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Normal contact stiffness of fractal rough surfaces
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We used the fractal theory based on a single variable Weierstrass–Mandelbrot
function to obtain the normal contact stiffness if rough and smooth isotropic surfaces
are pressed against each other. Because in the original fractal theory the distribution
of contact area is assumed geometrically, we propose the method in which the actual
deformation of asperities and a correction due to asperity coupling (interaction) will
be taken into account. This correction is equivalent to an increase of the effective
separation by a quantity proportional to the nominal pressure and it has a significant
effect on contact stiffness at larger normal loads (low separations). The numerical
results demonstrate a nonlinear evolution of the contact stiffness with the normal
load in particular in the first stage of loading at low squeezing pressures. We have
compared the results of the theoretical contact stiffness using the fractal method
with the experimental ultrasonic measurements. Experimental results made on real
surfaces agree remarkably well with the theoretical predictions.
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1. Introduction

Measurement and prediction of both the normal and tangential stiffness
has been studied in recent years by a number of authors [1–7]. Akarapu, Sharp

and Robbins [3] point out that the contact area and normal stiffness rise linearly
with the applied load. Medina, Nowell and Dini [4] propose a simple analyti-
cal model based on the classical work of Greenwood and Williamson and predict
that the tangential stiffness is proportional to normal load and independent of
the asperity radius and Young’s modulus. Pohrt and Popov [5, 6] suggest
a sublinear relationship between the normal stiffness and the nominal pressure.
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They state that the power–law relationship observed for slowly apllied forces is
valid for all apllied forces, with the exponent varying from 0.50 to 0.85, depend-
ing on fractal dimension. The results presented by Pohrt and Popov [5, 6] are
not confirmed by Pastewka et al. [7] who have shown that the contact stiffness
cannot be described by a power law for all apllied forces, and this would corre-
spond to a straight line on log–log graph only. Several authors noted [2, 5, 8–11]
that the expression for the microasperity contribution to the total elastic energy
and the elastic stiffness depend on the elastic coupling between asperities. Some
of them state that any derivation neglecting this interaction cannot describe
the correct physics of realistic rough surfaces. Barber [10] has established an
analogy between the electrical conduction and the contact stiffness in which the
electrical conduction at any load is proportional to the elastic normal stiffness.
This relation has been extended to the contact of finite bodies [11]. Measure-
ments of the tangential contact stiffness between rough surfaces manufactured
from titanium alloy using a digital image correlation method have been recently
investigated by Kartal et al. [12].

In the paper we derive an expression for the normal contact stiffness (Sec-
tions 3 and 4) using the fractal theory (Section 2). The numerical results are
compared with the experimental utrasonic measurements (Section 5). Last part
contains the summary and conclusions.

2. Theoretical background

Fractal geometry, pioneered by Mandelbrot [13], can be observed in var-
ious natural phenomena. It is characterized by continuity, nondifferentiability
and self-affinity. These mathematical properties are satisfied by the Weierstrass–
Mandelbrot (WM) function given by [14–16]

(2.1) z(x) = G(D−1)
nmax∑

n=0

cos(2πγnx)

γ(2−D)n
,

where z(x) is the surface height, x is the lateral distance, D is the fractal dimen-
sion of a surface profile (1 < D < 2), γ is the scaling parameter for determining
the spectral density and self–affine property (γ > 1). The right side of equa-
tion (2.1) is a superposition of cosine functions with geometrically increasing
frequencies. The scaling parameter γ controls the density of the frequencies on
the surface. Based on surface flatness and frequency distribution, γ is chosen
to be 1.5 [14]. The fractal roughness G is a height scaling parameter indepen-
dent of the frequency. A rougher surface is characterized by higher G values.
The fractal dimension D determines the distribution of high- and low-frequency
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with the surface profile components; larger values of D correspond to denser
profiles. An effective way to obtain the fractal parameters is a structure function
of order 2 [17]

(2.2) S(τ) =
1

L− τ

L−τ∫

0

[z(x) − z(x+ τ)]2 dx.

In addition, the structure function is a function of the fractal parameters which
can be expressed in the following form [17–19]:

(2.3) S(τ) = Cτ4−2D,

τ is the displacement along x-direction and C is the scaling coefficient given by
the formula

(2.4) C =
Γ (2D − 3) sin[(2D − 3)π/2]

(2 −D)
G2(D−1).

For isotropic surfaces, the fractal parameter D can be obtained from the slope
of the log–log plot of the structure function taken from equation (2.3)

(2.5) log S(τ) = (4 − 2D) log τ + logC.

In practise, the structure function S(τ) is determined in the following way. The
profiles from a mesurement can be digitalized over a sampling length L. If the
sampling spacing is ∆t, with each sampling length L having N+1 evenly spaced
data points [20],

(2.6) z(x) = zi, i = 0, 1, . . . , N.

Assuming

(2.7) τ = n∆t, n = 1, 2, . . . ,

the discrete form of the structure function is

(2.8) S(τ) = S(n∆t) = 〈[z(xi + n∆t)] − z(xi)]
2〉 =

1

N − n

N−n∑

i=0

(zi+n − zi)
2.

Hence, with the above relations both fractal parameters D and G can be calcu-
lated from the structure function (see Fig. 6).
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3. Contact modelling

When two bodies with nominally flat surfaces are brought into contact, the
area of real contact is only a small fraction of the nominal contact area where
asperities from one solid are squeezed against asperities from another solid. The
asperities can deform elastically or plastically.

Using a single term of the WM–function from equation (2.1) and assuming
n = 1 we have

(3.1) z(x) = G(D−1)l(2−D) cos

(
2πx

l

)

,

where l is the length scale (base diameter, Fig. 1) of an asperity at level n, such
that ln = 1/γn.

δ

ω

Rigid flat plane

Fig. 1. Geometry of a contact spot. Here, lt is a truncation diameter.

From equation (3.1), the asperity height δ equals

(3.2) δ = z(0) = G(D−1)l(2−D),

and the radius of curvature at the asperity peak is then given

(3.3) R =
1

|∂z2/∂x2|x=0
=

lD

4π2G(D−1)
.

So, the approach ω is expressed as

(3.4) ω = δ − z(
lt
2

) = G(D−1)l(2−D)

[

1 − cos

(

π
lt
l

)]

= G(D−1)l(2−D)q.

We now present a single contact model which is adopted from Majumdar and
Bhushan [14], Yan and Komvopoulos [21], Jiang at al. [22] or Morag and
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Etsion [23] and Liou and Lin [24] models. Contrary to these models, which
assume complete deformation of the asperity i.e. ω = δ [21, 22], the present
one suggests that the deformation of an individual asperity ω is an additional
parameter independent of δ (but dependent on the acting loading) that can
range from zero to complete deformation, i.e., 0 ≤ ω ≤ δ as it has been recently
suggested by Morag and Etsion [23].

The base diameter l is taken from equation (3.4)

(3.5) l =
ω

1
2−D

G
D−1
2−D q

1
2−D

.

After substituting l from equation (3.5), the radius of the curvature R from the
expression (3.3) becomes

(3.6) R =
ω

D
2−D

4π2G
2(D−1)
2−D q

D
2−D

.

The contact load for an elastically deformed asperity (Hertz solution) is

(3.7) We =
4

3
ER1/2ω3/2.

Substituting R from equation (3.6) into equation (3.7) we obtain

(3.8) We(ω) =
2

3
E

1

π

1

G
D−1
2−D q

D
2(2−D)

ω
3−D
2−D .

The normal contact stiffness kn at single asperity is defined as

(3.9) kn =
dWe(ω)

dω
.

From equations (3.8) and (3.9) we get

(3.10) kn =
2

3
E

3 −D

2 −D

1

π

1

G
D−1
2−D q

D
2(2−D)

ω
1

2−D .

Following the Hertz theory, the contact area of the deformed asperity is given as

(3.11) a = πRω

and with the help of equations (3.3), (3.4) and (3.5) it takes the form

(3.12) a =
1

4π
l2q =

1

4π
q

ω
2

2−D

G
2(D−1)
2−D q

2
2−D

.



416 R. Buczkowski, M. Kleiber, G. Starzynski

Taking equations (3.10) and (3.11) into account we arrive at the following simple
formula

(3.13) kn =
4

3
√
π
E

(
3 −D

2 −D

)

a1/2

(similar equation has been recently given by Jiang at al. [22], but their line of
reasoning is wrong.) Equation (3.13) can be rewritten as the function of ω (see
Eq. (3.11))

(3.14) kn =
4

3
E

(
3 −D

2 −D

)√
Rω

in which E denotes the effective Young’s modulus given by

(3.15)
1

E
=

1 − ν2
1

E1
+

1 − ν2
2

E2
,

where ν1 and ν2 are the Poisson’s ratios and E1 and E2 are the Young’s moduli
of the two materials, respectively.

4. Contact stiffness

Greenwood [25] presented the random theory of surface roughness that we
will briefly describe here.

Remark. The theory uses the central difference approximations in order to
obtain the first and the second derivative for the slope and the curvature, respec-
tively. So, in the case of non-differentiable Weierstrass–Mandelbrot function in
which a grid or mesh of points and corresponding intervals are established this
approximation technique is justified, and quantities like slope and curvatures are
well-defined.

After introducing a standardized height z, slope m and curvature t

(4.1) ζ = z/σ, s = m/σ2, t = −κ/σκ,

where σ, σ2 and σκ are r.m.s. surface height (or standard deviation of the rough
surface), r.m.s. slope and r.m.s. curvature, respectively, and assuming that |s| <
t tan θ, the probability that an ordinate is a peak of height ζ and curvature t is

p(ζ, t) =
1

(2π)3/2
√

(1 − r2)
exp

(

−1

2

ζ2 + t2 − 2rζt

1 − r2

)

(4.2)

×
+t tan θ∫

−t tan θ

exp

(

−1

2
s2

)

ds,
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where r = σ2
m/σσκ determines the character of the surface roughness, σm

2 =
E[m2], where E[m2] denotes the element of the covariance matrix, here σ2 =
σm cos θ and θ = arc sin(hσκ/2σm). It is noted that 1 − r2 = cot2(θ). The
variable r−2 corresponds to the Nayak’s parameter α = m0m4/m

2
2 [26]. In the

limit at sampling interval h → 0 the quantities σ2, σ2
2 and σ2

κ become equal to
the spectral moments of the profile m0 (the zeroth), m2 (the second) and m4

(the fourth), respectively.
In the theory that follows we need probability density distributions of the

peaks. To obtain these, Eq. (4.2) must be normalized by the ratio of peaks to
ordinates Np. The probability that an ordinate is a peak is found by integrating
out the height and the curvature dependence, which according to Greenwood

and Williamson [27] is equal in the closed form to

(4.3) Np =

+∞∫

−∞

+∞∫

0

p(ζ, t) = θ/π.

This formula can be taken as an ordinary check in the numerical evaluation of
all improper integrals used here. The multiple integrals are evaluated using the
Gauss–Legendre 50-point quadrature scheme.

By dividing Eq. (4.2) by Np we obtain the second-order or joint probability
density functionppeak(ζ, t) of the normalized heights ζ and curvatures t = −κ/σκ

of the peaks as

ppeak(ζ, t) =
1

2θ
√

2π(1 − r2)
exp

(

−1

2

ζ2 + t2 − 2rζt

1 − r2

)

(4.4)

×
+t tan θ∫

−t tan θ

exp

(

−1

2
s2

)

ds.

Figure 2 presents the results of the numerical integration of the joint probability
density function (Eq. (4.4)) with respect to the curvature to give the asperity
height distribution. The asperity height distribution appears to be closely Gaus-
sian with a skewness (the third moment normalized by the standard deviation σ)
Sk 6= 0 and a kurtosis (the normalized fourth moment) K 6= 3. (The symmetric
Gaussian distribution has the skewness Sk = 0 and the kurtosis K = 3.)

The total normal stiffness can be now determined by integrating the mi-
crostiffness kn (see Eq. (3.14)) if the expected number of contact asperities is
available. If there are N asperities (peaks) in all, the expected number of asper-
ities n(η) above given height ζ = z/σ for normalized separation η = d/σ

(4.5) n(η) = N

∞∫

η

∞∫

0

ppeak(ζ, t) dζ dt.
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Fig. 2. The joint probability function of asperity height for varying r i θ = π/3; r=1/2
(dot–dash), r=1/3 (solid line), r=1/5 (dashed line).

The results here were obtained for surface roughness which restricts θ to a range
from θ = π/3 to θ = π/4 giving, from Eq. (4.3), such results that the number of
peaks is always between 1/4 and 1/3 of the number of ordinates.

If the total number of peaks (the density of peaks Dp by the nominal area A0

(see Table 1) is

(4.6) N = A0Dp,

then the normal contact stiffness for all asperities becomes

(4.7) Ke
n =

4

3
E

(
3 −D

2 −D

)

A0Dpσ
1/2

∞∫

η

∞∫

0

√
R(ζ − η)1/2ppeak(ζ, t) dζdt.

Because the radius R of the asperity peaks changes within the deformation pro-
cess, the formula (4.7) is rewritten by replacing the radius of the peaks R by the
inverse of the curvature, R = 1/κ, then (see description of Eq. (4.1))

(4.8) R =
1

σκt
,

where σκ denotes the standard deviation of the peak curvatures. So, the for-
mula (4.7) is rewritten to be

(4.9) Ke
n =

4

3
E

(
3 −D

2 −D

)

A0Dpσ
1/2

∞∫

η

∞∫

0

√

1/(σκt)(ζ − η)1/2ppeak(ζ, t) dζ dt.
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We had no equipment to measure the standard deviation of the peak curva-
tures σκ. To obtain it, we used the formula given by Bush et al. [29]

(4.10) σκ =
3
√
π

8R
.

The equivalent radius of asperities over all peak heights R has been measured
and the values are given in Table 1.

It is known that the value of roughness parameters depend on the sam-
pling interval used [30–33]. It is essential how they have been calculated. Indeed,
we have not defined it directly, as the work aims at other issues. For clarity
we describe a method of estimating these quantities that makes them indepen-
dent of sampling interval. All surface topographies were measured with a scan-
ning profilometer Hommel Tester T8000Nanoscan. The parameters were deter-
mined using the Hommel MapExpert program for surface (not profiles) mea-
surements. The presented model requires height parameters describing a con-
tact surface: R – mean radius of asperity and Dp – density of asperities. In
the work [33] these relationships were carefully examined and a slight depen-
dence of height parameters (Ra, Rq) on sampling interval was found, while the
asperity radius and density heavily depend on sampling interval, which may
yield completely different results from various measurements for the same sur-
face. To avoid this, we have used our method, briefly described below, for the
presented model to estimate magnitudes of the required parameters. The pro-
gram Hommel Map has a function for determining ’islands’ at any level of
rough surface cross-section (Fig. 3). Starting from the maximum summit, the
number of islands increases, and so does the calculated mean height of such
islands.

We regard such an island as a cross-section of actual asperity and use the
parameters mean height and mean surface (area) of island. Then we change such
irregularity into a section of a paraboloid with a base area equal to the mean
island surface area and height equal to the mean height of such an island. Thus
we can calculate the radius of the summit of such solid asperity. A single area
is a circle, equal to the mean area of a single island, representing a cross-section
of a rotary paraboloid with radius of asperity R. Using these simple relations
we can calculate the radius of asperity R based on the measured island surface.
Cutting at various levels, we obtain a set of radiuses whose magnitude initially
increases slowly, then for deeper cuts at approx. 30% levels radiuses increase
rapidly. A similar procedure can be applied to estimate density Dp of contact-
ing asperities (Fig. 4). This diagram below compares densities of asperities as
a function of the bearing area (material ratio) for three examined surfaces. In
the process of surface contact, the maximum density is a representative quan-
tity. When the cutting level increases, the islands merge, the density of asperities
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7.53 µm

Number of islands 1180

Mean volume of islands 6439 µm3

Mean height of islands 6.64 µm

Mean surface of islands 0.00141 mm2

Mean height / surface ratio 4706 µm/mm2

Fig. 3. An example result of using the HommelMap function allowing to determine islands,
their number and other parameters.
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Fig. 4. Change in Dp – density of summits determined by the ’island’ method as a function
of bearing area (material ratio) for three examined surfaces.

reaches a maximum of about 20% of bearing area, and above it the density de-
creases and the radius increases rapidly. A representative summit radius can be
determined for a bearing area corresponding to the determined density. We have
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to bear in mind, however, that these considerations refer to islands, not summits
calculated as per Greenwood’s definition (point surrounded by points with lower
coordinate z). The method is similar to that proposed by Aramaki (Aramaki–
Majumdar–Bushan method [34, 35]), but it uses data from the entire examined
surface of contact (surface area and height of islands), not matching paraboloids
to profile fragments, as is the case in the cited work. The ’island’ method is
appropriate for describing the contact process because it neglects insignificant
tiny summits that might appear in standard determination of parameters used
by the Hommel Map program.

In the model, the effect of asperity interaction is taken into account. In equa-
tion (4.9) the correction is equivalent to an increase of the effective seperation
by a quantity proportional to the nominal pressure as it has been suggested by
Ciavarella, Greenwood and Paggi [36]

(4.11) ηnew = ηold − W (ηold)√
A0Eσ

,

where A0 is the nominal contact area which is equal here to A0 = 195 mm2. We
note that another method of asperitiy interaction based on finite or discrete ele-
ment models has been recently proposed by Mulvihill et al. [37], Yastrebov

et al. [38] and Jerier and Molinari [39].

5. Experimental set-up

The results of the theoretical contact model were compared to that mea-
sured experimentally. The experimental values of both the tangential and nor-
mal contact stiffness were determined from ultrasonic measurements by predic-
tions of the reflection coefficient. The experiment was carried out using a set-up
shown in Fig. 5. The stage enables precise measurement of the approach as a
function of the contact pressure W (η)/A0. The contact is realized between the
flat rough surface of the upper specimen and the bottom special head having
a very smooth surface (Ra = 0.06 µm). The specimens are made of carbon
steel (0.45% carbon). The quasistatic load is applied gradually with a special
device placed axially in a hydraulic press until a nominal pressure of 600 MPa
is reached. The load is measured using a tensometric bridge and the resulting
approach of the upper specimen is registered by a displacement (inductive) sen-
sor. The results, in the form of diagrams of approach vs. contact pressure, are
produced on-–line on a PC screen. The reflected ultrasonic signals are ampli-
fied by a defectoscope (flaw detector) and passed to the PC for further sig-
nal processing including spectral (frequency) analysis done by means of Fourier
transform. The arrangement of the stage ensures uniform pressure distribution
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in the contact zone using a precise auto—readjustment of a surface of tested
specimen against a surface of a gauge head. The contact surface of the head
(a counter specimen) is made in a form of three uniformly placed ring sectors
(punches). Such arrangement increases accuracy by simultaneous measurement
on each of three sectors. The counter specimen has two functions: a head for
loading and an ultrasonic sender-receiver probe for acoustic waves in the shear
(T) and longitudinal or normal (L) directions. Three piezoelectric transducers
are used with different central frequency of 4 MHz and 7 MHz for the shear
and longitudinal directions, respectively, to predict almost the same wavelengths
in steel λ = 0.8 [mm]. For more details we refer the readers to the authors’
paper [40].

load

computer

loading signal

ultrasonic

signal

RT, RL

ultrasonic

sensors

displacement

sensor

sample

switch defectoscope

contact

interfaces

loading and gauge head

displacement signal

control signal

Fig. 5. Scheme of experimental set–up for simultaneous measurement of separation and
reflection of ultrasonic waves RT and RL as a function of loading.

The idea of the measurement is simple. When asperity contact occurs, ul-
trasonic waves are transmitted across the interface and where an air gap exists
between asperities (parts of the surfaces are out of contact), the waves are re-
flected back and the measured reflection coefficient is almost unity for all wave
frequencies. It was demonstrated by others [41] that the reflection coefficient R12

at a partially contacting solid–solid interface is related to the contact stiffness
per unit area of the interface by the following expression (if the two materials
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on either side of the interface are identical):

(5.1) R12 =
1

√

1 +
(

2Ke

2πfz

)2
,

where 2πf is the angular frequency of the ultrasonic wave, z is the acoustic
impedance (the product of the density of the material and the wave velocity
through the material) and Ke denotes the stiffness (tangential or normal) per
unit area of the interface. We note that similar methods of measurements of the
contact stiffness based on ultrasonic apparatus have been recently described by
Kim, Baltazar and Rokhlin [42] and Gonzalez–Valadez, Baltazar and
Dwyer–Joyce [43].

6. Results and discussion

The surface roughness parameters including mechanical properties of the in-
dividual material and the fractal parameters are collected in Tables 1 and 2,
respectively. The fractal parameters D and G are derived from the structure
functions as was demonstrated in Section 1 (see Eqs. (2.2)–(2.8)). The plot of
the structure function, for example machining process (sand blasted fine) is il-
lustrated in Fig. 6.

Table 1. Surface roughness parameters for different machining processes
(E1 = E2 = 205000 N/mm2, ν1 = ν2 = ν = 0.3, Y = 400 N/mm2).

machining process σ = Rq [µm] R [µm] Dp [1/mm2] Rp [µm]

sand blasted (fine) 0.832 40 500 5.3

sand blasted (coarse) 5.13 30 230 15.3

electrical discharge machining 8.94 19 160 48

Table 2. Fractal parameters D and G for some machined surfaces.

machining process D G [m]

sand blasted (fine) 1.62 1.2 · 10−8

sand blasted (coarse) 1.58 1.1 · 10−7

electrical discharge machining 1.70 8.2 · 10−7

The results of the calculated (Eq. (4.9)) and experimental contact stiffness for
different kind of machined processes are shown in Figs. 7–9. It can be concluded
that the contact stiffness strongly depends on the machining method. Decreasing
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the surface roughness increases the fractal dimension D which, in turn, increases
the normal contact stiffness. In relation to the normal stiffness we conclude that
the results based on fractal models and the experimental results are in close
agreement but the statistical elastic models (the ones according to the work
of Greenwood and Williamson [44]) always give poor results that are very
much lower than the experimental ones. In calculations the effect of interactions
between asperities has been taken into account [36]. This effect is dominant in the
cases of smaller value of the standard deviation of the surface σ. The interaction
effect increases considerably as the nominal pressure increases. On the other

Fig. 6. Structure function of the profile (sand blasted fine).

Fig. 7. Normal contact stiffness versus contact pressure (sand blasted fine). △ fractal model:
θ = π/4; × fractal model: θ = π/3; 2 statistical elastic model [28]; + based on [44];

3 experimental data.
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Fig. 8. Normal contact stiffness versus contact pressure (sand blasted coarse). △ fractal
model: θ = π/4; × fractal model: θ = π/3; 2 statistical elastic model [28]; + based on [44];

3 experimental data.

Fig. 9. Normal contact stiffness versus contact pressure (electrical discharge machining).
△ fractal model: θ = π/4; × fractal model: θ = π/3; 2 statistical elastic model [28]; + based

on [44]; 3 experimental data.

hand, for rough surfaces (sand blasted coarse and electrical discharge machining)
the effect of the asperity interaction has practically no influence on the values of
the contact stiffness.

For strongly anisotropic surfaces, with a grain pronounced to one direction
the summits should be modelled by highly eccentric elliptic paraboloids rather
than by caps. A more general dscription of such anisotropic surfaces has been
recently presented by Buczkowski and Kleiber [45, 46].
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7. Conclusions

1. The results based on the fractal model and the experimental ones are in
close agreement. On the other hand, the results based on the statistical elastic
models that have been obtained from [44] always give poor results that are very
much lower than the experimental ones.

2. The contact stiffness is almost independent of the variable θ which de-
termines the character of the surface roughness. As the variable θ varies, the
contact stiffness changes slightly.

3. The corrected modification due to interaction between asperities has a sig-
nificant effect on the contact stiffness for rough surfaces at higher normal loads.
For low load levels, the interaction effect on the contact stiffness is minimal.
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