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MIKROMECHANICZNY MODEL MATERIAŁÓW POLIKRYSTALICZNYCH O SUBSTRUKTURZE LAMELARNEJ

Micromechanical model of polycrystalline materials with lamellar substructure is presented. The lamellar microstructure
of grains is accounted for using the well-established framework developed for layered composites. Within the approach different
scale transition rules between the level of lamellar grain and the polycrystalline sample can be employed. The model capabilities
are tested using the example of α2 + γ-TiAl intermetallic. Elastic properties and the initial yield surface for the lamellar grain
(PST crystal) and for the untextured polycrystal are estimated. Elastic and plastic anisotropy degree is analyzed.
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Zaprezentowano model mikromechaniczny materiałów polikrystalicznych o substrukturze lamelarnej. Substruktura lami-
natu obserwowana dla pojedynczego ziarna została uwzględniona przy wykorzystaniu tradycyjnego podejścia przyjmowanego
w przypadku kompozytów warstwowych. W ramach proponowanego podejścia stosowane być mogą różne schematy przejścia
mikro-makro z poziomu ziarna o substrukturze laminatu do poziomu polikryształu. Możliwości modelu zostały przetestowane
na przykładzie intermetaliku α2 +γ-TiAl. Wyznaczono własności sprężyste i początkową powierzchnię płynięcia pojedynczego
kryształu o substrukturze lamelarnej i polikryształu bez tekstury. Przeanalizowano stopień anizotropii własności sprężystych
i plastycznych.

1. Introduction

The paper deals with the polycrystalline materials in
which one can distinguish three levels of microstructure
(Fig. 1), namely:
(1) Level of an individual lamella;
(2) Level of a lamellar grain, which will be called a

metagrain, build of colonies of thin parallel plates;
(3) Level of polycrystalline material.
For proper separation of these three levels of microstruc-
ture [20], enabling one the formulation of a three-scale
micromechanical model, it is required that the thickness
of an individual lamella is considerably smaller than the
average size of a metagrain, which itself is much small-
er than the characteristic dimension of a polycrystalline
sample.

As concerns plastic properties of the materials with
lamellar substructure, it is observed that the small thick-
ness of the lamellae induces confinement effects (the
Hall-Petch effects) by reducing the distance of a main
free path for dislocations [1]. These effects are usually
taken into account by a morphological differentiation of
the plastic deformation modes such as slip or twinning.

Identifying a slip/twin system by {mr , nr}, where the
unit vector mr is coaxial with the direction of shearing
and nr is a unit normal to the shearing plane for the
mode, one defines [17]:
• longitudinal modes for which plane and direction of

shearing are parallel to the lamellae interface speci-
fied by a unit normal n,
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Fig. 1. Polycrystal with lamellar substructure

nr
LONG · n = 1, mr

LONG · n = 0, (1)

• mixed modes for which only the direction of shear-
ing is parallel to the lamellae interface,

nr
MIX · n , 1, mr

MIX · n = 0, (2)

• transversal modes for which neither plane or direc-
tion of shearing are parallel to the lamellae interface

nr
TRANS · n , 1, mr

TRANS · n , 0, (3)

If the deformation mode under consideration belongs to
the same type, that is in the case of single crystal one
should expect an equal initial critical shear stress τr

c, then
in the case of lamellar grain one has

τTRANS
c = αTτ

MIX
c = αTαMτ

LONG
c ,

where αT > 1, αM > 1.
(4)

and τLONG
c = τr

c. As it will be demonstrated, these direc-
tional confinement effects result in substantial inelastic
anisotropy of a metagrain.

Lamellar substructure of grains usually develops due
to particular condition during processing. In metals and
alloys of high specific strength the lamellar substructure
is created as a result of deformation twinning or due
to the thermal treatment, e.g. in α2 + γ-TiAl intermetal-
lic. This kind of microstructure can be also observed in
shape memory alloys and polymers or man-made lam-
inated composites. Consequently, the micromechanical
model presented in this paper shares common concepts
with the corresponding modelling frameworks formulat-
ed for shape memory alloys (SMA) [31], semicrystalline
polymers [21] or composites [5, 2]. In most of these
models attention is focused on the linear elasticity or lin-
ear elasticity with the eigenstrain (transformation strain

in the case of SMA). The idea of a three-scale model
has been also utilized in the family of models devel-
oped in order to relax the strong constraints imposed
on the deformation by the Taylor scheme in the case
of crystal plasticity (the so-called pancake model [10,
36], LAMEL model or ALAMEL model, [37, 38]). The
similar concept has been recently applied in modelling
of the polycrystalline SMA [31].

In the next section the attention is focused on the
scale transition rule between level 1 and level 2. We
present an approach for modelling of a lamellar mi-
crostructure within a small strain regime, assuming that
material is described by linear or non-linear constitutive
laws. The general framework developed for laminates
(layered composites) is used, cf. e.g. [5]. The three scale
models, which employ different transition schemes be-
tween the level of lamellar grain and the level of poly-
crystal are then presented. In section 3 we apply the
proposed approach to study elastic and plastic anisotropy
of the two-phase α2 + γ-TiAl intermetallic of lamellar
substructure. It is analyzed how the predicted overall
properties vary with the metagrain geometry and scale
transition rules applied. Extended description of the pre-
sented modelling framework and discussion on results
can be found in [14]. Additionally, in the present paper
the intensity of anisotropy of elastic properties at the
local level and at the intermediate level is quantified. It
is demonstrated that, contrary to inelastic anisotropy, the
lamellar substructure of the metagrain lowers its overall
elastic anisotropy as compared to the anisotropy of con-
stituent phases. 3-scale micromechanical model of TiAl
polycrystals was also formulated in [25]. In this paper,
contrary to [25], we analyze the influence of modelling
scheme on the predicted overall properties.

Throughout the work, the following notation for ten-
sor operations is used. Let v, u,vi, ui denote vectors and
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their representation in some orthonormal basis, T, Ti j
– a second order tensor and its representation and A,B,
Ai jkl, Bi jkl – fourth order tensors and their representations
then

v ⊗ u↔ viu j, T · v ↔ Ai jv j, A · T↔ Ai jklTkl,

A ◦ B↔ Ai jklBklmn .

2. Scale transition rules

2.1. The model of the metagrain

The analysis is restricted to the small strains and
rotations. Following the approach developed for the lay-
ered composites (e.g. [5]), at the interface of normal n
between neighboring lamellae i and j a standard condi-
tion of continuity of displacement (or velocity) field is
fulfilled implying the following compatibility condition
for small strain (or strain-rate) tensor

ε j = εi +
1
2

(b ⊗ n + n ⊗ b) , (5)

where b is an arbitrary vector. Furthermore, assumption
of equilibrium of traction forces at this interface implies
for the local stress tensor

σ j · n = σi · n. (6)

It is also assumed that the stress and strain fields are
uniform within the lamella. As a result of the above
conditions, the components of the strain and stress ten-
sors in the lamellae i and j are related as follows (see
Fig. 1)

PL · εi = PL · ε j = PL · εmc,

PT · σi = PT · σ j = PT · σmc,
(7)

where εmc and σmc are average strain and stress tensors
in the metagrain defined as

εmc = {εi} , σmc = {σi} , {·} =

NL∑

i=1

vi (·)i (8)

and NL is the number of distinct lamellae in the meta-
grain; νi = Vi/Vmc are their relative volume contents.
The fourth order tensors PT and PL are two orthogonal
projectors specified by formulae [39, 24]:

(
PT

)
i jkl

= 1
4

(
2δikn jni + δ jkn jni + δiln jnk

)
,

PL = IS − PT ,
(9)

which project second order tensors into two
three-dimensional orthogonal sub-spaces (IS is the fourth
order symmetrized identity tensor).

It is assumed that the constitutive law between a
strain (or a strain-rate) measure and a stress measure
in the lamella i is linear (or that it can be linearized)
with the corresponding compliance tensor Mi and the
eigen-strain (the reference strain) εres

i , namely

εi = Mi · σi + εres
i , σi = Li · (εi − εres

i
)
, Li = M−1i .

(10)
We are looking for the homogenized properties Mmc of
a laminated metagrain and the overall eigen-strain (the
overall reference strain) in the metagrain εres

mc which re-
late the average strain εmc and the stress σmc according
to the following relation

εmc = Mmc · σmc + εres
mc, σmc = Lmc · (εmc − εres

mc
)
,

Lmc = M−1mc.
(11)

To this end we follow to some extent the derivations
presented in [5, 31] which relay on the decomposition
of the second-order tensor into out-of-plane and in-plane
parts. This decomposition is realized by the orthogonal
projectors (2.9).

Using Eqs(2.7)-(2.11) the overall compliance tensor
of a metagrain Mmc and the overall eigen-strain εres

mc are
found. Localization tensor Ai and concentration tensor
Bi defined as

εi = Ai · εmc + αi, σi = Bi · σmc + βi (12)

can be also obtained. The corresponding relations are
collected in the Appendix A.

Note that computation of the homogenized proper-
ties of a metagrain is not necessary if our only task is
to find local stresses and strains in lamellae under im-
posed average strain εmc (or stress σmc) in the metagrain.
Eqs. (2.7), the definitions (2.8) and the local constitutive
relations (2.10) constitute the set of 6NL +3 equations
sufficient to find 6NL +3 independent components of
unknowns: εT

i , σL
i , σmc (or εmc). The latter observation

is also true if the constitutive relation is non-linear (e.g.
the viscoplastic power-law). In the latter case the ob-
tained equations are non-linear and they are solved e.g
using the Newton-Raphson (N-R) method. The speci-
fication of the homogenized properties of a metagrain
is necessary when we have to do with three-scale (or,
in general, multi-scale) modelling. In such a case com-
pliances Mmc serve as local properties in the transition
scheme between the level of a metagrain and the level of
a polycrystalline sample. Computational issues related to
the 3-scale modelling will be discussed below.
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2.2. The model of the polycrystal

In order to obtain the overall response of polycrys-
talline material of lamellar substructure three different
scale transition rules between the level of a metagrain
and the level of a polycrystalline sample have been con-
sidered:
(1) The Voigt (Taylor) model (upper bound). The re-

lations between the overall stress Σ and the overall
strain E (or the strain-rate Ė) and the corresponding
average quantities in the metagrain are

E = εmc,
∑

= 〈σmc〉 =

NG∑

mc=1

vmcσmc, (13)

where NG is the number of metagrains in the poly-
crystalline aggregate.

(2) The Reuss (Sachs) model (lower bound). The re-
lations between the overall stress Σ and the overall
strain E (or the strain-rate Ė) and the corresponding
average quantities in the metagrain are

σ = σmc, E = 〈εmc〉 =

NG∑

mc=1

vmcεmc. (14)

(3) The self-consistent model. This estimation of an
overall behaviour of polycrystal relays on Eshel-
by’s solution [6] for the ellipsoidal inclusion em-
bedded in the infinite medium. In the frame of the
self-consistent model a single grain is considered as
an inclusion while the medium has averaged, yet un-
known, properties of a polycrystal. According to this
model the relations between the overall stress Σ and
the overall strain E (or the strain-rate D = Ė) and the

corresponding average quantities in the metagrain are
[7, 43]

εmc − E = −MSC
∗ · (σmc −∑

) ,
∑

= 〈σmc〉,
E = 〈εmc〉

(15)

where the fourth order tensor MSC
∗ is the inverse of

the so-called Hill’s tensor which depends on the in-
clusion shape and the properties of the equivalent
medium specified by L. In the example analyzed be-
low a spherical shape of metagrains is assumed.
Using the above models one can find the overall

properties and the overall response of a polycrystal gov-
erned by the linear (or linearized) relation

E = M̄ ·∑ + Eres ∑
= L̄ · (E − Eres) , L̄ = M̄−1.

(16)

3. Application to α2 + γ-TiAl of lamellar
substructure

3.1. Description of microstructure

The microstructure of polysynthetically-twinned
(PST) α2 + γ-TiAl has been described in detail in [1] or
[40, 41], therefore we will only recapitulate basic facts.
In this two phase material a strict orientation relationship
exists between the hexagonal α2 phase and the fcc-like γ
phase of tetragonal symmetry, namely the closely packed
planes, (0001) in α2 and {111} in γ, and crystallograph-
ic directions 〈11̄0〉 in γ and 〈112̄0〉 in α2 are parallel.
This relationship is fulfilled by six distinct orientation
variants of γ-phase corresponding to three twin-related
pairs, Fig. 2.

Fig. 2. Orientation variants of γ phase in PST α2 + γ TiAl crystal (see also [41]); filled circles denote Al atoms
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Fig. 3. Considered types of RVE for the metagrain

Let us study mechanical properties of a meta-
grain made of this material. We start with the elastic
anisotropy and then turn to inelastic properties. Three
types of a laminated unit cell (RVE) for the derivation
of the overall properties of a metagrain are considered.
They are presented in Fig 3. In the case of RVE1 a
laminate is composed of 7 distinct lamellae. In the case
of RVE2 and RVE3 the laminated component of RVE
is composed of 3 distinct lamellae: one α2 lamella and
two γ lamellae being one of the three twin-related pairs,
Fig. 2. Subsequently, the overall properties of the meta-
grain are obtained assuming equal strain or equal stress
in each of three possible sub-laminates, corresponding-
ly. Additionally, the upper (RVEV) and lower (RVER)
bounds are derived. They are obtained assuming equal
strain or equal stress in each of seven lamellae.

In further derivations we assume that six admissi-
ble variants of γ lamellae have equal volume fractions,
therefore we have for a laminate of RVE1

νi =
1
6

(1 − να) for i = 1, ..., 6, ν7 = να (17)

and for an individual laminated component of RVE2 and
RVE3

νi =
1
2

(1 − να) for i = 1, 2, (k = 1, 3, 5) , ν3 = να

(18)
The overall properties of a metagrain depend on the vol-
ume fraction να of phase α2.

3.2. Elastic properties

In the micromechanical modelling, in spite of the
geometry of microstructure, in order to estimate the over-
all properties one has to know the local ones. The in-
dependent components of the local elasticity tensors Le

i
of the single crystals of γ-TiAl and α2-Ti3Al phases are
collected in Table 1. In view of the lattice symmetry the
elasticity tensor for γ phase has tetragonal symmetry
while for α2 phase is transversely isotropic. As it can

be verified performing the spectral decomposition of Li
[28] and using the anisotropy measures introduced in the
Appendix B, the local elastic anisotropy is not strong.

TABLE 1
Independent components of local elasticity tensors [GPa] in the

phases [34, 35]

Phase L2222 L2233 L1122 L1111 L1212 L3232

α2-Ti3Al 175 88.7 62.3 220 62.6

γ-TiAl 183 74.1 74.4 178 105 78.4

TABLE 2
Spectral decompositions of local elasticity tensors in the phases, hK

– Kelvin modulae [GPa], Φ(η) = arctan[sgn(η)3(
√

2|η|)1/3], η –
stiffness distributor (for the details see [16])

Phase hVI hV hIV hIII hII = hI Φ[◦] ζ η

α2-Ti3Al 332.6 151.1 86.4 125.2 2.77 0.56 0.017

γ-TiAl 330.0 105.1 108.9 156.8 210 -0.56 0.69 0.023

Independently of να and the assumed type of RVE
the overall elasticity tensor Le

mc of a metagrain is trans-
versely isotropic (although, the laminated subcomponent
for RVE2 and RVE3 is not). The main axis of symmetry
is coaxial with the unit normal n to the lamellae inter-
faces. Fig. 4 presents the variation of four distinct Kelvin
moduli with the volume fraction of α2 phase calculated
for all considered types of RVE. As it is seen differ-
ences between results obtained for three RVEs depicted
in Fig. 3 are almost negligible. Similarly, the upper and
lower bounds are quite close to each other except of
the modulus hmc

3 for which they are relatively far from
each other. As far as dependence of metagrain moduli
on the volume fraction of α2 phase is concerned, it has a
significant impact on moduli hmc

2 and hmc
3 while moduli

hmc
1 and hmc

4 almost do not vary with να. The value of
angle Φ(ηmc) varies insignificantly with the RVE model.
It monotonically increases with να from around 0.1◦ to
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2.8◦, so it remains very small. Consequently, the meta-
grain of this two-phase material is almost volumetrical-
ly isotropic justifying the use ζ-measure of anisotropy
(B.1).

Note that for transversely isotropic material [12, 16]:
• The Kelvin moduli hmc

3 = hIII = hIV and hmc
4 = hI =

hII are two distinct shear moduli valid for shear de-
formations in the plane perpendicular to n and in the
planes coaxial with n, respectively.

• The Kelvin moduli hmc
1 = hVI and hmc

2 = hV are
the moduli valid for two deformations (eigen-states)
being the combinations of the hydrostatic state
and the deviatoric deformation specified by
ε = ε(3n ⊗ n – I). The way by which these two
states are combined for the considered material is
specified by the stiffness distributor ηmc. If ηmc=0

then hmc
1 is the bulk modulus while hmc

2 is deviatoric
modulus for ε = ε(3n ⊗ n – I). In the latter case
material is volumetrically isotropic.
The measures of anisotropy of the derived Le

mc as a
functions of να are presented in Fig. 5. Since the dif-
ferences between Le

mc obtained for RVE1, RVE2 and
RVE3 have been almost negligible, only the intensities
of anisotropy for RVE1, the upper bound (UP (RVEV))
and lower bound (LO (RVER)) models of the metagrain
are compared. It is seen that the presence of six orienta-
tion variants of γ phase within the metagrain decreases
the anisotropy factors as compare to single γ lamella or
α2 lamella (see Table 2). The value of α2 content cor-
responding to the minimum values of anisotropy factors
are collected in Table 3.

Fig. 4. The calculated elastic Kelvin moduli of a metagrain obtained for different models of RVE. Because α2-phase is also transversely
isotropic, the Kelvin moduli hmc

i are scaled by the corresponding moduli hα2
i (see Table 1)

Fig. 5. Intensity of elastic anisotropy of a metagrain obtained for different models of RVE
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TABLE 3
The volume content of α2 phase in the metagrain for which the
corresponding measure of anisotropy takes the minimum value

RVE1 RVER RVEV

ζmc 0.300 0.272 0.422

χmc 0.217 0.208 0.329

Fig. 6. Dependence of the directional Young modulus [GPa] for PST
α2 + γ-TiAl (a single metagrain) on the volume fraction of α2 phase.
The outer line corresponds to να =0 while the inner line to να =1.
In between lines are for να = {0.1, 0.2, 0.3, 0.5, 0.75}. The dashed
curve corresponds to the measured elasticity tensor of PST TiAl [23]

The anisotropy of the metagrain can be also study
with use of the directional Young modulus [22]

Emc(m) = ((m ⊗m) ·Me
mc · (m ⊗m))−1, (19)

where m is any unit vector1). Fig. 6 presents the direc-
tional Young modulus of PST α2 + γ-TiAl in the case
of the metagrain represented by RVE1 for different val-
ues of να in the form of polar plot. Generally, with the
increasing volume fraction of α2 phase the Young mod-
ulus decreases for any direction. Moreover, the volume
fraction of α2 phase has the most significant impact on
the Young modulus in the directions coaxial with the
laminate interface. For experimentally observed values
of να � 01 one obtains the relation

Emc(0◦) > Emc(90◦) > Emc(φ∗), φ∗ ∈ (30◦, 60◦), (20)

where cosφ = m·n. Such relation is qualitatively con-
firmed by experiments [9]. The independent components
of the elasticity tensor of PST crystal of TiAl has been

measured by Tanaka (see [23] for the respective val-
ues). The directional Young modulus corresponding to
the measured Le

mc is marked in Fig. 6 by a dashed line.
In general, it lies within the theoretically predicted val-
ues for relatively small content of α2 phase (not clear-
ly reported in [23]). The most significant difference is
obtained for intermediate directions. In [42] the Young
modulus E = 175 GPa for the polycrystalline TiAl of
lamellar microstructure has been measured. The extru-
sion texture of a tested sample indicates the case for
which the direction n is close to be perpendicular to
the tension direction. As it is seen in Fig. 6 the ex-
perimentally obtained value is reproduced quite well for
the reasonable content of α2 phase (again, not clearly
reported in [42]).

Finally, using the results of spectral decomposition
for the stiffness tensor of the metagrain the bound and
the self-consistent estimates of overall elastic properties
of untextured polycrystal composed of metagrains are
evaluated according to the procedure formulated in [13].
In Fig. 7 the comparison of the overall Young modulus
and the overall shear modulus obtained with use of differ-
ent scale transition rules between the level of metagrain
and the level of polycrystalline sample (see Section 2.2)
are presented as functions of να. Different RVEs denote
different models of a metagrain, that is different scale
transition rule employed between the level 1 and the level
2. It is seen that for RVE1 the bounds are very tight and
the SC estimator almost coincide with the Hill estimate
defined as an average of the upper and lower bound. The
same behaviour is observed for two remaining RVEs pre-
sented in Fig. 3. For a low content of α2 phase the scale
transition rule between level 1 and 2 influences more on
the predicted overall property than the scale transition
rule between level 2 and level 3. This trend is reversed
for a high content of α2 phase, as expected. In the fig-
ures the self-consistent estimates of Ē and Ḡ obtained
for the two-phase material without introduction of an
additional level of microstructure (denoted as ”2 scale
(SC)”) are also presented. When calculating the latter
estimates the orientation relationships between α2 and γ
lamellae are not taken into account. Differences between
self-consistent estimates obtained for 3-scale and 2-scale
microstructure are not substantial. They are the strongest
for comparable contents of both phases.

1) In analogy with the meaning of Young’s modulus for isotropic materials, E(m) is the slop of curve presenting the dependence of the
stress on the strain component in the loading direction in uniaxial tension or compression along m direction
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Fig. 7. Bounds (UP,LO) and self-consistent (SC) estimates of the
overall Young modulus and the overall shear modulus for random
polycrystal of two-phase TiAl with lamellar substructure and different
models of the metagrain

3.3. Initial yield surface

Now, let us pass to the inelastic properties of TiAl of
lamellar substructure. First, we will study the anisotropy
of an initial yield stress of a metagrain induced mainly
by the confinement effects discussed in the introduction.
We will consider the so-called micro-yielding. To this
end we identify initiation of yielding of a metagrain with
initiation of slip or twinning on any of possible systems
in any of lamellae. According to the above definition
initiation of yielding of a PST metagrain is equivalent
to the limit of elasticity in one of the lamellae and must
be established with use of a local stress. Consequently,
this local stress in the lamellae, under the prescribed
overall stress σmc, is obtained employing the concentra-
tion equations (2.12), where tensors Bi are calculated
with use of the elastic compliances and βi= 0. Initiation
of slip or twinning within lamellae is governed by the
extended Schmid law formulated in [33]. In the examples
shown below the PST metagrain is modelled by RVE1.

γ-TiAl has fcc like structure. Due to the space dis-
tribution of Ti and Al atoms, slip systems relevant for
fcc materials are subdivided into two groups [1]: 4
ordinary dislocations {111}〈11̄0] and 8 super disloca-

tions {111}〈101̄]. It is observed in experiments [1] that
super-dislocations are more difficult to initiate than or-
dinary dislocations. Note that, there are only 3 ordinary
dislocations which are independent while there are 5 in-
dependent slip systems within super-dislocation group.
There are only 4 twin systems: {111}〈112̄]. As concerns
α2 phase, three types of slip systems are usually invoked:
basal (0001)〈112̄0〉, prismatic {11̄00}〈112̄0〉 and pyrami-
dal (2c + a){112̄1}〈1̄1̄26〉. As reported in the literature
[10, 11, 25] the prismatic slip systems are most easi-
ly initiated, while remaining two groups are difficult to
initiate. One should note that the easy prismatic mode,
in view of its orientation with respect to the lamellae
interface, is the mixed mode, therefore initiation of the
plastic yielding within α2 lamellae requires much higher
level of stress than in γ lamellae. The performed study
indicates that the hard modes in γ and α2 phases have
no influence on the value of the initial yield stress de-
fined as above, thus in further analysis the hard modes
(super-dislocations in γ phase and two hard modes in
α2 phase) have been neglected. Furthermore, following
[25], we have assumed

τ
prism
c = 2τord

c . (21)

The value of critical shear stress for twinning mode
in single crystal of γ-TiAl is usually close to the val-
ue of τord

c . If not indicated explicitly, in calculations
ρtwin = τtwin

c /τord
c = 1.1 has been assumed.

In Fig. 8 an identification procedure for confinement
parameters αM and αT defined by (1.4), is illustrated. As
it is shown without the morphological differentiation of
the plastic deformation modes (αM = αT =1) one is not
able to reproduce the strong anisotropy of the uniaxial
yield stress of PST metagrain observed in the experi-
ments. The experimental data for tension at room tem-
perature of PST in five different directions with respect to
n has been taken from [1]. They concern two-phase PST
γ-Ti49Al-alloys without ternary alloying additions (see
page 195, Fig. 8 in [1]). It can be verified that αT , defined
by (1.4), does not influence on the initial yield stress in
the direction perpendicular to n, therefore first, value
of αM is established (see Fig. 8(a)), and then αT (see
Fig. 8(b)). The value of the yield stress for the intermedi-
ate direction specified by φ = 40◦ is independent of both
confinement parameters, therefore it has been used as a
reference value, where the measured value of σy (40◦) '
100 MPa. As a result of this identification procedure one
finds: αM =2.8, αT =1.25 and τord

c = 50 [MPa]. Similar
values have been established in [17]; however, for a flow
stress defined with use of the viscoplastic power law. In
Fig. 9 the directional yield stress in compression is pre-
sented and compared with the experimental data found
in [40]. Details concerning the experiment condition and
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material composition were not provided in the reference,
nevertheless the agreement with the values obtained with
use of identified parameters is quite good. In Fig. 9 the

shape of the cross-section of the initial yield surface for
the bi-axial stress state is shown. One observes strong
anisotropy of this yield surface.

Fig. 8. Illustration of the identification procedure for confinement parameters. The directional initial yield stress in tension (φ denotes the
angle between unit normal to the interface and the loading direction) for a) different values of αM = {1.0, 1.9, 2.5, 2.8, 3.4, 4.0},(αT =1),
b) different values of αT = {1, 1.05, 1.15, 1.25, 1.65} and αM =2.8; dashed gray line: experimental data [1]

Fig. 9. a) The initial yield stress in compression obtained with use of identified parameters (continuous line) and experimental data [40]
(dashed line); b) the initial yield surface for the bi-axial stress state for identified parameters (black line with circles), for different values of
αM = {1.6, 2.2, 3.4, 4.0} (gray lines). Schematic figure presents the orientation of the analysed loading with respect to the lamellae interfaces
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Fig. 10. Initial yield stress in tension (continuous lines) and compression (dashed lines with markers) for a) different values of να, the top
curve – να = 0, the bottom curve: να = 0.7, spacing ∆να =0.1, ρtwin =1; b) different values of ρtwin = τtwin

c /τord
c , the top curve – ρtwin = 1.2,

the bottom curve ρtwin = 0.8, spacing ∆ρtwin = 0.05, να = 0.1. Confinement parameters: αT =1.25, αM =2.8

In Fig. 10(a) the influence of volume fraction of α2
phase on the directional initial yield stress in tension
and compression is demonstrated. It is seen that the vol-
ume content of α2 has the most significant impact on
the yield stress when tension/compression direction is
coaxial with the interface of lamella. In Fig. 10(b) the
effect of ratio ρtwin is studied. In general, twining is the
source of a tension-compression asymmetry of a yield
stress. In the case of the considered material this asym-
metry is the strongest for the direction perpendicular to
the lamella interface and the less significant for the inter-
mediate directions. Note also that when τr

c for twinning
is sufficiently high, then twinning does not influence on
the initial yielding.

We close this section with the derivation of the ini-
tial yield surface for untextured polycrystal of lamellar
substructure. Initiation of plastic yielding is now identi-
fied with initiation of yielding in any metagrain, within
any of its constituent lamellae on any of slip or twin
systems (compare [8, 3]). In Fig. 11 the obtained yield
surface is presented for the identified material parame-
ters and ρtwin = 1.1 and ρtwin = 0.7. Performed stud-
ies indicated that the tension-compression asymmetry of
the initial yield surface of polycrystal will be observed
for ρtwin lower than one or close to one, see Fig. 12a.
For the experimentally justified value (i.e. ρtwin=1.1) this

asymmetry is not present and, similarly as it has been
found for fcc untextured polycrystals in [8], the obtained
yield surface is the Tresca polyhedron specified by the
condition

Fig. 11. Initial yield surface for untextured polycrystal of α2 +γ-TiAl
of lamellar substructure in deviatoric plane (αT =1.25, αM =2.8,
να =0.1), continuous line ρtwin=1.1, dashed line ρtwin = 0.7;
S1 = 1/

√
6(2Σ3 − Σ1 − Σ2), S2 = 1/

√
2(Σ1 − Σ2)
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Fig. 12. a)Initial yield stress in uniaxial tension and compression for untextured polycrystal of α2 + γ-TiAl of lamellar substructure
(αT = 1.25, αM=2.8, να= 0.1) as function of ρtwin, b) Initial yield stress in shear (αT=1.25, αM =2.8, να=0.1, ρtwin=1.1)as function of να

τ̄max = τ̄0, (22)

where τ̄max is the maximum macroscopic shear stress.
The size of the yield surface, specified by the parameter
τ̄0, is almost not affected by the confinement parameters.
It is governed by the volume fraction of α2 phase and
the value of the critical yield stress on the easiest slip
system, see Fig. 12b.

4. Summary

In the paper a three-scale micromechanical approach
to estimate overall properties of polycrystalline material
of lamellar substructure has been formulated. The way
by which the modelling scheme is constructed enables
one to employ different scale transition rules between the
metagrain level and the level of polycrystalline sample.

The capabilities of the model are thoroughly ex-
plored using the example of α2 + γ-TiAl intermetallic.
The elastic properties and the initial yield surface of the
metagrain (i.e. PST crystal) are estimated with the use
of different variants of the proposed framework and then
compared with the available experimental data. The im-
portant part of the performed analysis is the study of the
so-called confinement effects invoked by the existence
of lamellar substructure. These effects influence on the
inelastic deformation resulting in substantial anisotropy
of the metagrain in this respect, which is stronger than
the inelastic anisotropy of equiaxed single grains of con-
stituent phases.

Elastic anisotropy degree is quantified using two
measures proposed in Appendix B. It is concluded that
the local anisotropy of constituent phases is not strong.
Contrary to inelastic properties, the presence of different
orientation variants of γ phase in the metagrain reduces
its elastic anisotropy degree when comparing the elastic
properties of single lamella. It is also concluded that, as
far as overall elastic properties of untextured polycrystal

of α2 +γ-TiAl are concerned, the difference between the
Young modulus and the shear modulus predicted with
use of the different variants of the modelling scheme is
not substantial. The reason is the weak elastic anisotropy
of the metagrain.

A. Homogenized properties of the lamellar metagrain

The overall compliance tensor of a metagrain Mmc
and the overall eigenstrain εres

mc are obtained using Eqs.
(2.7)-(2.11). They have the form (no summation conven-
tion):

MLL
mc = {(MLL

i )−1}−1, (A.1)

MLT
mc = {(MLL

i )−1}−1 ◦ {(MLL
i )−1 ◦MLT

i } , (A.2)

MTL
mc = {MTL

i ◦ (MLL
i )−1} ◦ {(MLL

i )−1}−1, (A.3)

MTT
mc = {MTT

i −MTL
i ◦ (MLL

i )−1 ◦MLT
i } + (A.4)

+{MTL
i ◦(MLL

i )−1}◦{(MLL
i )−1}−1◦{(MLL

i )−1 ◦MLT
i }

εresL
mc = {εresL

i } , (A.5)

εresT
mc = {εresT

i } + {MTL
i ◦(MLL

i )−1· (εresL
mc − εresL

i )}. (A.6)

The following notation has been introduced above:
aL = PL · a, aT = PT · a, aL + aT = a, (A.7)

TLL = PL ◦ T ◦ PL, TLT = PL ◦ T ◦ PT , (A.8)

TTL = PT ◦ T ◦ PL, TTT = PT ◦ T ◦ PT , (A.9)

T = TLL + TLT + TTL + TTT . (A.10)
where T is any fourth order tensor and a is any second
order tensor, PL, PT are specified by (2.9). Note that
the sign of inverse of a tensor MLL in (A.1-A.6) de-
notes a partial inverse performed in the corresponding
three-dimensional subspace.
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Localization tensor Ai and concentration tensor Bi
defined by Eq. (2.12) are specified as follows:

BLL
mc = (MLL

i )−1 ◦MLL
mc,

BLT
mc = (MLL

i )−1 ◦ (MLT
mc −MLT

i ),
ATL

mc = (LTT
i )−1 ◦ (LTL

mc − LTL
i ),

ATT
mc = (LTT

i )−1 ◦ LTT
mc ,

BTL = O,BTT = PT ,ALT = O,ALL = PL

(A.11)

and

αL
i = 0,βT

i = 0,
αT

i = εresT
i − ((LTT

i )−1 ◦ LTT
mc ) · εresT

mc −
(LTT

i )−1 · (LTL
mc · εresL

mc − LTL
i · εresL

i ),
βL

i = (MLL
i )−1 · (εresL

mc − εresL
i ),

(A.12)

where O is the IV-th order tensor of all components
equal to zero.

B Measures of anisotropy

There is no unique measure of anisotropy degree of
the properties described by the the fourth order tensor
with symmetries of elasticity tensor [26, 27]. In this work
two such measures are proposed.

First measure of anisotropy generalizes the Zener
parameter proposed for cubic materials [44] and is well
suited for the volumetrically isotropic materials [4, 15].
Let hK and ωK denote Kelvin moduli and corresponding
eigenstates of the stiffness tensor, i.e.:

L =

VI∑

K=I

hKωK ⊗ ωK

ordered according to the rule

K > L ⇔ (trωK )2 > (trωL)2 .

We say that the anisotropy of L is the stronger the higher
is the value of the following ratio

ζ =

∣∣∣∣∣∣ln

hD

min

hD
max


∣∣∣∣∣∣ , hD

min = min
K=I ,...,V

(hK ) ,

hD
max = max

K=I ,...,V
(hK ) .

(B.1)

For isotropic materials the value of ζ is zero. Note that
the original Zener parameter for cubic materials reads

ζZener =
L1111 − L1122

2L1212
=

hIV,V

hI ,II ,III

and is equivalent to the ratio of two distinct devia-
toric Kelvin moduli obtained by spectral decomposition

of elasticity tensor for these materials. The logarithmic
function has been used in the definition (B.1) in order
to obtain the same value of these parameter for L and
its inverse M = L−1. The main drawback of the above
indicator of anisotropy degree is that, it is equal to zero
not only for isotropic materials, e.g. ζ =0 in the case of
anisotropic material for which hVI , hK = hJ for any pair
K, J = I , ...,V while (trωVI )2 , 3. The forms of the spec-
tral decompositions for all symmetry groups of Hooke’s
tensor have been provided in [16]. The reader is referred
to this publication for the details concerning the form of
eigenstates as well as the dependencies of Kelvin moduli
and stiffness distributors on the independent components
of L for the crystal symmetries appearing in this article.
The notation used in the present paper is consistent with
the one in [16].

The second measure of anisotropy uses the harmon-
ic decomposition of the stiffness tensor into its isotropic
and anisotropic part [29, 30]. The isotropic part of the
tensor L is defined as

Liso = hPIP + hDID, IP =
1
3
I ⊗ I, ID = IS − IP,

where I is the second order identity tensor and

hP = 1
3I · L · I = 1

3Lii j j,

hD = 1
5

(
IS · L − hP

)
= 1

5

(
Li ji j − hP

)
.

The anisotropic part is Lani = L−Liso. Now, we say that
the anisotropy of L is the stronger the higher is the value
of the following ratio

χ =

∥∥∥(lnL)ani
∥∥∥

‖lnL‖ , 0 6 χ < 1, (B.2)

where

lnL =

VI∑

K=I

(ln hK )ωK ⊗ ωK , ‖T‖ = Ti jklTi jkl.

For isotropic materials, and only for such materials, the
value of the above parameter is zero. The parameter χ is
always less than one because the stiffness tensor is pos-
itive definite. The tensor function ln L is used to ensure
the same value of measure χ for L and its inverse M.
When introducing this measure we have been inspired
by the work [18] where alternative definitions of a norm
and a metric for the set of the stiffness tensors have been
proposed.
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