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Abstract A consistent algorithmic treatment of the incre-
mental Mori–Tanaka (MT) model for elasto-plastic compos-
ites is proposed. The aim is to develop a computationally
efficient and robust micromechanical constitutive model
suitable for large-scale finite-element computations. The
resulting overall computational scheme is a doubly-nested
iteration-subiteration scheme. The Newton method is used
to solve the nonlinear equations at each level involved.
Exact linearization is thus performed at each level so that
a quadratic convergence rate can be achieved. To this end,
the automatic differentiation (AD) technique is used, and the
corresponding AD-based formulation is provided. Excellent
overall performance of the present MT scheme in three-
dimensional finite-element computations is illustrated.

Keywords Mori–Tanaka method · Composite materials ·
Elasto-plasticity · Finite element method · Automatic
differentiation

1 Introduction

The Mori–Tanaka (MT) scheme [1,2] belongs to the wide
class of mean-field homogenization methods that have been
developed for predicting overall properties of heterogeneous
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materials. While more elaborate multiscale approaches, such
as the FE2 method [3–5], are readily available, themean-field
models are still attractive in view of their good predictive
capabilities and low computational cost [6–8].

The MT method relies on the solution of Eshelby’s inclu-
sion problem [9] that is valid for amatrix phase obeying linear
elasticity. For an inelastic matrix, its response is thus lin-
earized, and this leads to a family of incrementalMTmodels.
Such models have already been applied to numerous mate-
rial systems and constitutive behaviors, e.g., metal-matrix
composites [10–12], dual-phase and TRIP steels [13,14],
shape-memory alloys [15,16], and others.

In view of its relatively low computational cost, the incre-
mental MT scheme is particularly suitable for multiscale
finite-element simulations of elasto-plastic composite mate-
rials. In that framework, the MT model is employed at
the element Gauss points as a micromechanical constitutive
model that describes the effective (macroscopic) response of
a heterogeneous material. At the same time, the model pro-
vides additional information concerning local stresses and
strains in the individual phases. For overall efficiency of
such computations, it is crucial that the computer implemen-
tation is efficient and robust. Additionally, in the implicit
finite-element framework, exact linearization, which yields
an algorithmic (consistent) macroscopic tangent, is essen-
tial to achieve the quadratic convergence rate of the global
Newton iterations.

While several finite-element implementations of the incre-
mental MT scheme have been reported in the literature,
dating back to [10,11], it seems that computational efficiency,
consistent linearization, and related issues have not attracted
sufficient attention yet. This work is thus aimed at develop-
ing an efficient and robust incremental MT scheme and its
finite-element implementation suitable for large-scale com-
putations. Consistent linearization of the macroscopic stress
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predicted by the MT scheme is here considered a necessary
condition to achieve this goal. In this work, the automatic
differentiation (AD) technique has been employed for that
purpose. Following [17,18], an AD-based notation has been
adopted, and the corresponding compact AD-based formula-
tion of the incremental MT scheme has been introduced. The
AD-based formulation constitutes the basis for finite-element
implementation and for automation of the related tasks.

As discussed in detail in the paper, the incremental MT
scheme involves a nested Newton-type algorithm with inner
iterations corresponding to the equations of incremental
plasticity formulated for the individual phases and with
outer iterations corresponding to the micro–macro transi-
tion scheme of theMTmethod. Considering that equilibrium
equations at the global finite-element level are also solved
using theNewtonmethod, the complete scheme can be classi-
fied as a doubly-nested iteration-subiteration scheme. Exact
linearization has been performed at each level so that the
Newton method can be used to efficiently solve the nonlin-
ear equations at each level.

In the course of implementation of the incremental MT
model, it turned out that exact linearization is not sufficient
for achieving a fully robust computational scheme. Specif-
ically, convergence problems were encountered in some
situations, while in most cases the scheme behaved very
well. It has been found that the problems were caused by
discontinuities in the incremental finite-step response. The
discontinuities may occur at the instant of the elastic-to-
plastic transition in the matrix phase and result from the
related abrupt change of the reference stiffness for which
the MT interaction equation is formulated. As a remedy, the
incremental MT scheme has been enhanced with a substep-
ping strategy. A highly robust and efficient computational
scheme has been finally obtained, as illustrated by the numer-
ical examples below. A detailed analysis of the response
discontinuities is provided in [19].

The paper is organized as follows. The basic formulation
of the incrementalMTscheme is recalled inSect. 2. InSect. 3,
the AD-based notation is introduced along with the corre-
sponding AD-based formulation of incremental plasticity.
The AD-based formulation of the incremental MT scheme
is then developed in Sect. 4. In Sect. 5, response disconti-
nuities are discussed, and a substepping strategy is proposed
as a remedy for the related problems. Finally, performance
and robustness of the computational scheme are illustrated
in Sect. 6.

2 Incremental Mori–Tanaka model

2.1 Rate formulation

The Mori–Tanaka model is a mean-field model originally
developed for estimating effective properties of linearly elas-

tic two-phase composites [1,2]. The model is based on
Eshelby’s solution to the problem of an ellipsoidal inclusion
embedded into an infinite linearly elastic medium [9]. The
main outcome of this solution is that the strain ε1 inside the
inclusion is uniform and related to the far-field strain ε0 by a
fourth-order (Eshelby) tensor. Hill [20] noticed an important
consequence of Eshelby’s result, which can be written in the
form of the so-called interaction equation,

σ 1 − σ 0 = −L∗ (ε1 − ε0) , (1)

in which σ 1 and σ 0 are, respectively, the stress tensor in the
inclusion and the far-field stress tensor. The fourth-order ten-
sor L∗, called the Hill tensor, can be conveniently expressed
in terms of the polarization tensor P [20],

L∗ = P
−1 − L0, P = P̂(L0), (2)

and both L∗ and P depend only on the elastic stiffness L0 of
the infinite medium and on the shape of the inclusion. Note
that, whenever needed to avoid confusion, the superimposed
hat is used to distinguish the function from its value. Gen-
eral formulae for the polarization tensor P for a spherical
inclusion and anisotropic matrix can be found, e.g., in [21].
The formula for the special case of a spherical inclusion and
isotropic matrix is provided in “Appendix 2”.

The interaction equation (1) holds independently of the
actual constitutive law for the inclusion and remains valid as
long as the matrix follows a linear constitutive law. The inter-
action equation is the basis of several micro-macro transition
schemes for estimating effective properties of heterogeneous
materials [1,2,20,22–25].

In particular, theMT scheme [1,2] is obtained by identify-
ing ε0 and σ 0 with the average strain and stress in the matrix,
while the elastic stiffness L0 of the matrix is adopted as the
reference stiffness that is used to determineL∗ in the interac-
tion equation (1). The overall strain and stress in a two-phase
composite are then obtained by applying the averaging rule,

ε̄ = (1 − c)ε0 + cε1, σ̄ = (1 − c)σ 0 + cσ 1, (3)

where c denotes the volume fraction of inclusions and
subscripts ‘0’ and ‘1’ refer to the matrix and inclusion,
respectively. The interaction equation (1) together with the
averaging rule (3) and with the linear constitutive equations
of the individual phases, σ i = Liεi , i = 0, 1, constitute a
system of linear equations that fully specify the macroscopic
and microscopic response of an elastic composite.

In order to apply theMTmodel for an elasto-plasticmatrix
exhibiting a non-linear behavior, linearization of the consti-
tutive law must be performed. To this end, the incremental
linearization proposed by Hill [20] is often adopted. Within
that procedure, the rate form of the elasto-plastic stress-strain
relation is employed,
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σ̇ 0 = L
ep
0 ε̇0, (4)

where Lep
0 is the current elasto-plastic (constitutive) tangent

stiffness tensor of the matrix. The interaction equation is also
expressed in terms of rates,

σ̇ 1 − σ̇ 0 = −L∗ (ε̇1 − ε̇0) , (5)

and the Hill tensor L∗ is now determined in terms of the
tangent stiffness Lep

0 , thus L∗ = P
−1 −L

ep
0 and P = P̂(L

ep
0 ),

cf. Eq. (2).
Note that the elasto-plastic tangent stiffness Lep

0 is anisot-
ropic even if the material is isotropic. Numerous studies, e.g.
[11,26], see also Fig. 2 below, have shown that the macro-
scopic response predicted by the incremental MT model is
too stiff when the actual anisotropic tangent is used to for-
mulate the interaction equation, and several isotropization
schemes havebeenproposed in order to circumvent that prob-
lem. This issue is discussed in more detail later.

Consider additionally the rate form of the constitutive
equation of the inclusion,

σ̇ 1 = L
ep
1 ε̇1, (6)

which provides a linear relationship between the stress and
strain rates with L

ep
1 denoting the corresponding elasto-

plastic tangent. Using Eqs. (4) and (6), the interaction
equation (5) can be written in the following equivalent form,

ε̇1 = (
I + P

(
L
ep
1 − L

ep
0

) )−1
ε̇0. (7)

As in the case of a linear elastic composite, the rate
equations provided above fully specify the macroscopic and
microscopic rate-response of an elasto-plastic composite.
The equations are linear in rates of local and macroscopic
strains and stresses, and thus the overall tangent can be deter-
mined in a closed form. In order to use the model in practice,
a time integration scheme must be applied to the above rate
equations, and this is discussed next.

2.2 Incremental formulation

With reference to the usual displacement-based finite-ele-
ment framework, a strain-controlled response of the compos-
ite is considered. In an incremental time stepping scheme, the
variables at the previous time tn are assumed to be known,
and those at the current time tn+1 are to be determined as a
response to a given finite increment Δε̄ of the macroscopic
strain. The ultimate goal is to determine the corresponding
incrementΔσ̄ of the macroscopic stress and the overall algo-
rithmic tangent operator.

The finite-step incremental MT scheme will naturally
involve an incremental finite-step constitutive response of the

phases. The incremental response is typically determined by
an algorithm, e.g., the return mapping algorithm [27], so that
the stress increment Δσ i can be written as a function of the
strain increment Δεi , thus

Δσ i = Δσ̂ i (Δεi ), L
alg
i = ∂Δσ i

∂Δεi
= ∂σ n+1

i

∂εn+1
i

, (8)

whereLalg
i is the corresponding algorithmic (consistent) tan-

gent, and Δ(·) = (·)n+1 − (·)n .
The MT model, notably the interaction equation (5),

requires that the response of the matrix is linear. Follow-
ing Pettermann et al. [10] and Doghri and Ouaar [11], the
basic assumption in developing the present incremental for-
mulation is that the algorithmic tangent Lalg

0 is used for that
purpose, thus

Δσ 0 ≈ L
alg
0 Δε0. (9)

Alternatively, just like in the rate formulation discussed
above, the constitutive tangent Lep

0 could be used instead of

L
alg
0 , as employed, for instance, in [26,28,29]. The rationale

behind using the algorithmic tangent is that it results from
linearization of the actual incremental (finite-step) response.
This choice is also consistent with the AD-based approach
advocated in this paper, in which the algorithmic tangent is
obtained in a natural way by applyingAD tools, see Sect. 3.2.

The interaction equation (5) is now written in terms of
increments,

Δσ 1 − Δσ 0 = −L∗ (Δε1 − Δε0) , (10)

and the Hill tensor L∗ as well as the corresponding polariza-
tion tensor P,

L∗ = P
−1 − L

alg
0 , P = P̂(L

alg
0 ), (11)

are determined in terms of the algorithmic tangentLalg
0 of the

matrix, see “Appendices 1 and 2” for the specific formulae
used in this work.

At this point, several incremental finite-step MT schemes
can be developed based on the interaction equation (10). This
is because the actual incremental response of the phases is
nonlinear and the stress increments Δσ i in Eq. (10) can
be either substituted directly by those resulting from the
incremental constitutive equations, cf. Eq. (8), or can be
approximated by the linearization (9). In the former case,
the linearization (9) is in fact not exploited directly, as it is
only used to specify the reference stiffness of the matrix in
the interaction equation (10). This approach is followed in
the model developed in the present work.
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If, alternatively, the linearization (9) is employed for
both the matrix and the inclusion, and the corresponding
approximate increments Δσ i are substituted in the inter-
action equation (10), then the interaction equation can be
expressed in the following form,

Δε1 = (
I + P(L

alg
1 − L

alg
0 )

)−1
Δε0, (12)

which is a finite-step counterpart of Eq. (7).
The interaction equation (10), or its alternative form (12),

combined with the incremental constitutive equations of the
phases (8) and with the averaging rule (3) constitute a set
of nonlinear equations that specify the overall incremental
response of the composite. The algorithmic treatment of the
problem is discussed in detail in Sect. 4.

3 AD-based formulation of incremental
elasto-plasticity

In this section, we briefly introduce the AD-based formu-
lation of small-strain elasto-plasticity which is a part of the
micromechanical scheme that is developed later in Sect. 4. At
the same time, the algorithmic treatment of the incremental
MT scheme is a generalization of the treatment of incremen-
tal elasto-plasticity, hence it is worthwhile to introduce the
main concepts in a considerably simpler context. The frame-
work of incremental elasto-plasticity is standard [27], and
the AD-based formulation follows that introduced by Korelc
[17], see also [18].

3.1 Incremental elasto-plasticity

The total strain ε is additively decomposed into elastic and
plastic part, εe and εp, respectively, and the free energy func-
tion ψ = ψ(εe,α) is introduced, so that we have

ε = εe + εp, σ = ∂ψ

∂εe
, q = −∂ψ

∂α
, (13)

where σ is the stress, and q is the thermodynamic force con-
jugate to the hardening variables α.

Equations that govern evolution of the plastic strain εp

and internal variables α are provided below in an incremental
form that results fromapplication of the backward-Euler inte-
gration scheme to the corresponding rate equations, which
are omitted here for brevity.

At the current time instant t = tn+1, the yield function
φ(σ , q) defines the admissible domain in the stress space,

φn+1 = φ(σ n+1, qn+1) ≤ 0. (14)

The flow rule and the hardening law are specified by the
corresponding constitutive functions r(σ , q) and h(σ , q),
namely

εp,n+1 = εp,n + Δγ r(σ n+1, qn+1),

αn+1 = αn + Δγ h(σ n+1, qn+1), (15)

and the plastic multiplier Δγ satisfies the usual complemen-
tarity conditions

Δγ ≥ 0, φn+1 ≤ 0, Δγφn+1 = 0. (16)

The above set of incremental equations and inequalities
specifies the state update problem in which unknown are the
current internal variables (εp,n+1,αn+1), while given are the
previous internal variables (εp,n,αn) and the current total
strain εn+1.

The state update problem is solved using the return map-
ping algorithm [27]. First, the elastic trial state is determined
by assuming that the response is elastic,

εe,trial = εn+1 − εp,n,

σ trial = ∂ψ(εe,trial,αn)

∂εe,trial
,

qtrial = −∂ψ(εe,trial,αn)

∂αn
,

φtrial = φ(σ trial, q trial). (17)

If the trial state is admissible, i.e. if φtrial ≤ 0, then the
step is indeed elastic, and we have

εp,n+1 = εp,n, αn+1 = αn, Δγ = 0. (18)

Otherwise, if φtrial > 0 then the step is plastic, and
the following set of equations is solved for unknown
(εp,n+1,αn+1,Δγ ),

εp,n+1 − εp,n − Δγ r(σ n+1, qn+1) = 0,

αn+1 − αn − Δγ h(σ n+1, qn+1) = 0,

φ(σ n+1, qn+1) = 0,

(19)

where σ n+1 and qn+1 are explicitly given by the constitutive
equations (13).

In the implicit finite-element method, in addition to the
current stress σ n+1, the algorithmic (consistent) tangent Lalg

is also needed,

L
alg = ∂σ n+1

∂εn+1

= ∂2ψn+1

∂εe,n+1∂εe,n+1

(
I − ∂εp,n+1

∂εn+1

)

+ ∂2ψn+1

∂εe,n+1∂αn+1

∂αn+1

∂εn+1 , (20)

which involves linearization of the internal variables εp,n+1

and αn+1. Since εp,n+1 and αn+1 are obtained as a solution
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of the nonlinear system (19), their dependence on εn+1 is
implicit, and determination of the corresponding derivatives
occurring in Eq. (20) is not immediate. This is discussed next
in a somewhat more general context.

In the following, the superscript n + 1 denoting the quan-
tities evaluated at the current time instant t = tn+1 will be
omitted in order to make the notation more compact. Further,
let us denote by h the vector of unknowns in the state update
problem and by Q the residual of the incremental equations
that specify the state update problem, e.g., through the return
mapping algorithm as specified above. In particular, in the
case of the model discussed above, see Eq. (19), h and Q are
defined as,

h = {εp,α, γ },

Q(ε, h, hn) =
⎧
⎨

⎩

εp − εp,n − (γ − γ n)r(σ , q)

α − αn − (γ − γ n)h(σ , q)

φ(σ , q)

⎫
⎬

⎭
. (21)

Even though hn is known and fixed at t = tn+1, it has been
included as an argument of Q in order to indicate that the
problem is path-dependent.

Remark 1 The vector of unknownshmay include symmetric
tensors, for instance, the plastic strain εp. The same applies
to the residual vector Q defined in Eq. (21). When defin-
ing the vectors h and Q, the symmetry of tensors must thus
be accounted for, for instance, by including only the inde-
pendent components [18]. An adequate treatment of tensor
quantities is tacitly assumed here and in the following.

With the above notation, the incremental constitutive
equations can be written in the following form,

σ = ∂ψ(ε, h)

∂ε
, Q(ε, h, hn) = 0, (22)

where the free energy is now defined as a function of the
total strain and internal variables, thus ψ = ψ(ε, h), and
the stress is defined accordingly. In the incremental setting,
the current total strain ε is prescribed, hn is known from the
previous time step, and the current h is to be found such that
the incremental equations in the residual form Q = 0 are
satisfied.

Equation Q = 0 is in general nonlinear, and the New-
ton method is applied to solve it for the unknown h. In the
iterative Newton scheme, equation Q = 0 is linearized with
respect to the current estimate h( j) at fixed ε. This yields a
linear equation for the correction Δh( j),

A( j)Δh( j) = −Q( j), A( j) = ∂Q( j)

∂h( j)
, (23)

and, upon solving it, the unknown h is updated,

h( j+1) = h( j) + Δh( j), (24)

until convergence is achieved.
The solution h implicitly depends on the current strain

ε. The derivative of this dependence is obtained by differ-
entiating the residual Q(ε, h(ε), hn) = 0 with respect to ε,

∂Q
∂ε

+ ∂Q
∂h

∂h
∂ε

= 0, (25)

and by solving the resulting linear equation for the unknown
derivative, thus

∂h
∂ε

= −A−1 ∂Q
∂ε

. (26)

Finally, the algorithmic tangent is obtained by differenti-
ating the current stress σ , given by Eq. (22)1, with respect to
the current strain ε, viz.

L
alg = ∂σ

∂ε
= ∂2ψ

∂ε∂ε
− ∂2ψ

∂ε∂h
A−1 ∂Q

∂ε
. (27)

Formula (20) for the algorithmic tangent is a special case of
the above general formulation, and the implicit derivatives
appearing in Eq. (20) are included in ∂h/∂ε derived above,
Eq. (26).

3.2 Automation

Automation of implementation of incremental elasto-pla-
sticity relies on the automatic differentiation (AD) technique
enhanced with the AD exceptions introduced by Korelc [17].
The basic concepts of AD and the corresponding notation are
briefly discussed below. Next, the AD-based formulation of
incremental elasto-plasticity is provided.

Automatic differentiation is a technique to evaluate the
derivative of a function defined by a computer program or
algorithm, see [30] for an overview. To introduce the AD-
based notation, let us consider a computer program that
computes function f in terms of independent variables that
are collected in vector a. Following [17,18], we introduce the
following notation to denote the derivative of f with respect
to a, obtained by AD,

δ̂ f (a)

δ̂a
→ ∂ f (a)

∂a
, (28)

and the expression following the arrow is the corresponding
derivative in the traditional notation. We do not discuss here
the principles of the AD technique itself, nor the specific
implementation of the AD technique in the AceGen system,
which is used in this work, see [18] for the respective details.
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The AD procedure evaluates the derivative of the actual
dependence of f on a that exists in the program. In some
situations, it can be desirable (e.g., to make the resulting
code more efficient) or necessary (e.g., to introduce extra
knowledge) to modify the action of the AD procedure by
introducing so-called AD exceptions [17] that are denoted
by

δ̂ f (a, b)

δ̂a

∣
∣∣∣∣Db
Da =M

→ ∂ f (a, b)

∂a
+ ∂ f (a, b)

∂b
M. (29)

Here, function f depends onvariablesa andb, and the deriva-
tive of f with respect to a is evaluated under the assumption
that the derivative of b with respect to a is given by matrix
M. The above AD exception overrides the actual dependence
of b on a that exists in the program, and, instead, the sup-
plied matrix M is used as the corresponding derivative. As a
special case, by setting M = 0, the existing dependence of
b on a is suppressed so that the result of AD corresponds to
the partial derivative, even if b does depend on a,

δ̂ f (a, b)

δ̂a

∣∣∣∣∣
b = const

→ ∂ f (a, b)

∂a
. (30)

With the above notation, the AD-based formulation of
incremental elasto-plasticity can be compactly written in the
form of the pseudo-code provided in Algorithm 1. The incre-
mental formulation is based on the returnmapping algorithm,
and the Newton method is applied to solve the equation
Q = 0 in the plastic branch, as discussed in Sect. 3.1. The
formulation includes consistent linearization of the stress that
yields the algorithmic tangent Lalg.

The formulation involves several calls to AD. In the New-
ton loop, the tangent operator A is evaluated as the derivative
ofQwith respect toh, cf. Eq. (23)2. After theNewton scheme
converges and the internal variables h are thus found, the
implicit dependence of h on ε, cf. Eq. (26), is introduced
through a global definition [17] of the AD exception of the
type (29). In the elastic branch, we have h = hn so that h
does not depend on ε, and the corresponding explicit deriva-
tive (equal to zero) does not require a special treatment.

After h is found using the return mapping algorithm, the
stress σ is evaluated as a partial derivative of ψ with respect
to ε, cf. Eq. (22). Here, the AD exception of the type (30) is
applied to ensure that the dependence of h on ε is suppressed
during this differentiation. Finally, the algorithmic tangent
L
alg is evaluated by a single AD call. Here, the implicit

dependence of h on ε is correctly accounted for thanks to
the corresponding global AD exception introduced earlier.

Note that only a small modification of Algorithm 1 is
needed to convert the above formulation to the one providing
automation of the Gauss-point contribution to the element

Algorithm 1
AD-based formulation of incremental elasto-plasticity

input: ε, hn

φtrial ← φ(ε, hn)

if φtrial < 0 then

h ← hn

else

h ← hn

repeat

A ← δ̂Q (ε, h, hn)

δ̂h
Δh ← −A−1Q

h ← h + Δh

until ‖Δh‖ ≤ tol

h ← h
∣∣∣Dh
Dε

=−A−1 δ̂Q
δ̂ε

∣∣
h=const

end if

σ ← δ̂ψ(ε, h)

δ̂ε

∣∣∣
∣∣
h=const

L
alg ← δ̂σ

δ̂ε

return: h, σ , Lalg

residual vector and tangent matrix in the finite element
method [17,18]. Generalization to finite-strain plasticity is
also straightforward.

Toconclude theAD-based formulationof elasto-plasticity,
the complete set of constitutive equations specifying the
small-strain J2 plasticitywith isotropic hardening is provided
in Box 1 as a simple illustrative example. Provided are also
the relevant definitions of vectors h and Q that exploit the
symmetry of the plastic strain tensor. Two places, in which
automation of the formulation is possible, are indicated in
Box 1.

4 AD-based formulation of incremental
Mori–Tanaka scheme

In general terms, the algorithmic treatment of the incre-
mental MT scheme follows the framework of incremental
elasto-plasticity discussed above. However, several exten-
sions are necessary, and these are discussed in this section.
The formulation is limited to isotropic two-phase compos-
ites with spherical inclusions, and both phases are assumed
to be elasto-plastic. Generalization to multi-phase compos-
ites with inclusions of diverse shape, possibly characterized
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Box 1: Constitutive equations of small-strain J2 plasticity
with isotropic hardening

Given: ε, εp,n, γ n Find: εp, γ

εe = ε − εp

ψe = 1
2λ (tr εe)2 + μ tr (εe)2

σ = ∂ψe

∂εe
automation: σ ← δ̂ψe

δ̂ε
s = σ − 1

3 (tr σ ) 1

α =
√

2
3γ

φ = √
s · s −

√
2
3σy(α)

n = ∂φ

∂σ
automation: n ← δ̂φ

δ̂σ

Qε = εp − εp,n − (γ − γ n) n

h = {
ε
p
11, ε

p
22, ε

p
33, ε

p
23, ε

p
13, ε

p
12, γ

}

Q = {
Qε,11, Qε,22, Qε,33, Qε,23, Qε,13, Qε,12, φ

}

by an anisotropic macroscopic response, requires only small
modifications of the overall framework.

4.1 General structure

In the typical strain-controlled incremental setting, the cur-
rent macroscopic strain ε̄ = ε̄n + Δε̄ is prescribed, and the
current strains in the phases, ε0 and ε1, are sought such that
the averaging rule (3)1 is fulfilled,

ε̄ = (1 − c)ε0 + cε1,

and the MT interaction equation (10) is satisfied,

Δσ 1 − Δσ 0 = −L∗ (Δε1 − Δε0) ,

both are repeated here for convenience. Here, the local
stresses σ 0 and σ 1 result from the respective incremental
constitutive equations,

σ i = ∂ψi (εi , hi )

∂εi
, Qi (εi , hi , hn

i ) = 0, (31)

for i = 0, 1, and the algorithmic tangent Lalg
0 ,

L
alg
0 = ∂σ 0

∂ε0
, (32)

is used as the reference stiffness in the interaction equation,
thus

L∗ = P
−1 − L

alg
0 , P = P̂

(iso)(L
alg
0 ). (33)

Fig. 1 Incremental MT model: outline of the nested iteration-
subiteration Newton scheme

As discussed in Sect. 2, isotropization of the reference stiff-
ness is usually necessary to avoid overly stiff response of the
elasto-plastic MT scheme. This is indicated above by intro-
ducing function P̂

(iso)(·) that returns the polarization tensor
P evaluated in terms of its isotropized argument, see “Appen-
dices 1 and 2”.

The current macroscopic stress σ̄ = (1 − c)σ 0 + cσ 1

constitutes the macroscopic response of the incremental MT
scheme. When the MT model is used as a material model in
FE computations, the algorithmic tangent L̄alg = ∂ σ̄/∂ ε̄ is
also needed.

The governing equations of the incremental MT model
will be solved here using the Newton method in a nested
iteration-subiteration scheme, see Fig. 1. In the outer loop,
the local strains ε0 and ε1 are found by solving the interaction
equation (10) combined with the averaging rule (3)1. It is
convenient to introduce an auxiliary variable ε,

ε = ε1 − ε0, (34)

and use it as the basic unknown in the outer Newton loop.
Then, the local strains, explicitly expressed in terms of ε̄

and ε,

ε0 = ε̄ − cε, ε1 = ε̄ + (1 − c)ε, (35)

automatically satisfy the averaging rule (3)1.
The outer loop amounts thus to solving the interaction

equation (10) for the unknown ε using the Newton method.
The corresponding tangent matrix is obtained by linearizing
the interaction equation. It follows that the tangent involves
the second derivative of h0 with respect to ε0. This is because
the interaction equation involves the algorithmic tangent
L
alg
0 which itself involves the first derivative, cf. Eq. (27).

If the alternative form (12) of the interaction equation is
used instead of Eq. (10) then linearization of Lalg

1 is also
performed, and the second derivative of h1 is needed as well.

The incremental constitutive equations (31) are solved,
each in the corresponding independent inner loop, at a fixed
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value of ε, and thus at εi fixed. The return mapping algo-
rithm is applied in each case, and the formulation follows
that presented in Algorithm 1. The difference is that the sec-
ond derivative of h0 with respect to ε0 is now needed, as
discussed above. Note that the dependence of h0 on ε0 is
implicit, hence neither the first nor the second derivative ofh0

is available directly. The first derivative has been discussed in
Sect. 3.1, cf. Eq. (26), along with its AD-based implementa-
tion in Sect. 3.2. The second derivative is considerably more
involved. The corresponding derivation is given in Sect. 4.2.
The state update algorithm including evaluation of the second
derivative of internal variables is then discussed in Sect. 4.3.

4.2 Second derivative of implicit function

Consider a system of nonlinear equations Q(ε, h) = 0 with
an unknown vector h such that Q additionally depends on a
set of variables ε. This introduces an implicit dependence of
the solution h on ε, so that we have

Q (ε, h(ε)) = 0. (36)

The notation follows that adopted in Sect. 3.1, however, the
discussion below is applicable in a more general context.

In order to obtain the derivative of h with respect to ε,
Eq. (36) is differentiated with respect to ε, viz.

∂

∂ε
Q (ε, h (ε)) = ∂Q

∂h
∂h
∂ε

+ ∂Q
∂ε

= 0. (37)

The first derivative of h is then obtained by solving the above
linear equation, see Eq. (26),

∂h
∂ε

= −A−1 ∂Q
∂ε︸ ︷︷ ︸

G

. (38)

In order to obtain the second derivative, Eq. (37) is differ-
entiated with respect to ε, namely

∂

∂ε

(
∂Q
∂h

(ε, h (ε))
∂h
∂ε

(ε) + ∂Q
∂ε

(ε, h (ε))

)

︸ ︷︷ ︸
E

= 0. (39)

While performing the differentiation, all the dependencies
indicated above must be accounted for. As a result, the fol-
lowing equation is obtained,

∂Q
∂h

∂2h
∂ε∂ε

+
︷ ︸︸ ︷
∂2Q
∂ε∂ε

+
(

∂h
∂ε

)T
∂2Q
∂h∂h

∂h
∂ε

+ ∂2Q
∂ε∂h

∂h
∂ε

+
(

∂h
∂ε

)T
∂2Q
∂h∂ε

︸ ︷︷ ︸
F

= 0,

(40)

where juxtaposition of matrices denotes contraction with
respect to the components corresponding to h. Equation (40)
is a linear equation for the second derivative of h, which upon
solving yields

∂2h
∂ε∂ε

= −
(

∂Q
∂h

)−1

F
︸ ︷︷ ︸

H

, (41)

where F denotes the sum of all terms indicated by the over-
and underbrace in Eq. (40). Note that the tangent matrix
∂Q/∂h above is exactly that used in the Newton method,
cf. Eq. (23), and when computing the first derivative, cf.
Eq. (37). The right-hand side expression involves the implicit
first derivative of h, which must be evaluated beforehand, as
well as explicit derivatives of Q. To automatize evaluation of
the second derivative of h, the necessary explicit derivatives
of Q can be derived using AD so that formula (41) can be
applied directly. That approach has been followed in [31]. A
more compact, AD-based formulation that exploits the AD
exceptions is presented below.

4.3 State update algorithm and second derivative of
internal variables

The AD-based formulation of incremental elasto-plasticity
outlined in Sect. 3.2, see Algorithm 1, is extended here to
include evaluation of the second derivative of internal vari-
ables. In the nested iteration-subiteration scheme discussed
in Sect. 4.1, the state update algorithm constitutes the inner
loop that is evaluated individually for each phase (i = 0, 1).
Given the current strain εi and the previous internal vari-
ables hn

i , the goal is to find the current internal variables hi

along with the first and second derivatives of hi with respect
to εi , as well as the stress σ i and the algorithmic tangent
L
alg
i .
The AD-based form of the state update algorithm is pro-

vided in Algorithm 2. The structure of the return mapping
algorithm is followed here just like in Algorithm 1. The
second derivative of hi with respect to εi is obtained by
applying AD with adequate AD exceptions, as suggested
by J. Korelc (private communication, 2015). This com-
pact formulation avoids evaluating the individual explicit
derivatives that are involved in the formulation presented
in Sect. 4.2. Instead, auxiliary intermediate quantities Ei

and Fi , indicated in Eqs. (39) and (40), respectively, are
obtained by invoking AD calls. The second derivative Hi

is then evaluated according to Eq. (41). The output of the
state update algorithm is the current vector of internal vari-
ables hi along with its first derivative Gi . The derivatives
of hi and Gi are defined through the respective global AD
exceptions.
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Algorithm 2
StateUpdate[ ]: state update algorithm for phase i

input: εi , hn
i

φtrial
i ← φi (εi , hn

i )

if φtrial
i < 0 then

hi ← hn
i

Gi ← 0

Hi ← 0

else

hi ← hn
i

repeat

Ai ← δ̂Qi
(
εi , hi , hn

i

)

δ̂hi

Δhi ← −A−1
i Qi

hi ← hi + Δhi

until ‖Δhi‖ ≤ tol

Gi ← −A−1
i

δ̂Qi

δ̂εi

∣∣∣
∣∣
hi=const


 Gi = ∂hi

∂εi

Ei ← δ̂Qi

δ̂εi

∣∣∣
∣∣Dhi
Dεi

=Gi

Fi ← δ̂Ei

δ̂εi

∣∣∣
∣∣Dhi
Dεi

=Gi ,
DGi
Dεi

=0

Hi ← −A−1
i Fi 
 Hi = ∂2hi

∂εi∂εi
end if

Gi ← Gi

∣∣∣DGi
Dεi

=Hi

hi ← hi

∣∣∣Dhi
Dεi

=Gi

σ i ← δ̂ψi (εi , hi )

δ̂εi

∣∣
∣∣∣
hi=const

L
alg
i ← δ̂σ i

δ̂εi

return: hi , σ i , L
alg
i , Gi

4.4 Outer loop: the Mori–Tanaka interaction equation

The interaction equation (10) is solved in the outer loop of the
nested iteration-subiteration scheme. Algorithm 3 summa-
rizes the corresponding AD-based formulation. The current
macroscopic strain ε̄ and the history variables known from
the previous step constitute the input. The latter include the
previous stresses σ n

0 and σ n
1, as these are needed to compute

stress increments that are involved in the interaction equa-

Algorithm 3
AD-based formulation of incremental Mori–Tanaka scheme
for an elasto-plastic two-phase composite

input: ε̄, εn , hn
0, hn

1, σ
n
0, σ

n
1

ε ← εn

repeat

ε0 ← ε̄ − cε

ε1 ← ε̄ + (1 − c)ε

{h0, σ 0,L
alg
0 , G0} ← StateUpdate

[
ε0, hn

0

]

{h1, σ 1,L
alg
1 , G1} ← StateUpdate

[
ε1, hn

1

]

P ← P̂
(iso)(L

alg
0 )

R ← P (Δσ 1 − Δσ 0) +
(
I − PL

alg
0

)
(ε − εn)

B ← δ̂R

δ̂ε

Δε ← −B−1R

ε ← ε + Δε

until ‖Δε‖ ≤ tol

ε ← ε

∣∣∣Dε
Dε̄

=−B−1 δ̂R
δ̂ε̄

∣
∣
ε=const

ε0 ← ε̄ − cε

ε1 ← ε̄ + (1 − c)ε

h0 ← h0

∣∣
∣Dh0
Dε0

=G0

h1 ← h1

∣∣∣Dh1
Dε1

=G1

ψ̄ ← (1 − c) ψ0(ε0, h0) + cψ1(ε1, h1)

σ̄ ← δ̂ψ̄

δ̂ε̄

∣∣∣∣∣
ε=const, h0=const, h1=const

L̄
alg ← δ̂σ̄

δ̂ε̄

return: ε, σ̄ , L̄alg, h0, h1, σ 0, σ 1

tion (10). The goal is to compute the current macroscopic
stress σ̄ and the macroscopic algorithmic tangent L̄alg, as
well as the updated history variables.

In order to avoid inverting the polarization tensor P, the
interaction equation (10) is written in the following equiva-
lent form,

R(ε, ε̄) = P(Δσ 1 − Δσ 0) + (I−PL
alg
0 )(ε − εn) = 0, (42)

where R denotes the corresponding residual vector. As men-
tioned earlier, ε is here the basic unknown, and ε̄ is fixed.
The tangent matrix B is obtained by linearizing the residual
R, and this involves linearization of the internal variables h0

and h1, and of the algorithmic tangent Lalg
0 . The correspond-

ing dependencies are implemented using the AD exceptions
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introduced in Algorithm 2. It is recalled that linearization of
the algorithmic tangent Lalg

0 involves the second derivative
of h0 that has been discussed in Sects. 4.2 and 4.3.

The polarization tensor P is evaluated in terms of
isotropized algorithmic tangentLalg

0 of the matrix phase. The
details are provided in “Appendices 1 and 2”. Since a closed-
form expression is available for P, including isotropization
of Lalg

0 , its linearization is immediate.
Once convergence of the outer Newton loop is obtained,

the implicit derivative of the solution with respect to the
macroscopic strain ε̄ is evaluated by linearizing the residual
equation R(ε(ε̄), ε̄) = 0, following the scheme discussed in
Sect. 3.1, see Eqs. (25)–(26), thus yielding

∂ε

∂ ε̄
= −B−1 ∂R

∂ ε̄
, B = ∂R

∂ε
. (43)

This derivative is introduced through the global AD excep-
tion.

The macroscopic stress σ̄ = (1 − c)σ 0 + cσ 1 is then
obtained as a partial derivative of themacroscopic free energy
ψ̄ ,

ψ̄ = (1 − c)ψ0(ε0, h0) + cψ1(ε1, h1), (44)

so that

σ̄ = ∂ψ̄(ε̄, ε, h0, h1)

∂ ε̄
, (45)

where ε0 and ε1 are given by Eq. (35). Correct evaluation
of σ̄ is ensured by introducing the AD exception that locally
hides the dependence of ε, h0 and h1 on ε̄.

Finally, linearization of the macroscopic stress σ̄ yields
the algorithmic tangent L̄alg. Exact linearization of the nested
iteration-subiteration Newton scheme is obtained thanks to
the global AD exceptions that introduce the implicit deriva-
tives of ε, h0 and h1. As a result, the present incremental MT
scheme can be effectively used in finite element simulations
as a constitutive model specifying the (macroscopic) mate-
rial response at individual Gauss points. Considering that the
global equilibrium equations in the finite element method are
usually solved iteratively using theNewtonmethod, the over-
all scheme is, in fact, a doubly-nested iteration-subiteration
scheme, and the present AD-based formulation guarantees
consistent linearization and thus optimal convergence behav-
ior at each level of the nested scheme.

Remark 2 The formulation of the incremental MT model
advocated in this work is based on the interaction equation
(10). An alternative version of the incremental MT scheme is
based on the interaction equation specified by Eq. (12). The
general scheme remains then essentially unchanged with the

outer-loop residual R defined by Eq. (42) replaced by

R(ε, ε̄) =
(
I + P(L

alg
1 − L

alg
0 )

)
Δε1 − Δε0 = 0. (46)

In this model, both L
alg
0 and L

alg
1 must be linearized so that

the second derivatives of both h0 and h1 are needed. This
may be associated with an additional computational cost, as
compared to the reference model in which only L

alg
0 is lin-

earized. For elastic inclusions, the difference between the
two formulations is not significant, according to our experi-
ence.

5 Response discontinuities and a substepping
strategy

It has been shown in [19] that, for a finite strain increment
Δε̄, the incremental MT model may exhibit discontinuities
in the overall response at the instant of the elastic-to-plastic
transition in the matrix phase. The discontinuities are related
to an abrupt change of the reference stiffness for which the
interaction equation (10), specifically the Hill tensor L∗, is
formulated. Depending on the version of the MT model and
on the properties of the phases, either no solution exists for a
range of strain increments, or two solutions exist with a non-
zero stress jump between the two solutions. Both situations
are highly undesirable in practical applications, notably in
the finite element method, as the discontinuities dramatically
hinder the convergence behavior, particularly for finemeshes
when the probability of encountering the related problems
is high. Detailed analysis of the response discontinuities,
including a simple example with an analytical solution, is
presented in [19].

As mentioned, the response discontinuities are observed
for finite strain increments. At the same time, a robust imple-
mentation of the incrementalMTscheme is desired that could
proceed with possibly large strain increments. As the discon-
tinuities are associated with an abrupt change of the tangent
stiffness of the matrix phase at the elastic-to-plastic transi-
tion, a possible remedy is to define the Hill tensor L∗ in the
interaction equation (10) in terms of the reference stiffness
defined by

L
alg,n+θ

0 = (1 − θ)L
alg,n
0 + θL

alg,n+1
0 , (47)

where 0 ≤ θ ≤ 1, and L
alg,n
0 and L

alg,n+1
0 = L

alg
0

denote the algorithmic tangent at the previous and current
time step, respectively. The case of θ = 0.5 corresponds
to the mid-point rule that has been used in [11], while a
MT scheme that employs a heuristic method of determina-
tion of θ has been proposed in [32]. Our experience shows
that this treatment indeed improves the robustness of the
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incremental MT scheme, but it does not solve the prob-
lem completely. Additionally, when parameter θ is reduced
below unity, which is beneficial for the robustness of the
MT scheme, the macrosopic response may become too
stiff, particularly for large strain increments, see Fig. 3c
below.

In this work, an alternative strategy based on substepping
is adopted. Specifically, the step involving the transition from
the elastic state in the matrix phase to the plastic state is split
into two substeps according to

ε̄n+β = ε̄n + βΔε̄, ε̄ = ε̄n+β + (1 − β)Δε̄, (48)

where 0 < β < 1, andΔε̄ = ε̄−ε̄n is a prescribed increment
of the macroscopic strain. The fraction β is found such that
thefirst substep is purely elastic and ends exactly at the instant
of the elastic-to-plastic transition. The second step proceeds
then in a purely plastic regime. This treatment ensures that
the response discontinuities are not encountered.

The substepping strategy has been implemented for the
case of a composite material with elastic inclusions. This
requires only a small modification of the algorithm, as
described below:

(i) The substepping strategy is initiated only if the matrix
was in the elastic state at the previous time step, i.e. if
φn
0 < 0. Otherwise, Algortithm 3 is directly applied.

(ii) If φn
0 < 0 then a trial elastic step is first considered.

The corresponding solution of the elastic MT scheme is
found in a closed form, and the trial value φtrial

0 of the
yield function is computed.

(iii) If φtrial
0 ≤ 0 then the step is indeed elastic, and the trial

solution is the actual solution.
(iv) If φtrial

0 > 0 then the step is elastic–plastic, and sub-
stepping is applied. Considering that the first substep
is elastic, the fraction β is found from the condition
φ
n+β
0 = 0. When the yield function is of the J2-type,

this yields a quadratic equation for β. Once β is deter-
mined, the step is divided according to Eq. (48). The
solution corresponding to the elastic substep is obtained
by scaling the earlier trial elastic solution. The solution
corresponding to the plastic substep is then obtained by
applying Algortithm 3.

Further details and the AD-based formulation are omitted
here as they are rather technical. Importantly, the above
substepping algorithm admits exact linearization so that con-
sistent overall tangent can be obtained. Robustness of the
incrementalMT scheme enhancedwith the substepping strat-
egy is illustrated in Sect. 6.

Fig. 2 Metal-matrix composite under uniaxial tension: comparison of
the present predictions with the results of Doghri and Ouaar [11]

6 Numerical examples

6.1 Verification: metal-matrix composite under uniaxial
tension

This subsection is aimed at verification of the present formu-
lation and implementation of the incremental MT model. To
this end, a metal-matrix composite (MMC) under uniform
uniaxial tension is studied, and our predictions are compared
to those reported by Doghri and Ouaar [11]. As in [11],
an elasto-plastic matrix (aluminium alloy) reinforced with
spherical ceramic inclusions of volume fraction c = 0.2 is
considered. Material parameters of the phases can be found
in [11, Section 9.2].

Our predictions obtained with and without isotropization,
i.e. for P = P̂

(iso)(L
alg
0 ) and P = P̂(L

alg
0 ), respectively, are

shown in Fig. 2. A very good agreement with the correspond-
ing results reported in [11, Fig. 3] is visible. The results of
finite-element unit-cell computations [11] are also included
in Fig. 2 to indicate that isotropization is indeed necessary
to obtain realistic hardening response of the incremental MT
scheme.

The effect of step size on the macroscopic stress–strain
response is illustrated in Fig. 3. The simulations reported in
Fig. 2 have been carried out with a very small increment
of macroscopic strain Δε̄ = 0.0001. Results corresponding
to 10 and 100 times larger strain increments are addition-
ally included in Fig. 3 for the MT scheme without and with
substepping, and for the mid-point rule (47) with θ = 0.5.
It is apparent that application of the substepping strategy
reduces the time integration error. Note that substepping
influences here only one step—the one during which the
elastic-to-plastic transition occurs. It follows that the dif-
ference between the two schemes is essentially due to the
error appearing during that single step. Thus, in addition to
increased robustness of the incremental MT scheme, as illus-
trated later, the substepping strategy is also beneficial for its
accuracy. On the contrary, the mid-point rule (47) may yield
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(a)

(b)

(c)

Fig. 3 Metal-matrix composite (c = 0.2) under uniaxial tension: influ-
ence of step size on the macroscopic stress–strain relation: a basic MT
scheme (no substepping, θ = 1), b MT scheme with substepping, c MT
scheme with mid-point rule (47), θ = 0.5

significantly inaccuarate predictions for large strain incre-
ments, cf. Fig. 3c.

6.2 Two-phase composite and equivalent J2 plasticity
model

In the reminder of Sect. 6, efficiency and robustness of the
present MT scheme will be studied for a two-phase material
composed of an elasto-plastic matrix and elastic spherical
inclusions. The matrix is modeled using the J2 plasticity
model with isotropic hardening specified by

σy(α) = σ0 + Kα + σ∞(1 − e−δα), (49)

Table 1 Material parameters of the matrix and inclusions

Matrix Inclusions

Young’s modulus (GPa) 75 400

Poisson’s ratio 0.3 0.2

Initial yield stress σ0 (MPa) 75 –

Hardening coefficient K (MPa) 200 –

Hardening parameter σ∞ (MPa) 200 –

Saturation exponent δ 20 –

Table 2 Parameters of the equivalent J2 plasticity model

c = 0.02 c = 0.2

Young’s modulus (GPa) 77 99

Poisson’s ratio 0.30 0.28

Initial yield stress σ0 (MPa) 80 90

Hardening coefficient K (MPa) 210 325

Hardening parameter σ∞ (MPa) 200 250

Saturation exponent δ 20 25

where α is the equivalent plastic strain, and σ0, σ∞, K
and δ are hardening parameters. Material parameters of the
phases, corresponding roughly to an aluminum alloy matrix
and ceramic inclusions, are provided in Table 1. Two vol-
ume fractions of inclusions will be considered: c = 0.02 and
c = 0.2.

As a reference for the MT model of the two-phase com-
posite, the J2 plasticity model with isotropic hardening (49)
has been calibrated such that the uniaxial-tension stress–
strain response of the MT model is represented by the J2
plasticity model. That model will be referred to as the equiv-
alent J2 plasticity model. Two sets of hardening parameters
corresponding to the two volume fractions c considered are
given in Table 2. As shown in Fig. 4, the equivalent J2 plas-
ticity model approximates the uniaxial stress–strain response
predicted by the MT model very well for both c = 0.02 and
c = 0.2.

It is worthwhile to examine the computational cost asso-
ciated with evaluation of the constitutive model specified by
theMT schemewith respect to that of the simple J2 plasticity
model. To this end, a cube divided into 50×50×50 elements
has been subjected to a uniform uniaxial tension, and the time
spent on evaluation of the element residual vector and tangent
matrix has been measured (the strain is uniform within the
cube; the mesh of 125,000 elements has been used to ensure
that the measurement is possibly objective). Three steps have
been considered, namely an elastic step, an elastic–plastic
step and a plastic step. The elastic–plastic step involves the

123



Comput Mech (2017) 60:493–511 505

Fig. 4 Comparison of the uniaxial stress–strain response predicted by
the MT model (markers) and its approximation by the equivalent J2
plasticity model (solid lines) for c = 0.02 and c = 0.2. Stress–strain
curve of the matrix itself (c = 0) is also depicted (dashed line)

Table 3 Normalized time of evaluation of the element residual vec-
tor and tangent matrix (the numbers in parentheses are normalized
columnwise)

Elastic
step

Elasto-
plastic step

Plastic step

Eq. J2 plasticity 1.00 1.90 (1.00) 2.19 (1.00)

MT scheme 4.71 18.52 (9.74) 18.96 (8.67)

MT+substepping 1.46 19.42 (10.21) 20.47 (9.36)

transition from the elastic state to the plastic state so that the
substepping procedure can then be applied.

The evaluation times normalized by the evaluation time
corresponding to the elastic step of the equivalent J2 plas-
ticity model are reported in Table 3 and are also shown in
Fig. 5. The numbers in parentheses in Table 3 are the values
normalized by the evaluation time of the equivalent J2 plas-
ticitymodel for the respective step type. As expected, theMT
scheme is computationally more intensive than the simple J2
plasticity model. However, in the case of the elastic–plastic
and plastic steps, the ratio of about 10 with respect to the J2
plasticity model can be considered reasonably low consider-
ing the complexity of the incremental MT model. Note that
the additional computational cost associated with the sub-
stepping procedure is not significant. Actually, in the case
of the elastic step, application of the substepping procedure
reduces the computational cost. This is because the effective
response is then computed in a closed form, and the general
iterative scheme, see Algorithm 3, is not invoked.

6.3 Rectangular plate with a hole

Tension of a rectangular composite plate of the length L =
20mm and cross-section of 10 × 1mm with a hole of the
diameter of 5mm, see Fig. 6, is studied in this subsection. The
plate is loaded in tension by prescribing the corresponding

Fig. 5 Normalized time of evaluation of the element residual vector
and tangent matrix

Fig. 6 Rectangular plate with a hole: a coarse mesh (MD = 1). Equiv-
alent plastic strain in the matrix phase (MT model, c = 0.2, fine
mesh, MD = 4) at the normalized elongation b ΔL/L = 0.001 and c
ΔL/L = 0.025

displacement component at one end and by constraining it
at the other end, the lateral displacements being free at both
ends. The deformation is here clearly non-uniform and non-
proportional.

Isoparametric 8-node tri-linear elements with 2 × 2 × 2
Gauss quadrature have been used in the computations. At
the Gauss-point level, behavior of the two-phase composite
material is described by the incremental MT model with the
parameters specified in Sect. 6.2. As a reference, the com-
putations have also been carried out for the equivalent J2
plasticity model, cf. Sect. 6.2.

Three mesh densities have been used in the computations.
The coarse mesh (MD = 1) is shown in Fig. 6a. In the case of
the intermediate mesh (MD = 2) and fine mesh (MD = 4),
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Table 4 Rectangular plate with a hole: mesh densities

Mesh density MD = 1 MD = 2 MD = 4

No. of elements 5,760 46,080 368,640

No. of d.o.f. 22,947 160,395 1,193,499

the element size is reduced by the factor of 2 and 4, respec-
tively. For each mesh density, the number of elements and
the number of degrees of freedom are reported in Table 4.

Figure 7 shows the load–displacement curves correspond-
ing to the MT model, both with and without substepping,
and for the equivalent J2 plasticity model, in all cases for
the fine mesh (MD = 4). In each case, two load incremen-
tation schemes have been applied. Firstly, an adaptive load
incrementation scheme has been applied in which the load
increment has been automatically adjusted such that the com-
putations could proceed with possibly large load increments.
The corresponding results are indicated by dots in Fig. 7. As
a reference, the computations have been repeated with the

load increment restricted to the fraction of 0.02 of the total
load. The corresponding results are indicated by solid lines in
Fig. 7. It can be seen that the response is not visibly affected
by the size of load increment.

In terms of convergence, the performance of the MT
scheme enhanced by the substepping strategy is essentially
identical to the performance of the equivalent J2 plasticity
model. In both cases, the simulation proceeded with large
load increments so that it was completed in 10–11 steps.
Convergence behavior of the MT scheme without substep-
ping is not as good. This is particularly visible for the high
volume fraction of inclusions (c = 0.2) when the number of
steps is significantly higher (49 steps).

The deteriorated convergence behavior of the MT scheme
without substepping is caused by the response discontinu-
ities discussed in Sect. 5. The probability of encountering the
discontinuity increases with increasing number of elements
(and Gauss points). This is illustrated in Fig. 8 which shows
the number of steps, that are needed to complete the simu-
lation, as a function of mesh density. In the case of the MT
scheme without substepping, the number of steps increases

(c)(b)(a)

Fig. 7 Rectangular plate with a hole (MD = 4): tensile force as a func-
tion of normalized elongation for a equivalent J2 plasticity model, b
MT scheme without substepping, and c MT scheme enhanced by sub-

stepping. Volume fraction of elastic inclusions: c = 0.02 (top row) and
c = 0.2 (bottom row)
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Fig. 8 Rectangular plate with a hole: number of steps (in a logarithmic
scale) needed to complete the simulation as a function of mesh density
for c = 0.02 (dashed lines) and c = 0.2 (solid lines)

Fig. 9 Rectangular plate with a hole: total computation time as a func-
tion of mesh density

with increasing mesh density and also with increasing vol-
ume fraction c. At the same time, it is approximately constant
for the MT scheme with substepping and for the equivalent
J2 plasticity model. The substepping strategy proves thus to
be an efficient remedy for the problem of response disconti-
nuities, and the enhancedMT scheme appears to be as robust
as the simple J2 plasticity model.

The dependence of the total computation time on themesh
density is illustrated in Fig. 9 for the three models (the total
time includes the time used by the linear solver). The over-
all computational cost for the MT scheme with substepping
is approximately twice higher than that for the equivalent
J2 plasticity model. This is clearly because evaluation of
the element residual and tangent is more expensive for the

former than for the latter, as illustrated in Fig. 5. Recalling
that the number of steps is practically identical for the two
models, the number of evaluations of the element residual
and tangent is approximately equal for the two models. At
the same time, in the case of the MT scheme without sub-
stepping, the number of steps is considerably higher. The
associated additional computational cost increases signifi-
cantly with increasing mesh density.

6.4 Spherical indentation

In this subsection, finite-element simulations of spherical
indentation into a composite material are reported. As the
aim is to further illustrate the performance of the incre-
mental MT scheme, a three-dimensional model of spherical
indentation is employed despite the problem considered is
actually axisymmetric. Note that contact problems, due to
the additional nonlinearity introduced by unilateral contact,
are particularly demanding concerning the robustness and
consistent linearization of the constitutive model of the solid.

As in the previous subsection, the material is a two-phase
composite with an elasto-plastic matrix and elastic spherical
inclusions of the volume fraction c = 0.2. Material parame-
ters are specified in Table 1.

The indenter is modeled as a rigid sphere of the radius
R = 1mm. Frictionless contact is assumed, and unilat-
eral contact constraints are enforced using the augmented
Lagrangian method [33,34]. The computations are carried
out for one quarter of a truncated half-space with ade-
quate symmetry conditions enforced on two perpendicular
planes. The finite element mesh (108,780 tri-linear elements,
331,505 d.o.f.) is shown in Fig. 10a. The mesh is refined
towards the contact zone.

Figure 10b shows the deformation pattern imposed by the
indenter and the distribution of the equivalent plastic strain
in the matrix at the maximum indentation force. To illustrate
the predictive capabilities of the incremental MT scheme,
the equivalent macroscopic stress after unloading and the
corresponding equivalent stresses in the individual phases
are shown in Fig. 11. The stresses exhibit small oscillations
along the boundary of the contact zone, which indicates that
the mesh is not sufficiently fine with respect to the high strain
gradients in that region.

Figure 12 shows the load–penetration depth curves obt-
ained for the MT model with and without substepping, and
for the equivalent J2 plasticity model. As in Fig. 7, the solid
lines and dots denote the solution obtained using, respec-
tively, small and large load increments. In the latter case, an
adaptive load incrementation scheme was used that adjusted
the increment size based on the current convergence behav-
ior. The performance of the different models is here similar
to that obtained for the rectangular plate in Sect. 6.3. The
MT scheme enhanced by the substepping strategy proves
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Fig. 10 Spherical indentation: a finite elementmesh and b distribution
of the equivalent plastic strain in the matrix phase

as robust as the simple J2 plasticity model, while the basic
MT scheme is significantly less robust: the basic MT scheme
required 43 steps to complete the simulation as compared to
24 and 23 steps for the MT scheme with substepping and for
the equivalent J2 plasticity model, respectively.

7 Conclusion

A computationally efficient and robust finite-element imple-
mentation of the incremental Mori–Tanaka model for elasto-
plastic composites has been developed. The MTmodel itself
is standard, the original contribution of this work is in con-
sistent algorithmic treatment of the finite-step incremental
model and in automation of the tasks related to computer
implementation of the complete micromechanical scheme.
The automation relies on the automatic differentiation tech-

Fig. 11 Spherical indentation. Equivalent residual stresses (in MPa)
after unloading: a macroscopic stress, b local stress in the matrix phase,
c local stress in the inclusions
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(c)(b)(a)

Fig. 12 Indentation curves for: a equivalent J2 plasticity model, b MT scheme without substepping and c MT scheme enhanced by substepping

nique. For that purpose, an AD-based formulation of the MT
scheme has been developed. Based on this general symbolic
description of the MT-based micromechanical mean-field
model, the computer code has been automatically generated
using AceGen, a code generation system that employs the
AD technique. The automation includes derivation and cod-
ing of the algorithmic (consistent) macroscopic tangent for
the doubly-nested iteration-subiteration scheme.

Three-dimensional finite-element simulations have been
carried out in order to demonstrate the performance of the
developed computational scheme. It has been shown that
the convergence behavior of the MT model is similar to the
behavior of a simple J2 plasticity model, and thus the incre-
mental finite-element solution may proceed with relatively
large load increments, despite the considerable complexity
of the micromechanical model. Two aspects have turned out
crucial for achieving high efficiency and robustness of the
computational scheme. Firstly, the doubly-nested iteration-
subiteration scheme has been consistently linearized so that
quadratic convergence rate has been achieved at each level of
the nested scheme. Secondly, a substepping strategy has been
implemented as a remedy for the convergence problems that
are caused by discontinuities in the response at finite strain
increments.
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Appendix 1: Isotropization

In order to avoid excessively stiff response of the incremental
MT model, the elasto-plastic (algorithmic) tangent stiffness
tensor is usually isotropized [11,26,35] and the polariza-
tion tensor P involved in the interaction equation (5) is then
evaluated in terms of this isotropized tangent. Two common
isotropizationmethods are briefly presented in this appendix,
see [11,26,36–38] for details.

Consider thus a general symmetric anisotropic fourth-
order tensorL. In the context of this work,L is identifiedwith
the algorithmic tangent stiffnessLalg

0 of the matrix phase, but
the presentation below is more general. The isotropic part of
L is an isotropic tensor Liso of the following form,

L
iso = 3κLI

P + 2μLI
D, (50)

where

3κL = I
P ·L = 1

3
Lii j j , 2μL = 1

5
I
D ·L = 1

5
(Li ji j −3κL),

(51)

and I
P and I

D are the orthogonal projectors, respectively,
onto the hydrostatic and deviatoric spaces of second order
symmetric tensors,

I
P = 1

3
I ⊗ I, I

D = I − I
P. (52)

The alternative isotropization method is specific to asso-
ciative incompressible elasto-plasticity and delivers more
realistic, softer response, see Fig. 2. In this method, the devi-
atoric modulus is defined as a directional hardening modulus
and is determined according to

2μsoft
L

= N · LN, (53)
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where N is a unit deviatoric tensor specifying the direction
of plastic flow,

N = n
‖n‖ , n = ∂φ

∂σ
, (54)

and n is the normal to the yield surface φ. The isotropized
tensor is then defined as

L
iso,soft = 3κLI

P + 2μsoft
L

I
D. (55)

This isotropization method can be interpreted by referring
to the spectral decomposition of the elasto-plastic stiffness
tensor [11,36].

Appendix 2: Polarization tensor

The general formulae for the polarization tensor P = P̂(L)

for a spherical inclusion and an anisotropic stiffness tensor
L of the matrix phase can be found, e.g., in [21].

When the stiffness tensorL is isotropic, thusL = 3κLIP+
2μLI

D, and the inclusion is spherical, then the polarization
tensor P = P̂(L) is also isotropic and is given by the follow-
ing closed-form formula,

P = 3κPI
P + 2μPI

D, (56)

where

3κP = 1

3κL + 4μL

, 2μP = 3(κL + 2μL)

5μL(3κL + 4μL)
. (57)

When the stiffness tensor L is anisotropic, and L
iso is its

isotropic counterpart obtained by one of the isotropization
methods outlined in “Appendix 1”, then the corresponding
isotropic polarization tensor

P = P̂
(iso)(L) = P̂(Liso) (58)

is given by formulae (56) and (57) with isotropic moduli κL
and μL given by Eqs. (51) or (53), depending on the adopted
isotropization method.
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