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ABSTRACT
This paper deals with a squeeze casting model which
is currently being developed. In this paper we focus
our interests on mould filling. During mould filling
the solidification of the material takes place due to
decreasing temperature. We believe that the
estimation of microstructural properties during mould
filling allows a better prediction of the mechanical
properties. An overview of squeeze casting processes
is presented by Ghomashi et al. [1]. Methods of
solving thermal problems including phase
transformation are described by Lewis et al. [2],
microstructure evolution was shown by Thevoz et al.
[3], Celentano [4].

NOMENCLATURE
F - pseudoconcentration function,
// - liquid fraction,
fs - solid fraction,
fe - eutectic fraction,
fd - dendritic fraction,
fi - eutectic internal fraction,
ft - dendritic internal fraction,
// - intergranular eutectic fraction,
// - dendritic grain fraction,
Ne - eutectic grain density,
Nd - dendritic grain density,
Re - eutectic radius rate,
Rd - dendritic radius rate

THERMAL PROBLEM
Let us consider the thermal problem in the following
form

(1)

with the Dirichlet and Neuman boundary conditions

TJ (2)

with enthalpy temperature derivative dH/dT =
pcp which depends on the state of the material,
where k is the thermal conductivity, FT is the
temperature gradient, q is the heat source, p is
the mass density and cp is the heat capacity,
respectively. The equation is solved over the
domain Q and fulfils boundary conditions (on
dQ).. The Eqn (1) is discretized using Galerkin
method and is integrated explicitly.

FLOW PROBLEM
The flow of material is assumed to be Newtonian
and incompressible, Ravindran et al [5]. The
governing Navier Stokes equations is of the form

^- + (u • V)u I = V • /z[Vu + (Vu)T ]- Vp + pg (3)

where u is the velocity vector, p is pressure, ju is
the dynamic viscosity and g is the gravitational
acceleration vector. Mass conservation equation
V • u = 0 gives the incompressibility condition.
To track the free surface the volume of fluid
method is applied, Hirt et al [6]. Free surface
tracking is governed by the first order advection
equation

3f
where F is the pseudo-concentration function
varying from -1 to 1, F<0 indicates the empty
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region, F > 0 indicates the fluid region, F - 0 locates
the free surface. The Eqn (3) is discretized using
Galerkin method while the Eqn (4) with the Taylor-
Galerkin one. An implicit time integration algorithm
is used to solve the Eqn (3) and when considering the
Eqn (4) the explicit integration scheme is used.

MICROSTRUCTURAL SOLIDIFICATION
During the entire process of forming a cast
component solidification gradually occurs. A
microstructure based solidification model has been
employed which results in a better understanding of
the process. The model stems from the assumptions
given by Thevoz et al. [3] and Celentano [4]. The
basic assumptions are as follows: the sum of the solid
and liquid fractions is equal to one and the solid
fraction consists of both dendritic and eutectic
fractions, i.e.,

/,+/,=! /, = /,+/. (5)
Further assumptions are utilised because of the
existence of interdendritic and intergranular eutectic
fractions. The internal fraction consists of both the
dendritic and eutectic portions, i.e.,
/.=///,+/;. /, =/,'+/; (6)
The last assumptions lead to the final formulae for
the dendritic and eutectic fractions

/,=///<" /.=/!/'+/; w
and the assumption of the spherical growth

/;=|rwX f*=^UNeRl (8)

where Nd, Ne are the grain densities and Rd, Re

are the grain radii. The grain densities and grains
sizes are governed by nucleation and growth
evolution laws. The rate of growth of the dendritic
and eutectic nuclei is given below. This depends on
the undercooling and a Gaussian distribution of the
nuclei is assumed.

(9)
The rate of the dendritic and eutectic grain radii is
established based on experimental dependence.
Finally, the internal dendritic fraction depends on the
melting temperature and k' is the partition
coefficient.

R(d,e) ~ K(d,e) (10)

NUMERICAL EXAMPLE
The numerical example concerns filling of a cavity
with aluminium alloy LM25. During the filling
process solidification of the material is observed.
The initial temperature of the cast is 650 °C, initial
temperature of the mould is 250 °C. The ambient
temperature is 20 °C. The thermal boundary
conditions are established as fluxes 100 J/sec. The
interfacial heat transfer coefficient is 2500 W/m °C.
The material density is 2520 kg/m3. The wall
friction angle is 135. The filling time is 10 sec.
The dependences of heat capacity and conductivity
are given in Figures 1 and 2. These are the
experimental curves. It can be noted that the phase
transformation takes place in the region of 600 °C.
The radiuses rates are given in Figures 3 and 4.
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Figure 1
Heat capacity vs temperature

A numerical example is given below.

Figure 2
Conductivity vs temperature

The velocities patterns at steps 48 and 87 are given
in Figures 5 and 6. Amounts of liquid fraction at the
steps 48 and 87 are given in Figures 7 and 8. The
two figures show the actual range of filling of the
mould. Temperature distributions at steps 48 and 87
are shown in Figures 10 and 11. The cooling starts
close to the walls.
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Figure 3
Radius rate (eutectic) vs temperature
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Figure 6
Velocities pattern (step 87)

Figure 4
Radius rate (eutectic) vs temperature

Eutectic and dendritic fractions distributions for the
step 87 (close to the end of the filling process) are
presented in Figures 12 and 13. When comparing the
last both figures it can be noticed that the material
solidifies mostly in the dendritic fraction. Figure 7

Liquid fraction (step 48)

Figure 5
Velocities pattern (step 48)

Figure 8
Liquid fraction (step 87)
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Figure 10
Temperature distribution (step 48)
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Figure 11
Temperature distribution (step 87)

Figure 12
Dendritic fraction distribution (step 87)

Figure 13
Eutectic fraction distribution (step 87)

FINAL REMARK
In this communication a numerical model of mould
filling including a microstructural solidification
model and a numerical example are presented.
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