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A simple gradient-enhancement of the classical continuum theory of plasticity
of single crystals deformed by multislip is proposed for incorporating size effects in
a manner consistent with phenomenological laws established in materials science.
Despite considerable efforts in developing gradient theories, there is no consensus
regarding the minimal set of physically based assumptions needed to capture the
slip-gradient effects in metal single crystals and to provide a benchmark for more
refined approaches. In order to make a step towards such a reference model, the
concept of the tensorial density of geometrically necessary dislocations generated by
slip-rate gradients is combined with a generalized form of the classical Taylor formula
for the flow stress. In the governing equations in the rate form, the derived internal
length scale is expressed through the current flow stress and standard parameters so
that no further assumption is needed to define a characteristic length. It is shown
that this internal length scale is directly related to the mean free path of dislocations
and possesses physical interpretation which is frequently missing in other gradient-
plasticity models.
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1. Introduction

The classical continuum theory of single crystals deformed plas-
tically by multislip at arbitrary strain, established by Hill and Rice [1–3]
and reformulated by Asaro [4], involves no internal length scale. To incor-
porate size effects, a number of strain-gradient theories of crystal plasticity
have been proposed that use different sets of basic assumptions and exhibit
a different degree of complexity; compare, for instance, representative papers
[5–25]. This list is not intended to be complete, and might be considerably ex-
tended by gradient plasticity approaches to continua other than single crys-
tals deformed by multislip. While plasticity of such continua is essentially be-
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yond the scope of this article, at least some of preceding works should be
mentioned [26–30] along with more recent contributions to crystal plasticity
[31–40]. Clear ordering of the existing theories from the point of view of de-
creasing simplicity and increasing accuracy in predicting the real behaviour of
materials is not yet available. Despite the progress made in various theoret-
ical aspects, the number of realistic 3D examples calculated with the use of
a full set of slip systems in a framework of gradient plasticity of crystals is
still rather limited. All this indicates a current need for developing a verifi-
able gradient-enhanced crystal plasticity model based on a possibly small set of
physically based assumptions needed to capture the slip gradient effects in single
crystals.

The following major question is addressed here: how to include the effect of
slip-rate gradients in a possibly simple way such that the internal length scale
possesses a physical meaning. Accordingly, rather than to begin with comparing
the specific features of the existing gradient theories of crystal plasticity – such
reviews can be found elsewhere, cf. [41–45] – in the introduction we concentrate
on the concepts that are most fundamental for handling the above question. In
particular, we wish to incorporate certain basic phenomenological laws estab-
lished in materials science in the field of plasticity of metals.

In the phenomenological description of dislocation strengthening during plas-
tic flow, a fundamental role is played by the average density of dislocations, ρ.
Starting from the famous relationship τ ∝ √

ρ for the flow stress τ , cf. Tay-
lor [46], average dislocation density ρ is omnipresent in the materials science
literature on plasticity of metals; cf. excellent reviews by Kocks and Meck-
ing [47], Sauzay and Kubin [48] and Niewczas [49]. It is thus natural and
justified to incorporate ρ into a gradient-enhanced plasticity theory as a mea-
surable material parameter of primary importance. This is also desirable in view
of a length scale 1/

√
ρ provided by ρ and related to the commonly observed

phenomenon of dislocation patterning.
The concept of geometrically necessary dislocations (GNDs) in the descrip-

tion of nonuniform plastic slip in crystalline solids is classical and well estab-
lished, following Nye [50]. Dislocation density ρ, understood as a total disloca-
tion density in a representative volume element of a crystal, is frequently split,
following [6, 29, 51], into the sum of the contribution ρS of the statistically stored
dislocations (SSDs, independent of strain gradients) and the average density ρG

of GNDs (dependent on plastic strain gradients). That well-known procedure
is adopted in the present work, however, with the distinction that the above
split is applied incrementally, to the dislocation density rates, ρ̇ = ρ̇S + ρ̇G. This
modification, apparently minor at first glance, will be shown to lead, perhaps
unexpectedly, to another internal length scale directly linked to the mean free
path of dislocations.
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Consequently, it is the average density rate ρ̇G of GNDs that represents the
basic constitutive variable to be determined from slip-rate gradients, rather than
an accumulated density ρG. Nye’s dislocation density tensor [50] will also be
considered in the rate form, generalized to finite deformations as follows. Recall
that a general analytic tool to characterize GNDs is the curl of either the elastic
or plastic part of total distortion, which measures the field incompatibility of
elastic or plastic deformation, respectively; see Kroner [52] for an exposition of
the background. In the literature dealing with finite deformation, the curl was
included in the theory in different versions. Cermelli and Gurtin [53] discussed
that matter in historical perspective and proposed the dislocation density tensor
G that acts in the intermediate configuration. Gurtin [54] has shown that in
the rate framework being of special interest here, it is the plastically convected
derivative of G that is a linear function of slip-rate gradients projected on the
respective slip planes and can be split further into a sum of terms involving
the rates of densities of edge and screw dislocations on individual slip-systems.
However, working with multiple GND densities and associated multiple length
scales is too complicated in the minimal gradient-enhanced framework aimed at
here, and it will rather be viewed as a possible extension. A relation between the
plastically convected derivative of G and an average density rate ρ̇G of GNDs
being generated by slip-rate gradients is not immediate and will be discussed in
the sequel.

When studying the recent literature, one might get an impression that it is
obligatory to describe the GND effect using a non-standard balance law. How-
ever, such a non-standard balance law is not a law of nature, as its particular
form depends on the mathematical definition of the adopted class of continua.
In particular, the expression for external power can be extended to virtual varia-
tions of scalar, vector or tensor variables, defining in that way different classes of
continua corresponding to different (quasi-)balance laws [55, 56]. The dilemma
mentioned by Mughrabi [57] and concerning the choice between various theo-
ries it still actual. Moreover, the choice of a particular class of continua is to be
accompanied by a separate choice of constitutive assumptions [55, 56].

While more complex approaches developed in the literature can be expected
to describe the hardening behaviour of metal crystals with better accuracy, the
present aim is to capture the essence of the physical effect of slip-rate gradi-
ents in crystal plasticity in a possibly simple way. Therefore, we will proceed
in the framework of classical continua, characterized by the external power in
the standard form involving no virtual variations other than the usual variations
of spatial displacements. The corresponding balance equations take the classical
form, independently of constitutive assumptions that involve slip-rate gradients.
Accordingly, there is no necessity here to introduce higher-order stresses or mi-
croforce balance equations. Moreover, in the present approach the split of the
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stress power into dissipative and energetic parts remains arbitrary, subject to
the second law of thermodynamics only, since it does not affect the incremen-
tal hardening rule for isothermal monotonic deformations, similarly as in the
non-gradient case, cf. [58, Remark 2].

It will become clear later that the present approach differs in essential aspects
from the other available models of gradient plasticity of single crystals considered
as classical continua. For instance, in the approach developed in [59, 60], the
physical background is similar, but the final incremental hardening rule is of
conventional type. It is clearly distinct from our non-conventional hardening
rule with an extra term involving the current slip-rate gradients and an explicit
intrinsic length scale. In the approaches by Nix and Gao and others [6, 18],
another intrinsic length scale appears in the dislocation-strengthening formula
at an accumulated slip-gradient rather than at its rate counterpart as here, and
in consequence it has a substantially different value.

All attempts are made below to reduce the number of free parameters in
the final computational model as much as possible. The preceding theoretical
framework is developed in a more general way and is based on certain constitutive
functions left arbitrary to enhance its applicability. The resulting new extension
of the Hill and Rice [3] classical theory of single crystal plasticity to slip-rate
gradient effects requires no extra parameters in comparison to the non-gradient
theory. It will be shown that the derived internal length scale is expressed through
τ and standard parameters of a non-gradient hardening law and, remarkably,
possesses physical interpretation which is frequently missing in other gradient-
plasticity models.

That minimal model requires, of course, a verification whether the simplifica-
tions involved are not too severe. Since there is no freedom to adjust the internal
length scale, the primary challenge is to verify the predicted size effect by com-
parison with experimental observations. This will be done in Part II [61] of this
paper by comparing the results of 3D finite element simulations of spherical in-
dentation in a Cu single crystal with the experimentally observed indentation
size effect.

2. A minimal gradient-enhancement of classical crystal plasticity

2.1. Main concept

The following question is addressed: given the conventional incremental
strain-hardening law in the local continuum theory of crystal plasticity at con-
stant temperature [3, 4],

(2.1) τ̇ c
α =

∑

β

hαβ γ̇β if ∇γ̇α ≡ 0,
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how to include the effect of slip-rate gradients ∇γ̇α in a possibly simple way
such that the internal length scale possesses a physical meaning. In spite of
simplicity of the subsequent reasoning, its major outcome has not been found in
the literature.

In formula (2.1), τ c
α is the current critical value of the resolved shear stress τα

on the α-th slip system, whose rate τ̇ c
α is understood as the one-sided material

time derivative in the forward sense. The rate τ̇ c
α is linearly related by the current

hardening moduli matrix (hαβ) to the rate γ̇β of average shear (called slip) on
any slip-system β in the representative volume element under consideration.
The slip-rates are taken here to be non-negative, γ̇β ≥ 0, so that slipping on
crystallographically the same slip-system but in opposite directions is treated as
activity of two distinct slip systems (the back-stress effect is thus not excluded).

Without loss of generality, also when ∇γ̇α 6= 0, the multiplicative split of hαβ

and the effective slip-rate γ̇ can be introduced,

(2.2) hαβ = θ qαβ , γ̇ =
∑

α

γ̇α,

where θ is an isotropic hardening modulus, and dimensionless parameters qαβ

describe unequal hardening of distinct slip systems. Accordingly, an isotropic
part τ of critical resolved shear stresses τ c

α is defined incrementally as follows

(2.3) τ̇ = θγ̇ if ∇γ̇α ≡ 0.

When all rate-dependent or viscous effects are disregarded then τ is identified
with the flow stress, the common concept in the materials science literature.
However, only in the special case of fully isotropic hardening when all qαβ = 1,
we would have hαβ = θ and τ c

α = τ .
The basic phenomenological law of metal plasticity in materials science is

a one-to-one relationship between the flow stress τ and average dislocation den-
sity ρ, taken most frequently in the surprisingly universal although approximate
form τ ∝ √

ρ [46]. Instead of assuming the Taylor square-root formula from the
outset, we begin with a more general relationship for the isotropic flow stress in
the form

(2.4) τ = τρ(ρ),

where ρ is the total density of all dislocations of a given Burgers vector modu-
lus b, in an average sense for the representative volume element of the crystal.
Mathematically, τρ is a continuous and (possibly piecewise) differentiable real
function, otherwise arbitrary at the moment, of a single scalar argument ρ as an
internal state variable. To retain desirable generality of the framework, we prefer
to keep at the moment the freedom to choose a specific function τρ for fitting
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experimental data, for instance, for including an initial yield stress τ0 > 0, an
imperfect square-root relation, or a non-constant strengthening coefficient in the
Taylor formula, cf. [48, 62].

To include the GND density effect in a simple way, in the approach initiated
by Ashby [51] and developed by Fleck et al. [29], Nix and Gao [6] and others,
ρ is split into contributions of statistically stored and geometrically necessary
dislocations. In distinction to studies of direct relationships between τ and ρ,
the attention is focused here on the rate form of equation (2.4). Accordingly, ρ̇ is
split into the sum of two rate-contributions: ρ̇S as the rate of average density of
statistically stored dislocations (SSDs, independent of slip-rate gradients) and
ρ̇G as the rate of average density of geometrically necessary dislocations (GNDs,
induced by slip-rate gradients), viz.

(2.5) ρ̇ = ρ̇S + ρ̇G.

This is motivated by the fact that the basic constitutive equations of crystal
plasticity are anyway formulated in the rate form, cf. formula (2.1), in order to
be applicable along any straining path. Moreover, dislocation density rates are
related to the shear rates on slip-systems that in the finite-deformation setting
have more clear meaning as constitutive rate-variables than their time integrals,
cf. [2, 54].

For SSD and GND density rates, ρ̇S and ρ̇G, we adopt the well-known for-
mulae. The rate of net storage of SSDs is taken to be the same as in the absence
of GNDs when ρ̇ = ρ̇S, viz.

(2.6) ρ̇S =
1

bλ
γ̇ − ρ̇r.

In formula (2.6) (see Kocks and Mecking [47] for a detailed discussion), b is
the Burgers vector modulus, λ the dislocation mean free path, and ρ̇r the dy-
namic recovery term. The first term describes multiplication and the second
annihilation of SSDs. The inverse of λ is classically defined as the mean length
of dislocation stored (dL) per area swept (dA) in differential form [47]

(2.7)
1

λ
=

dL

dA
.

The rate of creation of GNDs does not depend explicitly on γ̇ but depends
on gradients of γ̇α-s through

(2.8) ρ̇G =
1

b
χ̇.

In formula (2.8), which represents the rate form of that in the basic papers by
Ashby [51], Fleck et al. [29] and Nix and Gao [6], χ̇ is the ‘effective’ plastic
strain gradient rate, to be discussed in more detail later on.
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By combining Eqs. (2.5), (2.6) and (2.8), we have

(2.9) ρ̇ =
1

bλ
(γ̇ + λχ̇ − bλρ̇r).

Consequently, denoting a current value of the derivative of function τρ by τ ′
ρ =

(dτρ/dρ)(ρ), taking time derivative of Eq. (2.4) and substituting Eq. (2.9), we
obtain

(2.10) τ̇ = τ ′
ρρ̇ =

τ ′
ρ

bλ
(γ̇ + λχ̇ − bλρ̇r).

Suppose first that the dislocation annihilation term ρ̇r can be neglected; its
contribution will be discussed in Subsection 2.2. Then, from Eq. (2.9) and for
consistency of formula (2.10) with Eq. (2.3) in the non-gradient case χ̇ = 0, it
follows that

(2.11) ρ̇ =
1

bλ
(γ̇ + λχ̇) and θ =

τ ′
ρ

bλ
if ρ̇r = 0.

Finally, by combining equations (2.10) and (2.11), we arrive at the isotropic part
of an incremental hardening law in the form

(2.12) τ̇ = θγ̇ +
τ ′
ρ

b
χ̇ = θ (γ̇ + ℓχ̇) with ℓ =

τ ′
ρ

bθ
for θ 6= 0

and

(2.13) ℓ = λ if ρ̇r = 0.

Note that the effective multiplier θℓ = τ ′
ρ/b of χ̇ is a state-dependent quantity

defined directly by the constitutive function τρ in Eq. (2.4).

Remark 1. It turns out that the dislocation mean free path λ, which is a stan-
dard length-scale parameter in the physically-based dislocation theory of plastic-
ity without macroscopic strain gradients, coincides with the internal length-scale
ℓ in the gradient-enhanced hardening rate equation for the isotropic flow stress, if
the dislocation annihilation term ρ̇r vanishes. This remarkable conclusion drawn
from an arbitrary relationship between the flow stress and total dislocation den-
sity has not been found in the literature.

As the most important inspiration and specification of Eq. (2.4), the classical
Taylor formula [46]

(2.14) τ = aµb
√

ρ



466 H. Petryk, S. Stupkiewicz

is used, where the strengthening coefficient a along with elastic shear modulus
µ and Burgers vector modulus b are treated as known constants for a given
material. From formulae (2.14) and (2.11)2 we obtain the following specifications

(2.15) τ ′
ρ =

aµb

2
√

ρ
=

(aµb)2

2τ
=

τ

2ρ

and

(2.16) λ =
τ

2ρbθ
=

aµ

2θ
√

ρ
=

a2µ2b

2τθ
if ρ̇r = 0 and θ 6= 0.

The above expression for the dislocation mean free path λ is well known in
the dislocation theory of crystal plasticity, cf. Kocks and Mecking [47, Eqs.
(11) and (12)]. Here, on account of equality (2.13), the same expression (2.16)
appears in the different context as the formula for the internal length scale ℓ
in the isotropic part (2.12) of an incremental hardening law of the gradient-
enhanced crystal plasticity.

Remark 2. ℓ = λ as above differs from the characteristic internal length scale ℓ̂
derived also from the Taylor formula (2.14) but interpreted as follows [6, 57]

(2.17)
τ

τS
=

√
1 + ℓ̂χ, ℓ̂ =

1

bρS
= b

(
aµ

τS

)2

, ρG =
χ

b
,

where χ is the ‘effective’ plastic strain gradient and τS is the flow stress related
to the dislocation density ρS in the absence of GNDs. The difference is due to
the fact that ℓ̂ was defined using accumulated quantities while ℓ appears here
in the rate equation (2.12). Clearly, the difference is substantial since 2θ 6= τS

except at a single point on a hardening curve.

2.2. Effect of dislocation annihilation

Suppose now that the SSD annihilation term ρ̇r in Eq. (2.6) is not disregarded
but taken proportional to γ̇,

(2.18) ρ̇r = krγ̇, kr =
2yc

b
ρ,

where kr ≥ 0 is a state-dependent parameter. This is consistent with the present
treatment of the critical resolved shear stresses as rate-independent, which im-
plies that a time-dependent part of ρ̇r does not affect τ̇ and is thus disregarded
here. The second formula (2.18) follows Essmann and Mughrabi [63], with the
simplification that we do not distinguish at the moment (however, see Subsec-
tion 2.4) between different types of dislocations and treat yc as a mean critical
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distance of dislocation annihilation. From Eq. (2.9) and for consistency of for-
mula (2.10) with Eq. (2.3) in the non-gradient case χ̇ = 0, we obtain

(2.19) ρ̇ =
1

bλ

(
(1 − krbλ)γ̇ + λχ̇

)
and θ =

τ ′
ρ

bλ
(1 − krbλ)

in place of formulae (2.11). From Eq. (2.10) it follows that the key equation
(2.12) remains unchanged, while ℓ is no longer identified with λ as in Eq. (2.13)
but is now linked to λ through

(2.20) ℓ =
λ

1 − krbλ
if ρ̇r = krγ̇.

Formulae (2.19) on substituting relation (2.20) take the simple form

(2.21) ρ̇ =
1

bℓ
(γ̇ + ℓχ̇) and θ =

τ ′
ρ

bℓ
.

Equation (2.20) means that ℓ is related to the mean free path of dislocations
λ by a state-dependent multiplier that is not less than unity and can be much
larger. In fact, straightforward transformation of formula (2.20) yields

(2.22)
ℓ

λ
= 1 + krbℓ.

The last term, krbℓ, is clearly state-dependent and non-negative for ℓ > 0 so that
ℓ/λ ≥ 1.

Let us analyze relationship (2.22) further when function τρ is specified by the
Taylor formula (2.14). Then expression (2.16) no longer holds for λ but is valid
instead for ℓ in Eq. (2.12), that is

(2.23) ℓ =
a2µ2

2τθ
b.

Remarkably, the derived internal length scale ℓ in the gradient-enhanced hard-
ening law (2.12) is thus expressed through standard quantities that appear in a
non-gradient hardening law.

On substituting relationships (2.14), (2.18) and (2.23) into (2.22), we obtain

(2.24)
ℓ

λ
= 1 +

yc

b

τ

θ
.

Hence, ℓ/λ can be much larger than unity if θ decreases below τ . Nevertheless,
an explicit relation between ℓ and λ is maintained.

Substitution of Eq. (2.23) in the above formula yields

(2.25) λ =
a2µ2b2

2(bθ + ycτ)τ
.
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Thus, if strain hardening saturates at large strains so that ρ → ρ∞ < ∞, τ →
τ∞ < ∞ and θ → 0, λ approaches asymptotically a finite value,

(2.26) λ → λ∞ =
a2µ2b2

2ycτ2
∞

=
1

2ycρ∞
as θ → 0 at large plastic strain,

while ℓ after initial decreasing at small and moderate strain (when τθ increases)
can eventually increase at large plastic strain (when τθ decreases).

In turn, at small strain and stress at the beginning of ‘stage II’ when θ ≈
θ0 = const and τ ≪ θ0b/yc, we have

(2.27) λ ≈ ℓ ≈ a2µ2

2τθ0
b =

aµ

2θ0
√

ρ
if θ ≈ θ0 ≫ yc

b
τ at small plastic strain,

which is a well-known relationship for the mean free path of dislocations in
stage II [47]. For typical values of a ≈ 0.3 and θ0 ≈ µ/200, we obtain that
λ ≈ ℓ decreases initially with increasing dislocation density according to an
approximate relationship λ ≈ ℓ ≈ 30/

√
ρ. The well-acknowledged similitude

relation for the characteristic wavelength d (or average cell size) of dislocation
patterns, assuming the strengthening relation (2.14), reads

(2.28) d =
Kµb

τ
=

K

a
√

ρ
,

where the similitude coefficient K for fcc metals is found in the literature to be
a constant within a range of K = 5÷10 ; see Sauzay and Kubin [48] for a review.
In particular, for K ≈ 9 and a ≈ 0.3 the resulting relation is d ≈ 30/

√
ρ which is

fully analogous to the relation obtained above for λ ≈ ℓ in terms of
√

ρ. Hence,
we conclude that in ‘stage II’ at small plastic strain and sufficiently small stress,
in the circumstances specified above, ℓ ≈ λ approximates also the characteristic
wavelength d (or average cell size) of dislocation patterns, i.e. ℓ ≈ λ ≈ d. It
is beyond the scope of this paper to discuss in more detail a general relation
between d and λ and ℓ at large strains.

Remark 3. The above discussion admits a conclusion that the internal length
scale ℓ in the rate form (2.12) of the isotropic part of a gradient-enhanced crystal
plasticity theory can be given a direct physical meaning using the Taylor formula
(2.14) in the range of small plastic strain and sufficiently low dislocation density
so that dislocation annihilation is negligible. In that range, the value of ℓ ∝ 1/

√
ρ

is estimated to be close to the dislocation mean free path λ and correlated with
the characteristic wavelength d ∝ 1/

√
ρ of dislocation patterns.
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2.3. Anisotropic hardening

We now turn back to a generic anisotropic hardening law (2.1) which was
our starting point. In the non-gradient case, formula (2.1) can be rearranged by
using formulae (2.2) and the isotropic part (2.3) of the incremental hardening
law as follows

τ̇ c
α = θ

∑

β

qαβ γ̇β = θγ̇ + θ
∑

β

(qαβ − 1)γ̇β(2.29)

= τ̇ + θ
∑

β

(qαβ − 1)γ̇β if χ̇ = 0.

The gradient-enhancement of the above formula is the simplest if restricted to
the isotropic part τ̇ of τ̇ c

α only, with the formulae (2.4) and (2.12) applied as
they stand. Then, substitution of equation (2.12) into the last expression for τ̇ c

α

in Eq. (2.29) yields

(2.30) τ̇ c
α = θ (γ̇ + ℓχ̇) + θ

∑

β

(qαβ − 1)γ̇β = θ
(∑

β

qαβ γ̇β + ℓχ̇
)
.

Finally, by using formula for ℓ from Eq. (2.12) we arrive at the minimal gradient-
enhancement of an anisotropic hardening law (2.1), in two alternative forms

(2.31) τ̇ c
α =

∑

β

hαβ γ̇β +
τ ′
ρ

b
χ̇ = θ

(∑

β

qαβ γ̇β + ℓχ̇
)

with

(2.32) ℓ =
τ ′
ρ

bθ
for θ 6= 0,

no matter whether the contribution of the dislocation annihilation term ρ̇r is
included or not.

Recall that ℓ is expressed by formula (2.23) if τρ is specified by the Taylor
formula (2.14). In this important specific case the effective multiplier θℓ = τ ′

ρ/b
of χ̇ in formula (2.31) becomes inversely proportional to τ with a constant coef-
ficient, independently of further specification of the hardening law discussed in
Section 2.5. Explicitly, Eq. (2.31) on substituting formula (2.14) reduces to

(2.33) τ̇ c
α =

∑

β

hαβ γ̇β +
a2µ2b

2τ
χ̇.

Remark 4. Formula (2.31) represents the minimal gradient-enhancement of
a conventional incremental hardening law (2.1) describing anisotropic hardening
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of a single crystal. It has been obtained by including GND effects in the isotropic
hardening part only. The internal length scale ℓ defined by Eq. (2.32) and spec-
ified by formula (2.23) is expressed through standard quantities that appear in
a non-gradient hardening law, so that no further assumption is needed to define
a characteristic length. The variable ℓ is related to the dislocation mean free
path λ by formula (2.24) and coincides with λ when the dislocation annihilation
term ρ̇r is disregarded. In the latter case ℓ has a physical meaning summarized
in Remark 3.

2.4. Extension to multiple densities of dislocations

One of possible extensions of the above minimal gradient-enhanced frame-
work of crystal plasticity is to begin with the Taylor formula (2.14) replaced with
its generalized form [64]

(2.34) τ c
α = µb

√∑

β

aαβρβ ,

where aαβ are parameters (e.g., constants) and ρα denotes the density of disloca-
tions associated with α-th slip system. Differences in parameters aαβ correspond
to different strength of classical types of junctions and can be estimated using
dedicated dislocation dynamics simulations, e.g., Madec et al. [65]. It is also
possible to distinguish between edge and screw dislocations by increasing the
number of β’s and adjusting the meaning of ρβ and aαβ accordingly.

Equations (2.5), (2.6), (2.18) and (2.8) can be replaced with their analogs
applied to dislocation accumulation on each slip system separately,

(2.35)
ρ̇α = ρ̇Sα + ρ̇Gα, ρ̇Sα =

1

bλα
γ̇α − ρ̇rα,

ρ̇rα =
2yα

b
ραγ̇α, ρ̇Gα =

1

b
χ̇α,

where λα is the mean free path of dislocations on α-th slip system,

(2.36)
1

λα
=

dLα

dAα
,

and χ̇α is the effective gradient of slip rate on the α-th slip system.
By combining Eqs. (2.35) it follows that

(2.37) ρ̇α =
1

bλα

(
(1 − 2yαραλα)γ̇α + λαχ̇α

)
.
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On taking time derivative of Eq. (2.34) with aαβ assumed constant and substi-
tuting Eqs. (2.37), we obtain

(2.38) τ̇ c
α =

µ2b2

2τ c
α

∑

β

aαβ ρ̇β =
µ2b

2τ c
α

∑

β

aαβ

(1 − 2yβρβλβ

λβ
γ̇β + χ̇β

)
.

Consistency of the above equation with Eq. (2.1) in the non-gradient case χ̇β ≡ 0
implies the following correspondences

(2.39) hαβ =
µ2b

2τ c
αℓβ

aαβ with ℓβ =
λβ

1 − 2yβρβλβ
.

It is worth noting that for aαβ = const as assumed above, hardening moduli
hαβ vary proportionally to the inverses of τ c

α and ℓβ , in analogy to the isotropic
counterpart (2.23).

Finally, by combining Eqs. (2.38) and (2.39), we obtain

(2.40) τ̇ c
α =

µ2b

2τ c
α

∑

β

aαβ

( 1

ℓβ
γ̇β + χ̇β

)
=
∑

β

hαβ(γ̇β + ℓβχ̇β).

The conclusions are to some extent analogous to those drawn after
Eqs. (2.12), (2.13) and (2.20). Dislocation mean free paths λβ , taken separately
for distinct slip systems, are length-scale parameters in the dislocation theory
of plasticity without macroscopic strain gradients. In the hardening rate equa-
tions (2.40) of gradient-enhanced crystal plasticity, they play themselves the role
of the internal length-scale parameters ℓβ if the dislocation annihilation terms
ρ̇rβ are neglected. If ρ̇rβ 6= 0 obey Eq. (2.35)3 then ℓβ is related to λβ by a
state-dependent multiplier dependent also on β. When χ̇β ≡ 0 then the local
hardening law (2.1) is obviously recovered in each case.

The gradient-enhanced hardening law (2.40) derived above can be maximally
simplified by reducing the GND contribution to that in Eq. (2.31). To do this,
on using the multiplicative split (2.2)1, the right-hand side expression (2.40) is
rewritten as follows

(2.41) τ̇ c
α = θ

∑

β

(qαβ γ̇β + qαβℓβχ̇β).

Latent-hardening coefficients qαβ are usually regarded to be not far from unity
(frequently, following Kocks [66], the diagonal terms are taken equal to 1 and
off-diagonal terms between 1 and 1.4), while differences between ℓβ ’s for differ-
ent slip systems are hardly accessible from experiment. This motivates a crude
simplification

(2.42) qαβℓβ ≈ ℓ.
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When the effective plastic strain gradient rate χ̇ is defined by

(2.43) χ̇ =
∑

β

χ̇β

then after substituting the simplification (2.42) into Eq. (2.40) we recover
Eq. (2.31)2 on another route.

Further extensions of the main concept elaborated above are left for future
investigations.

2.5. The master curve

Changes of hardening modulus θ along any deformation path, with or with-
out strain gradients, must somehow be determined. In the non-gradient case,
an isotropic hardening relationship is frequently prescribed as a stress-strain
relationship, viz.

(2.44) τ = τγ(γ) and θ = τ ′
γ(γ) if χ̇ ≡ 0,

where τγ is a given continuous real function and a prime denotes its derivative.
Typical examples of τγ include power-law or exponentially saturating strain-
hardening.

In the gradient-enhanced framework, the current values of τ and θ no longer
depend only on γ. Since τ has been assumed in Eq. (2.4) to depend solely on total
dislocation density ρ as a single internal state parameter, the current isotropic
hardening modulus θ, which is generally a function of state, can also be consid-
ered as a function of ρ. However, that function need not be specified directly,
rather, θ can be alternatively determined as a function of τ . In fact, in the ma-
terials science literature, without addressing the strain-gradient issue, it is quite
common to consider θ, or the product τθ, as a function of τ , cf. [47, 49]. Ac-
cordingly, as the ‘master curve’ for describing strain hardening we adopt the
relationship between θ and τ defined by a given constitutive function θτ , viz.

(2.45) θ = θτ (τ).

The formula (2.45) defines an indirect relationship between θ and ρ through
θ = θτ (τρ(ρ)) and, what is of primary importance here, is applicable both in the
absence or presence of slip-rate gradients. In the latter case, ρ, τ and θ depend
on the history of both γ̇ and χ̇.

Once the master curve is specified as above then the characteristic length ℓ
defined by formula (2.32) for given functions θτ and τρ becomes a function of
total dislocation density ρ, viz.

(2.46) ℓ = ℓ̃(ρ) =
τ ′
ρ(ρ)

b θτ (τρ(ρ))
.
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Consequently, for an invertible relationship between τ and ρ, the characteristic
length ℓ can be expressed as a function of τ .

In the non-gradient case, the simplest approximation of ‘stage III’ behaviour
is obtained by a linear decrease of θ with τ starting from some τ0, which is
described by

(2.47) θτ = θ0

(
1 − τ

τmax

)
, τ ≥ τ0 ≥ 0,

where τ0, θ0 and τmax are constant parameters. In the case of τ0 = 0 and χ̇ ≡ 0,
comparison with Eq. (2.44) leads to the Voce strain-hardening law:

(2.48) τγ = τmax

(
1 − exp

(
− θ0γ

τmax

))
if χ̇ ≡ 0.

In contrast to formula (2.48), formula (2.47) is applicable as it stands also if
χ̇ 6= 0. Hence, it is the formula (2.47) that is adopted in the calculations reported
in Part II.

When τρ is specified by the classical Taylor formula (2.14) and θτ by formula
(2.47) then from Eq. (2.23) we obtain an explicit relationship between ℓ and τ ,
viz.

(2.49) ℓ =
a2µ2b τmax

2θ0

1

(τmax − τ)τ
.

Finally, suppose for simplicity that qαβ are given constants (a standard as-
sumption is to take qαβ = 1 for β = α and qαβ = q ≥ 1 for β 6= α, although
according to Franciosi and Zaoui [67] up to five latent hardening parame-
ters may be required to describe physically different interactions between slip-
systems).

Knowledge of qαβ for given constitutive functions τρ and θτ closes the system
of governing equations – (2.2), (2.4), (2.31), (2.32), (2.45) – from which current
values of τ c

α can be determined for any given history of all γ̇α and χ̇ at arbitrarily
large deformation. If function τρ is specified by the Taylor formula (2.14) and
function θτ by the Voce-like hardening law (2.47) then the resulting computa-
tional gradient-enhanced model of crystal plasticity is defined by the reduced
system of governing equations – (2.2), (2.33), (2.47) – with a few material con-
stants, all of them having the standard meaning in non-gradient strain-hardening
laws.

It remains to define the effective slip-rate gradient χ̇ in terms of gradients of
slip-rates γ̇α.

2.6. Effective slip-rate gradient

To complete the above framework of gradient-enhanced crystal plasticity, we
need to define χ̇ that enters the hardening rate equation (2.31) as the ‘effective’
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plastic slip-rate gradient which induces the GND density rate (2.8). Since the
slip-rate gradient orthogonal to the respective slip plane corresponds to a com-
patible strain-rate field, it does not contribute to the actual GND density rate.
Therefore, the modulus |∇γ̇| of the gradient of effective slip-rate γ̇ is generally
not adequate as a candidate for χ̇, so that other choices are to be considered.

The concept of effective slip-rate gradient is discussed first in the framework of
the geometrically linear theory throughout the current Section 2.6; the extension
to the finite deformation framework is given later in Section 3.2. Recall that the
density of dislocations is understood in an average sense within a representative
volume element of the crystal, large enough for the effects of all dislocations
within it to be averaged. Nye’s [50] dislocation density tensor, denoted frequently
in the literature by bold α in the geometrically linear framework (not to be
confused with plain α used as a slip-system index), assigns to a unit normal n to
a lattice plane the net (resultant) Burgers vector Bn of geometrically necessary
dislocations piercing a unit area of the plane,

(2.50) Bn = αn.

It is important to recognize that the second-order tensor α does not incorporate
statistically stored dislocations as it ‘quantifies a special set of dislocations whose
geometric properties are not canceled by other dislocations in the crystal’ [8].

According to the continuum theory of defects (the background is presented
in historical perspective by Kroner [52]), α is a measure of incompatibility of
the plastic distortion field βp, and simultaneously of incompatibility of elastic
distortion field βe due to compatibility of the field of the total displacement
gradient ∇u,

(2.51) α = curl βp = −curl βe, ∇u = βe + βp.

When defining the curl operator, at the moment in the small strain formalism,
we adopt the following convention1

(2.52) curl βp = ǫjkl∂kβ
p
il ei ⊗ ej

in Cartesian components on an orthonormal basis ei , where ǫjkl denotes the
(Levi-Civita) permutation symbol, the summation convention is used, and ∂k

denotes the partial derivative with respect to spatial coordinate xk in the Eu-
clidean space. Consistency between the net Burgers vector in formula (2.50) and

1A note of caution: other conventions using a transpose or minus sign are also met in the
literature. The tensor notation is used where direct juxtaposition means simple contraction,
a central dot denotes double contraction in the sense A ·B = AijBij , ⊗ a dyadic product, and
× a vector product. A superimposed −1, T or −T over a tensor symbol denotes an inverse,
transpose or transposed inverse, respectively.
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that found from a circuit on a plane containing an incompatible field βp follows
by applying Stoke’s theorem and interpreting α as an average over a unit planar
area.

According to the standard theory of crystal plasticity, the rate of plastic
distortion associated with the α-th slip system reads β̇

p
α = γ̇αsα ⊗ mα, where

(sα,mα) is a fixed pair of orthogonal unit vectors that define the slip direction
and slip-plane normal, respectively, assumed unaffected by plastic distortion of
the material. On substituting β̇p =

∑
α β̇

p
α into Eqs. (2.51) and (2.52), the rate

of Nye’s tensor can be decomposed as follows:

(2.53) α̇ =
∑

α

sα ⊗ (∇γ̇α ×mα) = b
∑

α

ρ̇Gαsα ⊗ t̄α.

The last expression provides another interpretation of the former one and is
obtained by identifying t̄α with vector (∇γ̇α × mα) normalized to unit length.
The sense of t̄α can be chosen such that ρ̇Gα ≥ 0. Accordingly, ρ̇Gα is the
rate of increasing length, per unit volume, of non-redundant, straight lines of
geometrically necessary dislocations on the α-th slip system, of a given Burgers
vector magnitude b and a general direction t̄α lying within the respective slip
plane (t̄α · mα = 0, |t̄α| = 1). A more detailed analysis is omitted here; useful
relevant comments can be found in [8], in particular, on the indeterminacy of
GND solutions consistent with a given Nye dislocation density tensor.

In the search for a single, effective slip-rate gradient χ̇ to be substituted in
formula (2.8) for the average density rate of GNDs, we consider the following
inequalities

(2.54) |Ḃn| ≤ ‖α̇‖ ≤ b
∑

α

|ρ̇Gα|.

Here, ‖A‖ denotes the Euclidean norm of a second-order tensor A (or the Frobe-
nius norm of its matrix),

(2.55) ‖A‖ =
√

A · A = (tr(
T

AA))1/2.

The spectral norm of A denoted by ‖A‖2 is bounded from above by ‖A‖, hence
from Eq. (2.50) it follows that

(2.56) max
|n|=1

|Ḃn| = ‖α̇‖2 ≤ ‖α̇‖.

This implies the left-hand side inequality (2.54). The right-hand side inequality
(2.54) follows from equation (2.53)2 by using the triangle inequality,

(2.57)
∥∥∥
∑

α

ρ̇Gαsα ⊗ t̄α

∥∥∥ ≤
∑

α

|ρ̇Gα| ‖sα ⊗ t̄α‖ =
∑

α

|ρ̇Gα|,

on account of the assumed normalization |sα| = |t̄α| = 1.



476 H. Petryk, S. Stupkiewicz

The right-hand side expression (2.54), in view of the interpretation of ρ̇Gα

given above and in accord with Eq. (2.43), appears as a natural candidate for χ̇,
which is denoted by χ̇P. With the sign convention for t̄α such that ρ̇Gα ≥ 0, we
obtain

(2.58) χ̇P = b
∑

α

ρ̇Gα, ρ̇Gα ≥ 0, ρ̇G =
∑

α

ρ̇Gα.

However, the choice of χ̇P as an effective slip-rate gradient χ̇ to be substi-
tuted in formulae (2.8) and (2.9) has also some deficiencies. First, the value of χ̇P

need not be uniquely determined by α̇ alone. Second, χ̇P used as χ̇ in equation
(2.9) does not reflect the possibility that α̇ may induce additional annihilation
of existing SSDs. For example, some segments of existing dislocation loops (not
incorporated into α) may move away from the crystal region under considera-
tion, in order to provide the required net contribution to α̇ by some ρ̇Gα > 0,
accompanied with ρ̇Sα < 0 not accounted for in Eq. (2.6). Third, α̇ may corre-
spond to annihilation of some existing GNDs, so that the corresponding value
of some ρ̇Gα might be negative, in contrast to definition (2.58). Therefore, χ̇P

substituted in formulae (2.8) and (2.9) as an effective slip-rate gradient χ̇ is likely
to overestimate the actual rate of increase of average dislocation density.

In view of relations (2.54) and in the light of the above discussion, we propose
to complete the minimal gradient-enhancement of crystal plasticity in the small
strain framework by the simple definition

(2.59) χ̇ = ϕ(∇γ̇α) specified by ϕ(∇γ̇α) = ‖α̇‖ =
∥∥∥
∑

α

sα ⊗ (∇γ̇α ×mα)
∥∥∥

as the primary option for predominantly monotonic deformation processes. For
instance, in the monotonic plastic bending we have ‖α̇‖ = κ̇ and ρ̇G = κ̇/b,
where κ is the curvature due to plastic bending, in agreement with the well-
known formula for lattice curvature caused by creating a family of parallel edge
dislocations of strength b [51].

In cyclic deformation processes, reverse plastic bending may be caused either
by creation of new GNDs or by annihilation of existing ones, in addition to
SSD annihilation. A specific form of the free energy function, which was not
needed in the simple approach developed above, may be required to define the
gradient-induced back-stress effect after a strain-rate reversal. The extension of
the present approach to cyclic deformation processes is thus not immediate and
requires further work, going beyond the scope of this paper.

3. Finite deformation framework

The major physical reason for describing incremental kinematics of metal
single crystals using the finite-deformation framework is the phenomenon of mu-
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tual spin (called the plastic spin) of the material and the crystallographic lattice.
The plastic spin influences the incremental constitutive relationships in a non-
negligible manner when the current hardening moduli are of the order of the
current stress, irrespectively of whether the current strains are small or not. In
the geometrically exact treatment of finite deformation plasticity, such common
concepts like slip-rate, plastic strain-rate, resolved shear stress, unloading crite-
rion and normality flow rule require a precise analysis [3]. The classical concepts
are briefly recapitulated below in Section 3.1, followed by a discussion of the
effective plastic slip-rate gradient in Section 3.2. It is pointed out that in the
present minimal gradient-enhancement of classical crystal plasticity, in contrast
to the more refined theories, there is no need to introduce higher-order stresses
or balance laws other than in classical continua.

3.1. Classical continuum deformed plastically by multislip

We adopt the convention that slip-rates γ̇α ≥ 0 that represent incremental
plastic simple shears on the corresponding slip systems are referenced to the
undistorted crystallographic lattice at zero stress, in the so-called intermediate
local configuration. Consequently, γ̇α’s are invariant with respect to elastic dis-
tortion F∗ of the lattice. The collective effect Lp of plastic slip-rates γ̇α, which
defines the rate of accumulated plastic deformation gradient Fp, reads [2]

(3.1) Lp =
∑

α

γ̇α sα ⊗mα , Ḟp = LpFp,

where a fixed pair of orthogonal unit vectors (sα,mα) for the α-th slip system
defines the slip direction and slip-plane normal, respectively, in the stress-free
configuration of the crystallographic lattice, assumed undistorted by plastic slips.
As a consequence, the plastic flow is isochoric, detFp = 1. An average dislocation
density is taken per unit volume of the undistorted lattice. The skew part of Lp

is called the plastic spin.
The total isothermal deformation gradient, F, taken relative to a fixed stress-

free reference configuration of the material, includes Fp and F∗ in a multiplicative
manner [26], where F∗ is decomposed into the elastic stretch Ue and rotation
R∗ of the lattice, viz.

(3.2) F = F∗Fp, F∗ = R∗Ue, (Ue)2 = Ce =
T

F∗F∗.

Let S and S∗ denote the Piola stress tensors relative to the reference configu-
ration of the material and the intermediate local configuration, respectively, and
M the Mandel stress [68], related mutually and to the Cauchy stress σ through

(3.3) M =
T

F∗S∗, S∗ = S
T

FP, S
T

F = (detUe)σ.
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The total stress-power S · Ḟ, per unit volume in the reference configuration,
is decomposed accordingly into elastic (ẇe) and plastic (ẇp) parts,

(3.4) S · Ḟ = ẇe + ẇp, ẇe = S∗ · Ḟ∗, ẇp = M · Lp.

This is an identity that follows by combining the equations (3.1)2 , (3.2)1 and
(3.3)1,2.

Remark 5. It is advantageous for wider applicability of the present constitutive
framework to keep another common split of the stress-power into dissipative
and energetic parts arbitrary, subject to the second law of thermodynamics only,
similarly as in the non-gradient case, cf. [58, Remark 2]. That split can be left
unspecified as it does not influence the conventional strain-hardening law (2.1)
nor its gradient-enhancement (2.31). Physically based knowledge of dissipative
and energetic parts separately can be helpful in determining hardening moduli
hαβ themselves, however, it is not the subject of this paper. In the present
framework, only the evolution equations for τ c

α are affected by slip-rate gradients,
while τα are still defined in the classical manner recalled below.

The generalized resolved shear stress τα on the α-th slip-system (the Schmid
stresss) is defined such that ταγ̇α is precisely the rate of plastic working due to
slip on system α per unit volume in a stress-free configuration [3, 4]:

(3.5) τα = M · (sα ⊗ mα) = (detUe) σ · (F∗sα ⊗
−T

F∗mα), ẇp =
∑

α

ταγ̇α.

Since elastic compressibility is included, τα is interpreted as the resolved Kirch-
hoff stress τ = (detUe)σ rather than the resolved Cauchy stress σ. It can be
checked that the factor (detUe) in the definition (3.5) of τα is needed to avoid
inconsistency in sensitivity of the yield criterion τα = τ c

α at given τ c
α to an other-

wise purely elastic variation of volumetric strain. The difference between resolved
τ and resolved σ affects thus the loading/unloading criterion and also the nor-
mality flow rule, although only slightly for metals under ordinary pressures. The
definition (3.5) of τα is the only one that is precisely compatible with the nor-
mality flow rule in the sense of Hill and Rice [3] and Mandel [68], which can
be reformulated in the specific subgradient form as

(3.6) Lp ∈ ∂{M | τα ≤ τ c
α ∀α}

in the rate-independent case.

3.2. Effective slip-rate gradient

The basic equations from Section 2.6 are now reformulated in the finite defor-
mation framework. This is done following Cermelli and Gurtin [53] to much
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extent, noting the difference in the convention of defining the curl here as the
transpose of that in the reference. The dislocation density tensor, denoted now by
G, gives analogously the net Burgers vector B#

n of geometrically necessary dislo-
cations piercing a unit area of an undistorted lattice plane of a unit normal n#,
viz.

(3.7) B#

n = Gn#.

In the finite deformation framework adopted, both B#

n and n# are referenced
to the undistorted crystallographic lattice considered in the intermediate local
configuration. Accordingly, by constructing the Burgers circuit either in the ref-
erence or current configuration of the material, and transforming the resulting
Burgers vector by pushing forward or pulling back, respectively, to the interme-
diate local configuration, in place of Eq. (2.51) we obtain [53]

(3.8) G = Fp
T

CurlFp = (detF∗)
−1

F∗
T

curl
−1

F∗.

The transposed curl in the reference configuration of the material,
T

Curl, is defined
by

(3.9)
T

CurlFp = ǫjkl∂kF
p
il e

R
j ⊗ e

#

i

in analogy to Eq. (2.52). Here, a distinction is made between bases eR
j and

e
#

i in the reference and intermediate local configurations, respectively, put in
opposite order to that in Eq. (2.52) which implies the transpose. ∂k denotes now
the partial derivative with respect to material coordinate Xk in the Euclidean
reference space. A similar definition (omitted here) holds for the transposed curl
in the current configuration.

A straightforward rate Ġ of G in the finite deformation framework can be
non-zero even if all slip-rate gradients vanish at the current instant. Therefore,
as the finite-deformation counterpart to formula (2.53), we adopt the following
expression

(3.10)
⋄

G =
∑

α

sα ⊗ (∇#γ̇α × mα), ∇#γ̇α =
−T

Fp ∇γ̇α.

Here, ∇#γ̇α is obtained from the reference gradient ∇γ̇α by pushing it forward to
the intermediate local configuration. As shown by Cermelli and Gurtin [53],
⋄

G equals the plastically convected (Oldroyd) derivative of the dislocation density
tensor G, viz.

(3.11)
⋄

G = Ġ − LpG −G
T

Lp = Fp ∂

∂t

(
−1

FpG
−T

Fp

)
T

Fp.
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Expression (3.10) is independent of the current value of G, and evidently is not
affected by a part of ∇#γ̇α parallel to mα, i.e. normal to the respective slip

plane. Hence, by analogy to the rate form of Eq. (2.50),
⋄

Gn# represents the
incremental net Burgers vector associated with GNDs being induced by in-plane
gradients of slip-rates, irrespectively of the existing dislocation structure that

does not influence the definition (3.10) of
⋄

G.
The effective slip-rate gradient χ̇ is defined in the finite deformation frame-

work, by analogy to the former expression (2.59) at small strain, as follows

(3.12) χ̇ = ‖
⋄

G‖ =
∥∥∥
∑

α

sα ⊗ (∇#γ̇α ×mα)
∥∥∥.

This definition can be modified by specifying another suitable state dependent
function ϕ of slip-rate gradients,

(3.13) χ̇ = ϕ(∇γ̇α).

In view of the discussion presented in Section 2.6, definition (3.12) is adopted here
as the primary option for predominantly monotonic deformation processes. As
already mentioned, the extension of the present approach to cyclic deformation
processes is not immediate and is not treated in the present paper.

3.3. Summary of the proposed gradient-enhancement of classical crystal plasticity

The proposed gradient-enhancement of the classical crystal plasticity theory
is summarized in Box I. Once the Taylor formula (2.14) is adopted, the model
takes a particularly simple form. The crucial (and non-standard) elements are
the effective slip-rate gradient χ̇, the characteristic length ℓ, and the enhanced
evolution law for the isotropic part τ of the critical resolved shear stresses.

Box I: Governing equations of the gradient-enhanced anisotropic hardening

law for a single crystal.

Effective slip rate γ̇ =
P

α
γ̇α

Effective slip-rate gradient χ̇ = ϕ(∇γ̇α) =
‚

‚

P

α sα ⊗ (∇#γ̇α × mα)
‚

‚

Voce-type hardening θ = θτ (τ) = θ0

“

1 − τ

τmax

”

Characteristic length ℓ =
τ ′

ρ

bθ
=

a2µ2b

2τθ
Isotropic part of critical resolved shear stresses τ̇ = θ (γ̇ + ℓχ̇)

Anisotropic hardening law τ̇ c
α = θ

`
P

β qαβ γ̇β + ℓχ̇
´

Remark 6. The Taylor formula (2.14) can be replaced by an alternative re-
lationship between ρ and τ , specified by a different function τ = τρ(ρ). Then,
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in general, the dislocation density ρ, rather than τ , would be an independent
variable to be integrated according to Eq. (2.21). However, one could also return
to τ as an independent variable by using an inverse function of τρ.

Remark 7. The Voce-type hardening law (2.47) can be replaced by any suitable
hardening law θ = θτ (τ) that specifies the isotropic hardening modulus θ as
a function of the isotropic part τ of the critical resolved shear stresses.

Remark 8. The specific right-hand expression for χ̇ can be replaced by another
suitable function χ̇ = ϕ(∇γ̇α) of slip-rate gradients. The small-strain model is
obtained simply by redefining the effective slip-rate gradient χ̇ by χ̇ = ‖α̇‖, cf.
Eq. (2.59), while the other formulae remain unaltered.

The critical resolved shear stresses τ c
α governed by the resulting gradient-

enhanced anisotropic hardening law (possibly in an extended version (2.40)2)
can be combined with virtually any crystal plasticity model, including a higher-
order gradient model for more refined analysis or regularization purposes. In the
present version, the derived gradient-enhanced incremental hardening law (2.31)
introduces, through definition (3.13), slip-rate gradients ∇γ̇α into the standard
set of equations governing the rate-boundary value problem of crystal plasticity.

4. Conclusion

A new framework of gradient-enhanced plasticity of metal single crystals
at arbitrary deformation has been developed. The equations of the proposed
incremental anisotropic hardening law for a single crystal have been summa-
rized in Box I. The key equation (2.31) represents an extremely simple gradient-
enhancement of the conventional incremental strain-hardening law (2.1). It can
hardly be simplified further, hence the adjective ‘minimal’ is used. In essence,
only the evolution equation for the isotropic part τ of the critical resolved shear
stresses τ c

α is postulated to be affected by an average GND density rate in-
duced by slip-rate gradients, without changing the remaining classical continuum
framework. Moreover, the derived internal length scale ℓ is expressed through τ
and standard parameters of a non-gradient hardening law, so that no further
assumption is needed to define a characteristic length.

It has been shown that this internal length scale is closely linked to the mean
free path of dislocations, a standard length-scale parameter in the physically-
based dislocation theory of plasticity without macroscopic strain gradients. In
fact, these two characteristic lengths coincide in the absence of the dislocation
annihilation term. In Remark 3 the circumstances have been summarized in
which the present internal length scale ℓ possesses a direct physical interpretation
that is frequently missing in other gradient-plasticity models.



482 H. Petryk, S. Stupkiewicz

The model has been implemented in a finite element environment and applied
to three-dimensional simulations of fcc single crystals. The results presented in
Part II [61] of this paper show that the experimentally observed indentation
size effect in a Cu single crystal is captured correctly in spite of the absence
of any adjustable length-scale parameter in the proposed framework. Therefore,
it is believed that a step has been made towards a simple reference model of
gradient-enhanced crystal plasticity that might provide a benchmark for more
refined approaches.
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