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Abstract: The presentation considers behaviour of two-phase composite material. 

According to experimental observations  (SME imaging) this type of 

composites can be considered as polycrystals consisting of grains and thin 

intergranular layers. A representative volume element (RVE) has been 

analysed taking into account its internal structure. The analysis is carried out 

using FE technique. The technique is applied to obtain mascroscopic stresses 

distribution due to initial defects embedded in the intergranular layers of the 

sample (RVE). 
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1. INTRODUCTION 

A typical application of polycrystalline materials is the fabrication of 

cutting tools. The tools are working in such severe conditions as high 

dynamic and temperature loadings. An exemplary two-phase material used 

for them may consist of elastic grains and ductile interfaces. The interfaces 

are thick enough not to be treated as only contacting adhesive layers. Our 

interest will focus on the behavior of the relatively thick intergranular layers 

which affect performance of entire sample. 

 An example of SME image showing grains, interfaces and their 

ideogramic idealization are presented in Figure 1. The grains can exhibit 

anisotropic behavior. 
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Figure 1. SME image of a polycrystal (left), idealization (right). 

2. MATHEMATICAL FORMULATION 

The problem is elasto-plastic with the assumption of large displacements 

(Owen and Hinton, 1980; Bathe, 1996). We consider nonlinear terms of the 

strain tensor. The virtual work equation is of the form 
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where S and E are the II Piola-Kirchhof stress tensor and Green Lagrange 

strains, f, t and u={u,v,w} are body forces, boundary tractions and 

displacements. All of the quantities are determined at time t+ t in the initial 

configuration. To obtain the above equation at time t+ t in the configuration

at time t  the relations (Malvern, 1969; Crisfield, 1991) are used 
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Now, we apply incremental decomposition to the quantities in the 

equation above: strains, ,EEE
t
t

tt
t  stresses ,SSS

t
t

tt
t

displacements, ,uuu
ttt  forces ,Sff

ttt
ttt

ttt . Since 

the II P-K tensor at time t in the configuration t is equal to the Cauchy stress 

tensor S
t
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t
t  the stress decomposition is of the form SS
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Then, we employ the following strain increment decomposition into its 

linear and nonlinear parts ,eE , ,uAe 2/uuA ,
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where u’ is the vector of the displacement increment derivatives w.r.t. 

Cartesian coordinates and ( A , A ) are the linear and nonlinear operators, 

Bathe (1996). Substituting the described relations, into the virtual work 

equation, Eqn 3, and assuming that the equation is precisely fulfilled at the 

end of the step we obtain the following incremental form of the virtual work 

equation

ttt

tttt
t ddd utufeS   (4) 

Employing the finite element approximation qNu  and 

,L qBu  where N is the set of shape functions and q is the increment 

of nodal displacements and considering the following set of equalities 
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we obtain the following discretized form of the virtual work equation 
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Now, we will deal with the constitutive model and employ the linearized 

constitutive equation, in fact with the stress increment S.

2.1 Finite strains  

When considering the finite strains effect (Pinsky et al., 1983), the 

gradient XuXF /  is decomposed into its elastic and plastic parts, 
pe

FFF , Figure 1. To integrate the constitutive relations the deformation 

increment D  is rotated to the unrotated configuration by means of rotation 

matrix obtained from polar decomposition RUVRF ,

L

TTT
BquuuA

t
t

t
t

t
t

t
t

195



E. Postek, T. Sadowski and S. Hardy

11 n
T
n DRRd , then the radial return is performed and stresses are 

transformed to the Cauchy stresses at n+1, T
n

u
nnn 1111 RR . The 

stresses are integrated using the consistent tangent matrix Simo and Taylor 

(1985) and the integration is done in the unrotated configuration as for small 

strains.
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Figure 2. Elastic and plastic gradient decomposition. 

3. NUMERICAL RESULTS 

The mechanical properties of the polycrystal consisting of elastic grains 

and metallic interfaces are as follows: grains; Young’s modulus 4.1x10
11

Pa

and Poisson’s ratio 0.25, interfaces: Young modulus 2.1x10
11

Pa, Poisson’s 

ratio 0.235, yield limit 2.97x1011Pa and small hardening modulus 1.0x106Pa. 

The dimensions of the sample are 100x100x10 µm. The scheme of the 

Representative Volume Element (RVE) is given in Figure 3. 

Figure 3. Mesh of representative volume element (left), interfaces (right). 

The sample is discretized with 48894 elements and 58016 nodes. The 

sample is fixed on one side and loaded with the uniform pressure of 400 

MPa on the other one. There is imposed symmetry condition in the bottom 
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of the sample. Since the grains are elastic the sample fails due to large plastic 

strains occurring in the elasto-plastic interfaces. The displacement fields just 

before “first yield” and before failure are shown in Figure 4, left and right, 

respectively.

Figure 4. Displacement fields, before "first yield" (left) and before failure (right). 

There is demonstrated qualitative difference between the two situations. 

The displacement field just before yielding exhibits discontinuities along 

interfaces (Figure 4, left). It can be interpreted that the grains tend to slide 

along the interfaces. Figure 4 (right) shows that the grains are strongly 

displaced and rotated. We may notice that the failure is spatial (Figure 5), 

namely the ductile material of the interfaces is squeezed be the stiff grains 

and pushed out from the sample. The crucial place appeared to be a very 

short segment of the interface parallel to the loading axis. The segment 

connects four other interfaces and is located between four grains. 

Figure 5. Failure of the interfaces, spatial view (left), side view (right). 

Mises stresses distribution just before “first yield” and before failure are 

presented in Figure 6. Looking at the map of the von Mises stresses 
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distribution before “first yield” we may see clearly the discontinuities in the 

interfaces, the stresses are lower in the interfaces than in the grains (Figure 6, 

left). Qualitatively similar picture of the von Mises stresses is shown in 

Figure 6, right. This is the situation just before failure. The von Mises 

stresses are much higher in the grains and relatively low (a little above yield 

limit due to hardening) in the interfaces, therefore, the discontinuities 

become stronger. 

Figure 6. Von Mises stresses distributions, before “first yield” (left), before failure (right). 

Now, we will present the distributions of equivalent plastic strains 

showing their maps in the entire polycrystal and in the interfaces. The 

equivalent plastic strains distributions just after “first yield” are shown in 

Figure 7 and before failure in Figure 8. 

Figure 7. Equivalent plastic strains after “first yield”, polycrystal (left), interfaces (right). 

When comparing Figures 7 and 8 we may notice that the distribution of 

equivalent plastic strains is qualitatively different after first yield and before 

failure. In the case of “first yield” (Figure 7) the interfaces are getting plastic 

relatively uniformly and the already plastic interfaces are arranged 

approximately in the angle of 45o. The situation becomes different before 
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failure when the plastic strains are redistributed and strongly localized 

(Figure 8) close to connections of the interfaces and in this particular case 

the highest plastic strains are in the interface segment corresponding to the 

one which is seen in Figure 5 and decides about the failure. 

Figure 8. Equivalent plastic strains before failure, polycrystal (left), interfaces 

(right).

Figure 9. Displacement versus load factor (left), equivalent plastic strains versus load factor. 

(right).

The load versus displacement curves are presented in Figure 9 (left). A 

horizontal displacement along the loading axis in the middle of the loaded 

face of the sample is chosen There are considered three cases, namely, 

elasto-plastic (thick crosses), elasto-plastic and included geometrical 

imperfection (thin crosses), elasto-plastic and nonlinear geometry. A small 

geometric imperfection is included in the one of the interfaces in the middle 

of the sample. We may see that when concerning this particular model the 

influence of the imperfection is not significant. The influence of the 

nonlinear geometry is important since it decides about the load carrying 
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capacity of the sample. The load factor of the load carrying capacity load is 

4.0. The two curves in Figure 9 (right) show the dependence of the 

equivalent plastic strains on loading factor. Two cases are considered, 

namely, the elasto-plastic analysis and elasto-plastic analysis including 

nonlinear geometry. The curves for both cases are practically covering each 

other until the failure point at load multiplier 4.0. 

4. FINAL REMARKS 

The communication focuses on the problem of load carrying capacity and 

failure mode of an RVE of a polycrystallic material. The most characteristic 

features of the failure mode are the grains rotations and spatial displacing of 

the interface material. The results show also the necessity of including the 

nonlinear geometry into the analysis. 
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