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Abstract

In this paper, a semi-active control method is proposed and applied to the vi-
bration control of a 1D elastic continuum induced by a load travelling over it. The
magnitude of the moving force has been assumed to be constant by neglect of the in-
ertia forces. Full analytical, continuous solution is based on the power series method
and is given in an arbitrary time interval. The time-marching scheme allows us to
continue a solution in successive layers with initial conditions taken from the end
of previous stages. The semi-active open loop control strategy is proposed. Shapes
of damping functions are defined as a form of piecewise constant function. The de-
signed control in bang bang form is suboptimal and it outperforms the passive case.
The effectiveness of the switching algorithm was verified by numerical results.

1 Introduction

Problems of a load travelling along structures, such as strings, beams or plates at a higher
range of speed, are of particular interest to practising engineers. A higher speed range
means the speed at which successive passages of a moving load through the structure sig-
nificantly increase amplitudes of displacements, up to infinity in the case of critical speed
values. In the case of a string the considered speed can be within the range of 0.3 to 1.0 of
the wave speed. Analytical and numerical solutions are applied to problems with a single
or multi-point contact, such as train-track or vehicle-bridge interaction, pantograph collec-
tors in railways, magnetic levitation railways, guideways in robotic technology, etc. Rail-
way bridges have suffered a decrease in service life due to loading induced by heavy trucks
travelling at high speed. As a result, many bridges are approaching the end of their useful
life and will require extensive repair or replacement unless other ways are found to reduce
stresses and strains due to these loads and to sustain the safety of the bridges. Structures
with external control of parameters can resist a load in the efficient way. Classical passive
control are replaced by new, active or semi-active control systems. Old, weak struc-
tures can be reinforced by supplementary supports with magneto- or electro-rheological
dampers controlled externally (Figure 1). Active or semi-active control of structural vi-
brations plays an important role in the case of dynamic influence of external standing
or travelling loads. Active methods of control are, unfortunately, energy-consuming and
complicated in practical applications. Moreover, a poor control system can supply energy
in the antiphase and in extreme cases can damage the structure. We will focus our re-
scarch on semi-active systems composed of dampers, which require lower energetic effort.



Numerous active and semi-active vibration control meth-
ods are widespread and some of them have been put into
practice recently. Most of them are based on sky-hook
or ground-hook concepts. These approaches are used for
semi-active control of the moving oscillator problem. Also
some theoretical approaches, based on the method of opti-
mal Lyapunov functions, was applied into semi-active control
of structures. Most of founded semi-active methods leads to
feedback controls determined by state-space measures. In
case of continuous system such an observer design is often
too much complicated. The alternate method is an open
loop control. It is particularly of use in problems where the
excitation is determined.

In this paper we present the analytical solution of a semi-
active control of vibrations in a string subjected to a trav-
elling load. The string is supported by a set of viscous
dampers. The method allows us to solve the problem ana-
lytically and express the continuous solution in a form useful
for further analysis of the influence of damping functions on
displacements and its derivatives. Whole time domain is split into time intervals. Full
analytical solution in time interval in a form of power series is given. Semi-active con-
trol strategy is based on the previous numerical investigation. In this approach authors
don’t pay the attention to opt imal solutions in sense of minimizing the performance index
with respect to all admissible controls. They try to present cases where active dampers
may outperform passive ones. The goal is to design efficient control so that the practical
realization is the easiest way possible.

Preliminary investigation of the destination problem was published in [5].

Figure 1: The idea of semi-
active control of a beam
deflection under a travel-
ling load.

2 Formulation and solution of the problem

The system under consideration is shown in Figure 2. Continuum is simply supported
by a set of control dampers. The moving load is passing upon the string at a constant
velocity. The mass accompanying the travelling load is small compared with mass of
the continuum and is neglected. Reactions of dampers are pmpmhmx(xi to the velocity
of displacements in given points. The transverse vibration of " the considered system is
governed by the partial differential equation
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where D is the stiffness operator (for a Bernoulli-Euler beam I' = EJ 9" [02%), p is th

constant mass density per unit length, P is the concentrated force passing the string at
the constant velocity v, by(t) is the ith damping coefficient as function of time, i
is a transverse deflection of the string at the point (z,t), Z is the number of viscous
supports, a; is the ith fixed point of a damper and ¢ is the Dirac delta. The boundary

and initial conditions are as follows:

(3]

uw(0,t) =0, u(,t)=0, u(z,0)=0, iz, 0= 0. ¢
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Figure 2: Euler-Bernoulli beam system supported with set of active dampers.

The response of the continuum in Eq. (1) with conditions (2) is represented as a series
expansion of the sine eigenfunctions given by
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Each term of Eqn. (1) is multiplied by sin % and then integrated with respect to z in
the interval [0, []
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This yields a system of ordinary differential equations
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To obtain the analytical solution we assume piecewise constant controls b;(¢) such that
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where s denotes number of time intervals. The solution being looked for, is the general
solution, where integration constants can be sunply represented in every time interval
(tp-1,tp] by initials C1; = V(§,tp-1), C2; = V(j,t,_1) taken from the ending values of
previous one. It is an easy way to combme the interval solutions to a global one. The
solving procedure, which is presented, is based on the power-series method. Denoting ¢,

by 7, the solution for ¢ € (¢,-1,,] is supposed to take a form

= da(s)t~ )", (7)

n=0



Substitution of (7) into (5), after some basic algebraic transitions, yields system of re
rence equations as follows
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where Toonse 1S determined by stiffness operator of the continuum. Following notations

were introduced: ;
™ . gma; . kma;
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System (8) is expected to be calculated form n = 0 assuming do(j) = V(j,7) and d1 (5 =

V(, 7).
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3 Control design

System formulated in previous section is classified to be bilinear. Numerous techniques
which stem primarily from calculus of variation, have been derived for the optimal contra!
solution for such a systems. Pontryagin’s maximum principle uses Hamilton’s equations
Using this principle and considering the discrete model of continuum it can be derived
that the optimal active suspension is controlled in bang-bang form. Discrete system of
continuum supported with a set of controlled dampers can be represented in general by
the equation

y(t) = Ay(®) + By@) Al) + f(0) ,
where y(t) € R" is generalized state vector, A(t) is control, A and B are matrices, f(t) is
excitation. Assuming A(t) € [~1,1]™ and quadratic cost functional, such that
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Hamiltonian of the system (9), that can be written as following

H(t,y, A,n) = (n(t), Ay(t)) + (n(t), By(®))A + (n(2), £(1)) — %(y(t), Quty, (11
takes maximum value, when control equals
A(t) = sign(n(t), By(t)) - (12

Here, n(t) satisfies differential equation

A(t) = —%—ZI : (13

Due to implicit form of controls, the optimal problem cannot be solved directly. Difficulties
additionally grow up in case of the continuum that is performed by multidimensional
discrete system.



able 1: Payoff values for different speed of travelling load (active/passive suspension).

| Velocity | PAYOFF; PAYOFF, PAYOFF;
0.1c | 0.000334/0.000349 | 0.023941/0.024264 | 0.000223/0.000223
0.4c | 0.000023/0.000033 | 0.045071/0.045711 | 0.000064/0.000064
0.9c | 0.000007/0.000011 | 0.087920/0.091351 | 0.000037/0.000040

In this paper we propose open loop control strategy based on concept presented in
Figure 1. The assumption that was made the controls b;(¢t), by(t) were piecewise constant,
they belonged to a closed set B and they are expressed in bang-bang form. The goal is
“o design efficient control so that the practical realization is the easiest way possible. In
this purpose for simplicity we take into account controls that are bang-bang and only one
switching time for every is assumed so that

bl(t} = bmazUI(t) s bmaa:Ul(t = Tl), bz(t) = bmaxUl (t =i Tg), (14)

where Ui (t) is unit step function and by, = sup(B). So in fact damper no.l is first
switch on then in time £ = 7 turns into off mode. Situation for damper no.2 is reverse.
Selow we define cost integrands such that they can determine travel comfort (cases 1, 3)
or structural damage (case 2).

l/v
(1) PAYOFFlz/ |u(vt, t)| dt
0

o 1/2
(2) PAYOFFy = RMS(u(vt,t)) = (%/ (ﬂ(vt,t))2dt> (15)
0
l/v
(3) PAYOFFs / li(ut, )| dt
0
The task is to find pairs (71, 72) such that minimize costs
(73,72) = argmin PAYOFF(u(t), b (t), b2(t)), (16)

71,72€[0,l/v]

where by (t), ba(t) are defined as before.

4 Numerical results

n numerical results we consider continuum that is represented by Bernoulli-Euler beam
with parameters: | = 2m, p = 0.78kg/m, EJ = 10*Nm?. Two active dampers are
“xed to the beam at positions a; = 0.25,a; = 0.75l. Force of magnitude P = 100N
= travelling with velocities v = 0.1c, 0.4c, 0.9¢c, where ¢ denotes so called critical speed
and ¢ = %(%1)1/2. By the passive case we mean constant damping b;(t) = bz, bo(t) =
“any VE € [0,1/v]. In computations we assumed bpa, = 3 - 10 in all cases. Results
I Payoffs for optimal active and passive cases are presented in Table 1. In case of

= 0.9¢ extremal trajectory for u(¢) with its control is shown in Figure 3. The best
-erformance of proposed strategy is observed in case of the highest speed of travelling load.
ot cases, where we minimize PAYOFF,, PAYOFF3; we expect much better performance by
-oplying controls with more than one switching. Velocities and accelerations incorporated

~-o these costs include high-frequency harmonics that can be reduced by high-frequency
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Figure 3: Extremal deflection trajectory and controls in case of v = 0.9c.

switching controls. Because of the significantly higher complexity of the optimisation
problem, computing of such controls may be difficult. Appropriate gradient methods
may, however, be useful [4].

5 Conclusions

In this paper the analytical solution of the response of a semi-active controlled 1D con-
tinuum has been presented. The technique has been applied to exemplary control of
Euler-Bernoulli beam. The open-locp, bang-bang control strategy has been proposed and
its performance has been verified for three different cost integrands. Control strategy is
simple for a practical design. Further optimisation is the ongoing research topic of the
authors.
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