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Abstract 

The elastoplastic constitutive equations for materials under plane stress condition with new yield criterion have been proposed. This 
yield condition accounts for the effect of strength differential effect.  The system of equations of sheet metal forming process is 
solved by algorithm using the return mapping procedure. Plane stress constrain is incorporated into the Newton-Raphson iteration 
loop. The proposed algorithm is verified by performing numerical tests using shell elements in commercial FEM software 
ABAQUS/EXPLICIT with developed VUMAT subroutine. It is shown that the proposed approach provides the satisfactory 
prediction of material behaviour, at least in the cases when the anisotropy effects are not so advanced. 

Keywords: anisotropic behaviour of metal sheets, strength differential effect, explicit finite element analysis, plane stress 

 

1. Introduction 

Finite element method is an efficient numerical tool to 
analyse such problems of shell deformation as for instance the 
sheet metal forming processes including cup drawing and 
stamping. Proper description of material properties is crucial for 
accurate analysis. In particular, the anisotropy and asymmetry 
of elastic range, related with strength differential effect (SDE), 
of considered materials play an important role in finite element 
simulation. For metal forming analysis many experimental tests 
are needed to obtain the proper description of anisotropic 
behaviour of metal sheets. There are some attempts to account 
for both, anisotropy and the SDE, e.g. [6]. However, according 
to our opinion, there is still lack of workable description of 
these effects, which could allow analysing effectively practical 
problems. In our disposal we usually have the yield stress in 
uniaxial tension, uniaxial compression and biaxial compression. 

For integration of plane stress state problem one needs to 
satisfy the condition that the out-of-plane components of stress 
are zero. Because of this condition, which is called the plane 
stress constraint, particular schemes have been developed for 
plane stress elastoplastic finite element analysis [3]. The simple 
scheme is based on plane stress projected constitutive models 
with the in-plane stress x , y , xy  and strain x , y , 

xy components. For complex constitutive models when it is not 
so easy to derive plane stress-projected models, one can use 
other ideas [3]. 
 
2.    Constitutive equations 
 

The considered material model is based on modified J2 
plasticity theory with an account for the influence of SDE.  The 
strain rate is additively decomposed into the elastic part obeying 
isotropic Hooke's law and the plastic part governed by the 
associated flow law: 
 
 

                                                 (1) 
 

                                                        

where G is shear modulus and K is the bulk modulus, while the 
flow law has the form: 
 

                                                                                       (2) 
 
Finally, loading/unloading may be simply formulated in the 
Kuhn-Tucker form, that is: 
 
 

3.     Yield condition 

The proposed yield condition is based on the analysis of limit 
criterion for transversally isotropic solids presented in [7]. In 
case of plane stress state the yield condition takes the following 
form: 
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where C
Y corresponds to the initial yield stress in uniaxial 

compression,  T
Y is initial yield stress in uniaxial tension and 

CC
Y  is initial yield stress in biaxial compression. 

 
4. Integration of the elastoplasticity equations 
 
After increment of time the stress is defined as: 
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where trial stress is: 
 
 
 
2.1.  Plane stress state 
 
Let us consider a thin plate element in plane stress states. We 
then have:  
 

0z , 0 zyzx   

0z , 0 zyzx   
where ij indicates the shear strain. 

6. Cup deep drawing process 

Figure 1 shows a schematic description of the tools and blank 
discretization by the finite elements for the square cup deep 
drawing. The blank is modelled by four-nodes shell element 
(ABAQUS elements library type - S4R), whereas the die, punch 
and holder are modelled  by rigid elements (ABAQUS elements 
library type - R3D4). 
 

 
 
 
Figure 1: Initial configuration of the tools and the blank for the 
square cup deep drawing. 

The material properties and process variables used in the 
simulation are as follows: 
size of the blank 150x150 mm; 
thickness of the blank  0.78 mm; 
blankholding force 19.6kN; 
coefficient of friction 0.1; 
material of the blank  - mild steel; 
Young's modulus 210 GPa, 
Poisson ratio 0.3. 
The uniaxial true stress–strain data measured in the tension test 
for steel were fit to the power law equation  
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and the obtained coefficients are: A=200 MPa, B=232 MPa, 
C=0.3. 
 
The blank is composed of 1849 elements and 1936 nodes. 
 
Figure 2 illustrates an example for plasticity theory with Huber-
Mieses yield condition. In the presentation the results of the 
same problem are shown for the plasticity model with the 
proposed new yield condition.  

 
 

 
Figure 2: Deformation of the blank at the punch stroke 50mm 
for the square cup deep drawing with application of 
ABAQUS/EXPLICIT for Huber-Mises yield condition and 
isotropic hardening law. 
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