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Abstract

The paper deals with a new solution of the string or beam vibrating under a moving

mass. Numerous solutions published up to date exhibit incorrect solutions. Moreover, they

are not sufficiently simple and can not be applied to a whole range of the mass speed, also

in over-critical range. We propose the solution of the problem that allows us to reduce the

problem to the second order matrix differential equation. Its solution is characteristic of all

features of the critical, sub-critical and over-critical motion. Results exhibit discontinuity of

the mass trajectory at the end support point. The closed solution in the case of massless

string is analysed and the discontinuity is mathematically proved. Numerical results

obtained for inertial string demonstrate similar features. Small vibrations are analysed and

that is why the effect discussed in the paper is of pure mathematical interest. However, the

phenomenon can increase the complexity in discrete solutions.

1. Introduction

Inertial moving loads are frequently treated in engineering problems. Some

problems as train-track interaction, vehicle-bridge interaction, pantograph

collectors in railways, magnetic rails, guideways in robotic solutions, etc. are of

real practical importance. The problem has been widely treated in literature (e.g.

Szczes'niak, 1990; Fryba, 1972). Recent papers contribute the analysis of complex

problems of structures subjected to moving inertial load (Jia-Jang Wu, 2005) or

oscillator (Metrikine and Verichev, 2001; Pesterev et al., 2003; Biondi and

Muscolino, 2005). Variable speed was analysed in (Andrianov and Awrejcewicz,

2006; Michaltsos, 2002). Unfortunately, the beam is subjected by massless forces.

Equivalent mass influence is analysed by Gavrilov, 2006). However, detailed

investigation in the field does not result in numerical procedures implemented to

commercial codes. One can perform a simulation of extremely complex problems

except problems with moving loads.

1 Institute of Fundamental Technological Research.
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We must emphasise here that string or bar vibrations represent purely

hyperbolic differential equation, with all attributes of wave front propagation.

Beams, both Bemoulli-Euler and Timoshenko type, exhibit additionally parabolic

properties of the solution. In this case final results and diagrams have strong

contribution of bending and wave phenomena are diluted by low gradient bending.

This is the reason why the beam bending problem always results in acceptable

trajectories. Differences between theoretically correct solution and those obtained

by a certain approach in the case of low range speed moving mass are not well

visible. Most of results are accepted; even they do not give correct solutions. The

crucial point in the formulation of the term contributing the moving mass into the

differential equation is the difference between (5’(Ut,t)62u(x,t)/6t2 and

6(Ut,t)62u(ut,t)/6tz. Further implementation to the first case term of the so-

called Renaudot formula, which in fact is the chain rule derivative, does not result

in the identical final mathematical form as in the case of the second term.

In the paper we present two different approaches to the problem of moving

mass (Fig. 1). The first one is derived from the purely mathematical analysis

performed by the Fourier method. The second one is based on the Lagrange

equation of the second type.

 

Fig. 1. Moving inertial load

Both ways result in identical final solution. The resulting differential equation

allows us to describe and solve the string motion in a whole range of the velocity:

under-critical, critical and over-critical. The mass motion exhibits discontinuity at

the end support. The same phenomenon can be demonstrated in the case of the

Timoshenko beam. The Bemoulli-Euler beam model is free of this feature.

2. Mathematical analysis

2.1. The Fourier solution

The solution can be obtained by direct mathematical solving of the original

equation (9), see Dyniewicz and Bajer (2007). In order to reduce partial differential

equation to ordinary differential equation, we apply Fourier sine integral

transformation in a finite range (i.e. finite length of the string), (1), (2):
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1 .

V(j,t)= ju(x,z)sin%dx (1)

0

u(x,t)=%iV(j,t)sinilfl (2)
j=l

We can present each of the functions as a infinite sum of sine functions (2) with

respective coefficients (1). Then the expansion of the moving mass acceleration in

a series has a form

   

2 a, u . 2 2 2
6 (40:1,!) :22 V(k’t)sin kzrut + 2km) V(k,t)cos km)! _ k 7:20 V(k,t)sin km)!

at [k=l l l l l

(3)

The integral transformation (1) of the equation (9) with consideration of (3) can be

performed

j2fl,2

12

. 2 1 .

V(j,t) +pAV(j,t)=PsinJil’C—’—mm [50c -uz)sinJ—l’5dx (4)

0

N

at2

 

The integral with delta Dirac function in the above equation is as follows

          

I - .

[5(x-w)sinfldx=sin 1”” (5)
o I

Let us consider now (3) and (5):

jzrrz -- . j7wt 2m °° -- . km)! . jzwt

N 12 V(j,t)+pAV(j,t)=Psm ——l—ZV(k,t)sm sm —

k=l

w . - w 2 2 2 -

— 2—m- z 21"") V(k,t) cos 1"” sin 1”” +E k 7’2 U V(k,t) sin km sin ———J’w’
I H l 1 1 l H l 1

(6)

Finally, the motion equation after Fourier transformation can be written

pAl7(j,t) + a2 I7(k,t) sin wktsin (011+ ZaZka(k,t)coswkt sin cujt +

k=l k=l

+.QZV(j,t)—aZa)fV(k,t)sinwktsin cojt=Psin w]: (7)

k=l

where
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, a=— (8)

2.2. The Lagrange equation

Let us consider a string of the length l, cross-sectional area A, mass density p,

tensile force N, subjected to a mass m accompanied by a force P (Fig. 1), moving

with a constant speed U . The motion equation of the string under moving inertial

load with a constant speed U has a form

    

62u(x t) 82u(x t) 62u(Ut t)
—N——’+ A—’—=5x—utP—6x—Utm——’— 96x2 P W ( ) ( ) atz ( )

We impose boundary conditions

u(0,t)=0, u(l,t)=0 (10)

and initial conditions

u(x,0)=0, am”) =0 (11)

at 1:0

The kinetic energy of a string and a travelling mass is described by the equation

1 ’ au(x z) 2
E = — A ’ dx + E 12k 2 P (i at :[ km ( )

where

1 6u(ut,t) 2
E = -—m 13t, 2 l at ] < >

contributes the kinetic energy of the moving mass. The potential energy of the

string can be determined by computing of the 5x to 83 change of its infinitesimal

segment. The work N(é'x—§s) integrated in space allow us to compute the

potential energy of the string

2

Ep =;jN(§s—ac)=1v;f 1l1+[‘3“(g::”)] —1 dx (14)

We apply the expansion of (14) into the Maclaurin series and we consider only the

first term of it
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' 8u(x,t)]2 1 ’[6u(x,t):l2
E =N 1’1 —1dxz—N dx 15
p J +[ 6x 2 J 8x ( )

If we neglect next terms of the series, we assume higher powers of 6u(x,t)/6x to be

nearly equal to zero. The equation (15) can be applied to the problem of small

displacements of the string only. Finally the potential energy of the system, Le. the

string and the moving constant force P gains a form

   

_l ’au(x,z) 2 _
Ep_2Nj[ ax :‘dx Pu(ut,t) (16)

0

The examined string has a finite length. It is convenient to use standing waves for

description of its displacements. We assume the solution in the following form:

uhfi=i¢0fifl> an
i=1

5,. (t) are the generalized coordinate functions. In order to compute both the kinetic

and the potential energy and to determine its derivatives required, we express them

by generalized coordinates. We derive first the equation (17) with respect to t

w“”=imomm no
at i=1

 

and with respect to spatial variable x

w“”=EWomm 0a
ax i=l

 

The displacement of the string in the contact point with a travelling mass is given

by the equation.

Mwm=iumwem am

The transverse velocity of the moving mass is expressed by a composite derivative.

It expresses the load travelling along the string

61mm!) =uiui(x)§i0* +iuivogi0>\

an

i=1
F" H

 

X=Ul

According to the above equation the velocity arrow/a: is expressed as a function

of both generalized coordinates and the derivative of generalized coordinates with

respect to time
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6u(ut, t)

at

Afier rearrangement of the equation (12), with respect to (18), the total energy is

given the by the following form

 

=f(:.-,é,-> (22)

 

w . . I
2

15,, = 1M Z 6,- (05,. (t) [14(ij (x)dx +§m[a”("”’)] (23)
0

2 iij=1 at

We assume orthogonal functions (24) which fulfil boundary conditions (10)

U,. (x) = sin? (24)

The orthogonality of functions Ui (x) allows us to write

, 11 .f.~.

IUi(x)Uj(x)dx= 3 1 "J (25)

0 o ifi¢j

The kinetic energy of the system (23) according to (24) and (25) is described by the

relation

 

_1 °°-2 1 6u(ut,t)2
Ek— page (t)+2m[ at ] (26)

In the case of the potential energy (19), with respect to the (16) integrated by parts,

has the following form

00 I

Ep =%N Z 6,- (0:,- (t) IUIWU}(W — PW,0 =
0i,j=l

 

CD I 00

=gN21 4,. (0:,- (t) IU:<x)U,. (x)dx — P; U.- (or); (t) (27)
1J= o i:

We can derive the function (24)

” i27r2

Ui(x)=- [2 Uz(x) (28)

The equation (27) with respect to (28) can be written in the form

00 .2 2 I no

Ep =§NZ 1;: §i(t)€j(t)IUi(x)Uj(-x)dx—P2Ui(vt)€i(t) (29)
o i=

i,j=l
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Finally the potential energy of the string, with respect to (25) can be described by

the equation

 

w .2 2 w .

Ep =§NIZ ’ 1’: :30) —P24mm? (30)
i=1 i=1

Now, when we have kinetic and potential energy described in generalized

coordinates and the derivative of generalized coordinates with respect to time, we

can formulate the Lagrange equation, which general form is given by the equation.

615'

1% ffl+ [2:0 (31)
at a; a; a;

In order to obtain the Lagrange equation describing our problem, we must compute

respective required terms. From (13) and (22) we have derivative of kinetic energy

 

of travelling mass Ekm with respect to 6,. and

 

 

61i‘_,a,,_mau(ut,t)i[au(ut,t)) (32)

at; _ at d; at

6E_.k,,,=m6u(ut,t)[6u(ut,t)) (33)

a; at d; at

We compute the derivative of the kinetic energy for hole system (26) with respect

to 6,. and 5,. , taking into account (32) and (33).

 

 

 

 

6E 6E 00 .. 2 . . a] . . . _

k = km 2m 02 117! cos mot COS jiwt §j(t)+vzficos mot Sin mut 61.0)

a; 6;: i.j=1 12 l I i,j=1 l l I

(34)

BEk l °° ~ GEM 1 °° - °° jrr . izrut iiwt

—.-=— Al it+ . =— Al it+mu —s1n—cos— at+6; 2p EU) 6; 2p E50 l l 5,0

+ 2€m¥m¥é1m] (35)

i,j=1

The derivative of the potential energy (30) with respect to generalized coordinates

6:-

6E 2 w -
1’ = 1N12 5,. (t) — PZ sin# (36)

i=105,- 2 i=1

 

 

°° 1'27:

2
l

The derivative of (35) with respect to t is as follows.
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=lpAzi (t) + m{ i flil:sinm—lUt—cos 1.7m 61.0)] +

i=1

 

a; 2 Us, 1 dt 1

+ 13%] _:—Ii:sm inl—Utsm 17;” éj (37)

Finally the Lagrange equation (31) in the case of our problem of the inertial string

subjected to moving inertial force has a following form

   

épA/ifflhm i fli[sin%l£cos flwtkjm +m Z flsin "wt cos 1”” fj(t)+

i=l

          

we. 1 dt 1 i,j=l I I I

an ' ' . °° _ ' . ‘ 0t .. 1 °° '2 2

+mZ-d— sin—m—Utsin 17w, j(t)+mZS1n mwsm J” §j(’)+—lel 7: gim—
,-J=1dt l 1 “=1 1 I 2 ,-= 1

w .. 2 . . m . . . . _ w I . a

—m 02 W: cosflcosjflw§j(t)+uzEcosflsm Jflaéjo) =PZsmL

i.J'=l l I 1 i.j=1 I I '=‘ l

(38)

where

g—[sinifll—a—cos 173w] =$cos$cos 1);“ —flsinflsin 1”” (39)

t

   

(it

We have the differential equation of variable coefficients. Finally (38) can be

written in a following form

d [sin ——lmx sin 17:11] = 1%cos L7)! sin 17;” + —J:w sin Lila cos flux (40)

     

-- 2m °° ~ . ifl'Ut . jlrut 4m °° izw- . irrut jzwi

. t +—— . t sm—sm +— ——r;‘. t sm—cos +6.0 [Ml/2:350 I 1 Mg, ,0 I I

.2 2 w .2 2 2 . . .

it 7: :i(t)_ 2m 2} 7! U gimsinmut Sin jfl'Lt: 2P Sinmut (41)

pA 12 pAl i=1 12 I l pAl I

These two methods lead us to the identical differential equation of variable

coefficients (41 ).

2.3. The massless string

We can consider the particular case of our problem: the massless string. The

solution is given by a sum and can be derived from our solution (38). This

particular solution first was published by Stokes in the case of the beam (Stokes,

1883), then by Smith (1964) and Fryba (1972) for massless string:
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w k ._ ._ k

4a17(7_1)kzil_l(a+z 1)(b+z 1);

:11a— = c+i—1 kl

 

y(T) = (42)

where 2' = at /l > 0 is time parameter, a = N1 /(2muz) > 0 determines the

dimensionless parameter. Parameters a, b and c are given below:

3i~ll+8a b _3$\/1+8a

()1,2 =f, 12 f, c = 2 (43)

In the case of a = l the initial problem has a closed solution. Here we consider the

case of a $1.

Proof

In (42) we will include the term 1(1 —t) into the sum. Thus the equation can be

reduced to the following form:

_ “(ak)(bk)i_fl w(a.-.)(bk-.) (a+k—1)(b+k—1)_ r" 44

(1 1);, (ck) k!‘ c *2. (cH) [ k(c+k-l) 1)(k—1)! ()

   

In the above relation (ak) = a(a +1)...(a + k — 1), (bk) = b(b +1)...(b + k — 1) and

(ck) = c(c + 1)...(c + k — 1). By using Rabbe criterion one can show that for

a+b<c+2 the limit

lim|: 4“ T(1-T)ifiW-Z::| is finite.
1"] a—l k=1i=1 C+l—1 k!

 

Now we can estimate the value of the sum (44). The sum of the first two—three

terms, depending on parameters, including abr/c, is positive. Next terms are all

positive (remember, that P is negative in our numerical example). This proves that

the sum (44) is finite and is greater than 0.
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Fig. 2. Comparison of particle’s trajectory moving on massless and inertial string
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We can observe the same properties of the solution in the case of inertial string.

Comparative plot is presented in Fig. 2. We can emphasise that in the case of lower

m/pAl ratio the coincidence of each pair of curves is higher. However, analytical

proof of discontinuity in the case of inertial string is impossible to be obtained,

because of the numerical integration stage.

2.4. The beam under the moving mass

The motion of the Bernoulli-Euler beam under the moving mass is described by the

equation

  

a‘uoc z) 62u(x z) 62u(ut z)
EI—;+ A—’—=é‘x—UtP—§x—utm—’ 456x4 p 612 ( ) ( > 612 ()

with boundary conditions

62u(x t) 02u(x t)
u0,t =0, ul,t =0, —’ =0, ’ =0 46( ) ( ) 6x2 no 6x2 ( )

and initial conditions

u(x,0) =0, am”) =0 (47)
1:0

 

The Fourier transform method carried on in a way as in the case of the string

results in he following equation

V(j,t) + aZV(k,t) sin wktsin (011+ ZaZka(k,t)cos (oktsin 0)]! +

 

k=l k=l

+.QZV(j,t)—Ew,§V(k,t)sinwktsina)jt=i—sinwjt (48)

where

- .4 4

wk=kfl, wj=fl’ Qz=fljf , 05:3". (49)

l I pA l pAl

The equation (48) can not be easily solved and we must integrate it in a numerical

way. We use the matrix notation here

V0,» V0,» V(1,t)

17(2,r) +C V(2,t) +K V(2,t) =
M P (50)

I701, t) V(n,t) V(n,t)
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or in a short form

MV+CV+KV=P an

In the case of the Timoshenko we follow the similar procedure as in the case of the

Bernoulli-Euler beam. The resulting equation has the following short form

rV+UV+MV+CV+KV=P

3. Results

Results of the semi-analytical solution are depicted in Fig. 3. The diagram can

be compared with displacements of the string under moving oscillator. The analysis

of the spring-mass system motion was performed for a relatively rigid spring.

However, for significantly high spring rigidity the convergence of the solution was

poor of completely lost.

 

o. 1 z
0. 2

0. 3 .

0. .4

0 .5

0~ 6

0. 7 .

0r 8 .

0. 'g .

1 .0

1 O.

2 0.

3 - 0.

4 ' 0

.5 o

6 0.

7 o.

B 0.

9 - o
.0 — 1

' o 0.1 0.2 0.3 0.4 0.5 0.7 0.3 0.9 l

WL

06

 

Fig. 3. Semi-analytical solution (left) and displacements of the string under the oscillator

(right)

More detailed presentation of the string motion is given in Fig. 4.

We can notice the sharp edge of the wave and reflection from both supports.

Moreover, the wave reflection from the travelling mass is clearly visible, especially

for the case v = 1.2c. Both the mass trajectory and waves are depicted.
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Fig. 4. Simulation of the string motion under the mass moving at U : 0.2c, 0.5c, 1.0c, 1.5c

Respective diagrams for a beam (Figs. 5, 6).
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Fig. 5. Simulation of the Timoshenko beam motion under the mass moving at u: 0.1, 1.0

(shear wave speed = 0.63, bending wave speed = 1.00)
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Fig. 6. Simulation of the Timoshenko beam motion under the mass moving at u = 0.0001 1

and 0.00080 (shear wave speed = 0.32, bending wave speed = 0.50)

4. Conclusions

In the paper we present a global analytical solution of the vibration problem for

the string subjected to a moving mass. The solution is relatively simple and is valid

for the whole range of the speed 0 (sub-critical, critical and over-critical). The

problem is reduced to the system of the differential equations of the second order,

which finally must be solved numerically. High convergence rate of the solution

allows us to apply only few terms ofthe Fourier series.

The analysis of results exhibits a jump of the mass in the neighbourhood of the

end support. The force acting on the mass is, however, limited to the tensile force

N. The mass can not be accelerated to the appropriate vertical velocity to arrive

directly at the support in a smooth way. Discontinuity of the solution at x==L exists

in the case of v>0 (for each non-zero moving speed, ie. 0<u<c, u= c and u>c). It

can be proved analytically in the case of massless string.

The analysis of both the Bemoulli-Euler beam and the Timoshenko beam can be

performed in the way applied to the string analysis. The Bemoulli—Euler beam

vibrations exhibit continuous mass trajectory while in the case of the Timoshenko

beam the mass trajectory is non—continuous.
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