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Abstract

In this paper, a semi-active controi method is proposed and applied to the vi-
bration control of a 1D elastic continuum induced by a load travelling over it. The

magnitude of the moving force has heen assumed to be constant by neglect of the in-

ertia forces. Full analytical, continuous solution is based on the power series method
and is given in an arbitrary time lnterval. The time-marching scheme allows us to
continue a solution in successive layers with initial conditions taken from the end

of previous stages. The semi-active open loop control strategy is proposed. Shapes

of damping functions are defined as a form of piecewise constant function. The de-

signed control in bang bang form is suboptimal and it outperforms the passive case.

The effectiveness of the switching algorithm was verified by numerical results.

1 Introduction
Problems of a load travelling along structures, such as strings, beams or plates at a higher

range of speed, are of particular intenest to practising engineers. A higher speed range

neans the speed at which successive passages of a moving load through the structure sig-

:iificantly increase amplitudes of displacements, up to infinity in the case of critical speed

values. In the case of a string the consld.ered speed can be within the range of 0.3 to 1.0 of
:he wave speed. Analyiical and numerical solutions are applied to problems with a single

or multi-point contact, such as train-track or vehicle-bridge interaction, pantograph collec-

tors in railways, magnetic levitation railways, guideways in robotic technology, etc. Rail-
ir,ay bridges have suffered a decrease in service life due to loading induced by heavy trucl<s

travelling at high speed. As a result, rnany bridges are approaching the end of their useful

life and wiil require extensive repair or replacement unless other ways are found to reduce

stresses and strains due to these loads and to sustain the safety of the bridges. Structures
g'ith external control of parameters can resist a,load in the efficient way. Classical passive

control are replaced by new, active or semi-active control systems. Old, weak struc-

tures can be reinforced by supplemeratary supports with magneto- or electro-rheological

dampers controlled externally (Figure 1). Active or semi-active control of structural vi-
brations plays an important role in the case of dynamic influence of external standing

or travelling loads. Active methods olf, control are, unfortunately, energy-consuming and

complicated in practical applications. Moreover, a poor control system can supply energy

in the antiphase and in extreme cases can damage the structure. We will focus our re-

,ccarch on semi-active systems composed of dampers, which require lower energetic effort.
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Figure 2: Euler-Bernoulli beam system supported with set of active dampers,

The response of the continuum in Eq. (1) with conditions (2) is represented as a series
expansion of the sine eigenfunctions given by

? i v(j,t) sin# , v1,t) : [' u@,t) sin# ax . (3)l? \rt-/---- I' '\Jr",-Jo

Each term of Eqn. (1) is multiplied by sin ff and then integrated with respect to r in
the interval [0,l]

;l ;^

lo' 
,{ut*,r)) sin rffa*+uv(i,t): 

- /o'pu,rAryP
This yields a system of ordinary differential equations

sin 
rff 

a 6 - a1)dr* P ri" J# 
.

(4)

q z -.-..-.-.- kra; jrat. f'^,t'VU,D*;DD u,fqVg',t1 si"!:f ,t"'t* 
Jor@@,r)) 

sin t#o, :

To obtain ;"t;;ical solution we assume piecewise constant controls ba(t)

Psinry
(5)

such that

l- /r 
,./+\_ Ibor, yte (to_t,tol, p:1.br(t):10,;l-fb*n,b,no,f, b;1t;:tO,'f:0 "t , (6)

where s denotes number of time intervals. The solution being looked for, is the general
solution, where integration constants can be s-imply represented in every time interval
(tr-t,t,pl by initials CL, : V(j,te-), Czj : V(j,tr-r) taken from the ending va.lues of
previous one. It is an easy way to combine the interval solutions to a global one. The
solving procedure, which is presented, is based on the power-series method. Denoting fr_1
by r, the solution for f € (to-r,tol is supposed to take a form

oo

v(j,t):\a"{ilQ-i,
n:o

(7)



where l.,,,"",t is determined bY

were introduced: 
T1)
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Substitution of (Z) into (b), afber some basic algebraic transitio;rs. 1-ie-L s"-=i-e:^ :: :'
rence equations as follows

qz-*

-l"on"tdr,(i)* P sin(jc.r Offi '

nZco

tt (2n + 2)(2n+ 3)d2'+3( il : -'f t t biraiil"(2n 12)d'2'a2(k)-
" i:L k:l

- l.,,"tdz,+r(i)-t P cos(iu'tffyff 
'

stiffness operator of the continuum' Following notatic-'

ira;. knai
: (t)t sin 1-;-: sin , : dijk.TL

System(8)isexpectedtobecalcu1atedformn:0assumingdo(j):V(j'')andd1i-i
v(i,r).

3 Contiol design
System formulated in previous sectiosrr is classifi.ed to be bilinear' Numerous technique=

which stem primarily from calculus of variation, have been derived for the optimal contr':-

sorution for such a systems. pontryagin's maximum principle uses Hamilton's equatiou

Using this principle and considering the d.iscrete model of continuum it can be derivei

thatlhe optimal active suspension is controlled in bang-bang form' Discrete system -:

continuurn supported with a set of controlled dampers can be represented in general b-'

the equation
aft):As(t)+By(t)A(t) + f(t), (e

where AQ) elR' is generalized state vector, A(t) is control, A and B are matrices' f(t) :-'

excitation. Assuming A(r) € [-1,1]- and quadratic cost functional, such that

7r
I (a(t),Qy(t)) dt ,

Jo

Hamiltonian of the system (9), that ean be written as following

H(t,a,A, ?) : (rt|), Ay(t)) + (?(t) , Bv(t))L+ ('i(')' /(')) - f,fuft),Qa(t)) ' (11

takes maximum value, when control equals

(1c1r-_r-2

A(t) : sign(n(t), BY(t))

Here, 4(i) satisfies differential equation

AH
i(+\ -t\ut - 0a

Due to implicit form of controls, the optimal problem cannot be solved directly' Difficulties

additionally grow up in case of the continuum that is performed by multidimensionai

discrete system.

(r2';

(13)
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Ta'ble 1: Pa,voff ralues for different speed of travelling load (active/passive suspension).
Velocity Pavorrl Pevon12 PRvonn3

0.lc
0.4c
0.9c

0.000334/0.000349
0.000023/0.000033
0.000007/0.000011

0.02394110.024264

0.04507110.04s71t
0.087920/0.091351

0.00022310.000223
0.000064/0.000064
0.000037/0.000040

In this paper we propose open loop control strategy based on concept presented in
Sigure 1. The assurnptio,n that was made the controls fu(t), b2(t) were piecewise constant,
::et'belonged to a closed set lE and they are expressed in bang-bang form. Tlle goal is
:,:, design efficient corrtrol so that the practical realization is the easiest way possible. In
::ris purpose for simplicity we take into account controls that are bang-bang and only one

=r.itching time for every is assumed so that

h(t) : b**,u{t) - b^o,u1(t - rr), b2(t) : b*o,ur(t - rz), (14)

:';here U1(f) is ttnit step function and b*o,: su?(B). So in fact damper no.1 is first
s"itch on ihen in time t:rr turns into off mode. Situation for damper no.2 is reverse.
Below we define cost imtegrands such that they can determine travel comfort (cases 1, 3)
:': structural damage (case 2).

(1) Pevornt lu(ut,t)ldt

(2) Pevonr2 : RMs(il(ut,t)):

(B) Favorn3 : ["" lu(ut,t)ldt
Jo

(i 1,"" 
'r(ut't))2 

o')''' /1 <\

The task is to find pairs (1, 12) such that minimize costs

(ru,rr) : argmin Pavopr'(z(t), h(t), br(t)l),
rr,rze[O,]/u]

'.'b.ere bl(c), bz(t) are defined as before.

I F$umrerical results

(16)

-r numerical results we consider continuum that is represented by Bernoulli-Euler beam
:;irh parameters: I : 2m, p : 0.78kgfm, EJ : I}aNm2. Two active da.mpers d,re

--ted to the bearn at positionS o1 : 0.251,a2:0.75L Force of magnitude P: 100N
-.. traveLLireg with velocities u : 0.1c,0.4c,0.9c, where c denotes so called critical speed
:,:d c: T(ff\tt'. tsy the passive case we mean constant damping b1(t) : b*o,,b2(t):
-.",,Vt € [A,l/u]. In computations v/e assumed brno* - 3 . 104 in all cases. Results
: Payoff's for optin"lai aetive and passive ca,ses are presented in Table 1. In case of
: 0.9c extremal trajectory for u(f) with its control is shown in Figure 3. The best

: =rforrnance of proposed strategy is observed in case of the highest speed of travelling load.
::,r cases, wkrere we rniniryrize P,qyopp2, PAvotr'tr'3 we expect much better performance by
--,plying controls with more than one switching. Velocities and accelerations incorporated
..:o these eosts include trigh-frequency harmonics that can be reduced by high-frequency
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Figure 3: Extremal deflection trajectory and controls in case of u : 0.9c.

switching controls. Because of the significantly higher complexity of the optimisation
problem, computing of such controls may be difficult. Appropriate gradient methods

may, however, be useful [4].

5 Conclusions
In this paper the analytical solutiora of the response of a semi-active controlled lD con-

tinuum has been presented. The technique has been applied to exemplary contr-ol of
Euler-Bernoulli beam. The open-loop, bang-bang control strategy has been proposed and

its performance has been verified for three different cost integrands. Control strategy is

simple for a practical design. F\rrther optimisation is the ongoing research topic of the

authors.
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