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Abstract

Computational contact homogenization approach is applied to study friction
anisotropy resulting from asperity interaction in elastic contacts. Contact of
rough surfaces with anisotropic roughness is considered with asperity con-
tact at the micro scale being governed by the isotropic Coulomb friction
model. Application of a micro-to-macro scale transition scheme yields a
macroscopic friction model with orientation- and pressure-dependent macro-
scopic friction coefficient. The macroscopic slip rule is found to exhibit a
weak non-associativity in the tangential plane, although the slip rule at the
microscale is associated in the tangential plane. Counterintuitive effects are
observed for compressible materials, in particular, for auxetic materials.
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1. Introduction

Frictional response of a contact pair is called anisotropic when the friction
coefficient, or more generally friction force or traction, depends on the direc-
tion of sliding. Anisotropic effects in friction are usually attributed to two
sources: anisotropy of surface roughness or material anisotropy in a surface
layer. This work is devoted to the micromechanical analysis of the former
effect in elastic contacts.

Experimental evidence of friction anisotropy is very broad, some represen-
tative examples are mentioned below. Friction anisotropy has been observed
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in anisotropic materials such as crystals (Casey and Wilks, 1973; Hirano
and Shinjo, 1993) and fibre-reinforced composite materials (Sung and Suh,
1979). Anisotropic roughness effects have been observed for textured sur-
faces (Zhang and Komvopoulos, 2009; Zhang et al., 2012), including contact
of rubber-like materials (Konyukhov et al., 2008; Carbone et al., 2009; Ozaki
et al., 2012) and biological contacts (Hazel et al., 1999; Murphy et al., 2007).

Macroscopic constitutive models of anisotropic friction are usually devel-
oped within the framework of plasticity theory (Micha lowski and Mróz, 1978;
Curnier, 1984; Mróz and Stupkiewicz, 1994; Konyukhov and Schweizerhof,
2006; Ozaki et al., 2012). Alternative approaches include the bi-potential
method (Hjiaj et al., 2004a) and friction-tensor description (Zmitrowicz,
1989). He and Curnier (1993) have introduced a friction model involving
structural tensors that describe evolution of friction anisotropy resulting from
relative motion of contacting bodies. Computational schemes for anisotropic
frictional contact problems have been developed, for instance, by Hjiaj et al.
(2004b); Buczkowski and Kleiber (2006); Jones and Papadopoulos (2006);
Rodriguez-Tembleque and Abascal (2013).

In contrast to the macroscopic models mentioned above, micromechan-
ical modeling approach considers interaction mechanisms at the microscale
with the aim to provide a refined description of macroscopic properties and
an improved understanding of physical phenomena. The general goal of mi-
cromechanics is to establish a link between macroscopic properties of materi-
als, interfaces, etc., and their microscopic features, including microstructure
and local interaction mechanisms. Classical applications of micromechan-
ical modeling are concerned with heterogeneous bulk materials and their
macroscopic bulk properties, and a variety of related approaches have been
developed over the last decades, see, for instance, Nemat-Nasser and Hori
(1999); Qu and Cherkaoui (2006). However, the concepts of micromechanics
can also be applied to interfaces. Contact interfaces, considered further in
this work, are here typical examples, but other types of interfaces are also
analyzed, for instance, microstructured interfaces at phase boundaries (Stup-
kiewicz et al., 2007; Petryk et al., 2010), imperfect or corrugated interfaces
in composites (Bertoldi et al., 2007; Vinh and Tung, 2012; Le Quang et al.,
2013), and others.

In the present context of contact of rough surfaces, the goal of microme-
chanical modeling is to predict macroscopic properties of a contact pair by
considering interaction of surface asperities at the microscale. The macro-
scopic properties of interest may include, for instance, friction, contact com-
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pliance, real contact area fraction, thermal or electrical contact conductance,
and wear.

A popular approach for computing the overall contact response relies on
a solution for a single asperity contact that is averaged over a distribution
of asperity heights, radii, etc. That approach has been initiated by the pio-
neering work of Greenwood and Williamson (1966) and followed in numerous
papers over the last decades. A related theory of Persson (2001) does not con-
sider individual asperities but rather a spectrum of roughness length-scales
and the corresponding length-scale distributions of contact pressure and real
contact area fraction. Carbone et al. (2009) have extended that theory to
anisotropic surface roughness with application to anisotropic rubber friction.

Computational contact homogenization is an alternative approach in which
a microscopic boundary value problem is solved, typically using the finite el-
ement method, for a representative sample of rough contact interface, and
macroscopic response is obtained by averaging the corresponding microscopic
fields. The benefit of this approach is that geometrical and material nonlin-
earities, including arbitrary constitutive behavior of surface layers, can be di-
rectly included in the microscopic problem at the cost that the range of scales
considered and spatial resolution are limited by the available computational
resources. Related theoretical considerations within the framework of two-
scale asymptotic expansions can be found in Orlik (2004) and Stupkiewicz
(2007). Representative developments in computational contact homogeniza-
tion include analysis of frictionless normal contact of hyperelastic and elasto-
plastic bodies (Bandeira et al., 2004; Pei et al., 2005), hysteretic effects in
rubber contacts in the finite deformation regime (Wriggers and Reinelt, 2009;
De Lorenzis and Wriggers, 2013), thermal contact conductance and thermo-
mechanical contact (Varadi et al., 1996; Sadowski and Stupkiewicz, 2010b;
Temizer, 2011), and third-body particles in contact interface (Temizer and
Wriggers, 2008, 2010). Interactions between the macroscopic deformation
and the local deformation inhomogeneities at asperity contacts have been
studied by Stupkiewicz (2007) and Sadowski and Stupkiewicz (2010a). Anal-
ysis of atomic-scale contact phenomena using molecular dynamics (MD) can
be found in Anciaux and Molinari (2010) and Spijker et al. (2013).

Micromechanical modelling of friction anisotropy has attracted so far
little attention. It seems that, apart from a recent model of rubber fric-
tion anisotropy (Carbone et al., 2009), the only micromechanical model of
anisotropic friction is that developed by Mróz and Stupkiewicz (1994). In
that model, one surface is represented by parallel rigid wedges, the other
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surface is represented by isotropically distributed asperities that may deform
only in the normal direction (which corresponds to a Winkler foundation),
and the contact interaction at the microscale is governed by the isotropic
Coulomb friction model. Upon averaging, an orthotropic macroscopic fric-
tion model is obtained with the following three qualitative features:

(i) direction-dependent macroscopic friction coefficient is higher than the
local friction coefficient;

(ii) friction is higher for sliding across the wedge-like asperities than for
sliding along the wedges;

(iii) the macroscopic slip rule is not associated in the tangential plane.

Concerning the third property, we note that the local slip rule is associated in
the tangential plane1 and this associativity is not transmitted to the macro-
scopic friction model. This is in contrast to the classical micromechanics
of heterogeneous materials, where the normality rule at the microscale is
transmitted to the macroscale (Hill and Rice, 1973).

The present work has been directly inspired by the simple micromechan-
ical model of Mróz and Stupkiewicz (1994). Our aim here is to apply the
computational contact homogenization approach to study friction anisotropy
resulting from asperity interaction in elastic contacts. Friction at local con-
tacts is thus assumed to be the only dissipative mechanism in the system.
Note that, in the model of Carbone et al. (2009), anisotropy of friction results
from orientation-dependent hysteretic contribution due to viscoelastic defor-
mation in a surface layer. Compared to the model of Mróz and Stupkiewicz
(1994), more realistic surface roughness topographies are here considered,
and asperity interaction is governed by a contact problem formulated for a
deformable surface layer in the finite deformation regime. Micromechanical
study of such a scope is carried out for the first time, to the best of the
authors’ knowledge.

The micro-to-macro transition procedure that is the basis of the adopted
micromechanical framework can be regarded rather standard. Basic concepts
concerning formulation of the microscopic problem, periodicity along the con-

1By the associativity in the tangential plane, we mean that the slip velocity is normal
to the section of the Coulomb cone by a plane of constant contact pressure. The local
friction model obeys thus the normality rule in the tangential plane. Clearly, in the space
of total contact tractions, the slip rule is not associated due to pressure dependence of the
friction traction.
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tact interface, boundary conditions and averaging rules are briefly introduced
in Section 3, following Stupkiewicz (2007) and Temizer and Wriggers (2008).
Section 4 is the main part of the paper and presents the results obtained for
an idealized sinusoidal roughness as well as for randomly rough surfaces in
relative sliding motion. It is shown that the three features (i)–(iii) of the mi-
cromechanical model of Mróz and Stupkiewicz (1994) are also observed in the
present more general setting, but only for a nearly incompressible material.
Quite surprisingly, properties (i) and (ii) do not hold for compressible hy-
perelastic materials and, in particular, for materials with negative Poisson’s
ratio (auxetics).

2. Orthotropic friction model

An orthotropic friction model is briefly introduced in this section as a
reference for the micromechanical analysis of Section 4. Although a different
notation is used in the presentation below, the model is fully equivalent
to that proposed by Mróz and Stupkiewicz (1994). The model is a direct
generalization of the classical isotropic Coulomb friction model, hence the
friction coefficient and the slip potential are assumed independent of contact
pressure.

Consider friction response of a contact pair that exhibits orthotropic sym-
metry. It is thus characterized by two friction coefficients µ1 > 0 and µ2 > 0
corresponding to the orthotropy axes specified by orthogonal unit vectors e1
and e2, respectively. Further, define the average friction coefficient µ as the
geometric mean of µ1 and µ2 and parameter m characterizing the anisotropy
according to

µ =
√
µ1µ2, m =

√
µ1

µ2

, (1)

so that µ1 = mµ and µ2 = µ/m.
An orthotropic friction condition can now be written in the following

form,

Φ = ∥tT∥M − µtN ≤ 0, ∥tT∥M =
√

tTαMαβtTβ, (2)

where tN ≥ 0 and tT are, respectively, the normal and tangential components
of the contact traction vector t,

t = −tNn + tT , tN = −t · n, tT = tTατ
α, (3)
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n is the unit normal to the contact surface, and τα is the tangent basis. ∥·∥M
denotes an elliptic norm defined by a symmetric, positive-definite tensor M
that depends solely on parameter m. Specifically, in the Cartesian coordinate
system aligned with the orthotropy axes, the components of tensor M are
given by

Mαβ =

[
1/m2 0

0 m2

]
. (4)

Assume further that frictional slip is governed by a slip potential Ψ so
that the tangential slip velocity vT obeys the following slip rule

vT = λ̇
∂Ψ

∂t
, λ̇ ≥ 0, λ̇Φ = 0, (5)

where the slip potential is assumed in the following form

Ψ = ∥tT∥P, P αβ =

[
1/m2p 0

0 m2p

]
, 0 ≤ p ≤ 1, (6)

and the above components Pαβ of tensor P correspond to the Cartesian
coordinate system aligned with the orthotropy axes.

Parameter p scales the semi-axes of the ellipse defining the slip potential
with respect to the semi-axes of the friction condition (2), thus Eq. (6) is in
general a non-associated slip rule. Here and in the following, associativity or
non-associativity of the slip rule refers to the tangent plane, i.e., to the section
of the limit friction surface corresponding to a constant normal traction tN .
Considering the total contact traction t, the slip rule (6) is, of course, not
associated due to pressure-dependence of the friction traction, just like in
case of the usual isotropic Coulomb friction model.

For p = 1, we have P = M and the associated slip rule is obtained. For
p = 0, the slip velocity vT is coaxial with the friction traction tT . For p = 1

2
,

the model of Zmitrowicz (1989) is obtained. Clearly, the isotropic Coulomb
friction model is recovered for µ1 = µ2.

The above orthotropic friction model is illustrated in Fig. 1 which shows
a section of the limit friction surface corresponding to a constant tN . Angles
α and β define the directions of the vectors of friction traction tT and slip
velocity vT , respectively, with respect to the orthotropy axis e1. The angle
between the two vectors is denoted by δ,

δ = α− β. (7)
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tT1

tT2

α

β

Φ = 0

Ψ = const
δvT

tT

Figure 1: Orthotropic friction model.

Note that, according to this definition, the angle δ indicated in Fig. 1 is
actually negative.

An alternative, more general description of anisotropic friction can be in-
troduced using a polar representation of the friction traction tT . The friction
condition and the slip potential are then expressed as

Φ̃ =
∥tT∥
f(α)

− tN ≤ 0, Ψ̃ =
∥tT∥
g(α)

, (8)

where f(α) is the directional friction coefficient µ(α) = ∥tT∥/tN = f(α), and
g(α) defines a convex slip potential. The slip rule (5) evaluated for the slip
potential Ψ̃ yields

vT = λ̇
∂Ψ̃

∂t
=

λ̇

g(α)∥tT∥

(
tT − g′(α)

g(α)
n× tT

)
, (9)

from which the following simple expression for the angle δ is obtained (Mróz
and Stupkiewicz, 1994),

tan δ =
g′(α)

g(α)
, (10)

where g′(α) denotes the derivative of g(α). In case of the associated slip rule,
we have g(α) = f(α) and tan δ = f ′(α)/f(α).

3. Micromechanical framework

The goal of the present micromechanical analysis is to determine macro-
scopic (effective) friction properties of a contact pair in a relative sliding mo-
tion by considering surface roughness and asperity interactions. The scope
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of this work is restricted to elastic contacts so that the dissipation in the
system is assumed to originate only from friction at the microscale, i.e., at
local asperity contacts. Other dissipative mechanisms such as plasticity, vis-
coelasticity, thermal effects, etc., are not considered.

Assuming that the contacting bodies are elastic, the macroscopic friction
properties depend only on surface roughness, which plays here the role of
microstructure, and on the local friction model, which governs the contact
interactions at the microscale. Real engineering surfaces are known to ex-
hibit roughness on multiple scales, and fractal description is often adopted
in that context, e.g., Majumdar and Bhushan (1991); Persson (2001). In
the approach adopted here, only a limited range of roughness length scales
is explicitly considered due to the limitations imposed by the finite element
discretization and by the associated computational cost. At the same time,
contact at the microscale is assumed to be governed by the isotropic Coulomb
friction model, and this can be interpreted to result from the asperity inter-
actions at the lower scales that are not explicitly represented in the model.

In view of the specific assumptions adopted above, it is hard to identify a
physically relevant system that would directly correspond to the considered
class of problems. Rather, the aim of the present micromechanical analysis
is to contribute to the basic understanding of the related phenomena and,
in a broader perspective, to the development of micromechanical modelling
approaches.

In the following, it is assumed that one of the bodies is rigid. Relaxing
that assumption would not change much in the micromechanical framework,
except that implementation would be somewhat more involved (and the com-
putation time would increase). Clearly, the actual frictional response would
probably be affected.

The macroscopic friction properties are obtained through a micromechan-
ical testing procedure that is described below. The macroscopic friction trac-
tion t̄T is expected to depend on the macroscopic normal contact traction t̄N
and on the macroscopic slip velocity v̄T . Actually, since a rate-independent
friction model is assumed at the microscale, the macroscopic friction is also
rate-independent, and only the orientation of v̄T matters, characterized by
angle β, see Section 2. Here and below, the macroscopic quantities are de-
noted by a superimposed bar.

In principle, the micromechanical testing procedure amounts to solving
a microscopic problem for prescribed control parameters (t̄N , β), and the
macroscopic friction traction t̄T is obtained by averaging the respective local
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rough rigid surface

periodic displacement
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rough hyperelastic half-space prescribed loadingΓl

l

Γc

Γ− Γ+

Ω

periodic unit cell

x− x+

n̄

n̄

Figure 2: Periodic unit cell used in the micromechanical testing procedure.

fields. In practice, the microscopic problem is formulated for a roughness
sample of limited size so that representativeness of the sample cannot be
guaranteed. As a remedy, several roughness samples can be analyzed, and the
macroscopic response can then be obtained by averaging over an ensemble.

The main part of the micromechanical testing procedure is the solution
of the microscopic problem. Following the ideas discussed in detail by Stup-
kiewicz (2007), see also Temizer and Wriggers (2008), the microscopic prob-
lem is formulated for a rough hyperelastic half-space that is brought to con-
tact with a rough rigid surface of nominal normal n̄. The periodicity of the
solution along the tangential direction is a necessary assumption that allows
a consistent treatment of tangential friction stresses, see Stupkiewicz (2007).
Accordingly, the half-space is fully represented by a periodic unit cell Ω, as
illustrated in Fig. 2. The height of the cell in the direction normal to the
nominal contact surface is selected such that the boundary conditions applied
at the upper boundary Γl do not affect the solution up to a desired accuracy
(Stupkiewicz, 2007; Temizer and Wriggers, 2008; De Lorenzis and Wriggers,
2013).

The assumption of periodicity implies that the roughness of both surfaces
must also be periodic. This is schematically indicated in Fig. 2 where l de-
notes the period which is identical for both surfaces. An adequate notion of
periodicity is also introduced for three-dimensional problems. Note that pe-
riodicity must be maintained in the deformed configuration which constrains
the relative motion to be a translation, since a rotation about the normal
direction would immediately break the periodicity. Also, the macroscopic
in-plane deformation is not allowed as that would change the dimensions of
the unit cell in the deformed current configuration.
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The loading program applied in the microscopic problem consists of three
phases:

(i) compression to a prescribed macroscopic normal contact traction t̄N
(or normal displacement ūN) applied at the upper boundary Γl;

(ii) initial dragging at constant t̄N (or ūN);

(iii) the actual testing phase in which the unit cell is dragged at constant
t̄N (or ūN) over the distance corresponding to the roughness period.

The purpose of the initial dragging phase (ii) is to erase the path-dependent
effects associated with phase (i), so that the response in phase (iii) is truly
periodic with respect to the time-like loading parameter.

The loading is applied at Γl, the upper boundary of the unit cell. Two
types of boundary conditions can be considered: either a uniform normal
traction (equal to t̄N) or a constant normal displacement ūN can be applied
at Γl. In the latter case, the macroscopic normal contact traction is not
known a priori—it is obtained as a part of the solution of the microscopic
problem. In both cases, the lateral displacements at the upper boundary are
fully prescribed.

Concerning the boundary conditions at the remaining part of the bound-
ary, periodicity of the displacement is enforced on the lateral faces Γ± of the
unit cell, which implies anti-periodicity of the corresponding tractions, and
frictional contact with the rigid counter-surface is considered at the contact
surface Γc which constitutes the bottom boundary of the unit cell.

The following weak form of the equilibrium equation constitutes the basis
of the finite element implementation,∫

Ω

S · ∇δu dΩ +

∫
Γl

t̄N n̄ · δu dΓ +

∫
Γc

(−tNδgN + tT · δgT )dΓ = 0, (11)

where S is the first Piola-Kirchhoff stress, the displacement is periodic in the
tangential plane, thus

u(x+) = u(x−), δu(x+) = δu(x−), (12)

where x+ ∈ Γ+ and x− ∈ Γ− are two associated points on the lateral bound-
ary of the unit cell, and the following boundary condition holds on Γl,

(I− n̄⊗ n̄)u(x) = ūT for x ∈ Γl, (13)
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where ūT is a prescribed time-dependent tangential displacement, ūT · n̄ = 0.
If the normal displacement ūN is prescribed on Γl instead of the normal
traction t̄N , then the second integral in Eq. (11) vanishes, and the boundary
condition (13) is replaced by the condition u = ūNn + ūT on Γl.

The third integral in the weak form (11) describes the contact contribu-
tion at Γc. The adopted finite-deformation contact formulation is standard;
the details can be found in the monographs (Laursen, 2002; Wriggers, 2006).
The contact kinematics is based on the closest-point projection with the
deformable surface Γc being the slave surface. The inequality constraints
resulting from unilateral contact and isotropic Coulomb friction conditions
are enforced using the augmented Lagrangian method (Alart and Curnier,
1991; Pietrzak and Curnier, 1999). The details of the present contact imple-
mentation can be found in Lengiewicz et al. (2011).

The hyperelastic material model, used in this work, is specified by the
following neo-Hookean-type elastic strain energy function,

S =
∂W

∂F
, W (F) =

1

2
µe(tr b̄− 3) +

1

4
κe(detb− 1 − log(detb)) (14)

where F is the deformation gradient, b is the Finger deformation tensor, b̄
is its isochoric part,

b = FFT, b̄ = (detb)−1/3 b, (15)

and the elastic shear modulus µe and bulk modulus κe are related to the
Young’s modulus E and Poisson’s ratio ν by the usual relationships µe =
1
2
E/(1 + ν) and κe = 1

3
E/(1 − 2ν).

The macroscopic tangential contact traction t̄T and, if applicable, the
macroscopic normal contact traction t̄N are obtained by averaging of the
local traction t at the upper boundary Γl according to

t̄ =
1

∆t

∫ t0+∆t

t0

⟨t⟩Γl
dt, ⟨t⟩Γl

=
1

|Γl|

∫
Γl

Sn̄ dΓ. (16)

Here, the averaging involves spatial averaging over the upper boundary Γl

and time averaging over the time period ∆t corresponding to phase (iii).
Additionally, ensemble averaging over several realizations (samples) of sur-
face roughness is necessary if the roughness sample is not representative.
Finally, the macroscopic friction coefficient µ̄ and angle α characterizing the
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orientation of the friction traction are given by

µ̄ =
∥t̄T∥
t̄N

, α = arctan
t̄T2

t̄T1

. (17)

Note that µ̄ may, in general, depend on both t̄N and β.
Considering that the isotropic Coulomb friction is assumed at local con-

tacts and that local friction is the only dissipative mechanism in the system,
the macroscopic friction is expected to be affected by surface roughness only
in the finite deformation regime, i.e, when the effects of non-zero asperity
slope effectively appear.

4. Anisotropic friction effects in rough elastic contacts

4.1. Sinusoidal rigid surface

In this section, a detailed micromechanical analysis of anisotropic fric-
tion effects is carried out for the case of contact of a smooth hyperelastic
half-space with a rigid sinusoidal surface. This is possibly the simplest con-
figuration that features anisotropic (actually orthotropic) roughness and is
thus expected to exhibit friction anisotropy at the macroscale. More realistic
roughness is considered in the subsequent sections.

The sinusoidal rigid surface with a period l along the x-direction and an
amplitude 2h is defined by the following equation

z(x, y) = z0 + h cos(2πx/l). (18)

The roughness profile does not depend on the y-coordinate so that the micro-
scopic problem is effectively two-dimensional, i.e., all unknowns depend only
on x- and z-coordinates. However, the out-of-plane y-displacements are fully
accounted for, and the problem is formulated as a generalized plane strain
problem.

Further, the deformable surface is smooth, i.e., planar in the undeformed
reference configuration. The microscopic problem can thus be formulated as
a steady-state problem in an Eulerian frame attached to the rigid surface.
Accordingly, the time averaging in the averaging rule (16) is omitted, and
only the spacial averaging is applied to determine the macroscopic tangential
contact traction (while the normal contact traction is prescribed). Since the
material is hyperelastic, the solid part in the microscopic problem is not
affected by the adopted Eulerian steady-state formulation. A non-standard

12



treatment is only needed in the contact part when defining the slip velocity
at the local contacts. Specifically, in steady-state conditions, the slip velocity
vT is given by the following relationship

vT = Fv̄T , (19)

where F is the deformation gradient and v̄T is the macroscopic slip velocity,
i.e., the constant velocity of material points with respect to the fixed Eu-
lerian frame in the undeformed reference configuration. Actually, only the
tangential part of the deformation gradient F affects vT which can thus be
computed using surface data only.

The computations have been carried out for the asperity height h/l equal
to 0.025, 0.05, 0.075 and 0.1, the local friction coefficient µ0 equal to 0.1, 0.2
and 0.3, and the Poisson’s ratio ν equal to −0.8, −0.4, 0, 0.25 and 0.45.2 The
value of the Young’s modulus E may be left unspecified because the contact
tractions are reported below only as the dimensionless tractions normalized
by the reduced Young’s modulus E∗ = E/(1 − ν2).

In the finite-element implementation, four-node quadrilateral elements
employing the F-bar formulation (de Souza Neto et al., 1996) are used for the
solid part. Displacement periodicity (12) is enforced using the Lagrange mul-
tiplier technique, and the augmented Lagrangian method (Alart and Curnier,
1991; Pietrzak and Curnier, 1999) is used to enforce contact constraints.
Computer implementation and finite-element computations are carried out
using the AceGen/AceFEM system (Korelc, 2002, 2009), see also Lengiewicz
et al. (2011) for the details of the present implementation of contact.

Figure 3 shows the undeformed finite element mesh of the unit cell, as
well as the deformed mesh for the case of the macroscopic slip velocity per-
pendicular to the sinusoidal wedges of the rigid surface, β = 0, for h/l = 0.1
and ν = 0.45. The deformation pattern is further illustrated in Fig. 4, which
shows the deformed mesh corresponding to the macroscopic slip velocity in-
clined with respect to the sinusoidal wedges. The color map in Fig. 4 shows
the out-of-plane y-displacement which is otherwise not seen in the in-plane
mesh deformation.

2The negative Poisson’s ratio ν, i.e., the auxetic behaviour, is obtained in practice by
microstructuring the material. In the present micromechanical framework, it is assumed
that the material is homogeneous at the scale of asperities, which is not expected to hold
for the known auxetic materials. In spite of that, the negative values of the Poisson’s ratio
ν are included in the analysis for completeness.
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Figure 3: Sinusoidal rigid surface: (a) undeformed mesh, (b) deformed mesh at t̄N/E∗ =
0.2, (c) deformed mesh at t̄N/E∗ = 0.6. Macroscopic slip velocity is perpendicular to the
sinusoidal wedges (β = 0). A much finer mesh is used in the actual computations (see
text).
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Figure 4: Deformed mesh corresponding to the macroscopic slip velocity inclined at (a)
β = 30◦, (b) β = 60◦, (c) β = 90◦ to the sinusoidal wedges at t̄N/E∗ = 0.6. The color
map shows the out-of-plane displacement uy/l. A much finer mesh is used in the actual
computations (see text).
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Note that a coarse mesh is shown in Figs. 3 and 4. The actual computa-
tions have been performed using a much finer mesh with element size reduced
four times (and in some cases even eight times) with respect that shown in
Figs. 3 and 4. In fact, a careful mesh convergence study has been performed,
and a sufficiently fine mesh has been used so that the reported results are
not visibly affected by the finite-element discretization.

The deformation pattern illustrated in Figs. 3 and 4 consists of overall
shear (and compression) of the surface layer with a superimposed inhomo-
geneity due to contact with asperities. The associated distortion of the unit
cell, and thus also the distortion of the individual finite elements, increases
with increasing macroscopic friction traction, and this limits the range of
contact pressures that can be simulated.

Results obtained for µ0 = 0.2 and ν = 0.45 are summarized in Fig. 5.
Anisotropy and pressure-dependence of the macroscopic friction coefficient
are clearly seen in the polar plots of µ̄(α) shown in Fig. 5a. The resulting
orthotropic friction condition can be well approximated by the elliptic friction
condition (2). It has been checked that the error of this approximation is
below 1% in all cases that have been studied.

The markers in Fig. 5a denote the friction coefficients corresponding to
the inclination angle β incremented by 10 degrees (in the computations,
angle β has been incremented by 2.5 degrees). The non-radial placement of
the markers corresponding to different contact pressures indicates that the
macroscopic slip rule is also pressure-dependent. The macroscopic slip rule
is further discussed at the end of this section.

Sinusoidal roughness implies orthotropic symmetry of the macroscopic
friction coefficient, and two principal friction coefficients can be defined: µ̄(1)

and µ̄(2) corresponding to macroscopic slip velocity, respectively, perpendic-
ular (β = 0) and parallel (β = 90◦) to the sinusoidal wedges. The principal
friction coefficients µ̄(1) and µ̄(2) are shown in Fig. 5b as a function of the
dimensionless macroscopic normal contact traction t̄N/E

∗.
As a reference, the principal friction coefficients are compared to those

predicted by the simple micromechanical model of Mróz and Stupkiewicz
(1994). The latter are indicated by two dashed lines in Fig. 5b, while their
values are given by the following analytical formulae derived by Mróz and
Stupkiewicz (1994),

µ̄∗
(1) =

µ0

1 − (1 + µ2
0) sin2 φ

, µ̄∗
(2) =

µ0

cosφ
, µ̄∗

(1) > µ̄∗
(2) > µ0, (20)
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Figure 5: Orientation- and pressure-dependence of the macroscopic friction coefficient for
nearly incompressible material (ν = 0.45): (a) polar plots µ̄(α) corresponding to selected
values of macroscopic contact pressure t̄N/E∗; (b) principal friction coefficients µ̄(1) and
µ̄(2) as a function of contact pressure t̄N/E∗. The dashed circle in figure (a) corresponds
to the isotropic local friction coefficient µ0 = 0.2.

16



where φ denotes the inclination angle of the wedge-like asperities considered
in the simple micromechanical model, µ0 is the local friction coefficient, and
the inequalities in (20)3 hold for φ > 0 and µ0 > 0. The values of µ̄∗

(1) and µ̄∗
(2)

shown in Fig. 5b correspond to the average asperity slope of the sinusoidal
wedges considered in the present work, i.e., φ = arctan(4h/l).

Three general features of the macroscopic friction model resulting from
the present micromechanical analysis can be observed in Fig. 5. Firstly,
surface roughness results in an increase of the macroscopic friction coefficient
with respect to the local friction coefficient µ0 (a dashed circle corresponding
to the isotropic local friction model is included in Fig. 5a). Further, sliding
across the sinusoidal wedges results in a higher friction than sliding along the
wedges, i.e., µ̄(1) > µ̄(2). Finally, the macroscopic friction coefficient increases
with increasing contact pressure. The first two features are in a qualitative
agreement with the micromechanical model of Mróz and Stupkiewicz (1994),
see Eq. (20)3.

Note, however, that the three effects mentioned above are reversed at
very low contact pressures. For instance, it is seen in Fig. 5b that µ̄(1) < µ0

for t̄N/E
∗ < 0.02, and µ̄(1) < µ̄(2) for t̄N/E

∗ < 0.05. This has been found
quite unexpected, and a detailed study of the corresponding effects has been
carried out in order to confirm and understand those effects.

As illustrated and discussed in more detail later, the unexpected effects
mentioned above have been found to be related to elastic compressibility
of the material. Indeed, the results analogous to those presented in Fig. 5
for a nearly incompressible material (ν = 0.45), but corresponding to an
auxetic material with ν = −0.8, exhibit similar qualitative features which
are, however, much more pronounced, see Fig. 6. The principal macroscopic
friction coefficient µ̄(1) across the sinusoidal wedges is now significantly lower
than both the principal macroscopic friction coefficient µ̄(2) along the wedges
and the local friction coefficient µ0, and this occurs in a wide range of contact
pressures.

The effect of elastic compressibility on friction anisotropy is further illus-
trated in Fig. 7 which shows the ratio of the principal friction coefficients,
µ̄(1)/µ̄(2), as a function of the contact pressure t̄N/E

∗. The solid and dashed
lines in Fig. 7 correspond to µ0 = 0.3 and µ0 = 0.1, respectively, while the re-
sults corresponding to µ0 = 0.2 (not shown) are in between. The effect of the
local friction coefficient µ0 on the anisotropy ratio is not much pronounced.
The black dotted lines in Fig. 7 indicate the ratio µ̄∗

(1)/µ̄
∗
(2) resulting from
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Figure 6: Orientation- and pressure-dependence of the macroscopic friction coefficient for
compressible material (ν = −0.8): (a) polar plots µ̄(α) corresponding to selected values
of macroscopic contact pressure t̄N/E∗; (b) principal friction coefficients µ̄(1) and µ̄(2) as
a function of contact pressure t̄N/E∗. The dashed circle in figure (a) corresponds to the
isotropic local friction coefficient µ0 = 0.2.
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Figure 7: Anisotropy ratio µ̄(1)/µ̄(2) as a function of dimensionless normal contact traction
t̄N/E∗ for: (a) h/l = 0.05, (b) h/l = 0.1. Solid and dashed lines correspond to µ0 = 0.3
and µ0 = 0.1, respectively.

Eq. (20) for µ0 = 0.3.
As shown in Fig. 7, the anisotropy ratio µ̄(1)/µ̄(2) decreases with decreas-

ing Poisson’s ratio ν. Further, for all Poisson’s ratios, there is a range of
contact pressures for which µ̄(1)/µ̄(2) < 1, so that the friction coefficient
across the sinusoidal wedges is lower than that along the wedges, and the
corresponding range of contact pressures increases with decreasing Poisson’s
ratio. For a nearly incompressible material (ν = 0.45), the corresponding
range of pressures is relatively small but it significantly increases with de-
creasing Poisson’s ratio.

The effect of the Poisson’s ratio on the principal macroscopic friction
coefficient µ̄(1) (sliding across the wedges) normalized by the local friction
coefficient µ0 is illustrated in Fig. 8. It is seen that µ̄(1) is lower than µ0

for some range of applied macroscopic contact pressures, and that range
increases with decreasing Poisson’s ratio. This confirms the counterintuitive
effect already illustrated in Figs. 5 and 6, namely that surface roughness
may lead to reduction of friction in rough elastic contacts. This effect is
clearly visible for a compressible material with ν = 0.25, and it is even more
pronounced for lower values of ν. Also, higher roughness (i.e., increased
asperity height) results in a higher reduction of µ̄(1), compare Fig. 8a and
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Figure 8: Normalized principal macroscopic friction coefficient µ̄(1)/µ0 as a function of
dimensionless normal contact traction t̄N/E∗ for: (a) h/l = 0.05, (b) h/l = 0.1. Solid and
dashed lines correspond to µ0 = 0.3 and µ0 = 0.1, respectively.

Fig. 8b.
The effect of asperity height h/l is further illustrated in Fig. 9 where the

principal friction coefficients µ̄(1) and µ̄(2) are shown for a representative case
of ν = 0. As expected, higher roughness results in higher friction, except
at low pressures where µ̄(1) is reduced with respect to µ0, and here higher
roughness results in higher reduction of friction.

From Figs. 7–9, it follows that surface roughness influences the macro-
scopic friction only when finite deformation effects accompany asperity in-
teraction. In fact, for very low contact pressures (t̄N → 0), the macroscopic
friction coefficient µ̄ tends to the local friction coefficient µ0 (µ̄ → µ0) so that
friction at the macroscale is trivially governed by the local isotropic Coulomb
friction model. Nontrivial effects are related to nonzero slope of asperity con-
tacts which may only occur for sufficiently high contact pressures. Clearly,
this concerns only elastic contacts, as considered in this work, and the above
conclusion would not apply if inelastic deformation mechanisms (viscoelas-
ticity, plasticity, etc.) were present in the surface layer or if another friction
law was assumed to govern contact at the microscale.

Orientation- and pressure-dependence of the macroscopic friction coeffi-
cient, discussed in detail above, does not fully characterize the macroscopic
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Figure 9: Principal friction coefficients µ̄(1) (solid lines) and µ̄(2) (dashed lines) as a
function of dimensionless normal contact traction t̄N/E∗ for ν = 0 and µ0 = 0.2.

friction model. Of interest is also the macroscopic slip rule which has been
analyzed by comparing the actual angle δ = α−β resulting from the microme-
chanical scheme to the one that would be observed for the associated macro-
scopic slip rule, see Fig. 10. The former is easily obtained by processing the
results of finite element computations. The latter has been obtained by intro-
ducing an approximate polar representation f(α) of the macroscopic friction
condition according to Eq. (8) and by applying Eq. (10) with g(α) = f(α)
that corresponds to the associated slip rule. Specifically, the numerically
obtained dependence µ̄(α) has been fitted using the following function,

f(α) = f0 +
N∑
k=1

fk cos(2kα), (21)

with N = 3 (it has been checked that increasing the number of terms does
not change the result visibly). As the macroscopic friction coefficient is pres-
sure dependent, this procedure has been repeated for each value of contact
pressure.

The results presented in Fig. 10 indicate that the macroscopic slip rule is
a non-associated one, though non-associativity is not much pronounced. In
fact, the actual angle δ is close to the one corresponding to the associated
slip rule, and the difference is small and is below 1 degree in all analyzed
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Figure 10: Comparison of the actual angle δ = α− β (indicated by the dots) and the one
that would be observed if the macroscopic slip rule was an associated one (solid lines) for:
(a) ν = −0.8 and (b) ν = 0.45.

cases (i.e., also for ν equal to −0.4, 0 and 0.25; the corresponding results are
not reported here). As the difference is small, a careful mesh convergence
study has been performed which confirmed that the observed departure from
associativity is not a numerical artefact.

Recall that the slip rule at the microscale is an associated one hence the
visible non-associativity of the macroscopic slip rule results from nonlinear
effects accompanying asperity interaction and is revealed by micromechanical
averaging. The same qualitative effect, though more pronounced, results also
from the simple micromechanical model of Mróz and Stupkiewicz (1994). We
believe that confirmation of this qualitative effect constitutes one of the main
results of the present paper. Quantitatively, the effect is small, hence an
associated slip rule may be a sufficiently good approximation in practice.

4.2. Randomly rough surfaces: isotropic roughness

Although the present paper is focused on friction anisotropy, the case of
two isotropic randomly rough surfaces is considered in this section as a refer-
ence for the anisotropic case that is studied in the next section. However, the
results of the corresponding micromechanical analysis are interesting them-
selves: it will be shown that some effects observed in the previous section
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for the idealized sinusoidal roughness are observed also for randomly rough
isotropic surfaces.

Randomly rough surfaces have been generated using the random-field
model, see Torquato (2002), extended to non-isotropic rough surfaces by
Temizer (2011). The adopted procedure is briefly summarized below. First,

an initial Nx×Ny matrix of roughness heights g
(0)
ij with a Gaussian distribu-

tion is generated. The sequence of Ns smoothing operations with the periodic
filter F is then performed,

g
(k)
ij = F(g

(k−1)
ij ) =

r∑
p=−r

r∑
q=−r

g
(k−1)
(i+p)(j+q)K(p, q), k = 1, . . . , Ns, (22)

where K(p, q) is an anisotropic kernel,

K(p, q) = Exp
(
−(p′/a)2 − (q′/b)2

)
, (p′, q′) =

[
cos θ − sin θ
sin θ cos θ

] [
p
q

]
.

(23)
Here, the ratio a/b refers to the magnitude of anisotropy, and the angle θ
describes the orientation of anisotropy axis with respect to the global axes.
The special case of isotropy corresponds to a = b. The smoothed roughness
g
(Ns)
ij is then normalized so that the matrix gij of zero mean value and unit

standard deviation is obtained, and a periodic (Nx + 1) × (Ny + 1) matrix
of roughness heights ḡij is subsequently constructed by appending a copy of
the first row and the first column to the respective end of the original matrix
gij.

Isotropic roughness samples used in the present study have been generated
according to the procedure described above using the following parameters:
Nx = Ny = 180, Ns = 6, r = 6, and a = b = 9. These parameters have
been selected by trial and error so that the roughness sample covers several
asperities, say, 3–4 primary asperities along the sample edge. Of course, a
larger sample would be desirable, but the corresponding computational cost
would be prohibitive, see the discussion below.

The actual finite element mesh used in the computations is coarser than
the generated array of roughness heights, hence the positions of the finite ele-
ment nodes of the contact surface are obtained by mapping the fine roughness
topography to the coarser finite element mesh (Temizer, 2011). When gener-
ating the finite element mesh, the roughness heights have been finally scaled
such that the ratio of the standard deviation of roughness heights to the sam-
ple size is equal to 0.01. Figure 11 shows three samples of generated isotropic
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Figure 11: Three isotropic roughness samples used in the computations. The height is
scaled by the factor of five.

rough surfaces. Note that asperity height in Fig. 11 has been scaled by the
factor of five for better visualization.

In the present computations, statistically identical roughness has been
prescribed for both contact surfaces. Specifically, an isotropic roughness
sample has been randomly generated for each surface independently, and the
microscopic problem has been solved for the corresponding pair of roughness
topographies. This has been repeated for other pairs of roughness topogra-
phies, and the macroscopic response has then been obtained by averaging
over the ensemble. In the computations reported below, ten such samples
have been analyzed for each value of the Poisson’s ratio and for each value
of the normal contact traction.

In the present microscopic problem, the bottom surface is assumed to
be rigid, and the unit cell of the deformable upper surface is slid against
the bottom surface by prescribing the displacements at the upper boundary
Γl. The normal displacement at Γl is constant during the dragging phase
so that the macroscopic normal contact traction is obtained by averaging
the corresponding nodal reaction forces, see Section 3. The local friction
coefficient is assumed as µ0 = 0.2.

Compared to the two-dimensional example of the previous section, the
present case of two randomly rough surfaces is associated with a much higher
computational cost. This is because, in addition to spacial averaging, also
time averaging and ensemble averaging must be performed, see Section 3.
The achievable resolution of the present three-dimensional finite-element
model is thus significantly constrained by the overall computational cost.
Even though the actual mesh is relatively coarse, the present computations
yield consistent results, as illustrated below.

The finite element mesh used in the computations is shown in Fig. 12.

24



(a) (b)

Figure 12: Randomly rough surfaces in sliding contact: (a) overall view of the finite ele-
ment mesh (the bottom surface is rigid) and (b) detailed view of the upper body (periodic
unit cell of deformable surface layer).

The bottom surface is periodically extended along the sliding direction. It is
also extended transversally to accommodate 3D deformations of the unit
cell. Contact smoothing is applied to the bottom surface using bicubic
Bézier patches with 16-node support (Pietrzak, 1997), see also Lengiewicz
et al. (2011). The mesh comprises about 16,500 displacement unknowns and
about 4,000 contact Lagrange multipliers. The third phase of the microscopic
problem requires 20 to 90 time increments (adaptive time stepping is used)
depending on the contact pressure, Poisson’s ratio and roughness sample.

Figure 13 shows the macroscopic friction coefficient µ̄ as a function of
the dimensionless normal contact traction t̄N/E

∗ and the Poisson’s ratio
ν. The markers denote the ensemble average, and the error bars indicate
the standard deviation of the friction coefficients computed for individual
roughness samples.

The results confirm two effects that have been observed for the sinusoidal
roughness in Section 4.1. The macroscopic friction coefficient µ̄ decreases
with decreasing Poisson’s ratio and it may be lower than the local friction
coefficient µ0 = 0.2. In fact, the results reported in Fig. 13 are similar to those
reported in Fig. 8. The main qualitative difference is that the macroscopic
friction coefficient µ̄ does not seem to tend to the local friction coefficient µ0 as
the contact pressure tends to zero, in particular, for the nearly incompressible
material (ν = 0.45). This probably results from insufficient resolution of the
finite element model. Note that a very fine mesh was needed to reproduce
that effect in the case of sinusoidal roughness in Section 4.1.
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Figure 13: Randomly rough isotropic surfaces: macroscopic friction coefficient µ̄ as a
function of dimensionless macroscopic normal contact traction t̄N/E∗.

4.3. Randomly rough surfaces: anisotropic roughness

In this section, the example of the previous section is modified by adopting
an anisotropic roughness for the bottom, rigid surface. All the other details
of the computational model are unaltered, including the finite element mesh
shown in Fig. 12 and local friction coefficient µ0 = 0.2.

Figure 14 shows three samples of the anisotropic roughness generated
following the procedure described in the previous section. Application of
the anisotropic filter with parameters k = 6, r = 20, a = 5, b = 20 and
θ = 90◦ results now in elongated asperities with clearly visible preferential
direction. At the same time, roughness of the upper surface is assumed
isotropic, as in Fig. 11. As a result, friction at the macroscale is expected to
exhibit orthotropic symmetry with two principal directions corresponding to
sliding across and along the elongated asperities of the bottom surface. The
corresponding principal macroscopic friction coefficients have been computed
for a nearly incompressible material (ν = 0.45) and for a compressible auxetic
material (ν = −0.8).

The results are reported in Fig. 15. As previously, the error bars indicate
the standard deviation of the friction coefficients computed for individual
roughness samples. Note that convergence problems have been encountered
at higher contact pressures for ν = 0.45 and β = 0 (sliding across the elon-
gated asperities), hence the corresponding two points are missing in Fig. 15.
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Figure 14: Three anisotropic roughness samples used in the computations. The height is
scaled by the factor of five.
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Figure 15: Anisotropic roughness: macroscopic friction coefficient µ̄ as a function of di-
mensionless macroscopic normal contact traction t̄N/E∗ for β = 0 (sliding across the
elongated asperities) and β = 90◦ (sliding along the elongated asperities).
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As previously, the results shown in Fig. 15 confirm the effects observed
for the idealized sinusoidal roughness in Section 4.1. In the case of a nearly
incompressible material (ν = 0.45), the macroscopic friction coefficient cor-
responding to sliding across the elongated asperities (β = 0) is higher than
that corresponding to sliding along the asperities (β = 90◦). At the same
time, the effect is reversed in the case of the compressible (auxetic) material
(ν = −0.8). Also, it is seen that the macroscopic friction coefficient decreases
with decreasing Poisson’s ratio, and it may be lower than the local friction
coefficient µ0.

5. Conclusion

Friction anisotropy resulting from asperity interaction in rough elastic
contacts has been studied using the computational contact homogenization
approach with full account for finite deformation effects. Friction at local con-
tacts has been assumed to be the only dissipative mechanism in the system.
The study is thus only concerned with the effect of anisotropic roughness on
macroscopic friction of elastic bodies. While the adopted micromechanical
framework can be considered rather standard, a micromechanical study of
such a scope has not been reported in the literature yet.

The influence of local friction coefficient, asperity height, and elastic com-
pressibility on friction anisotropy has been studied in detail in the case of con-
tact of a smooth hyperelastic half-space with a rigid surface with sinusoidal
roughness. As the corresponding microscopic problem is a two-dimensional
steady-state problem, a highly accurate finite element model could have been
developed for that case. The effects predicted for the idealized sinusoidal
roughness have been confirmed by the results obtained for a more general case
of contact of two randomly rough surfaces. The latter case is computation-
ally much more demanding as it involves solution of several three-dimensional
transient contact problems followed by averaging over an ensemble.

The results of the present study confirm that roughness anisotropy leads
to anisotropy of friction at the macroscale, i.e., to an orientation-dependent
macroscopic friction coefficient. For the roughness topographies considered in
this work, the macroscopic friction is actually orthotropic. The macroscopic
friction coefficient is also found to depend on the contact pressure, which is
expected since the average asperity slope depends on the contact pressure. In
fact, nontrivial effects are only observed for relatively high contact pressures
because, for the contact pressure close to zero, the surfaces interact at prac-
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tically undeformed asperity tops, and the local isotropic Coulomb friction
model is valid also at the macroscale.

It has been also found that the macroscopic friction condition is accom-
panied by a non-associated slip rule, though the non-associativity is not
much pronounced (it is recalled that associativity refers here only to the
tangent plane). Note that the slip rule at the microscale is an associated
one; the associativity is thus not transmitted to the macroscale. The pre-
dicted non-associativity of the macroscopic slip rule results from nonlinear
effects accompanying asperity interaction at the microscale. This effect is
in a qualitative agreement with the simple model of Mróz and Stupkiewicz
(1994).

The results of the present micromechanical study show a significant ef-
fect of material compressibility. For a nearly incompressible material, the
macroscopic friction coefficient is higher than the local friction coefficient.
Further, in case of anisotropic roughness, sliding across elongated asperities
results in a higher friction than sliding along them. However, with increasing
compressibility (i.e., with decreasing Poisson’s ratio), both effects are gradu-
ally reversed. Those counterintuitive effects are particularly pronounced for
auxetic materials, i.e., for a negative Poisson’s ratio.
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