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Abstract 
 

A relatively simple method of finding discrete minimum structural weight is proposed. It is based on a tree graph, representing 
discrete values of the structural volume. In the proposed method, the number of analyses is limited to the order of two. The paper is 
illustrated with an  example containing up to 4238 combinations. 
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1. Introduction 

The design consists often in assigning to all structural 
members elements from the catalogue, assuring the minimum 
weight and fulfilment of imposed constraints. Such a process is 
known, as Discrete Structural Optimization (DSO).  

In the present paper, a  relatively simple algorithm, is 
proposed. The algorithm is based on the notion of a graph-tree, 
representing the volumes of structural members and of the 
whole structure [1]. The graph is  explained in [2]. 

The algorithm is based on the assumption that the  volume 
obtained  from the continuous minimum solution is a lower 
bound for discrete minimum weights. In this study, the idea of 
applying the continuous minimum solution, as a starting point 
in a graph, representing structural volume, is extended to 
dynamic cases. 

  
The algorithm starts with a tree graph containing only two 

branches. If one or more constraints are violated, some 
adjustment of the cross section areas is performed. The same 
procedure is performed, after enlarging the catalogue to four, 
six etc available parameters. The process of enlarging  the 
catalogue is ended, when for two successive graphs, the 
obtained smallest discrete values  are the same. 

The paper is illustrated with a minimum weight design 160 
bar tower  truss, containing 4238 combinations. 

2. The optimized structure 

The structure under consideration is of a given topology and 
composed of elements, denoted with subscript j=[1, 2, …, j0]. 
The design consists in assigning to the j-th structural member a 
parameter, which is taken from lists of k0 available parameters, 
such, as: thickness of a metal sheet hk, cross section areas (CSA) 
Ak, and/or moments of inertia Ik of a beam. Without loss of 
generality, in further consideration only discrete optimum 
design of trusses is discussed. Parameters, in the list are denoted 

by superscript k=[1, 2, …, k0]. With above notation 
jk

jA   means 

that k-th cross section area from the list is assigned to j-th 
structural member. 

All structural members are made of a linear elastic material. 
Small displacements and stresses, within elastic range are 
assumed for the whole structure. The structure is subjected to q0 
multiple static and r0 dynamic loads. The most important part of 
notations is as follows: 
kj - the number of the CSA assigned to j-th structural member; 

−jk
jA kj -th CSA from the list assigned to j-th design variable 

Find discrete cross section areas, taken from a list of available 
profiles, 

to minimize: ∑
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subjected to equality constraints in the form of equilibrium 
and motion  equations and inequality constraints imposed on 
sizes, stresses (including buckling) displacements and 
eigenfrequencies. 

 

3. Graph representation of the structural volume 

All possible discrete values of structural volume W 
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can be represented by a graph with the tree structure, given in 
[2]. 
Inspecting the graph represented (Fig. 1), it can be seen, that ex-
treme vertices, belonging to the same layer of the graph (sub 
graph), represent the smallest and the largest volumes from all 
possible volumes included in the layer. 
It is assumed, that the structural volume, obtained from 
continuous minimum solution, constitutes a lower bound for all 
values of discrete cost functions, fulfilling given constraints. It 
means then, that discrete minimum volume Wmin is not smaller 
than the continuous minimum volume V, 
 

V 
≤Wmin          (3) 

This important graph property, is applied in finding the discrete 
minimum of the structural volume. 
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Figure 1: Search for smallest feasible discrete cost function 
 

4. The outline of the algorithm 

• Find parameters Cj (cross section areas) of structural 
members, or linking groups of members, solving con-
tinuous minimum weight problem.  

• Take, for each j-th structural member 
jk

jA and 
1+jk

jA , 

such, as the value Cj obtained from the continuous so-
lution is included within the interval limited by their 
values: 

1+≤≤ jj k
jj

k
j ACA        (4) 

Farther steps can be deducted from Fig. 1. Detailed steps are 
given in [2]. 

 

5. Numerical example – 160 bar 3D truss 

The example deals with the minimum weight design of 160-bar 
truss (Fig.2) made of rolled pipes with sizes taken from IS808. 
The data for the truss are taken from the paper [3]. The truss 
members are linked in 38 independent groups of design 
variables. The structure is subjected to eight, different sets of 
loads. Buckling constraints for compression members are 
considered. The CSA and radii of gyration, for the 42 
prescribed discrete sections are given in Table 1. 
 
Table 1: CSA (cm2) and radii of gyration (cm) for 160 bar truss 

k Ak rk k Ak rk k Ak rk 

1 1.84 0.47 15 9.40 1.35 29 33.90 2.33 
2 2.26 0.57 16 10.47 1.36 30 34.77 2.97 
3 2.66 0.67 17 11.38 1.45 31 39.16 2.54 
4 3.07 0.77 18 12.21 1.55 32 43.00 2.93 
5 3.47 0.87 19 13.79 1.75 33 45.65 2.94 
6 3.88 0.97 20 15.39 1.95 34 46.94 2.94 
7 4.79 0.97 21 17.03 1.74 35 51.00 2.92 
8 5.27 1.06 22 19.03 1.94 36 52.10 3.54 
9 5.75 1.16 23 21.12 2.16 37 61.82 3.96 
10 6.25 1.26 24 23.20 2.36 38 61.90 3.52 
11 6.84 1.15 25 25.12 2.57 39 68.30 3.51 
12 7.44 1.26 26 27.50 2.35 40 76.38 3.93 
13 8.06 1.36 27 29.88 2.56 41 90.60 3.92 
14 8.66 1.46 28 32.76 2.14 42 94.13 3.92 
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Figure 2: 160 bar truss structure 
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