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Abstract

The main objective of the present paper is the development of identification procedure of the constitutive model of elasto-viscoplas-
ticity describing the behaviour of nanocrystalline iron. We intend to utilize the constitutive model presented by Perzyna (2010). The
procedure is based on experimental observation data obtained by Jia, Ramesh and Ma (2003) for consolideted iron with average grain
sizes from tens of nanometers to tens of microns under uniaxial compression over a wide range of strain rates and by Wei et al. (2004)
for ultrafine-grained iron processed by severe plastic deformations.
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1. Introduction

The main objective of the present paper is the development
of identification procedure of the constitutive model of elasto-
viscoplasticity describing the behaviour of nanocrystalline iron.
Only bcc metals will be covered in this description, because
they are the classes of metals for which systematic experimental
observation data sets are available. An investigating of the defor-
mation mechanisms is important for understanding, controlling
and optimizing the mechanical properties of nanocrystalline met-
als. Strengthening with grain size refinement in metals and alloys
with an average grain size of 100 nm or larger has been well char-
acterized by the Hall-Petch (H-P) relationship, where dislocation
pile-up against grain boundaries along with other transgranular
dislocations mechanisms are the dominant strength-controlling
processes. When the average, and entire range of, grain sizes
is reduced to less than 100nm, the dislocation operation be-
comes increasingly more difficult and grain boundary-mediated
processes become increasingly more important. The principal
short-range barrier, the Peierls-Nabarro stress, is important for
ultrafine crystallinebccmetals. Experimental observations have
shown that nanosized grains rotate during plastic deformation and
can coalesce along directions of shear, creating larger paths for
dislocation movement. Many results have shown that nanocrys-
talline materials exhibit the grain size and strain rate dependent
mechanical behaviors, the most recent relative review can be seen
in Mayers et al. (2006). To understand this sort of mechanical
behaviour, several models have been proposed recently using the
concept of a two-phase composite. Zhu et al. (2005) developed a
polycrystalline constitutive theory based on the model of Asaro et
al. (2003) for deformation mechanisms in nanocrystalline metals
and the extended aggregate Taylor model by Asaro and Needle-
man (1985). Despite the successes provided by these models, the
effects of grain size and strain rate (especially in a wide strain
rate range) on the mechanical behaviour of nanocrystalline ma-
terials are not well described in term of their main deformation
mechanisms as yet. The deformation mechanism of the nanocrys-

talline material is very complicated. Even for a same material,
the deformation mechanism will also change with the further
deformation. For example, the shear band evolution phenomena
during the inelastic deformation process have been observed in
the compression tests Jia et al. (2003), this indicates that the
deformation will become non-uniform in the deformation proces.
In this paper, we will be focused on the mechanical behaviour of
the nanocrystalline metals in viscoplastic strain range. The devel-
oped model will be used to simulate the grain size and strain rate
dependent mechanical behaviour of bcc nanocrystalline materi-
als, and the simulation results for bcc nanocrystalline materials
will be compared with Jia et al. (2003) experimental data for
pure iron. Finally, further discussion will be presented for the
uniaxial stress–strain response, shear localization behaviours and
strain rate sensitivity of bcc nanocrystalline metal.

2. The constitutive model

The model is developed within the thermodynamic frame-
work of the rate type covariance constitutive structure with a finite
set of the internal state variables, cf. Perzyna (2010). We assume
that a set of internal state variables� = (∈p, �, d) consists of
two scalars and one tensor, namely the equivalent inelastic de-
formation∈p, the second order microdamage tensor� with the
physical interpretation that(� : �)1/2 = ξ defines the volume
fraction porosity andd the mean grain diameter. The equivalent
inelastic deformation∈p describes the dissipation effects gener-
ated by viscoplastic flow phenomena, the microdamage tensor�
takes into account the anisotropic intrinsic microdamage mecha-
nisms on internal dissipation andd describes the dynamic grain
growth during intensive deformation process. Let us introduce
the plastic potential functionf = f(J1, J2, ϑ,�), whereJ1, J2

denote the first two invariants of the stress tensor� , ϑ is absolute
temperature. We postulate the evolution equations as follows

dp = ΛP, L�� = Ξ, ḋ = D. (1)
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whereL� denotes the Lie derivative. For elasto–viscoplastic
model of a material we assume

Λ =
1

Tm
〈Φ(

f

κ
− 1)〉, P =

∂f

∂�

����
�=const

��������� ∂f

∂�

���������−1

, (2)

Tm denotes the relaxation time for mechanical disturbances.
To describe the microshear banding effects let us assume that
the relaxation timeTm depends on the active microshear bands
fraction βms, on the rate of equivalent viscoplastic deforma-
tion ∈̇p and the grain diameterd, i.e. Tm = Tm(βms, ∈̇p

, d).
Additionally we introduce the simplification as followsTm =
T 0

m(d)φ1(βms, d)φ2(∈̇p
, d). The isotropic work–hardening–

softening functionκ = κ̂(∈p, ϑ, �, d), Φ is the empirical over-
stress function, the bracket〈·〉 defines the ramp function,Ξ and
D denote the evolution functions which have to be determined.

3. The determination of the evolution functions

Let us assume that the intrinsic microdamage process is gen-
erated by growth mechanism only. Based on the heuristic sugges-
tions and taking into account the influence of the stress triaxiality
and anisotropic effects on the growth mechanism we assume the
evolution equation for the microdamage tensor� as follows

L�� =
∂g∗

∂�
1

Tm
〈Φ[

Ig

τeq(ϑ,�)
− 1]〉. (3)

The tensorial function ∂g∗
∂� represents the mutual mi-

cro(nano)crack interaction for growth process,τeq = τ̂(ϑ,�)
denotes the threshold stress function for growth mechanism,
Ig = b1J1 + b2

p
J
′
2 defines the stress intensity invariant,bi

(i = 1, 2) are the material coefficients which can depend on
d. In the evolution equation (3) the functiong = ĝ (� , ϑ,�)
plays the fundamental role, and we introduce the denotation
∂g∗
∂� = ∂ĝ

∂�
����� ∂ĝ

∂�
�����−1

. Assuming that the dynamic grain
growth is the rate dependent mechanism (cf. Perzyna (2010)) we
postulate

ḋ =
Ĝ(ϑ,�)

Tm
〈Φ
�

Id

τd(ϑ,�)
− 1

�
〉, (4)

whereG = Ĝ(ϑ,�) is the material function,Id = c1J1+c2

p
J
′
2

represents the stress intensity invariant for grain growth,ci (i =
1, 2) are the material coefficients which may depend ond, and
τd = τ̂d(ϑ,�) denotes the threshold stress for dynamic grain
growth mechanism. The evolution equations (3) and (4) deter-
mine the evolution functionsΞ andD, respectively.

4. The identification procedure

Let us introduce the particular form for the plastic potential
function as follows

f =
h
J
′
2 + n (ϑ, d) (� : �)1/2 �J2

1

�i 1
2

, (5)

whereJ
′
2 denotes the second invariant of the stress deviator of

the Kirchhoff stress� andn = n (ϑ, d) is the material function.
From (1)1, (2)1 and (5)we have the dynamical yield criterion in
the formh
J
′
2 + n (ϑ, d) (� : �)1/2 �J2

1
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3
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Taking advantage of the description of the microshear band-
ing effects for nanocrystalline iron proposed by Perzyna (2010)
we have the relation for the relaxation time

Tm = T 0
m

�
1− β0

ms
1

1 + exp (a− b ∈P )

� ∈̇P

∈̇P
s

− 1

! 1
p

, (7)

whereT 0
m, β0

ms, a, b, p and∈̇P
s are material functions ofd.

We propose that the identification procedure consists of two
parts. In the first part the determination of the material func-
tions and the material constants involved in the description of
the dynamic yield criterion (6) is presented. As an experimental
base the results concerning a set of stress-strain responses of the
consolidated iron obtained from the quasistatic compression tests
and at high strain rates (3x103 − 6x103 s−1) for several grain
sizes by Jia, Ramesh and Ma (2003) are assumed. The second
part is focused on the determination of the material functions
and the material constants appeared in the evolution equations
(3) and (4). To do that we consider the compression quasistatic
and dynamic processes (the initial boundary-value problems) for
the prismatic specimen to investigate the deformation mode and
to compare the obtained results with those observed experimen-
tally during the processes of shear banding, cf. Jia, Ramesh and
Ma (2003). We used also the experimental investigations of the
development of adiabatic shear banding in ultrafine grained iron
processed by sever plastic deformation performed by Wei et al.
(2004) to make the similar identification analysis.
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