme would be preferable as it
is more reliable, but also it is more complex and more demanding.

3.3 Effective properties of macroscopically isotropic multiphase composites

In this section, we study the effective properties of isotropic multiphase copper–
graphene composites. Specifically, we study the effect of graphite that may be
present in a composite material as a result of imperfect processing, as discussed
in detail in the Introduction. The effect of voids, which constitute another kind
of imperfection of composites produced, for instance, by powder metallurgy,
is also considered using the same modelling approach.

Below, we only report the results corresponding to copper–graphene com-
posites containing polycrystalline graphite since the influence of crystalline
graphite is significantly less pronounced. Actually, as illustrated in Section 3.2,
the properties of a copper–crystalline graphite composite do not differ much
from those of a copper–graphene composite when realistic out-of-plane prop-
erties of graphene are adopted.

Figure 7 shows the normalized effective thermal conductivity of a copper-
matrix composite with graphene and polycrystalline graphite inclusions, the
latter having spherical or disc-like shape. The thermal conductivity is shown
as a function of the total volume fraction of inclusions for three fixed ra-
tios of the graphite-to-graphene content. The results for a two-phase copper–
graphene composite are also provided as a reference. The out-of-plane thermal
conductivity of graphene, which has a significant effect on the effective con-
ductivity, see Fig. 4c, is adopted here as κ33/κ11 = 0.01, which is assumed to
be a reasonably realistic value.

As expected, the effective thermal conductivity decreases with increasing rel-
ative content of graphite. The effect of the shape of graphite inclusions is not
much pronounced, and the disc-shaped inclusions result in a somewhat higher
reduction than the spherical inclusions. This is consistent with the results
obtained for a two-phase copper–polycrystalline graphite composite, Fig. 6c.

The effect of polycrystalline graphite and inclusion shape is further illustrated
in Fig. 8. Here, a copper–graphene composite is considered which additionally
contains two families of polycrystalline graphite inclusions, namely spherical
and disc-shaped inclusions. The diagrams in Fig. 8 present contour plots of
normalized effective properties at a fixed total volume fraction of inclusions.
The position within the triangular domain specifies the relative volume frac-
tion of the three inclusion types (Gn, SGt, DGt), and the colour denotes the
corresponding value of the parameter according to the scale provided in the
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Fig. 7. Effective thermal conductivity of a three-phase composite with graphene
(κ33/κ11 = 0.01) and polycrystalline graphite inclusions, the latter having (a) spher-
ical or (b) disc-like shape.

respective legend. The vertices correspond to two-phase composites contain-
ing only one type of inclusions, and each vertex is labelled accordingly along
with the corresponding value of the parameter. The edges and the interior of
the triangular domain correspond, respectively, to three- and four-phase com-
posites, and the relative volume fraction of each phase is determined by the
proximity to the corresponding vertex.

It is seen that the isolines in Fig. 8 are approximately straight, parallel and
equally spaced. This means that the dependence of the effective properties
on the relative volume fractions of the inclusions is approximately linear in
the considered range of the total volume fraction v. Accordingly, the effective
property of a multiphase composite can be obtained with a good approxi-
mation as a linear combination of the values corresponding to the respective
two-phase composites.

Finally, the effect of voids on the effective thermal conductivity of an isotropic
copper–graphene composite is illustrated in Fig. 9. Here, the effect of void
shape is very pronounced, which is a well-known property [35]. In fact, the
effective thermal conductivity decreases by 10–15% for 10% volume fraction
of spherical voids, while just 0.1% volume fraction of disc-shaped voids results
in a reduction by 60%.

3.4 Effective properties of transversely isotropic composites

It has been shown in the preceding subsections that the enhancement of ther-
momechanical properties in an isotropic copper–graphene composite is largely
limited due to random orientation of graphene in the matrix. Clearly, the
extraordinary (in-plane) properties of graphene can be exploited more effec-
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Fig. 9. Effect of voids on the effective thermal conductivity for a cooper–graphene
composite (κ33/κ11 = 0.01). Voids are modelled as (a) spheres (SV) and (b) discs
(DV).

tively by arranging graphene platelets along a preferential direction. Accord-
ingly, in this subsection, we study a copper–graphene composite in which all
graphene discs are parallel so that the material exhibits transverse isotropy at
the macroscale.

The in-plane and cross-plane effective properties of a transversely isotropic
copper–graphene composite are shown in Fig. 10. It is seen that the in-plane
Young’s modulus and the in-plane thermal conductivity do not depend on
the out-of-plane properties assumed for graphene. Of course, the cross-plane
properties are controlled by the out-of-plane properties of graphene, and here
the effect is very significant.

The dependence of the effective in-plane Young’s modulus and thermal con-
ductivity on the volume fraction of graphene is approximately linear, hence,
as expected, the effective in-plane properties can be significantly improved by
orienting the graphene inclusions.

The effect of voids on the effective thermal conductivity of a transversely
isotropic copper–graphene composite is shown in Fig. 11 for κ33/κ11 = 0.01
assumed for graphene. Spherical voids have a small effect on both the in-
plane and cross-plane thermal conductivity, see Fig. 11a. This is consistent
with the results shown in Fig. 9a for an isotropic composite. The disc-shaped
voids, which are here assumed to be parallel to the graphene platelets, have a
significant effect on the cross-plane conductivity, similar to that illustrated in
Fig. 9b, while the in-plane conductivity is not affected.
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Fig. 11. In-plane (top) and cross-plane (bottom) effective thermal conductivity
of a transversely isotropic copper–graphene composite with (a) spherical and (b)
disc-shaped voids.

3.5 Comparison to available experimental data

Experimental measurements of the effective thermoelastic properties of copper–
graphene composites are scarce. Actually, we were only able to find two rel-
evant experimental works. These results and the associated micromechanical
predictions are discussed below.

Chu and Jia [19] reported the effective Young’s modulus of a copper–graphene
composite produced by a typical powder metallurgy process: milling of a
mixture of copper powder and graphene nano-platelets, followed by com-
paction and sintering. The processing route leads to a random distribution
of graphene platelets and isotropic properties of the composite. The measured
Young’s modulus is shown in Fig. 12 as a function of the volume fraction of
graphene. Included in Fig. 12 are also the micromechanical predictions which
are computed here using the actual Young’s modulus of copper matrix equal
to 76 GPa, as measured in [19]. The difference with respect to the typical
value of 120 GPa may result, for instance, from residual porosity after sinter-
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Fig. 12. Effective Young’s modulus of an isotropic copper–graphene composite: mi-
cromechanical predictions compared to experimental data of Chu and Jia [19].

ing. A reasonably good agreement of the theoretical predictions with experi-
ment is observed for the out-of-plane properties of graphene corresponding to
E3/E1 = 0.035, i.e., for η = 0 in the parametrization (15).

Note that the experimental Young’s modulus measured for the highest volume
fraction vGn = 0.12 does not fit the general trend. This has been associated
in [19] to an increased aggregation of graphene platelets observed at higher
volume fractions, which results in formation of pores and reduction of the
effective modulus. In fact, a noticeable decrease of relative density has been
observed for vGn = 0.12, cf. [19].

The second example is concerned with the effective thermal conductivity of
an electrochemically codeposited copper–graphene composite [27,28]. Samples
of Cu–Gn composite were electrochemically codeposited on oxygen-free high-
conductivity copper foils from a bath containing graphene oxide suspension
in a solution of technical grade CuSO4 in distilled water. As stated in [27],
graphene is distributed uniformly in the composite films, thus the composite
is assumed to be macroscopically isotropic.

Thermal conductivity of the copper–graphene composite, measured by the
3-ω method [65], is shown in Fig. 13 as a function of the volume fraction
of graphene. The corresponding micromechanical predictions, also shown in
Fig. 13, have been obtained for the thermal conductivity of copper matrix
equal to 380 W/mK, as reported in [27]. The experimental data are close to
the predictions obtained for the out-of-plane conductivity of graphene specified
by the ratio κ33/κ11 = 0.005. Interestingly, this value of the κ33/κ11 ratio is
equal to the ratio of the out-of-plane to the in-plane thermal conductivity of
crystalline graphite, cf. Table 2.
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Fig. 13. Effective thermal conductivity of a copper–graphene composite: microme-
chanical predictions compared to experimental data of Jagannadham [27,28].

4 Conclusion

The Mori–Tanaka method and the effective-medium-field approximation have
been used to estimate the effective thermoelastic properties of multiphase
copper–graphene composites. It has been assumed that the composite ad-
ditionally contains particles of graphite and voids as a result of imperfect
processing. The influence of those undesired inclusions has been investigated
quantitatively, and it has been shown that the expected enhancement of the
effective properties can be significantly reduced.

The main simplification adopted in the present modelling is that graphene
has been treated as an ordinary anisotropic thermoelastic material so that the
nano-effects are not included in the analysis. However, the adopted approach
allowed us to study the influence of the out-of-plane properties of graphene
which are expected to be significantly lower than its exceptional in-plane prop-
erties, the former being also less recognized.

The micromechanical predictions obtained for isotropic composites with ran-
domly oriented graphene platelets indicate that the out-of-plane properties of
graphene strongly influence the effective properties. In particular, assuming
that graphene is highly anisotropic with the out-of-plane properties specified
by the ratios E3/E1 and κ33/κ11 corresponding to crystalline graphite (equal
to 0.035 and 0.005, respectively), the effective Young’s modulus and the ef-
fective thermal conductivity have been found to be essentially unaffected by
the increasing volume fraction of graphene. This suggests that the achievable
enhancement of the elastic modulus and thermal conductivity of copper is
limited for randomly oriented graphene inclusions, as confirmed by the exper-
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imental data analyzed in Section 3.5. Also, the crucial role of the out-of-plane
properties of graphene calls for a reliable characterization of those properties.

Clearly, regardless of the actual anisotropy of graphene, significant enhance-
ment of directional properties is possible in a macroscopically anisotropic com-
posite with graphene platelets arranged parallel to a specified plane. The effec-
tive properties of the corresponding transversely anisotropic composites have
also been estimated, including the analysis of the effect of void shape and
volume fraction.

The study reported in the present paper shows that the adopted micromechan-
ical approach can serve as an efficient tool for a fast and robust estimation of
the effective properties of graphene-based metal-matrix composites. Of course,
the micromechanical predictions can be regarded reliable only if the proper-
ties of the graphene itself are properly identified, particularly the out-of-plane
properties, as discussed above. The feasibility of the present approach is con-
firmed by the comparison of the predictions to available experimental data,
as reported in Section 3.5.
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