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A yield-ver tex modifi cation of two-surfa ce models 
of metal plastici ty 

H. PETRYK (WARSZAWA) and K. THERMA N (DORTM UND) 

A PHENOMENOLOGICAL MODEL of elastoplastic behaviour of metal polycrystals is 
proposed which combines the features of micromechanical models with the classical 
fl ow t.heory of plasticity. T he standard equation of a smooth loading surface describes 
here an outer limit surface which is never reached. The actual inner yield surface 
possesses a vertex at the current loading point, interpreted as the point of intersection 
of active y ield surfaces for plasti c fl ow mechanisms at a micro-level. T he incremental 
response of the materi al at the vertex is defined in terms of the position of t he current 
stress relative to the outer surface. In the computational version of the model, the 
effects of partial unloading and of physical and constraint hardening are represented 
by separate constitutive functions. 

1. Introduction 

TllE CLASSICAL FLOW THEORY of time-independent plastici ty is based on the 
assumption of a smooth yield surface and of a fl ow rule that prescribes the direc-
tion of the plastic part of strain-rate in the current state. On the contrary, micro-
mechanical models of elastoplastic polycrystals invari ably predict (cf. [1- 4]) the 
formation of a vertex on the yield surface at the current loading point, as well 
as the existence of a whole range of admissible plastic strain-ra te directions, the 
actual one being dependent on the current stress-rate. 

Accordingly, two separate classes of t ime-independent phenomenological con-
stit utive models for polycrystall ine metals in the plastic range have been pro-
posed: of the classica l type and of the corner (or vertex) type. T he former have 
a simpler structure in the incremental form and can in principle be constructed 
using the accumulated knowledge of experimental yield surfaces, while the latter 
are closer to micromechanical predictions and are expected to simulate better 
the material response after an abrupt change of t he direction of straining. In cal-
culations, the h corner theory of plastici ty formulated in [5] was most fr equently 
used among relatively few phenomenological corner models proposed so far for 
metal polycrystals [6 - 14]. 

The purpose of this paper is to develop a phenomenological model of elasto-
plastic behaviour of metal polycrysta ls which combines the features of the above 
two classes of constituti ve descri ption. A given model of the classical type is 
modified in order to improve the consistency wit h general conclusions d rawn 
from a micromechanical analysis [3]. Accordingly, the classical smooth yield sur-
face plays here the role of an outer extremal ( limit or target) surface which is 
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never reached, while the related inner yield surface (a boundary of the actual 
elastic domain) possesses a vertex at the current loading point. The extremal 
surface may be interpreted as a locus of asymptotic stress states approached 
when physical hardening is imagined to be suspended [3]. A considerable simpli -
fication in the proposed computational model, and also the difference in relation 
to the previous corner theories, is that the incremental response of the material 
is defin ed in terms of the positi on of the current stress point with respect to 
the extremal surface, independently of evolution of the latter , e.g. according to 
an isotropic/kinematic hardening law. In turn, the fundamental distinction from 
plasticity models with two or more loading surfaces [15 - 18] is that the inner 
surface is here no longer smooth. The derivation of the incremental law at the 
vertex of the inner yield surface also appears to be novel. In the fir st approxi-
mation, the simplest assumption of mutuall y independent internal mechanisms 
of plastic deformation at a micro-level has been explored. 

2. Two-surface model of plasticity with a vertex 
on the inner yield surface 

T he small -strain formulation is given fir st; an extension to a geometri call y 
exact description at fini te st rain will be given in Sec. 4. The standard yield con-
diti on of the Hub er - Mi ses type: 

(2.1) f = k , 

is adopted here as an equation of the extremal surface in the sense of HILL [3]. a 
denotes the Cauchy stress(l ) , er' its deviator , a. denotes the deviatori c backstress 
and k is the yield shear stress. a. and k can vary with the plastic deformation 
according to prescri bed rules which are left arbi t rary here. (2.1) can be replaced 
by a more general equation of a smooth surface without changing the remaining 
part of this section. However , the specifi cations in the next section are only given 
for the form (2.1). 

Contrary to classical elastoplasticity, t he surface (2.1) is not all owed to be 
reached , and plastic deformation can take place when the current stress li es 
inside the surface (2.1). During plastic fl ow, the current stress point er constit utes 
a vertex on the inner yield surface which is a boundary of t he current elasti c 
domain (Fig. 1 a). The vertex is interpreted as an intersection point of individual 
smooth yield surfaces (transformed to the macroscopic stress space) for a large 
or infin ite number of internal plast ic deformation mechanisms a t a micro-level, 

(') In the standard symboli c notation employed , bold-face letters denote second- or 
fourth-order tensors, a dot between two tensor symbols denotes full contract ion, a tensor prod-
uct is denoted by ®, and 1<11 = ( <1 • <1 ) 1/

2 denotes a norm of the st ress-rate. T hroughout the 
paper, only symmetric second-order tensors are used. 
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cf. [3]. Such a mechanism can be identifi ed, for instance, with crystall ographic 
sli pping on some system in some grain in a polycrystalline aggregate. We restri ct 
ourselves to examining the case when the matrix of hardening moduli , which 
represents mutual interactions between the mechanisms either wi thin t he same 
grain or in different grains, is symmetric and positive defini te. A well known 
consequence is t hat the fourt h-order tensor of macroscopic plasti c compliances, 
denoted below by MP, is diagonall y symmetric and at least positi ve semi-definit e. 

a) extremal surface b) 

subspace S 

elasti c 
unloading 

cro 

F IG. 1. (a) Two-surface model of plast icity where t he inner yield surface has a vertex 
at the current loading point and the outer extremal surface is smooth. (b) Overall 

structure of t he incremental plastic constitut ive law at t he yield-vertex, within 
a two-dimensional subspace S. 

As long as unloading is absent or partial so that the elasti c domain is not 
penet rated , a phenomenological constitu t ive relationship at the ver tex may be 
defined without specify ing the entire form of the elastic domain but merely t he 
directions tangent to the corner of the elastic domain at cr'. In a given state of the 
material , a macroscopic plastic strain-rate €P is assumed to be a single-valued , 
positively homogeneous of degree one, continuous and (except at c1 = 0) at least 
piecewise-continuously differentiable function of a macroscopic stress-rate cr. It is 
emphasized that a dot over a symbol denotes t he forward rate. We will examine 
that function restricted to a two-dimensional subspace S of t he Euclidean space 
of symmetric second-order tensors, and denote by ﾣ ｾ＠ the orthogonal projection 
P s · £ P of £ P on S(2). By the Euler theorem, the homogeneous incremental plast ic 
law can be wri t ten down as 

£p = MP ( cr) · cr , MP 
f)£P 

(2.2) a& , 
·P Es = ｍ ｾＨ ｣ｲ Ｉ ﾷ｣ｲ Ｌ＠ ｍ ｾ］＠ Ps MPPs , if cr E S. 

The diagonal symmetry of MP implies that ｍ ｾ＠ is a diagonall y symmetr ic 
operator wit hin S. From the spectral decomposit ion theorem for fourt h-order 

C) I f( a ,b ) with a · b = 0, lal = lb l = 1 is an ort honormal basis inS then Ps = a @a + b @b . 
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diagonall y symmetric tensors (cf. [19]), we obtain that ｍ ｾ Ｌ＠ henceforth assumed 
to be positive definite, has the foll owing representation 

(2.3) 

with principal directions a1 , a11 and positive pr incipal compli ances M 1 , M 11. 

Let 6-o -=f. 0 defi ne a distinctive d irection wit hin S, and {3 denote an angle of 
inclination of a nonzero 6- to 6-o, 

(2.4) 
CJ' · ao 

cos{J = ｾ Ｌ＠
O'Q 

ao = I<Yol . 

T he considerations below are li mited to 6- E S ly ing on one side of 6-o where 
{3 E [0 , ?T]; the other side can be examined analogously. 

Each quant ity in (2.3) depends in general on {3. An admissible function ｍ ｾＨ ｻＳＩＬ＠

if discontinuous, must ensure the continuity ｯｦ ﾣ ｾ Ｈ Ｆ ＩＬ＠ and at every differentia-
bility point it must satisfy the additional condition 

(2.5) 
､ ｍ ｾ＠ . 
--·0' = 0 
d{J 

obtained by differentiation of (2.2). On substit ut ing (2.3), the condition (2.5) is 
easily transformed to 

(2.6) 

dM1 {3 
d{J COS I 

dM 
d{Jil sin !3r 

( dJ - 1) ( M 1 - Mn ) sin {31 , 

( dJ - 1) ( M1 - M, 1 ) cos !31 , 

where {31 is an angle between 6- and a1 with 

(2.7) 
CJ' ·a 

cos {31 = lcii ) 
From (2.3) we al. o find that {31 is connected with an angle a 1 between ﾣ ｾ＠ and a, 
through 

(2.8) 

It can be seen that if one scalar function from the tri ple {M 1({3),M11 ({3),{3,({3 )} 
defin ing ｍ ｾ＠ ({3) is prescribed then the two other have to sati sfy two d ifferential 
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equations (2.6), with appropria te boundary conditions. T hat restrict ion is related 
to the existence of a stress-rate potent ial tPP(cr), 

(2.9) 
. P f)ijtP 

e = 8cr ' 
,r,p 1 . p . 
'¥ = - €. · (j 

2 
and 

p 1 . p . . 
IV =-a · M 5 -a if a E S , 

2 

which is a consequence of the diagonal symmetry of M P If more than one scalar 
constitut ive function in a subspace S is assumed , as in [12, 14], then the poten-
tia li ty property is generall y lost. 

Further considerations are restri cted to the case 0 < {31 < 1r / 2 illust rated 
in Fig. 1 b. Moreover , we will assume that M 1_ 11 = M

1 
- M

11 
> 0 and that 

0 < df31/ df3 ｾ＠ 1. Then (2.6) holds if and only if either 

(2.10) dfJI = 1 
dfJ ) 

dMI = 0 
dfJ ) 

or 

(2.11) 

In the former case ｍ ｾＨｦｊ Ｉ＠ = const . In t he second case, the foll owing different ial 
equation for !v/

1
_

11 
is obtained: 

(2.12) 

This defines a class of constitutive relationships corresponding to different func-
ti ons r(f31 ). A parti cular solution 

(2.13) 

is obtained for r independent of {31 , wi th M > 0 being a posit ive integration 
constant. 

Suppose that there exists a stress-rate era codirectional with the principal 
direction of MP( era) associated wit h the m aximum principal plastic compliance; 
in particular, era is t hen codirectional with €P(cra). To cover all directions in t he 
stress-rate space, it suffi ces to consider the two-dimensional subspaces S that 
contain era as the common distinct ive stress-rate used to determine the angle fJ 
from (2.4). If ｍ ｾ＠ vari es continuously wit h fJ then from (2.10) and (2.11) it foll ows 
that the principal plastic compliances M1 (fJ) , M 11 (fJ) are non-increasing functions 
which attain maximum values at fJ = {31 = 0. If (2.10) holds for fJ < fJa, say, then 
that interval of fJ can be identifi ed wi th the angular range of fu ll y active loading 
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in the current state, while an interval of validity of (2.11), f3o < (3 < f3c say, 
can be identified with the transitory range of partial unloading, cf. [3]. We shall 
assume that ( - ci-o) li es within the current elastic unloading cone corresponding 
to f3c < (3::; rr, cf. Fig. 1 b. 

To derive a constitutive function in the transitory range rather than to de-
fin e it arbitrarily, we propose the following simplifying procedure. The effect of 
physical hardening within the grains in a polycrystalline aggregate is included 
into a hardening rule for the extremal surface, e.g. into an evolution rule for 
a and k in (2.1). The interaction (in the stress-space formulation) between 
micro-mechanisms of plastic deformation in different grains is imagined to be 
represented, at least partially, by variations of M inside the extremal surface (see 
below). Finall y, a phenomenological relationship between the plastic strain-rate 
and stress-rate at the vertex on the inner yield surface, which includes the effect 
of partial unloading, is constructed as for mutuall y independent mechanisms of 
p lastic deformation. For comparison, in the well -known theories of BATDORF 
and B UDIA NSKY [1] or KOITER [6], the effects of interaction between t he plas-
tic deformation mechanisms were fully neglected, while here they are taken into 
account in an indirect manner. 

Under that assumption, the range of full y active loading becomes a prolon-
gation of the elastic unloading range, so that (30 = 1r- f3c· Both ranges suffer a 
right-hand discontinuous change in time if cr, the current right-hand rate of stress, 
induces parti a l unloading. Then, eT constitutes one limiting ray of the new angu-
lar range of full y active loadinge), while the second limiting ray of that range is 
regarded as varying continuously in time. The key simplifying assumption is that 
a1 ((3) corresponding to any direction of loading (total or partial) within S always 
bisects the right-hand limit (in time) of the angular range of elastic unloading. 
It follows that in the range of partial unloading, a1 rotates continuously with 
increasing (3 so that (cf. (2.13)) 

(2.14) r = 1, 

with a parameter M independent of (31 • It may be noted that (2.14) gives d(M1 + 
M 11 )j d(31 = - 4M. To obtain a smooth transition to elastic unloading, we assume 
that M 1 tends to zero as (3 ｾ＠ f3c· On using the condition of continuity of ｩ ｾＨ ｣ｲ ＩＬ＠
we obtain the follow ing solut ion to (2.11) in the transition range: 

f3c = 7r - f3o , 
1 1 

f3I = 2 ( 7r - f3c + f3) = 2 (f3o + f3), 

M
11 

= ( 1r - 2(31 - sin 2(31 )M 
(2.15) 

C) Fully active loading means that each plastic deformation mechanism that is potentiall y 
active (i.e. stressed to its yield point in the current state) is actuall y active. After partial un-
loading, some of previously potentially active mechanisms become inactive, so that the angular 
range of fu ll y active loading increases discontinuously. For infini tely many mechanisms, u cor-
responding to part ial unloading wi ll generally induce neutral loading for some mechanism(s), 
i.e. wi ll constit ute the limit ing ray as stated above; cf. also [20]. 
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and in the range of fully active loading: 

(2.16) 
/3 E [0, /3o], 

M 1 = (n- 2/3o + sin2/3o)M , 

/31 = /3, 

M 11 = ( 1r - 2/3o -sin 2{30 )M . 

For convenience, the basic relationship between M, , M 11 and {30 or {3, for fully 
or partiall y active loading, respectively, is visuali zed in F ig. 2. 

0.6 r---.---,----r---.----, 

05 

0.4 

0.3 

0.2 

0.1 

Mr1 
-
Mr 

ＭＭ ｾ＠

' ' 
M11 

/ s!VI 

' 
' ' ' ' ' ' 0.0 '---'----'----=-=---==----..:>J 

40° 

/3o or !3I 
FIG. 2. Principal plastic compliance ratio, Mu /MJl as a function of {30 for fully active 

loading or of {3, after partial unloading. Broken lines show the respective variations 
of t he principal plastic compli ances scaled down by 5M. 

F1:om elementary geometry it follows that € ｾ＠ makes an angle ( 1r - /31 - a 1 ) 

or ( 1r - /3o - a 1 ) in the range of partiall y or fully active loading, respect ively, 
with the li miting ray of the elast ic unloading range in the respective subspace 
S , cf Fig. 1 b. It can be checked by using (2.8), (2.15) and (2.16) that this angle 
decreases monotonicall y from f3c to 1r / 2 as /3 increases from zero to f3c· Hence, 
€ ｾ＠ li es within the range generated by the outward normals to the limi ting rays 
of the elasti c unloading range in S, in agreement with the generalized normality 
rule at a yield-surface vertex. 

Once the elastic unloading cone in cr-space has been specifi ed in the current 
state, then t he elastic unloading range within each S is known along with i ts 
internal angle 2{30 , external angle 2/3c and outward bisector ao. Finall y, the con-
stitutive relationship between €p and cr is fully determined, aft er substituting 
(2.15) and (2.16) into (2.3) and next into (2.9), by the geometry of the current 
elast ic unloading cone and by the scalar pararneter M dependent on the material 
state and on S. Of course, when performing the partial differentiation in (2.9) , 
the dependence of the parameters M and /3o on the subspace S must be taken 
into account in general. That dependence is absent fr om the simplest version of 
the model discussed in the next section . 
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3. A simple computational version of the model 

Suppose fir st that the current state of the material has been reached by 
proportional loading from a virgin unstressed state with a = 0; this condi-
tion will later be relaxed. Under the usual assumption of an incompressible and 
pressure-insensit ive plastic flow , the foll owing specifi cations (cf. F ig. 3) are made 
in the incremental constit ut ive law from Sec. 2: 

(i) The deviatoric stress-rate space and its two-dimensional subspace S' are 
substituted in place of &-space and S. 

(ii) The elastic unloading cone has a symmetry axis codirectional with (CT ' -
a ), and (3 is defined by (2.4) with 

(3.1) 
CT

1
- a 

ao = .,---------,. 
/CT ' - a/ · 

(iii ) The parameters (30 and M are independent of S' and depend on t he 
placement of CT

1 relative to the extremal surface. 
extremal surface 

FIG. 3. Construction of the elasti c unloading cone in the computationa l version 
of the two-surface model. 

The relationship between the plasti c strain-rate and stress-rate at the vertex 
CT

1 on the inner yield surface becomes full y defined by two state-dependent scalar 
parameters (30 and M being functions of the current values of a , k and cr '. In 
the potential form , t he incremental plastic constitutive law is given by 

(3.2) 
. P f)!J!P 

e: = - .-, 
OCT 

(3.3) F((J) = M 

{ 

n - 2(30 + sin 2(30 cos 2(3 for 0 ::; (3 ::; (30 (total loading) , 

. n - ((3 + (30) + ｾ＠ sin 2((3 + (30) for (30 ::; (3 ::; n - (30 (parti al unloading), 

0 for 1r - (30 ::; (3 ::; 1r (total unloading). 
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In an explicit form, it reads(4 ) 

(3.4) 

eP = M(A(,6)[ ci-' [ao + B ({3) ci- '), 

A({3) = 2 cos {3 sin 2{3. o , } 
for {3 ::; f3o , 

B = n - 2f3o - sm 2f3o 

A({3) = sin2 ({3 + f3o) l sin{J, } 
. . . for f3o ::; {3 < n - f3o , 

B ({3 ) = n - ({3 + f3o) - sm f3o sm({3 + f3o) I sm {3 -

A = 0, } 
B = 0 for 7f - f3o ::; {3 ::; 7f . 

This can be complemented by the standard equation for the elastic par t of 
strain-rate, viz. 

(3.5) · · e ·P e: = e: + e: ) 

with Me being the compli ance tensor of the linear theory of isotropic elastici ty. 
Finall y, specification of the parameters {30 and NI and of evolution equations 

for k and ex. completes the set of constitutive equations of the model. T he evo-
lution rule for the extremal surface is left arbi t rary here since the equations are 
proposed as a refinement of a given model of the classical type. {30 and M are 
assumed to depend on the relative distance of the current deviatoric stress cr' 
fr om the extremal surface. For instance, they can be expressed in terms of the 
ratio f I f..; as 

(3.6) 

(3.7) 

k sin {Jmax 
f3o = arcsin _ c 

T 

f ( · max ) k E smf3c , 1 , 

-- 1 2 
M(f3o) = E 1 - x(f3o)l x(n- f3;!'ax)' 

{Jmax = cons t E ( ｾ＠ n) c 2 ) ) 

({3 ) 
= n - 2f3o - s in 2f3o 

X o . {3 , sm o 

where {3rz'ax is a material constant and E is the elastic Young modulus. In 
comparison with the standard elastoplastic model, that specifi cation of the yield-
vertex modifi cation requires only one addit ional material constant {J;:'ax. Formula 
(3.6) means that generators of the elastic unloading cone are tangent to a sphere 
with centre ex. and radius k J2 sin {J;:'ax in cr'-space, cf. Fig. 3. During proportional 
loading in the range fl k ::; ｳ ｩ ｮ ｻＳ ｾ ＱＱ ｡ｘＬ＠ we substi tute M = 0 wit h {30 undefined. On 
the other hand, the inner sphere shown in Fig. 3 by a broken line is only used to 

(
4

) A closer inspection of Eq. (3.4) shows a resemblance to the equation obtained in [9] in a 
different way and without considering its potential form. T he present equation is more general 
since M is a function of state rather than a constant. The distinction is essential since constant 
M would be inconsistent wit h t he existence of a fixed unattainable extremal surface when 
physical hardening wit hin the grains is suspended. To have consistency, 1/ M must tend to zero 
when a fi xed extremal surface is approached. 
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defi ne the current elast ic unloading cone at cr' and need not be identifi ed wi t h 
t he boundary of t he current elastic domain. 

The function (3. 7) has been chosen to fit approximately the tensil e stress/ 
plastic strain curves calculated for micromechanical models of a polycrystal [4]; 
the approximat ion will fur ther be discussed in the next section. Of course, one 
could also take another function M in place of (3. 7) to obtain a better fi t of 
micromechanical results. T he .present choice was influenced by the convenient 
possibili ty of determining analyticall y the plastic strain under proport ional load-
ing fr om the unstressed virgin state if the extremal surface is fi xed. From (3.6) 
with fi xed k and from (2.16) we obtain the interesting formula 

(3.8) M1 d - = d (M11 
- ) - T - T. 

M M 

On using (3.6) and t he defin it ion of x in (3.7), the plastic strain under propor-
tional loading is thus given by 

f X 

(3.9) eP = aoJ2 j M 1 df = aokJ2sin {3;:'ax j M dx. 

0 0 

This motivates the use of M expressed in terms of x. The form (3.7)1 is one of 
the simplest which ensure M -+ oo as f approaches a fi xed k; after integration 
it yields 

(3.10) p _ 2k.J'i ( {3max · 2{3max) 1 1 
£ - ao -- 2 c - 7r + sm c n ({3 ) / ( {3 ) E 1 - X o X 7r - ｾｮ｡ｸ＠

with f3o determined from (3.6) for a fi xed extremal surface. 
In turn, fr om (3.9), (3.6) and the defi nition of X we obtain 

(3.11) eP =M cr' 
11 

if M = const. 

T his is precisely t he formula of the classical deformation t heory of plastici ty 
where the proport ionali ty factor between the plastic strain and stress deviators, 

, f 

being a function of lcr'l, serves as the principal plastic compli ance for cr or-
thogonal to cr'- In view of a fi xed relationship between M 11 and lcr'l impli ed by 
(2.16) and (2.6), the variant of the deformation theory obtained here for full y 
active loading at constant M is very special and, moreover , inconsistent wit h 
the assumpt ion of a fixed extremal surface. The possibili ty to satisfy Eq. (3.11) 
approximately for the extremal surface subject to a power hardening law will be 
discussed in Sec. 5. 

The assumption (ii ) above, and hence the fi nal specifi cation of the incremental 
plastic constitutive law, cannot be regarded as appropriate for all stress-rates in 
all states, e.g. in the current state just after partial unloading. For tunately, to 
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calculate the material response along some loading path, it usually suffices to 
know the function ep(c1) only in the vicinity of the actual stress-rate direction. 
For a class of non-proportional loading paths, the actual plastic strain-rate and 
plastic compliances can be calculated from (3.3), or directly from (3.4) and (2.15) 
or (2.16), respectively, still by using the specifications (i) - (iii ) in the following 
cases: 

(A) for every stress-rate in any state PA reached from a virgin state cr' = 0, 
a = 0 along a plastic straining path without unloading (i .e. with {3 ｾ＠ {30 in the 
range 1-/k > ｳ ｩｮ ｻｊｾｮ｡ｸ Ｌ＠ except in the current state PA i tself) ; 

(B) along any path starting from a state PA and such t hat cr' and a are being 
contained in a fixed two-dimensional deviatoric subspace and {3 is preserving i ts 
sense, nondecreasing (but possibly discontinuous) in time and satisfying {3 < f3c; 

(C) a long any straight path in the deviatoric stress space starting from PA 
and satisfying {3 < f3c ; 

(D) along any smooth path of a sufficiently small curvature in the deviatori c 
stress space, starting from PA and satisfying {3 < f3c . 

This can be inferred fr om the assumptions under which the equations of the 
computational model have been derived . The common condition in the above 
li st is that no elastic unloading takes place so that the current stress does not 
leave the ver tex on the inner yield surface. This conditi on could be weakened 
by allowing for elastic unloading not foll owed by reloading, and also for certain 
cases of reloading. The restri ction on the path curvature in point (D) is impre-
cise since it is diffic ul t to specify the circumstances in which the influence of 
par tial unloading on the actual tangent compliances along a curved path may 
still be neglected. A curvature of the order 1/ k may perhaps be regarded as being 
"suffi ciently small " in this respect. 

4. Extension to finit e strain 

The extension of the constitutive equations from the preceding sections to 
plastic strain of arbitrary magnitude can be done in the following way, regarded 
nowadays as standard. With the volume changes assumed to be purely elas-
tic and small , cr is replaced by the Kir chhoff stress T = Jcr where J is the 

current-to-reference volume ratio, whil e the stress-rate c1 is replaced by f. , the 
Zaremba Jaumann flux (corotational with the material spin ) of T . An exact 
elastic constitutive law can be defined as an isotropic linear relationship be-
tween the back-rotated Kir chhoff stress and logarithmic elastic strain relative 
to an unstressed state. Accordingly, the elastic compli ances of the li near theory 
of isotropic elasticity undergo a si ight modification , cf. [21]. e is identifi ed with 
Lhc Eulerian strain-rateD while iLs p lastic part DP is defined by (3.5) and deter-
mined from (3.2) or (3.4) after making the substitutions indicated. A finit e strain 
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problem can be analysed in the usual step-by-step manner if , in every traversed 

state, D as an invertible function of Yr is specifi ed at least in the vicinity of the 
actual incremental solution. 

Questions resulting from the multipli cative decomposition of the deformation 
gradient and concerning the effect of plastic rotations on the kinematic hardening 
law need not be addressed here since they do not affect the proposed modification 
of a given classical plasticity model. 

5. Illu strativ e examples 

Figures 4 - 7 illustrate the model behaviour during proport ional loading from 
an unstressed virgin state, by the representative example of uniaxial tension. 
The tensile stress a is scaled down by a0 = ko J3, the initial tensil e yield stress 
in the absence of the yield-vertex modification, i.e. for the classical model. The 
tensil e plastic strain c:P is normalized by t he elastic criti cal strain ao/ E. Fig-
ure 4 shows how the stress varies with the plastic strain for the classical model 
(the horizontal line) and for Ｈｊｾｮ ｡ ｸ＠ = 105° , 120°, 130° and 139.2° when the ex-
tremal surface is kept fix ed. This case corresponds to perfect plasticity within 
the grains of a polycrystal, where the increase of the macroscopic stress is due 
to "constraint hardening". The curves can be compared with the results given 
in [4] for micromechanical models of a polycrystal. The lowest curve in Fig. 4 for 
sin f321ax = sin 139.2° ::::::: 1/ 1.53 corresponds to an upper bound of the constraint 
hardening effect (cf. [3, 4]) and , after suitable rescaling, fits approximately the 
resul ts obtained from the Kroner - Budiansky- Wu self-consistent model. Fitting 
the resul ts obtained in [4] for Hill 's self- consistent model, regarded as more accu-
rate, would require a somewhat smaller value of Ｈｊｾ｡ｸ Ｎ＠ Identifi cation of an optimal 

1.1 ..-------,.----,.----.,.-----, 

a 

1 2 3 

c:" E/ao 
F IG. 4. Non-dimensional stress vs. plasti c strain in uniaxial tension for a fixed 

extremal surface and for different values of ＨＳｾＢ｡ｸＮ＠
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value of ｻＳｾＧ｡ｸ＠ is not straightforward since the y ield-surface corner angle in a p he-
nomenological model should be interpreted as an effective angle obtained when 
an unspecifi ed plastic strain due to some internal mechanisms is neglected. For 
otherwise, the assumption of the existence of a fin ite elastic domain at advanced 
p la tic deformation could be questioned ; cf. the remark in [4], p. 271. 

a) 1.5 

1.0 
\ 

T 

To 

0.5 

0.00 

b) 1.5 

1.0 
T 

To 

0.5 

classical law 

\\ {3;nax = 139.2o 

120° 

5 10 

eE/To 

1 classical law 

5 10 

eE/To 

15 20 

15 20 

FIG . 5. Uniaxial Kirchhoff stress T as a function of logarithmic strain e for the 
extremal surface subject to an isotropic, (a) linear T = k../3 = To+ 0.02EeP, or 

(b) power hardening law T = To ( 1 + eP E /To )0 ·1 , for different values of ＯＳｾＧ｡ｸＮ＠

T he results in Fig. 5 correspond to the extremal surface being not fi xed but 
subject to an isotropic linear or power hardening law. The fini te strain version 
described in Sec. 4 has been employed , with To as the uniaxial Kir chhoff stress on 
the initi al extremal surface and T = ( e - eP)E It can be seen that the uniaxial 
stress-strain curve for the classical law is closely approximated by the curves 
for the present model when the plastic strain becomes only a few times greater 
than the elastic strain. However , the difference is no longer fu ll y negligible even 
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for larger strains, especiall y for linear hardening with a constant modulus h 
(equal to 0.02E in Fig. 5 a). The reason is that an asymptotic value (30 of f3o 
is now somewhat greater than (n - ＨＳｾ｡ｸＩＮ＠ It can be found from the condit ion 
df3o I deP = 0 which leads to the relationship 

(5.1) 
2 

sin {300 
- - hM ({300

) sin (3max = 0 
0 3 I 0 C · 

While the yield-vertex modification of a stress-strain curve for proportional 
loading at advanced plastic strain may be regarded as insignificant, the corre-
sponding difference in the incremental constitutive law is substantial. This is 
illustrated in Fig. 6 where plots of the effective tangent shear modulus vs. load-
ing angle after tensile prestrain are presented for different values of ＨＳｾ｡ｸ＠ The 
plots correspond to a fix ed extremal surface in the small strain formulation, and 
the amount of plastic prestrain for each value of ＨＳｾ｡ｸ＠ corresponds to t he same 
relative distance to the extremal surface, defined by ( 1 - f I k) I ( 1 - sin ＨＳｾ｡ ｸＩ＠ = 
(1 - 1.311.53)1(1 - 111.53) to allow comparison with the similar Fig. 6 in [4]. 
The calculated effective tangent shear modulus in the total loading range tends 
at ＨＳｾ｡ｸ＠ -+ 1r 12 to the elastic shear modulus G, i.e. to the value obtained for the 
fl ow theory of plasticity. 

1.2 

1.0 
classical fl ow theory 

0.8 

Ge 
O.G -

G 
0.4 

0.2 

0.0 oo 30° 60° 90° 120° 150° 180° 

f3 = arcLan( v'3l&12l I &u) 
FIG. 6. Effective tangent shear modulus Ge = c'! 12/2i:12 as a function of the 
incremental loading angle (3 after tensil e prestrain corresponding to a given 
relative distance (see the text) to a fixed extremal surface. G = E / 2(1 + v) 

is the elastic shear modulus with v = 0.3. 

The difference between the incremental characteristics for the present and 
classical models is also illu strated in Fig. 7. Plots of the principal plastic com-
pliance ratio M

11 
/ M

1 
vs. strain in uniaxial tension are shown for ｦＳ ｾ｡ｸ＠ = 120° 

and 135° while for the classical plasticity law the ratio is identicall y zero. Solid 
lines correspond to a linear isotropic, broken lines to a power-type isotropic, and 



http://rcin.org.pl

A YIELD-VERTEX MODIFI CAT ION OF TWO-SURFACE MODELS 861 

dotted lines to a linear kinematic hardening law for the extremal surface. T he 
mater ial parameters for the isotropic hardening correspond to Figs. 5 a and 5 b , 
and the kinemat ic hardening law is specified by 6:. = (2/ 3)(0.01E)DP. It can be 
seen that t he value of MII /M1 is only sli ghtly influenced by the type of hard-
ening, and also by t he amount of strain beyond a certain ini t ial stage. On the 
other hand, t he ratio depends strongly on the value of f321ax. This is, of course, 
not surprising since t his ratio depends only on f3o as illu strated in Fig 2. Figure 
7 may thus be treated as another illu stration of the conclusion that during pro-
pOl·tional loading at advanced plastic deformation, when the current hardening 
modulus is much smaller than E , the value of f3c = 1r - f3o is close to ｦＳｾ｡ｸ＠ and 
hence almost constant. 

0. 25 r----,----,-----r-----r---, 

0.20 

NI [] OJ G 

Mr 0.10 

0.05 

10 20 30 40 50 

eE/To 
Fie. 7. Vari ation of principa l plasti c compli ance rat io M11 / M, with logarithmic strain 

in uniaxia l tension for t he extremal surface subject to a li near isotropic __ _ 
power-type isotropic ___ and linear ki nemat ic ....... hardening law for two values 

of ｻＳｾ Ｑ
ＢｸＮ＠ Isotropic hardening parameters as in Fig. 5, kinemati c hardening law 

0. = (2/3)(0.01E)DP 

A stabilized value of the ratio of the principal plastic compliances resemble 
the well -known proper ty of the deformation theory of plasti city obeying a power 
hardening law. In the small -strain formulation wi th the elastic strain neglected, 
M

11
/ lvf

1 
under proportional loading becomes then equal to the tangent-to-secant 

modulus ratio, and hence to t he constant power exponent. T he present model 
can appmximate such behaviour provided f321ax is appropriately selected , with 
the help of the relati onship visuali zed in F ig. 2, to give the required value of the 
compli ance ratio . The power hardening exponent corresponding to ｦＳｾ ｡ｸ＠ equal 
to 120° or 135° can be directl y read off as a stabili zed ordinate in F ig. 7. 

It is beyond t he scope of this paper to simulate t he material response for 
various paths of non-proporti onal loading, which is expected to be strongly in-
fluenced by t he choice of an isotropic/kinematic hardening rule for the extremal 
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surface. We recall that the proposed yield-vertex modifi cation does not restrict 
the freedom in selecting such a hardening rule that fi ts experimental data for a 
specifi ed material. 

6. Concluding r emarks 

A modifi cat ion of the family of classical models for plastically deforming 
metals has been obtained with the help of general conclusions drawn from mi-
cromechanical analysis of an elastic-plastic polycrystal. In comparison with the 
standard equations of the fl ow theory of plasticity, the proposed model in its 
simplest computational version involves only one additional material constant 
which defines the maximal sharpness of the corner at the current loading point 
on the inner yield surface. A smooth loading surface of the standard form has 
been used as an outer "extremal" surface [3], not attainable during plastic fl ow. 
Wi th the yield-ver tex effect included, the high (elasti c) stiffn ess of the classical 
clastic-plastic model against an abrupt change of the straini ng direction has been 
relaxed. This offers a perspective of more adequate modell ing of the material be-
haviour under non-proport ional loading, and of arri ving at more reali stic results 
in bifurcation and instability studies, still using a typical isotropic/kinematic 
hardening law for the outer loading surface. 
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