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Abstract Soft elastohydrodynamic lubrication problem is
studied for a reciprocating elastomeric seal with full account
of finite configuration changes. The fluid part is described
by the Reynolds equation which is formulated on the de-
formed boundary of the seal treated as a hyperelastic body.
The paper is concerned with the finite element treatment of
this soft EHL problem. Displacement-based finite element
discretization is applied for the solid part. The Reynolds
equation is discretized using the finite element method or,
alternatively, the discontinuous Galerkin method, both em-
ploying higher-order interpolation of pressure. The perfor-
mance of both methods is assessed by studying convergence
and stability of the solution for a benchmark problem of an
O-ring seal. It is shown that the solution may exhibit spu-
rious oscillations which occur in severe lubrication condi-
tions. Mesh refinement results in reduction of these oscil-
lations, while increasing the pressure interpolation order or
application of the discontinuous Galerkin method does not
help significantly.

Keywords Contact · Elastohydrodynamic lubrication ·
Finite element method · Discontinuous Galerkin method ·
Elastomeric seal

1 Introduction

Contact in the elastohydrodynamic lubrication (EHL) regime
occurs when the two contacting surfaces are fully separated
by the fluid and when the contact pressures are sufficiently
high to cause significant elastic deflections of one or both
contacting bodies. The EHL theory [6; 7] is a well developed
theory with classical applications such as gears and rolling-
contact bearings, which fall into the class of so-called hard
EHL problems. There is, however, growing interest in the
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soft EHL regime in which pressures are relatively low, but
the elastic deflections are significant because one or both
contacting bodies are soft. At the same time, the pressure
is not high enough to cause significant increase of lubricant
viscosity (on the contrary, the piezo-viscous effect is crucial
in the hard EHL problems).

Soft EHL contact occurs, for instance, in the case of an
elastomer in lubricated contact with a stiff surface; the typ-
ical examples are seals, windscreen wipers and wet tyres.
However, soft EHL problems arise also in biotribological
systems such as synovial joints, contact lens lubrication, eye–
eyelid contact, human skin contact, and oral processing of
food, see for instance Adams et al. [1], Dowson [5], Jones et
al. [10], de Vicente et al. [29]. In the case of biotribological
systems, additional difficulties are associated with constitu-
tive modelling of soft tissues and biological fluids.

In this work, we specifically address the problem of hy-
drodynamic lubrication in reciprocating elastomeric seals.
This is a classical topic studied experimentally and theoreti-
cally for more than 50 years, cf. Nau [17]. However, despite
the substantial progress in computational techniques and in-
crease of computer power, detailed solutions of the corre-
sponding EHL problems are not easily found in the litera-
ture.

In the analysis of a typical EHL problem, two phenom-
ena are considered, namely the flow of the lubricant in the
thin film between the contacting bodies and the elastic de-
flections of the bodies. The fluid part is conveniently de-
scribed using the Reynolds equation which relates the hy-
drodynamic pressure and the thickness of the lubricant film,
see Section 3. At the same time, the film thickness results
from the elastic deflections of the contacting bodies which
are caused by the action of the hydrodynamic pressure. The
two subproblems are thus strongly coupled.

In the EHL theory, the solid part is usually modelled
within the linear elasticity framework. Furthermore, the elas-
ticity problem is formulated for a half-space so that special-
ized solution methods can be applied, which employ analyt-
ical solutions available for point and line loads on an elastic
half-space [6; 7]. Both assumptions (linear elasticity, half-
space approximation) are fully adequate in the case of hard
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EHL problems. However, this is not necessarily the case of
soft EHL problems in which finite deformations may occur.
Also the size of the contact zone may be comparable to the
size of the contacting bodies so that half-space approxima-
tion is no longer justified.

For instance, in the case of elastomeric seals, the contact
pressure may easily exceed the elastic shear modulus of the
seal by one order of magnitude, hence finite deformations
are expected, at least locally. Nevertheless, the early works
on EHL in reciprocating seals relied on the linear elastic-
ity assumption [24; 32]. The relation between the pressure
and the elastic deflections was found using the finite ele-
ment method, typically combined with static condensation.
Similarly, a linear influence coefficient matrix can be deter-
mined also when a finite-deformation model is adopted for
the elastomeric seal treated as a hyperelastic body. This ma-
trix can be obtained from off-line finite element computa-
tions and subsequently used in the EHL solver, e.g., Prati
and Strozzi [23], Salant et al. [25]. Nonlinear elasticity of an
elastomeric seal has also been accounted for in a simplified
model developed by Nikas and Sayles [19] for rectangular
seals.

Recently, Stupkiewicz and Marciniszyn [28] derived a
formulation of soft EHL problems in the finite deformation
regime, with application for steady-state hydrodynamic lu-
brication in reciprocating elastomeric seals. The model takes
full account of the finite configuration changes and coupling
of the solid and fluid parts, including friction due to shear
stresses in the lubricant film. Results of a detailed study of
hydrodynamic lubrication and dynamic sealing performance
are also provided for two benchmark problems, namely for
O-ring and rectangular seals.

The present work addresses selected computational as-
pects of the formulation proposed by Stupkiewicz and Mar-
ciniszyn [28]. In addition to the finite element discretiza-
tion, an alternative, discontinuous Galerkin treatment of the
Reynolds equation is introduced following Lu et al. [14].
The performance of both methods is assessed by studying
convergence and stability of the solution of the soft EHL
problem for a reciprocating O-ring seal.

The paper is organized as follows. The formulation of
the problem is provided in Sections 2 and 3 for the solid and
fluid parts, respectively. This part is essentially a repetition
of the corresponding part in [28]. Finite element treatment
of the EHL problem at hand is discussed in Section 4, in
which both the finite element method and the discontinuous
Galerkin method are introduced for the Reynolds equation.
Finally, the application for an elastomeric O-ring seal is pre-
sented in Section 5. Here, the main part (Section 5.2) is the
study of the convergence of the solution with mesh refine-
ment and other factors, such as pressure interpolation order.

2 Hyperelastic solid

The seal undergoes finite deformations caused by the action
of the hydrostatic sealed pressure as well as by the contact
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Fig. 1 Rod seal in the deformed configuration.

interactions with the housing and with the rod, the latter in
the hydrodynamic lubrication regime. We assume that the
housing and the rod are rigid. This simplifies the treatment of
contact interactions. Note, however, that in some conditions
the elastic deflections of the rod can be significant, e.g. for
hollow-cylinder rods in high-pressure hydraulic systems, cf.
Nikas [18].

Modelling of the solid part is rather standard. Two con-
figurations are introduced—the stress-free initial configura-
tion Ω and the deformed configuration ω . The boundary ∂Ω
is divided into three non-overlapping parts ∂lΩ , ∂pΩ and
∂cΩ associated with the hydrodynamic lubrication, hydro-
static sealed pressure and contact interaction with the hous-
ing, respectively. The deformed-configuration counterparts
are ∂lω , ∂pω and ∂cω , cf. Fig. 1. This division is not given
a priori and, in general, depends on the deformation of the
seal. This is commented more in Section 3.

The deformation from Ω to ω is given by a continuous
mapping x = ϕ(X), where X ∈Ω and x ∈ ω . In the absence
of body and inertia forces, the weak form of the equilibrium
equation reads
∫

Ω
P ·Grad δϕ dV −

∫

∂Ω
T ·δϕ dS = 0, (1)

where P is the first Piola–Kirchhoff stress tensor and T is the
nominal traction on the boundary ∂Ω .

A hyperelastic material model is assumed for the elas-
tomeric seal. The constitutive law is thus fully defined by
the elastic strain energy function W (F), namely

P =
∂W
∂F

, (2)

where F = ∂ϕ/∂X = Grad ϕ is the deformation gradient.
Specifically, a compressible Mooney-Rivlin material model
is adopted with W (F) given by

W (F) =
1
2

µ1(Ī1−3)+
1
2

µ2(Ī2−3)+Wv(I3), (3)

where µ1 and µ2 are material parameters such that µ = µ1 +
µ2 is the shear modulus in the initial configuration. Ī1, Ī2 and
I3 are the invariants of the left Cauchy-Green deformation
tensor B,

Ī1 = tr B̄, Ī2 =
1
2
(Ī2

1 − tr B̄2), I3 = detB, (4)
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where

B = FFT , B̄ = I−1/3
3 B. (5)

The volumetric part Wv(I3) is given by

Wv(I3) =
1
2

κ
(

1
2
(I3−1)− 1

2
log I3

)
, (6)

where κ denotes the bulk modulus.
The Reynolds equation, as introduced in the next section,

corresponds to the deformed configuration. Accordingly, the
hydrodynamic pressure loading on ∂lω , as well as the hy-
drostatic pressure loading on ∂pω , are prescribed in the de-
formed configuration. The surface traction term in (1) is thus
equivalently evaluated on the deformed boundary ∂ω ,
∫

∂Ω
T ·δϕ dS =

∫

∂ω
t ·δϕ ds, (7)

where t is the spatial traction vector, i.e. one referred to the
unit area in the deformed configuration.

The integrals in (7) are split into three parts correspond-
ing to ∂pω , ∂lω and ∂cω . In the case of the hydrostatic pres-
sure loading on ∂pω , the surface traction is given by

t =−psn on ∂pω, (8)

where ps is the sealed pressure and n is the unit outward
normal in the deformed configuration. Specification of the
traction on the lubricated contact boundary ∂lω is postponed
to the next section.

Finally, the condition of frictionless contact along the
contact boundary ∂cω is enforced using the Lagrange multi-
plier technique (e.g. Wriggers [30]), namely
∫

∂cω
t ·δϕ ds =

∫

∂cω
λNδgN ds, (9)

where the Lagrange multiplier λN and the normal gap gN
(defined such that gN > 0 in case of separation) satisfy the
Signorini condition,

gN ≥ 0, λN ≤ 0, gNλN = 0 on ∂cω. (10)

In this work, the augmented Lagrangian technique is used
to regularize the unilateral contact conditions (10). The de-
tails can be found in Alart and Curnier [2] and Pietrzak and
Curnier [22].

3 Reynolds equation

The classical hydrodynamic lubrication theory is based on
the well-known Reynolds equation, cf. Dowson and Higgin-
son [6], Müller and Nau [16]. This equation describes the
flow of a fluid (lubricant) in a thin channel between two
solids in relative motion. It can be obtained by integrating
the Navier-Stokes equation over the thickness of the fluid
film under several assumptions of which the most important
is the assumption that the film thickness is small compared
to the other dimensions of the domain. It is further assumed
that the pressure and viscosity are constant across the film

and that the flow is laminar so that a parabolic velocity pro-
file is obtained. As a result the Reynolds equation expresses
the mass conservation of the fluid in terms of the pressure
and film thickness.

Importantly, the dimension of the problem is reduced so
that the Reynolds equation is two-dimensional in the general
case and one-dimensional if the flow does not dependent on
one spatial variable. Furthermore, the Reynolds equation is
formulated in the Eulerian frame so that, in the case consid-
ered in this work, the Reynolds equation and all the quan-
tities involved refer to the lubricated boundary ∂lω in the
deformed configuration. As in the present model the rod is
assumed to be rigid, it is convenient to introduce a domain,
denoted by γ , which is a projection of the deformed bound-
ary ∂lω onto the rigid surface of the rod, cf. Fig. 1. The
Reynolds equation is then formulated on the domain γ .

For an incompressible fluid, the Reynolds equation takes
the form

divγ q+
∂h
∂ t

= 0, q = ūh− h3

12η
gradγ p, (11)

where p is the hydrodynamic pressure, h the film thickness,
q the lubricant flux, ū the average velocity of the contacting
surfaces, and η the viscosity. The gradient and divergence
in Eq. (11) are defined on the surface γ , hence a subscript
introduced in the respective operators. The essential and the
natural boundary conditions are enforced on the respective
parts of the boundary ∂γ , namely

p = p∗ on ∂pγ , q ·nγ = q∗n on ∂qγ , (12)

where p∗ is the prescribed pressure and q∗n is the prescribed
flux. Special boundary conditions have to be applied on the
cavitation boundary—both the pressure and its gradient are
prescribed at an unknown location which is found as a part of
the solution, cf. [6]. This is avoided in this work by adopting
a simple alternative approach (the penalty method [31]), as
discussed in the next section.

At low pressures, typical for soft EHL problems, the de-
pendence of viscosity on pressure (the piezo-viscous effect)
is not much pronounced, however, for completeness, we in-
troduce this dependence through the Barus equation,

η = η0 exp(α p), (13)

where α is the pressure-viscosity coefficient and η0 is the
viscosity at zero pressure. As isothermal conditions are only
considered, the important temperature dependence of vis-
cosity is not introduced.

Having in mind the numerical examples presented in Sec-
tion 5, the Reynolds equation can be simplified significantly.
Axial symmetry is assumed, so that the Reynolds equation
becomes one-dimensional, and the term ∂h/∂ t vanishes in
steady-state conditions. The corresponding one-dimensional
Reynolds equation reads

d
dx̄

(
ūh− h3

12η
dp
dx̄

)
= 0, (14)

where ū = U/2, U is the rod speed (positive for outstroke,
as indicated in Fig. 1, and negative for instroke), and the
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spatial variable x̄ is a local variable which parameterizes γ .
Equation (14) is accompanied by the boundary conditions

p(x̄s) = ps, p(x̄0) = 0, (15)

which are enforced on the sealed-pressure side (x̄ = x̄s) and
on the air side (x̄ = x̄0).

It is clear that the Reynolds equation in the form (14)
states that the flux q given by the term in brackets is con-
stant along the lubricated boundary. It is also seen that at the
points of zero pressure gradient (e.g. at the point of maxi-
mum pressure) we have

q = ūh∗, h∗ =
q
ū

=
2q
U

, (16)

where h∗ is the characteristic thickness of the lubricant film.
It further follows from Eq. (16) that the seal always leaks
during outstroke (the flux q is positive for positive rod speed
U). During instroke, the leaking fluid is (completely or par-
tially) pumped back as the flux is then negative. The balance
of the leakage during complete cycle determines whether the
seal leaks—this is in brief the principle of the dynamic seal-
ing mechanism, for more details see Müller and Nau [16].

The forces acting on the seal are due to the hydrody-
namic pressure and shear stresses which develop in the lu-
bricant film. The effect of shear stresses on the deformation
of the contacting bodies is neglected in the classical EHL
theory. In the present formulation it is fully accounted for
and, as shown in Section 5, in some conditions the effect is
not negligible.

The shear stress τ at the fluid-solid interface,

τ =
ηU
h
− h

2
dp
dx̄

. (17)

follows from the parabolic velocity profile across the film.
Accordingly, the traction acting on the seal along the lubri-
cated boundary ∂lω is given by

t =−pn+ τs on ∂lω, (18)

where s is the unit vector tangent to the nominal surface γ .
Note that the hydrodynamic pressure loading is assumed in
Eq. (18) to act along n, the current normal to the deformed
surface. Accordingly, n and s are not exactly perpendicular.
However, thanks to this assumption, the hydrostatic and hy-
drodynamic pressure loading along, respectively, ∂pω and
∂lω , are treated consistently. In practical terms, this gives
quite some freedom in choosing the point of transition from
the hydrostatic pressure loading to the hydrodynamic lubri-
cation regime, provided this point is sufficiently far1 from
the actual contact zone.

Finally, we provide the weak form of the Reynolds equa-
tion which constitutes the basis of the finite element for-
mulation. The weak form is obtained in a standard manner.

1 Far from the actual contact zone the film thickness h is much
higher than in this zone. In view of Eq. (11)2, the pressure gradient
quickly converges to zero when h increases. Accordingly, if the film
thickness at the points at which the boundary conditions (15) are en-
forced is sufficiently high, then the results are practically insensitive to
the positions of these points.

Equation (11)1 is multiplied by the test function δ p, vanish-
ing on ∂pγ , and integrated over the domain γ . Application of
the Gauss theorem results in the following weak form
∫

γ

(
gradγ δ p ·q−δ p

∂h
∂ t

)
dγ−

∫

∂qγ
δ pq∗ndl = 0, (19)

which corresponds to the general case specified by Eqs. (11)
and (12).

4 Finite element treatment

The complete EHL problem is specified by the mechanical
equilibrium equation (the solid part) and the Reynolds equa-
tion (lubrication), expressed by the variational weak forms
(1) and (19), respectively. The virtual work of surface trac-
tions, i.e. the second term in Eq. (1), is split into three parts
corresponding to the hydrostatic pressure on ∂pω , contact
with the housing on ∂cω , and hydrodynamic lubrication on
∂lω .

The coupling of the two sub-problems is through the de-
pendence of the film thickness h on the deformation (dis-
placements) of the seal. At the same time, the loading acting
on the seal along the boundary ∂lω is due to the hydrody-
namic pressure p and shear stresses τ , cf. Eq. 18, which re-
sult from the solution of the Reynolds equation.

The finite element formulation is obtained by introduc-
ing the approximations of the unknown displacement and
pressure fields, followed by element-wise numerical inte-
gration of the respective contributions (c.f. Zienkiewicz and
Taylor [33]). As a result a set of nonlinear equations is ob-
tained for unknown nodal quantities.

Finite element treatment of the solid part is standard, so
the details are omitted here. A displacement-based formu-
lation is derived from the weak form (1) and low-order el-
ements are used which employ special techniques in order
to avoid spurious locking effects. Specifically, two types of
axisymmetric four-node elements are used, namely the F-
bar element developed by de Souza Neto et al. [27] and an
underintegrated element based on the volumetric-deviatoric
split and Taylor expansion of shape functions (the latter el-
ement is a nonlinear version of the element developed by
Korelc and Wriggers [13], see also Korelc [12]).

As regards the Reynolds equation, the finite element for-
mulation is introduced below for the simplified steady-state
case with the essential boundary conditions enforced on the
whole boundary ∂γ , so that the weak form (19) simplifies to
∫

γ
gradγ δ p ·qdγ = 0. (20)

The finite element equations are obtained by introducing
a partition Ph

γ of the domain γ into elements γel and a cor-
responding continuous finite element approximation of the
pressure field, so that the integration in Eq. (20) can be per-
formed element-wise,

∑
γel∈Ph

γ

∫

γel

gradγ δ p ·qdγ = 0. (21)
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In addition to the classical continuous finite element dis-
cretization above, we apply also the discontinuous Galerkin
method in which the approximating function is allowed to be
discontinuous at the interfaces between elements. The cor-
responding formulation for the Reynolds equation has been
introduced by Lu et al. [14], following the work of Baumann
and Oden [4], and reads

∑
γel∈Ph

γ

∫

γel

gradγ δ p ·qdγ−
∫

lint

[pn] · 〈δq〉dl

+
∫

lint

[δ pn] · 〈q〉dl = 0. (22)

The second term and the third term in Eq. (22) weakly en-
force the continuity of pressure and the flux balance, respec-
tively. These terms are evaluated along interelement bound-
aries lint on which the jump operator [·] and the average op-
erator 〈·〉 are defined as follows, cf. Zienkiewicz et al. [34],

[pn] = p−n−+ p+n+, 〈q〉=
1
2
(q−+q+), (23)

where n− and n+ are the outward normals at the element
boundaries. Similar definitions hold for δ p and δq, the latter
being defined by

δq =− h3

12η
gradγ δ p. (24)

As mentioned in the previous section, special treatment
is necessary on the cavitation boundary. The cavitation con-
dition implies that p≥ pcav, where pcav is the cavitation pres-
sure assumed here equal to zero, pcav = 0. Within the penalty
method, cf. Wu [31], negative pressures are penalized by an
extra term added to Eq. (21),

∑
γel∈Ph

γ

∫

γel

[gradγ δ p ·qdγ + ε δ pmax(−p,0)] = 0, (25)

where ε > 0 is the cavitation penalty parameter, and sim-
ilarly in the discontinuous Galerkin formulation, cf. Lu et
al. [15].

In the continuum formulation, the domain γ is a projec-
tion of the deformed boundary ∂lω on the rod surface. Con-
sequently, the partition of γ into finite elements is introduced
by the projection of the segments constituting the discretized
boundary ∂lω . In view of finite configuration changes, the
domain γ and its partition into elements depend on the dis-
placements of the seal (which are a part of the solution of the
EHL problem at hand). This constitutes an additional cou-
pling of the solid and lubrication parts.

The important consequence of using low-order solid el-
ements is that the boundary, including the lubricated bound-
ary ∂lΩ , is discretized into linear segments with piecewise-
linear approximation of displacements. This implies linear
interpolation of the film thickness h within each segment
(first-order interpolation, mh = 1) as the rod surface is rigid
and, due to axial symmetry, represented by a line. However,

ϕXel
1

Xel
2

Sel

h

xel
1

xel
2

x̄el
1

pel
1 pel

2 pel
3 pel

4

x̄el
2 x̄γel

γ

Fig. 2 Linear segment on the lubricated boundary ∂lΩ , here sketched
for mp = 3 so that there are mp +1 = 4 pressure nodes per element.

arbitrary interpolation order mp can be adopted for the pres-
sure p. Accordingly, the interpolation within a typical seg-
ment Sel is, cf. Fig. 2,

x =
2

∑
i=1

N(1)
i xel

i =
2

∑
i=1

N(1)
i (Xel

i +uel
i ), (26)

and

p =
mp+1

∑
i=1

N(mp)
i pel

i , (27)

where xel
i , Xel

i , uel
i , and pel

i are the nodal quantities, and N(k)
i

are polynomial shape functions of order k. Clearly, in view
of Eq. (26) we have

x̄ =
2

∑
i=1

N(1)
i x̄el

i , h =
2

∑
i=1

N(1)
i hel

i , (28)

where the nodal quantities x̄el
i and hel

i follow from straight-
forward considerations.

Importantly, increasing the pressure interpolation order
results only in a small overhead on the total number of un-
knowns and on the overall computational cost. In the con-
vergence studies presented in Section 5, interpolation or-
ders ranging from mp = 1 (linear interpolation) to mp =
5 are used in the case of both the finite-element and the
discontinuous-Galerkin treatment of the Reynolds equation.

The nonlinear equations resulting from the finite element
discretization are solved monolithically for all global un-
knowns (displacements, pressures and Lagrange multipliers,
the later enforcing the unilateral contact conditions) using
the iterative Newton method. The exact tangent matrix, re-
quired in the Newton method, is obtained by linearization of
the finite element equations. Here, all the dependencies re-
lated to the coupling of the solid and lubrication parts, men-
tioned earlier in this section, have to be taken into account.
Naturally, the global tangent matrix is not symmetric.

In order to ensure convergence of the Newton method
(the problem at hand is highly nonlinear due to finite config-
uration changes, elastohydrodynamic coupling, cavitation,
etc.), a kind of path-following solution strategy has been de-
veloped. Firstly, for a given sealed pressure ps, a frictionless
contact problem is solved in which frictionless contact con-
ditions (9) are enforced on ∂lω and solution of the Reynolds
equation along ∂lω is suppressed. In the next step, the fric-
tionless contact is gradually replaced by the lubricated con-
tact by introducing a weighting factor which scales the re-
spective nodal forces along ∂lω . At this stage a relatively
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Table 1 O-ring seal: geometrical, process and material parameters.

Inner diameter of the seal, Dinner 50.39 mm
Diameter of the seal, Dseal 3.53 mm
Rod diameter, Drod 50.00 mm
Inner diameter of the housing, Dhous 56.30 mm
Rod speed, U ±25–1600 mm/s
Sealed pressure, ps 0–5 MPa
Elastic parameter, µ1 3.04 MPa
Elastic parameter, µ2 0.62 MPa
Elastic bulk modulus, κ 500 MPa
Oil viscosity (HLP 46) at 30◦C, η0 6.59 10−8 MPa s
Pressure-viscosity coefficient, α 0.02 1/MPa
Cavitation penalty parameter, ε 104 mm/(MPa s)

high rod speed U is assumed, as this makes solution of the
EHL problem easier. Finally, the rod speed is gradually de-
creased to the desired value. In fact, the last step directly
provides the response for a range of rod speeds (at a fixed
sealed pressure) which is a desired result of a typical analy-
sis.

Computer implementation has been performed in the Ace-
Gen/AceFEM environment (Korelc [11; 12]). In this envi-
ronment, the AceGen symbolic code generation system is
used to automatically derive the characteristic expressions
(such as the element residual vector and element tangent ma-
trix) and to generate the corresponding optimized numerical
code. The computations are then carried out in the AceFEM
finite element environment.

5 Application for O-ring seal

The main goal of the study presented in this section is to il-
lustrate the performance, accuracy and convergence behav-
iour of the proposed numerical scheme. An O-ring seal is
chosen as a benchmark example and the corresponding EHL
problem is defined in Section 5.1. Selected results illustrat-
ing hydrodynamic lubrication of the O-ring seal in recipro-
cating motion are also provided as an introduction to subse-
quent sections. Convergence of the results with the refine-
ment of mesh and pressure interpolation order is studied in
Section 5.2. Finally, the effect of pressure dependence of vis-
cosity (piezo-viscous effect) is illustrated in Section 5.3.

5.1 Hydrodynamic lubrication in reciprocating O-ring seal

The analysis below is carried out for a reciprocating rod
seal. Hydrodynamic lubrication in steady-state conditions is
studied during both outstroke (the rod moves towards the air
side, U > 0) and instroke (the rod moves towards the sealed-
pressure side, U < 0). The general arrangement of the seal-
rod-housing system is shown in Fig. 1, and the geometrical
and process parameters are provided in Table 1. The elas-
tic properties of the elastomeric seal (NBR rubber, 70 ShA
hardness) and the viscosity of the hydraulic fluid (Shell Tel-
lus 46 oil) at the working temperature of 30◦C are also given
in Table 1.

Table 2 O-ring seal: number of unknowns (mp = 4).

Total No. of No. of pressure
unknowns unknowns

mesh density 1 1076 109
mesh density 2 3587 217
mesh density 4 12929 433
mesh density 8 48893 865
mesh density 16 189941 1729

(a) (b)

Fig. 3 O-ring seal in the initial undeformed configuration: finite ele-
ment mesh for (a) mesh density 1 and (b) mesh density 2. The contact
surfaces of the rod and housing are indicated by solid lines. The rod is
on the top and the sealed-pressure side is on the left.

Five densities of the structured finite-element mesh have
been used in the convergence studies presented in Section 5.2.
Based on these studies, the finest mesh density 16 and pres-
sure interpolation order mp = 4 have been used in the com-
putations reported below in order to ensure reliable results
in the whole range of process parameters covered by the
present study.

The total number of unknowns (displacements, pressures
and contact Lagrange multipliers) is provided in Table 2 for
the five mesh densities. The number of pressure unknowns in
the Reynolds equation is also given in Table 2. These num-
bers correspond to the pressure interpolation order mp = 4.

The mesh is significantly refined in the vicinity of the lu-
bricated boundary. The undeformed mesh is shown in Fig. 3
for the mesh density 1 and 2. Subsequent finer meshes are
obtained by repetitively decreasing the element size by the
factor of two.

The deformation pattern is shown in Fig. 4. At the sealed
pressure ps = 0, the cross-section is compressed between the
rod and the housing, and it is gradually pressed into the air-
side corners as the sealed pressure increases, cf. Fig. 4(b–d).
As a result, the contact zone expands at the air side and the
shape of the free surface changes (e.g., the apparent radius
decreases with increasing pressure). At the same time, the
sealed-pressure side is not visibly affected by the variation
of the pressure. Short vertical lines in Fig. 4 indicate the do-
main γ on which the Reynolds equation is solved.

The results that follow illustrate the influence of the pro-
cess parameters on the solution of the EHL problem at hand.
The profile of the hydrodynamic pressure p and the thick-
ness h of the lubricant film at both outstroke and instroke are
shown in Fig. 5 for two values of the sealed pressure ps. The
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(a) ps = 0 (b) ps = 1 MPa

(c) ps = 3 MPa (d) ps = 5 MPa

Fig. 4 O-ring seal in the deformed configuration: finite element mesh
(mesh density 2) for different values of the sealed pressure ps.

inlet and outlet zones are magnified in Fig. 6 (for ps = 2 MPa
only). Finally, Fig. 7 illustrates the effect of the rod speed
U on the pressure and film thickness, and the correspond-
ing details of the pressure profile are shown in Fig. 8. In all
these figures, the position x̄ = 0 corresponds to the center
of the cross-section in the initial configuration, as shown in
Fig. 3.

It is seen that qualitative features of the solution depend
only on the direction in which the rod moves, i.e. whether
outstroke or instroke is considered. The main difference be-
tween the two cases is that, in the case of instroke, a sud-
den drop of pressure occurs next to the position of minimum
film thickness at the sealed-pressure side. In the case of out-
stroke, an analogous pressure drop at the air side is excluded
due to cavitation (in fact, it is obtained if the cavitation con-
dition is not enforced).

The film thickness decreases towards the outlet zone with
a sharp minimum at the end of the actual contact zone. In the
inlet and outlet zones, the film thickness increases quickly.
Note, however, that the lines, which seem almost vertical in
Figs. 5(b) and 7(b), correspond to the inclination angle of
10–15 degrees (note the different scaling of the horizontal
and vertical axes).

The actual thickness of the lubricant film is sensitive to
all process parameters: it is smaller at instroke than at out-
stroke and it strongly decreases if the rod speed decreases.
Furthermore, the film thickness decreases with increasing
sealed pressure at instroke, while an opposite, but weaker
effect is observed at outstroke. All these dependencies are
illustrated in Fig. 9 in which parameter h∗ is shown as a
function of the sealed pressure ps at selected values of the
rod speed U . Recall that parameter h∗ is the film thickness
at the point of maximum pressure. This parameter is also a
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Fig. 5 Distribution of (a) pressure p and (b) film thickness h for two
values of the sealed pressure ps at the rod speed U = 100 mm/s.

convenient measure of the leakage rate in view of the rela-
tion (16).

The effect of the rod speed on the fine features of the
pressure profile in the inlet and outlet zones is illustrated in
Fig. 8. The general trend is that for lower rod speed the inlet
and outlet zones are smaller and the pressure converges more
quickly to the values prescribed as boundary conditions (p =
ps or p = 0).

Except in the inlet and outlet zones, the pressure is mainly
affected by the value of the sealed pressure ps, cf. Figs. 5(a)
and 7(a). As the film thickness is small compared to the di-
mensions of the cross-section, the pressure profile is, in fact,
very close to that corresponding to a pure contact analysis.
This is, by the way, the basic assumption of the simplified
inverse hydrodynamic theory, cf. Müller and Nau [16].

Finally, let us note that relatively small changes of the
pressure profile, visible mostly in the inlet and outlet zones,
are associated with significant changes of the lubricant film
thickness and of the related leakage rate. Accordingly, exact
resolution of the inlet and outlet zones is crucial for accurate
solution of the EHL problem at hand.
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Fig. 6 Details of the inlet and outlet zones of the diagrams presented
in Fig. 5: (a) pressure p and (b) film thickness h.

5.2 Convergence studies

In order to assess the performance of the numerical scheme
presented in Section 4, convergence studies have been per-
formed by applying different mesh densities and pressure
interpolation orders for the solution of the O-ring example
of the previous subsection.

Initial studies revealed that oscillations of pressure and
film thickness occur in some situations. As a possible rem-
edy for this problem, the discontinuous Galerkin method
has been used in addition to the classical (continuous) finite
element treatment of the Reynolds equation, following the
promising results of Lu et al. [14; 15] obtained for the hard
EHL problems. Accordingly, both the finite element (FE)
and the discontinuous Galerkin (DG) method have been im-
plemented and used in the present study. Note that oscilla-
tory solutions have already been reported for heavily loaded
hard EHL contacts solved with the use of the finite element
method, e.g. [8; 20], and also for soft EHL problems in elas-
tomeric seals [23].

The oscillations mentioned above are clearly visible in
Fig. 10, which shows convergence of the solution with mesh
refinement for the pressure interpolation order mp = 4. It
is seen that the mesh refinement reduces these oscillations.
In the present case of outstroke at the sealed pressure ps =
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Fig. 7 Effect of rod speed U on (a) pressure p and (b) film thickness h
at the sealed pressure ps = 1 MPa.

1 MPa and rod speed U = 400 mm/s, an oscillation-free (and
apparently converged) solution is obtained for mesh density
4 and higher. However, upon magnification it is seen that the
resolution of the dip in film thickness is improved when the
mesh is further refined up to mesh density 16, see Fig. 11.
The results in Figs. 10 and 11 correspond to the FE treatment
of the Reynolds equation, the results obtained using the DG
method are very similar and are thus omitted here.

Figure 12 presents the pressure distributions obtained for
mesh density 2 using different values of the pressure interpo-
lation order mp. In the case of both FE and DG method, the
pressure converges quickly with increasing interpolation or-
der so that the pressures corresponding to mp = 4 and mp = 5
are hardly distinguished in Fig. 12. As the results are ob-
tained for a low mesh density 2, the converged pressure dis-
tributions exhibit oscillations.

In the case of the DG method, the discontinuities of pres-
sure at the interelement boundaries are clearly visible for
mp = 1 and quickly decrease for higher interpolation orders,
cf. Fig. 12(b). For instance, the maximum pressure jump is
equal to 0.24 MPa for mp = 4 and 0.10 MPa for mp = 5. The
discontinuities of pressure decrease with the refinement of
mesh so that the corresponding jumps are 0.043 MPa and
0.015 MPa for mesh density 4, and are below 0.002 MPa for
mesh density 8.
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Fig. 8 Details of the pressure profile shown in Fig. 7(a): (a) sealed-
pressure side, (b) air side.
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Fig. 9 Parameter h∗ = q/ū as a function of the sealed pressure ps (in-
stroke – solid lines, outstroke – dashed lines).

One of the important conclusions of the present analy-
sis is that the DG method does not perform noticeably better
than the continuous FE method as regards the spurious os-
cillations of pressure and film thickness. This is illustrated
in Figs. 13 and 14 showing the effect of the rod speed U
on the film thickness for the FE and DG treatment of the
Reynolds equation. Solutions corresponding to rod speeds
ranging from 25 to 800 mm/s are shown for both outstroke
and instroke (note the logarithmic scale on the plots). It is
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Fig. 10 Convergence with mesh refinement: (a) pressure p and (b) film
thickness h for different mesh densities (FE treatment of the Reynolds
equation, mp = 4, outstroke, ps = 1 MPa, U = 400 mm/s).
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Fig. 11 Film thickness h for mesh densities 4, 8 and 16 – detail of the
diagram in Fig. 10(b).

seen that the oscillations appear at U = 200 mm/s and are
more pronounced for decreasing rod speed and film thick-
ness. The results obtained using the FE and DG method do
not differ significantly.

The effect of both the rod speed and the mesh density is
shown in Fig. 15. We note that the higher the mesh density
the lower the rod speed at which oscillations appear. In the
present case (outstroke, ps = 5 MPa), small oscillations are
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Fig. 12 Distribution of pressure p for (a) FE and (b) DG treatment of
the Reynolds equation and for different pressure interpolation orders
mp (mesh density 2, outstroke, ps = 1 MPa, U = 400 mm/s).

visible for U = 50 mm/s even for the finest mesh density
16, while for mesh density 8 the oscillations appear for U =
200 mm/s.

The general conclusion is that spurious oscillations of
the solution may occur in severe lubrication conditions, and
the severer the lubrication conditions the finer mesh is nec-
essary to avoid these oscillations. Low rod speed leading to
low film thickness is the main factor that promotes the os-
cillations. Severe conditions are also associated with higher
sealed pressures and with the instroke (rather than outstroke).

Importantly, a solution with mild oscillations may still
provide reasonable estimation of the actual profile of pres-
sure and film thickness—note the similarity of the film thick-
ness profiles corresponding to different mesh densities in
Fig. 15 once the oscillations are filtered out.

The above observation is also confirmed by the quick
convergence of the parameter h∗ = q/ū with the refinement
of mesh, particularly for high pressure interpolation order,
cf. Fig. 16. Consider, for instance, mesh density 2, for which
an oscillatory solution is obtained, cf. Fig. 12. Nevertheless,
in the case of the FE treatment of the Reynolds equation,
parameter h∗ predicted for mp = 2 is only 1% lower than the
converged value, and the error is below 0.3% for mp ≥ 3.
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Fig. 13 FE treatment of the Reynolds equation: effect of the rod speed
U on the film thickness h for (a) outstroke and (b) instroke (mesh den-
sity 8, mp = 4).

From Fig. 16 it follows that, as regards the accuracy of
the predictions of the leakage rate represented by parameter
h∗, the performance of the DG method is somewhat worse
than in the case of the FE treatment of the Reynolds equa-
tion. Note, however, that h∗ has been determined differently
in both cases. In the case of FE method, the lubricant flux q
has been determined at the Gauss points and its value (taken
at the middle of the contact zone) has been used to com-
pute h∗ from Eq. (16). In the case of DG method, the film
thickness has been taken directly at the point of maximum
pressure (both fields have been smoothed beforehand).

In the course of development and testing of the present
numerical scheme, several attempts have been undertaken
directed at avoiding or reducing the spurious oscillations.
In particular, the influence of the formulation of solid ele-
ments used to model hyperelastic deformations of the seal
has been checked. Two types of elements were available for
the study, cf. Section 4, and their performance has been com-
pared. No visible effect of the formulation on the oscillations
has been observed while the convergence of parameter h∗
with mesh refinement seems to be slightly worse in the case
of F-bar element, cf. Fig. 17. Accordingly, the element based
on volumetric-deviatoric split and Taylor expansion of shape
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Fig. 14 DG treatment of the Reynolds equation: effect of the rod speed
U on the film thickness h for (a) outstroke and (b) instroke (mesh den-
sity 8, mp = 4).

functions has been used in all the computations reported in
this work.

Finally, the effect of the quadrature used for numerical
integration of the Reynolds equation has been investigated.
It is well known that interface elements are prone to oscil-
latory solutions and that the oscillations are reduced if the
Gauss quadrature is replaced, for instance, by the Lobatto
quadrature, cf. Schellekens and de Borst [26]. It turns out
that in the present case the oscillations are not affected by
the choice of integration scheme. As the convergence with
mesh refinement is concerned, the effect of the integration
scheme is only visible for mesh densities 1 and 2 and for
low pressure interpolation order, mp ≤ 2, both in the case of
FE and DG method. Sample results are presented in Fig. 18.

5.3 Piezo-viscous effect

As already mentioned, the piezo-viscous effect, i.e. pressure
dependence of viscosity, is by far less important in the case
of soft EHL problems than in the case of hard EHL prob-
lems. For instance, considering hydraulic seals, the viscos-
ity increases only 1.8 times at a relatively high pressure of
30 MPa (for a typical value of pressure-viscosity coefficient
α = 0.02 1/MPa) and 1.2 times at the pressure of 8 MPa,
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Fig. 15 Effect of the rod speed U and mesh density on the film thick-
ness h: (a) mesh density 4, (b) mesh density 8, (c) mesh density 16 (FE
treatment of the Reynolds equation, mp = 4).

the maximum pressure encountered in the example studied
above. However, the piezo-viscous effect can be easily in-
cluded in the modelling by adopting the Barus equation (13),
and thus it has been fully accounted for in the computations
reported above.

For completeness, in this subsection we briefly illustrate
the effect that pressure dependence of viscosity has on the
hydrodynamic lubrication of the O-ring seal. Film thickness,
corresponding to both constant viscosity η = η0 and vari-
able viscosity governed by the Barus equation (13), is shown
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Fig. 16 Convergence of parameter h∗ = q/ū with mesh refinement for
(a) FE and (b) DG treatment of the Reynolds equation (outstroke, ps =
1 MPa, U = 400 mm/s).
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Fig. 17 O-ring seal: effect of solid element formulation on the conver-
gence of parameter h∗ = q/ū with mesh refinement (FE treatment of
the Reynolds equation).

in Fig. 19 for the sealed pressure ps = 5 MPa, i.e. the high-
est pressure considered in the O-ring example. In the case of
outstroke, the film thickness is approximately 7% smaller if
the pressure dependence of viscosity is neglected, while in
the case of instroke the difference is below 1%. In all cases,
the pressure profiles are not visibly affected so the corre-
sponding diagrams are not provided here.
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Fig. 18 O-ring seal: effect of quadrature (Gauss or Lobatto) on the
convergence of parameter h∗ = q/ū with mesh refinement.
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Fig. 19 Effect of pressure dependence of viscosity on the film thick-
ness h (sealed pressure ps = 5 MPa, rod speed U = 100 mm/s).

In the case of outstroke, the inlet zone, which governs
lubricant entrainment, is at the sealed-pressure side. Thus,
if the piezo-viscous effect is accounted for, the viscosity in-
creases with increasing sealed pressure and, as a result, the
film thickness increases. At instroke, the inlet zone is at the
air side and the viscosity is essentially constant. Hence the
difference between the outstroke and instroke as regards the
influence of the piezo-viscous effect.

The effect of pressure dependence of viscosity on the
leakage rate is illustrated in Fig. 20. Consistently with the
results shown in Fig. 19, the leakage rate is only visibly af-
fected in the case of outstroke and, as could be expected, the
difference increases with increasing sealed pressure.

6 Conclusions

A computational scheme has been developed for the analysis
of soft EHL problems in the finite deformation regime with
application for reciprocating elastomeric seals. The seal is
modelled as a hyperelastic body, and the flow of the lubri-
cant is governed by the Reynolds equation. The finite ele-
ment formulation is derived from the respective variational
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Fig. 20 Effect of pressure dependence of viscosity on the leakage rate
represented by parameter h∗ = q/ū (rod speed U = 100 mm/s).

weak forms and the resulting nonlinear equations are solved
monolithically for all global unknowns using the iterative
Newton method.

Performance of the proposed numerical scheme has been
assessed by studying the effect of mesh density and pressure
interpolation order. It has been observed that spurious oscil-
lations of the solution may occur in severe lubrication condi-
tions, for instance, at low rod speeds. Looking for a remedy,
a discontinuous Galerkin treatment of the Reynolds equation
has been introduced as an alternative to the more usual con-
tinuous finite element method. However, the obtained results
indicate that, in terms of accuracy and stability, the discon-
tinuous Galerkin method actually performs worse, although
the effect is not much pronounced.

The spurious oscillations are eliminated, or reduced, when
the finite element mesh is refined. Also, it has been observed
that the more severe the lubrication conditions the finer mesh
is necessary to guarantee an oscillation-free solution. For
a fixed mesh density, the accuracy of the solution can be
improved by increasing the pressure interpolation order mp,
however, oscillations are not much affected by the pressure
interpolation order. It seems that mp = 4 is a reasonable
choice. Mild oscillations, appearing in the vicinity of the dip
in film thickness, do not significantly affect the predictions
of the overall dynamic sealing performance.

In this work, a structured finite element mesh has been
used with uniform mesh size along the lubricated boundary
so that the same mesh could be used for the whole range of
process parameters (note that the size of the actual contact
zone depends on the sealed pressure, and much more weakly
on the rod speed). Application of more optimal unstructured
meshes, possibly refined adaptively, might result in substan-
tial improvement of numerical efficiency and accuracy.

Finally let us note that the effect of surface roughness is
not included in the present model. An idealized EHL prob-
lem for smooth surfaces is thus considered and an assump-
tion of full-film hydrodynamic lubrication is implicitly adopted.
Considering that the predicted film thickness is in some cases
well below 1 µm, the related effects can be significant if the

influence of surface roughness is accounted for, for instance,
using the flow-factor approach, cf. [3; 9; 21; 25].
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