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Abstract The presented work is devoted to a new simple
method of determination of the energy storage rate (the ratio
of the stored energy increment to the plastic work increment)
that allows obtaining distribution of this quantity in the area of
strain localization. The method is based on the simultaneous
measurements of the temperature and displacement
distributions on the specimen surface during a tensile
deformation. The experimental procedure involves two
complementary techniques: i.e. infrared thermography (IRT)
and visible light imaging. It has been experimentally shown
that during the evolution of plastic strain localization the energy
storage rate in some areas of the deformed specimen drops to
zero. It can be treated as the plastic instability criterion.

Keywords Infrared thermography . Energy storage rate
distribution . Strain localization . Plastic instability criterion .

Texture evolution

Introduction

Plastic deformation of the material is an irreversible process.
Thus, a part of the mechanical energy wp expended on plastic
deformation is converted into heat qd. The remaining part es,
called stored energy, is stored within the material as an energy
related to defects of crystal lattice, mainly dislocation
structures,

es ¼ wp−qd: ð1:1Þ

The stored energy es represents a change in internal energy
of the deformed material and it is an essential measure of its
cold-worked state. This energy was discovered in calorimetric
tests performed by Taylor and Quinney [1]. For many years,
based on the work of Taylor and Quinney, the part of plastic
work stored in the metallic material was considered to be a
constant value of about 10 % of the whole plastic work.
Nevertheless, further experimental studies have shown that
this estimation was wrong [2–19]. It has been found, that the
ratio of the stored energy to the plastic work is not constant
and depends on deformation level of the tested material.
Therefore, there was a need to introduce a concept of the
energy storage rate as a measure of energy conversion at each
instant of plastic deformation process [5, 13]. The energy
storage rate Z is defined as the plastic work derivative of the
stored energy:

Z ¼ des
dwp

; ð1:2Þ

or the ratio of the stored energy increment Δes to the plastic
work increment Δwp:

Z ¼ Δes
Δwp

: ð1:3Þ

The stored energy incrementΔes is equal to the difference
between the plastic work incrementΔwp and the increment of
energy dissipated as a heat Δqd,

Δes ¼ Δwp−Δqd :

Therefore, the energy storage rate can be presented as:

Z ¼ Δes
Δwp

¼ 1−
Δqd
Δwp

: ð1:4Þ

The entire deformation process, from the initial state to the
fracture of the specimen, can be divided into two stages:
macroscopical ly homogeneous deformat ion and
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macroscopically heterogeneous one. In our previous work
[20], two following indicators of the onset of plastic strain
localization were used: non-uniform temperature distribution
and non-uniform strain distribution on the surface of the
specimen.

It has been shown [7, 15, 21] that during heterogeneous
deformation of polycrystalline material, the energy storage
rate rapidly decreases reaching the 0 value and then becomes
negative. But in papers [15, 21], only the average value of the
energy storage rate for the gauge part of deformed specimen
was estimated. Whereas in paper [7], it has been shown that in
the area of plastic strain localization the total stored energy Es

reaches maximum and then decreases. The decrease in the
stored energy corresponds to the negative value of the energy
storage rate. In light of those works, the purpose of the present
study is to answer the question:What is the energy storage rate
distribution along the gauge length of the strained specimen
during development of plastic strain localization? To reach the
purpose a new simple method of determination of the energy
storage rate distribution has been proposed. The method
requires similar measurement techniques like in papers
[22–26]. There are simultaneous measurements of
temperature and displacement distributions on the specimen
surface during a deformation process. A new aspect of
presented method is the methodology of determination of
the energy dissipated as heat. The obtained results are related
to the texture evolution.

Determination of the Energy Storage Rate Distribution
During Evolution of Strain Localization

The formula (1.4) shows that the energy storage rate can be
calculated by a determination of plastic work incrementΔwp

and corresponding increment of energy dissipated as heat
Δq d . Having determined Δwp and Δqd for particular
sections of the gauge part of the specimen, the distribution
of the energy storage rate can be obtained. In order to
determine such distribution, simultaneous measurements of
the temperature and strain fields on the surfaces of tested
specimen were performed. The experimental procedure
involves two complementary techniques: i.e. infrared
thermography (IRT) and visible light imaging.

In order to determine the strain distribution, markers in the
form of graphite dots were painted on the one surface of the
specimen (Fig. 1). The initial distance between centres of the
dots was equal to 1.3mm . This way, the surface was divided
into sections as presented in Fig. 2. Simultaneously the
temperature distribution on the opposite surface of the
specimen was measured by means of IR Thermographic
System. The surface was covered by soot, to ensure its high
and uniform emissivity (soot emissivity ~0.95).

Determination of the Plastic Work Distribution

Specific plastic work during tensile deformation is given by a
formula:

wp ¼ 1

ρ

Zεp

0

σ⋅dεp; ð2:1Þ

where ρ is a mass density of the tested material, σ and εp are
the true stress and true plastic strain in tensile direction,
respectively. Thus, to obtain the distribution of the plastic
work in the selected area of the sample, the strain and stress
for particular section at each instant of deformation process
should be measured.

Let us denote the local true stress and local plastic strain as
σ y(t , y n) and ε y

p(t ,y n), respectively. y n is the vertical
coordinate of the centre of section n .

Strain distribution on the tested surface was derived from
displacements of dots recorded by means of a CCD camera

Fig. 1 Specimen geometry and graphite dots (markers) on the gauge part
of the specimen

Fig. 2 Division of the gauge part of the specimen into particular sections
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during the deformation process. Taking into account the
reference distance between the centres of the dots l0 and the
current distance as a function of time l y(t , yn), the true strain
ε y(t , yn) in the direction of tension for particular section can
be calculated as:

εy t; ynð Þ ¼ ln
ly t; ynð Þ

l0

� �
: ð2:2Þ

Figure 3 clearly shows that during localization the sections
lying on the vertical axis of the specimen have maximal strain
in loading direction. Therefore, in the following part of the
work, the evolution of the strain ε y(t , yn) has been determined
for such sections.

During the deformation process, the time dependence of
the tensile force F(t ) was recorded.

On the basis of the image sequence in a visible range the
width of the specimen as the function of time was determined.
Then, assuming a constant volume, the current cross-section
area S (t , yn) was obtained. These experimental data allow
calculating the average value of stress for the selected cross-
section at any time.

σy t; ynð Þ ¼ F tð Þ
S t; ynð Þ: ð2:3Þ

However, the stress field over the cross section of the
specimen may be non-uniform and the strain localization
occurs in the area, where the strain increment requires the
lowest plastic work increment. This means that, the increment
of the plastic work corresponding to the given increase in
strain in the localization area may be slightly lower than
calculated (equation (2.1)). Thus, by taking the average value

of stress, the energy storage rate may be overestimated
(equation (1.4)).

The total strain of each section is equal to the sum of elastic
and plastic strains. Thus, assuming that Young’s modulus E
does not change during the deformation process, the local
plastic strain can be calculated from the following formula:

εpy t; ynð Þ ¼ εy t; ynð Þ−σy t; ynð Þ
E

: ð2:4Þ

Based on σy(t , yn) and εy
p(t ,yn), the local specific plastic

work for particular section n of the specimenwas determined as:

wp t; ynð Þ ¼ 1

ρ t; ynð Þ
Zε p

y t;ynð Þ

0

σy t; ynð Þ⋅dεpy ; ð2:5Þ

where ρ t; ynð Þ ¼ ms
V t;ynð Þ is the current mass density of a

particular section, ms = const = ρ0⋅V0 = ρ (t , yn)⋅V(t , yn) is
mass of a section and V (t , yn) is the current volume of
particular section.

Determination of the Distribution of Energy Converted
into Heat

As mentioned above, a part of the energy expended on plastic
deformation is dissipated as heat and the remainder is stored in
the deformed material and increases its internal energy. The
energy dissipated in the form of heat causes an increase in the
temperature of the specimen. This increase depends on the
strain rate. In the area of the strain localization, the distribution
of strain rate is not uniform. This heterogeneity is manifested by
a non-uniform temperature field on the specimen surface.
Evolution of the temperature field during deformation process
was recorded by means of the IR thermography system. On the
basis of the obtained experimental data, the average
temperature T(t , yn) as a function of time for each n-th section
along the axis of the specimenwas determined. Such a selection
of positions of sections allows avoiding the influence of the
specimen edges on the measured temperature values. The initial
size of each, considered section is identified by the distance
between the centres of the dots and the thickness of the
specimen. Thus, the initial volumeV0 of each section was equal
to (1.3×1.3×2)mm3 and the initial cross-section S0 was (1.3×
2)mm2. Dimensions of the sections were changing during the
tensile process. These changes were determined by tracking dot
centres in the visible range by means of the CCD camera. All
these data have been used to calculate the heat Δqd (t , yn)
generated during time intervalΔt in n–th section. The interval
Δt is the reciprocal of the taking frequency.

In order to avoid the influence of the heat convection
phenomenon, the displacement rate 2,000mm /min was
chosen. At this rate the duration of deformation process was
about 1s , therefore we are allowed to neglect the heat

Fig. 3 Example of image of the specimen surface in visible (left) and in
infrared range (right)
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convection. Nevertheless, despite the relatively high
displacement rate the deformation process was non-adiabatic
mainly due to the heat transport to the grips of the testing
machine. It was assumed that heat transfer in the direction
perpendicular to the specimen axis with comparison to the
heat transport to the grips is negligible.

Thus, taking into account the phenomena considered above
and the heat expended for compensation of drop in
temperature caused by the thermoelastic effect, the heat Δqd

(t , yn) generated during time Δt in n–th section has been
calculated according to the following formula:

Δqd t; ynð Þ ¼ cw⋅ΔT t; ynð Þ þ αT t; ynð ÞΔσy t; ynð Þ
ρ t; ynð Þ þ

þSn=nþ1 t; ynð Þ⋅λ⋅Δt

ρ0⋅V 0
⋅
T t; ynð Þ−T t; ynþ1

� �
ynþ1−yn

� �
þ

þSn=n−1 t; ynð Þ⋅λ⋅Δt

ρ0⋅V 0
⋅
T t; ynð Þ−T t; yn−1ð Þ

yn−yn−1

� �
;

ð2:6Þ

where α is the coefficient of linear thermal expansion, T (t ,
yn) is the mean absolute temperature of the considered
section, Δσ y (t , yn) is the increase in the stress during
subsequent time intervals Δt , λ is the coefficient of thermal
conductivity, cw is the specific heat and V0 is a volume of
considered section. Sn/n+1(t , yn) and Sn/n−1(t , yn) are cross-
section areas between neighbouring sections n /n +1 and n /n −
1, respectively (see Fig. 2).

The first component of equation (2.6) expresses the heat
needed to rise the temperature of a unit mass of the tested
material by ΔT. The second describes the heat expended for
compensation of the temperature drop due to the thermoelastic
effect. The third and fourth components, according to the
Fourier’s law, take into account the heat transfer between
given section n and its neighbours n /n +1 and n /n −1,
respectively. It is worth to notice that the Fourier’s law refers
to a heat flux. Thus, in order to determine the heat related to a
mass unit, the heat flux should be divided by the mass of the
section and multiplied byΔt and by Sn/n+1(t , yn) or Sn/n−1(t ,
yn), respectively.

Adding up the heat increments Δq d (t , y n ) in the
successive time intervals, the time dependence of the energy
dissipated as heat qd(t , yn) for each tested section has been
obtained. The energy storage rate for a particular section is

defined as Z ¼ 1−Δqd t;ynð Þ
Δwp t;ynð Þ . During non-uniform deformation

in the equal time intervals Δt , the increments of plastic work

Δwp are not equal. Thus, Δqd was determined for equal
increments of Δwp. In further analysis Δwp=2J /g was
taken. Such value was selected in order to reduce the

dispersion of increments’ ratio Δqd
Δwp

. Having obtained wp(t ,

yn) and qd(t , yn) for the considered sections and using the
procedure mentioned above the distribution of the energy
storage rate was determined.

Experimental Procedure

The experiments were performed on a specially prepared batch
of austenitic stainless steel with chemical composition shown in
Table 1. Such composition, similar to a composition of the
304 L steel, was matched to avoid a phase transformation
during the deformation process. The strips with the cross-
section 25mm ×4mm were initially annealed at 1,050°C , water
quenched and 50% cold rolled. From the material prepared this
way, the specimens for tensile testing were cut out using an
electro-erosion machining (see Fig. 1). Finally, specimens were
annealed for 1 h at 1,100°C and water quenched to produce a
homogeneous microstructure with a mean grain size about
50μm . In order to remove the technological surface layer, the
specimens were electro-polished.

Such specimens were strained using MTS 858 testing
machine. During the tension the displacement rate was
controlled and equal to 2,000mm /min . For such displacement
rate and given geometry of the specimen (see Fig. 1) the
corresponding mean value of strain rate was equal to
6.6⋅10−1s−1.

In the course of deformation process the infrared and
visible range image sequences were recorded simultaneously
using the infrared Phoenix and pco.1200hs cameras. An
example of such images is shown in Fig. 3. The taking
frequency of both cameras was equal to538Hz . Such taking
frequency was selected in order to take into account the heat
transfer between neighbouring sections. Simultaneously, the
straining force as a function of time t was measured. The
experimental setup is presented in Fig. 4. The analysis of the
displacement fields (based on markers tracking) and the
assignment of them to the appropriate temperature
distributions were performed using MATLAB software. The
experiments were performed on three specimens and the
average results are presented below.

Table 1 Chemical composition
of the tested steel Chemical composition (wt. %)

C Mn Si P S Cr Ni W Mo Cu V Ti Fe

0.05 1.35 1.0 0.016 0.008 18.58 17.3 0.025 0.02 0.04 0.03 0.013 Balance
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Results and Discussion

Basing on the experimental data, tensile curves for selected
local sections: A, B, C, D, E, lying on the axis of specimen,
were calculated (Fig. 5). It can be seen that with an increase in
strain, the individual sections of the specimen cease to deform,
whereas others are still deforming. Such behaviour is
characteristic for the localization of plastic deformation. The
obtained stress–strain dependences were used to calculate the
plastic work as a function of time for the selected sections
lying on the specimen’s axis (equation (2.5)).

From the surface temperature field, the distribution of
energy dissipated as heat along the specimen axis was
determined using a local form of heat equation (equation
(2.6)). From energy dissipated as heat vs. plastic work
dependences the ratios Δqd/Δwp were calculated. Then, on
the basis of equation (1.4) the energy storage rate Z for each of
the considered sections was obtained. The results, as a
function of true strain are presented in Fig. 6. Results obtained
for different sections are marked by different symbols with
different gray intensity, corresponding to stress–strain curves
shown in Fig. 5. The obtained results show that the energy
storage rate decreases with strain for all considered sections.
During the evolution of plastic strain localization some
sections cease to deform, which causes a stop in the energy

storage process in this region, whereas the energy storage rate
in the other sections (where deformation still proceeds) drops
to zero. It has been shown [21] that for austenitic steel the zero
value of the energy storage rate corresponds to the point of

Considère stability criterion. Thus, Δes
Δwp

¼ 0 can be treated as

the plastic instability criterion based on energy conversion. A
confirmation of obtained negative values of Z needs further
studies. Negative values of this quantity could be explained by
a release of the energy stored in previous deformation stages.

In order to findmicroscopic interpretation of obtained results
the studies of localization phenomena were performed using
Transmission Electron Microscopy (TEM) and Electron Back
Scattering Diffraction (EBSD) technique. TEM was used for
the analysis of dislocation structures at the initial state, whereas
the EBSD technique was used for the study of evolution of the
crystallographic orientations during the deformation process.

In Fig. 7 the typical microstructure of the initial state of the
tested material is presented. One can see that the dislocation
density is low and the dislocations are not forming any
ordered dislocation structures. It indicates that material is fully
recrystallized. The orientation map seen in Fig. 8 shows that
grains are randomly oriented and the material does not exhibit
any distinct crystallographic or morphological textures.

Fig. 4 Experimental setup for simultaneous measurement of
displacement and temperature fields

Fig. 5 Stress–strain curves for selected sections of the specimen.
Macroscopic strain is marked

Fig. 6 Energy storage rate as a function of true strain for selected sections
of the specimen

Fig. 7 Typical microstructure of the initial state of tested steel

Exp Mech (2015) 55:753–760 757



Obtaining such initial state of the material is necessary for
both analysis of the energy storage process and its
interpretation on the basis of microstructure observations.

In order to obtain the crystallographic orientation maps for
different levels of plastic deformation, three specimens were
strained to the different values of strain: 0.3, 0.4 and 0.8.
These values correspond to macroscopically uniform
deformation, the onset of strain localization and state just
before fracture, respectively. Then, the orientation maps were
obtained for the selected areas of deformed specimens. The
maps are shown in Figs. 9, 10 and 11. One can see that from
the onset of plastic strain localization (Fig. 10) the amount of
mechanical twins increases. It means that the contribution of
twinning in deformation process is growing.

In Figs. 9, 10 and 11 a noticeable trend in the evolution of the
orientation of individual grains in direction of two dominant

texture components is observed. It is seen that the development
of strain localization is accompanied by further rotation of
individual grains in the direction of two texture components.
Rotation of grains proceeds in such a way, that the {111} type
planes become parallel to the planes of maximum shear stress.
The angle between the trace of these planes and the tension
direction is about 400. The above analysis shows that in the
necking zone, just before the fracture (see Fig. 11), the
macroscopic shear of the localized area is possible without
change of a crystallographic plane. In other words, the
conditions for the crystallographic shear banding are created
[27]. This corresponds to the loss of stability of the plastic
deformation. On the basis of the presented preliminary results,
the authors believe that the zero value of the energy storage rate
can be used as a criterion of plastic instability. However, a
microstructural interpretation of the energy storage loss just
before the fracture requires further studies.

Fig. 8 Distribution of grain orientation in the initial state obtained by
EBSD technique

Fig. 9 EBSD image for macroscopically homogeneous deformation

Fig. 10 EBSD image for the onset of plastic strain localization

Fig. 11 EBSD image for advanced localization of plastic strain (just
before fracture)
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Conclusions

a) The simple experimental method allowing a
determination of the distribution of energy storage rate
during a tensile deformation has been presented.
Similarly as in the papers [13, 22–26] two following
imaging techniques are involved: the IR thermography
and visible light imaging. The method does not require a
physical simulation of the specimen heating during the
plastic deformation, what was necessary in our previous
works [10, 11, 15–18, 21]. The new aspect of the method
presented in this paper is the methodology of a
determination of the energy dissipated as heat.

The presented method can be used to study the
behaviour of materials subjected to anymodes of loading,
for determining the energy conversion during the plastic
strain localization.

b) In the area of the plastic strain localization a material
achieves a state, in which the energy storage rate Z
reaches the 0 value. This means that the material loses
an ability to store the energy. Although the energy is
supplied to the specimen, its internal energy does not
increase. The 0 value of the energy storage rate could be
regarded as a plastic instability criterion based on energy
conversion. Obtained negative values of Z could be
explained by a release of the energy stored in the previous
deformation stages but it needs further studies.

c) A preliminary microstructure analysis shows that 0
value of energy storage rate corresponds to the state,
in which only two dominant texture components
appear. The analysis of the orientation maps shows
that in the necking zone, just before the fracture,
macroscopic shear of localized area is possible without a
change in crystallographic plane. It means, the
conditions for the crystallographic shear banding
are created [27].
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