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Abstract. In present paper an improved multi-objective evolutionary algorithm is used for Pareto optimization of selected coupled problems.
Coupling of mechanical, electrical and thermal fields is considered. Boundary-value problems of the thermo-elasticity, piezoelectricity and
electro-thermo-elasticity are solved by means of finite element method (FEM). Ansys Multiphysics and MSC.Mentat/Marc software are used
to solve considered coupled problems. Suitable interfaces between optimization tool and the FEM software are created. Different types of
functionals are formulated on the basis of results obtained from the coupled field analysis. Functionals depending on the area or volume of
the structure are also proposed. Parametric curves NURBS are used to model some optimized structures. Numerical examples for exemplary
three-objective optimization are presented in the paper.
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1. Introduction

Shape optimization of structures is an important phase in en-
gineering design. Real-world problems often have multiple
conflicting objectives. It requires the application of efficient
multi-objective optimization tools, especially for complex is-
sues. In multi-objective optimization problems, there are sev-
eral objectives or cost functions to be minimized or maxi-
mized simultaneously. Conflicting objectives cause that one
objective function improves and the rest deteriorate. Obvious-
ly, in these problems there is no single solution which is the
best with respect to all objectives. The designer has to chose
a solution from a set of solutions which are called optimal
in the Pareto sense. For the Pareto optimal solution there ex-
ists no other feasible solution which would decrease some
objectives (suppose a minimization problem) without causing
the simultaneous increase at least one other objective. With
this definition of optimality after optimization several trade-
off solutions are obtained (Pareto optimal set). An approach
based on the Pareto frontier is considerably faster and more
convenient comparing for instance to ε-constraint method or
weighting method.

In the present paper multiobjective shape optimization
is performed for selected multiphysics tasks. Three differ-
ent coupled filed problems are considered: thermoelestici-
ty, piezoelectricity and coupling of electrical, thermal and
mechanical fields. Boundary-value problems are solved by
means of the finite element method (FEM) [1–3]. To solve
considered coupled problems FEM Ansys Multiphysics and
MSC.Mentat/Marc software packages are used [4, 5]. Func-
tionals are formulated on the basis of results obtained from the
coupled field analysis. The boundary element method (BEM)

is an adequate technique for solving different optimization
tasks also [6]. Shape optimization of thermoelastic structures
in the presence of radiation was presented in [7].

Among many different types of multi-objective genetic
and evolutionary algorithms [8], Strength Pareto Evolution-
ary Algorithm [9] and Non-Dominated Sorting Genetic Algo-
rithm [10–12] are the most popular multiobjective optimiza-
tion tools. Consecutive versions of such algorithms SPEA2
and NSGAII represent the state-of-the-art in evolutionary
multi-objective optimization problems and have many prac-
tical applications in different engineering disciplines. In this
work, in-house implementation of the MultiObjective OPTI-
Mization tool based on evolutionary algorithm (MOOPTIM)
is used for optimization [13–16]. Some specific features im-
plemented in NSGAII are applied in MOOPTIM as well.

2. Formulation of the multiobjective

optimization problem

The process of finding a vector of decision variables that sat-
isfies some restrictions and optimizes the vector of function-
als is called multiobjective optimization (MOO). The MOO
problem is formulated as follows:
find the vector x = [x1, x2, ..., xn]T which satisfy the
m inequality constrains:

gi(x) ≥ 0 i = 1, 2, ..., m (1)

and the p equality constrains

hi(x) = 0 i = 1, 2, ..., p (2)

which minimizes the vector of k objective functions:

f(x) = [f1(x), f2(x), ... , fk(x)]
T

, (3)
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where n is the number of design variables, k is the number
of objective functions.

On each design variable box constraints are imposed

xL
i ≤ xi ≤ xR

i , (4)

where xL
i and xR

i are minimum and maximum acceptable
values for the variable xi respectively.

Multi-objective optimization deals with multiple conflict-
ing objectives and usually the optimal solution for one of
the objectives is not necessarily the optimum for any of the
other objectives. For such a case, instead of one optimal solu-
tion like in single-objective optimization problem, many solu-
tions are incomparable and optimal. These solutions are called
Pareto-optimal ones.

3. Optimization algorithm

MultiObjective OPTIMization (MOOPTIM) tool is used for
solving multiobjective tasks. As mentioned in Chapter 1
MOOPTIM uses some specific features implemented in
NSGAII. Figure 4 shows the flowchart of the MOOPTIM.
In the initialization step, besides determining all settings of
the algorithm, populations Qi and Pi are randomly generat-
ed and the fitness functions are evaluated for population Qi.
In the main loop, after evaluation fitness functions for Pi and
checking stop conditions, populations Qi and Pi are combined.
The nondominated sorting procedure, proposed by Deb in
NSGAII [11] is used for classification of the individuals in
population Ri.

In this procedure the population is sorted on the basis of
the nondomination. A rank equal to its nondomination level is
assigned to each solution. Solutions on front 1 state the best
level, solutions on front 2 form the next best level, and so on.
This procedure for minimization problem is shown in Fig. 1.

Fig. 1. Classification of the individuals

A crowding coefficient is calculated for each solution [10–
12]. For calculation of the crowding coefficient the population

is sorted according to an objective function value. Solutions
with smallest and largest function values (boundary solutions)
are assigned as infinite distance value. For all other solutions
coefficients are calculated as absolute normalized differences
of the function values of two neighboring solutions (Fig. 2).

Fig. 2. Calculation of the crowding coefficient

Selection is performed on the set Ri, which is twice big-
ger than Pi. The individuals from the population Ri are copied
into the population Pi+1 on the basis of the nondomination
level and the crowding coefficient (Fig. 3).

Fig. 3. Scheme of the creation of the next generation

Fig. 4. Flowchart of MOOPTIM
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Individuals from Pi+1 are copied to Qi+1 and then evo-
lutionary operators change the population Pi+1. Two types of
mutation (uniform and Gaussian) and two types of crossover
(simple and arithmetic) are used. The algorithm works until
stop condition in fulfilled.

Compared to the NSGAII, the proposed implementation
has more evolutionary operators. Another difference between
these algorithms is related to the formation of parent popu-
lation – there is no binary tournament selection operator like
in NSGA-II, but selection is performed on the basis of non-
domination level and crowding coefficient (Fig. 3). The algo-
rithm was tested on several benchmarks (SCH, ZDT1, ZDT2,
ZDT3, ZDT4, ZDT6, DTLZ1, DTLZ2, CONSTR, SRN, TNK
[11]) and also on some engineering problems. The results ob-
tained using MOOPTIM in most cases are better in compari-
son with the results obtained by means of NSGA-II. Detailed
comparison between MOOPTIM and NSGA-II can be found
in [17]. Functionals defining for engineering coupled prob-
lems, which is solved by using FEM, are usually strongly
multimodal. Ability of finding global solutions by optimiza-
tion algorithm for such problems is essential.

Fig. 5. MOOPTIM–NSGAII comparison on ZDT-4 problem

Figure 5 presents an example of the effectiveness of
MOOPTIM algorithm compared to the NSGAII for the ZDT4
problem. The problem has a large number of local Pareto
fronts. Computations has been performed for the same number
of fitness evaluations. 30 independent runs of both algorithms
were performed. MOOPTIM founds a set of Pareto optimal
solutions for most cases, whereas NSGA-II very often stuck
in local optima.

4. Formulation of the problem

In the present work following types of boundary value prob-
lems are considered: thermoeleasticity, piezo-electricity and
electrical-thermal-mechanical analysis [18, 19]. These prob-
lems are described by the appropriate partial differential equa-
tions. The equations with arbitrary geometries and boundary
conditions are usually solved by numerical methods. FEM is
used to solve boundary-value problems in all cases. Thermoe-
lesticity and electro-thermoelasticity are weakly coupled, what
requires solving electrical, thermal and mechanical analysis
separately. Coupling is carried out by transferring loads be-
tween the considered analysis and using staggered procedures.
Matrix equations of electrical, thermal and mechanical prob-
lem can be expressed as follows:

KEV = I, (5)

KTT = Q + QE, (6)

KMu = F + FT, (7)

where KE is the electrical conductivity matrix, KT is the ther-
mal conductivity matrix, KM is the stiffness matrix, QE is the
heat generation vector due to current flow, FT is the force
due to thermal strain vector, V, T, u are the nodal vector of
voltage, temperature and displacements, respectively, I, Q, F,
are the nodal vector of current, heat fluxes and applied forces,
respectively. The thermal and mechanical problems are cou-
pled through thermal strain loads FT. Coupling between the
electrical and thermal problems is done by heat generation
due to the electrical flow QE.

Piezoelectricity couples electrical and mechanical fields.
This problem is solved by means of strong coupling method
[15, 20, 21]. It requires the usage of coupled finite elements,
which have all mechanical and electric degrees of freedom
(displacements and electric potential). Matrix equations of
static piezoelectricity can be expressed as follows:

[

Kuu Kuϕ

Kϕu Kϕϕ

] [

u

Φ

]

=

[

Fu

ρϕ

]

, (8)

where Kuu is mechanical stiffness matrix, Kuϕ, Kϕu are
piezoelectric stiffness matrices, Kϕϕ is dielectric stiffness ma-
trix, Fu is force vector and ρϕ is charge flux vector.

Ansys Multiphysics and MSC.Mentat/Marc are FEM soft-
ware packages are especially dedicated for solving coupled
boundary-value problems [4, 5]. Several coupled problems
can be simulated with the use of those software packages. An-
sys Multiphysic is used for solving piezoelectricity, whereas
MSC.Marc is used for solving thermoelesticity and electro-
thermo-elasticity.
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Communication between MOOPTIM and FEM packages
requires implementation of the proper interfaces. On the basis
of chromosome genes, which represent set of design variables,
the geometry of the optimized structure is generated. In the
next steps the finite element mesh is generated, the boundary
conditions are applied and others settings of the analysis are
defined. All this steps are performed with the use of own in-
house software and codes written in script languages (Python
and APDL) implemented in MSC.Mentat and Ansys prepro-
cesors. After solving coupled analysis, the values of function-
al are calculated on the basis of output files generated by
MSC.Marc and Ansys. In each iteration of the optimization
algorithm all this steps are performed for every chromosome.
It should be underlined that efficient calculation of this step
is critical taking into account the time of the optimization.

5. Definition of the functionals

MOOPTIM is applied to the shape optimization of different
structures by the minimization or maximization of appropriate
functionals.

Different functionals based on the results derived from
coupled field analyses are formulated. For the considered
problems functionals can be calculated on the basis of nodal
results of electrical, thermal and mechanical quantities. Four
different functionals are proposed:

• The minimization of the volume of the structure

min
x

f1

def
=

∫

Ω

dΩ; (9)

• The minimization of the maximal value of the equivalent
stress

min
x

f2

def
= max (σeq) ; (10)

• The maximization of the maximal value of vertical deflec-
tion of the structure at node i

max
x

f3

def
= max (ui) ; (11)

• The minimization of the displacement functional:

min
x

f4

def
=

∫

Ω

ϕ(u)dΩ, (12)

where ϕ (u) =

[

|u|

u0

]l

, u is the field of displacements, u0

is a reference displacement, l is natural number.

6. Numerical examples

Example 1. The joint between the block and pipe presented
in Fig. 6. is considered in the framework of thermo-elasticity.
The cross section of the pipe is parameterized with the use
of NURBS curve [22] consisting of 8 control points (Fig. 7).

Fig. 6. Joint between block and pipe

Fig. 7. Parameterization of the cross-section of the pipe

Due to the symmetry and close shape of the curve five de-
sign variables are responsible for the control polygon of the
NURBS curve (points P2, P3, P4 are symmetrical to P7, P6,
P5 respectively). Moreover the thickness of the pipe is the de-
sign variable also. The limitations of the six design variables
(Z1-Z6) are collected in Table 1.

Table 1
Limitations of the design variables for example 1

Design variable Range [m]

Z1 (horizontal coordinate of P1, P2, P8) <0.005 ÷ 0.025>

Z2 (vertical coordinate of P2) <0.035 ÷ 0.055>

Z3 (horizontal coordinate of P3) <0.005 ÷ 0.03>

Z4 (vertical coordinate of P4) <0.005 ÷ 0.025>

Z5 (horizontal coordinate of P4) <0.005 ÷ 0.025>

Z6 (thickness of the pipe) <0.0005 ÷ 0.003>
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Both the block and the pipe are made of steel. The block
consists of solid elements, whereas the pipe is modelled with
the use of shell elements. Five surfaces of the block are sup-
ported at the end of the pipe. A distributed load P0. = 600 N
is applied to the end of the pipe. Moreover, a temperature gra-
dient is applied (T1 = 25◦C, T2 = 80◦C) to the block and the
pipe. Figure 8 shows the thermomechanical boundary condi-
tions for the structure. Between block and the pipe the glue
contact and ideal thermal contact are applied.

Fig. 8. Boundary condition for the block-pipe joint

The multicriteria optimization task is performed for the
functionals (9), (10) and (12). For functional (12) u0 = 1 and
l = 1 are assumed. MOOPTIM tool is run for population size
and number of iterations equal to 100. Probability of uniform
mutation is equal to 0.1, probability of Gaussian mutation is
equal to 0.8, probability of simple and arithmetic crossover is
equal to 0.25.

Figure 9 presents the set of Pareto-optimal solutions,
whereas Fig. 10 shows obtained geometry, stress distribu-
tion and values of design variables for three selected extreme
points on the front.

Fig. 9. Set of Pareto solutions for example 1

Fig. 10. Example 1: obtained geometry, stress distribution and values
of design variables for the points A, B, and C

For the minimization of the structure volume (9) (Point A)
the cross-section of the pipe is similar to I-beam shape. Equiv-
alent stresses for this case are generally caused by bending.
For minimization of the equivalent stress (10) and maximiza-
tion of the stiffness (12) (Points B and C) the cross sections of
the pipe have elliptical shapes and thermal stresses overtake
stresses caused by bending.

Example 2. The piezoelectric actuator presented in Fig. 11
is considered. The problem is considered as a two dimension-
al plane stress analysis task. The plate is 100 mm long, 1 mm
thick and it is made of aluminum. The left side of the plate
is fixed. Three electrodes made of the piezoelectric material
PZT4 are glued to the plate on the top surface of the plate.
A potential difference 1000 V is applied to the electrodes,
which makes the plate bending.

Fig. 11. Model of the piezoelectric actuator

The task is to determine the width, the thickness and lo-
cations of the piezoelectric elements. Nine design variables
are assumed (Fig. 11).
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The multiobjective problem is solved taking into account
three functional: (9), (10) and (11) simultaneously. In the func-
tional (11) node at the right upper corner of the aluminium
beam is considered. Table 1 contains limitations of the design
variables and multicriteria algorithm parameters.

Table 2
Limitations of the design variables for actuator

Design variable Range [m]

Z1, Z4, Z7 <0.0001 ÷ 0.01>

Z2, Z5, Z8 <0.001 ÷ 0.1>

Z3, Z6, Z9 <0.0005 ÷ 0.002>

Figure 12 presents a set of Pareto optimal solutions. Ta-
ble 2 contains values of design variables for three selected
extreme points. Figure 13 contains final shapes, locations of
the PZT4 electrodes, stress distribution and values of design
variables in this area.

Fig. 12. Set of Pareto solutions for example 2

Fig. 13. Obtained geometry of actuator, stress distribution and values
of design variables for the points A, B, and C

For the minimization of the volume (9) MOOPTIM founds
minimal possible areas of piezoelectric parts. It is obvious,
that Z2, Z5, Z8, Z3, Z6, Z9 should have minimal admissible
values, but distances between the electrodes are not intuitive.
For the minimization of the stress functional (10) and for max-
imization of the deflection (11) electrodes have maximal and
minimal admissible thicknesses respectively.

Example 3. The model of microelectrothermal actuator
is considered (Fig. 14). The actuator is fabricated from poly-
crystalline silicon which material properties are shown in Ta-
ble 3.

Fig. 14. Model of microelectrothermal actuator

Table 3
Parameters of the polycrystalline silicone

Parameter Value

Young modulus 158e3 MPa

Poisson ratio 0.23

Thermal expansion coef. 3.0e-6 1/K

Thermal conductivity 140e8 pW/µmK

Resistivity 3.3e-11 TΩµm

The deflection of the actuator occurs when the electrical
potential difference is applied across two electrical pads. It is
possible due to material properties – high electrical resistivity
and different thermal expansion between thin and wide arms.
The device is subjected to the electrical, thermal and mechan-
ical boundary conditions. The length of the actuator is equal
to 260 microns, while electrical pads are 20 × 20 microns
wide. The multiobjective problem concerns determining the
specified dimensions of the actuator shape, which minimize
or maximize functionals (9), (10) and (11). In the functional
(11) node at the right upper corner is considered. Six design
variables are assumed (Fig. 7). Table 4 contains limitations
of the design variables. Parameters of the MOOPTIM algo-
rithm are identical as in Example 1. Figure 15 presents a set
of Pareto optimal solutions, whereas Fig. 16 contains final
shapes, stress distribution and values of design variables for
points A, B and C. The results obtained for functionals (9)
and (10) are similar, whereas the optimal shape obtained for
functional (11) reminds shapes very often applied in practice
(see examples presented on the web site of Institute of Mi-
cromachine and Microfabrication Research and Simon Fraser
University [23, 24]).
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Table 4
Limitations of the design variables

Design variable Range [µm]

Z1, Z2, Z3 ¡1 ÷ 3¿

Z4 ¡12 ÷ 18¿

Z5 ¡30 ÷ 100¿

Z6 ¡2 ÷ 8¿

Fig. 15. Set of Pareto solutions

Fig. 16. Obtained geometry, stress distribution and values of design
variables for the points A, B, and C

7. Final remarks

The designing of the real structures, especially for multi-
physics problems, when different criteria are taken into ac-
count, belongs to difficult optimization tasks. Intuitive solu-
tions can be found only for some cases (simple geometry,
simple boundary conditions, low number of design variables,
etc.). The application of classical methods based on gradient
algorithms may be also unsuccessful due to the multimodality
of functionals for real problems.

In the present work the MOOPTIM algorithm has been
used for multiobjective shape optimization of different struc-
tures. The algorithm based on evolutionary algorithms be-

longs to global optimization methods. The efficiency of such
optimization tool was tested on several benchmark problems.
In most cases MOOPTIM gives better results comparing to
the NSGA-II algorithm.

The direct problems concern coupling between mechani-
cal, thermal and electrical fields. For solving direct coupled
problems MSC.Mentat/Marc and Ansys Multiphysics are ap-
plied. Interfaces between MOOPTIM and FEM software’s are
prepared with the use of in-house software and codes written
in script languages.

The problems were solved for different criteria based
on thermal, mechanical and other quantities. Another type
of functionals can be formulated. Application of parametric
curves in preparation of the model can reduce the number of
design variables.

The application of the FEM software requires evaluation
in several steps for each single solution (the modification of
the geometry, creating finite element mesh, etc.). It can be
very-time consuming task, especially for more complicated
geometries. Moreover the solution of the coupled problems is
more time-consuming in comparison to the single-field prob-
lems. For the numerical models considered in the paper the
time needed for solving one multiciriteria optimization task
may takes several hours.

In order to reduce the time of the computation the future
tasks are: application of approximate surrogate model and
parallelization of the fitness function evaluations.
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