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The symmetry issue of the interaction matrix between multiple slip-systems in
the theory of crystal plasticity at finite deformation is revisited. By appealing to
possibly non-uniform distribution of slip-system activity in a representative space-
time element of a crystal, symmetry of the slip-system interaction matrix for the
representative element is derived under assumptions that have a physical meaning.
This conclusion refers to active slip-systems only. Accordingly, for any given hardening
law, a new symmetrization rule is proposed that is restricted to active slip-systems
and leaves the latent hardening of inactive slip-systems unchanged. Advantages of the
proposal in comparison with full symmetrization are illustrated by a simple example
of uniaxial tension.
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1. Introduction

The constitutive framework for a metal crystal undergoing plastic defor-
mation by shearing on multiple crystallographic slip-systems is a classical topic.
A rigorous finite-deformation theory of plastically deforming crystals has been
established by R. Hill and J. R. Rice [1–3], and subsequently applied and
extended by many authors. Comprehensive reviews are available, cf. [4–8]. An
overview of recent extensions to strain-gradient and size effects – which are not
addressed here – can be found in [8, 9].

In any version of the crystal plasticity theory, an adequate description of
slip-system interactive hardening plays a central role. It affects strongly the
stress-strain characteristics and represents a long-standing and vital problem.
There exists a vast literature on experimental investigations of hardening of
metal single crystals, cf. the surveys in [5, 6, 10] and the references therein.

The manner of incorporating experimental observations into the theoretical
description represents itself a problem. We address here the question of possible
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dependence of the instantaneous slip-system hardening moduli matrix on the
current set of active slip-systems. We do it in the framework of the classical
finite-deformation theory of single crystal plasticity, intentionally disregarding
other effects (like non-Schmid or strain-gradient effects). In particular, the issue
of symmetrization of the slip-system interaction matrix, (gKL), is revisited. Com-
ponents of this matrix specify the relationship, at a given strain-rate, between
a shear-rate on the L-th slip-system and a rate of the K-th yield function. The
latter one is defined as the difference between the actual (τK) and critical (τ cr

K )
values of the generalized, resolved shear stress on the K-th system. Frequently,
a symmetric matrix of physical hardening moduli is assumed in the evolution
equation for τ cr

K . Then, the geometric effect of rotation of the material with re-
spect to the crystallographic lattice on the rate of τK renders the matrix (gKL)
non-symmetric in general, cf. [4].

There are specific advantages of having the matrix (gKL) symmetric as it leads
to a variational structure of the incremental problem, cf. [11, 6, 12]. Recognizing
such advantages, attempts were made in the past to symmetrize the matrix (gKL)
in advance by adjusting the hardening matrix appropriately [13, 4]. That pro-
cedure requires latent hardening of inactive slip-systems to be affected by terms
proportional to the actual stress. Such extra terms have not found a common
acceptance in the literature. For instance, in the last years the symmetriza-
tion of the slip-system interaction matrix was addressed only occasionally, e.g.
in [14].

The considerations in this paper may lead to re-assessment of the postulate
of symmetry of the slip-system interaction matrix in a representative space-
time element of a crystal. The lack of symmetry of the interaction matrix (gKL)
mentioned above is a consequence of geometric interaction between the slip-
systems at a material point and at a time instant as assumed in earlier papers. In
that treatment, active slip-systems are identified with simultaneous and spatially
uniform plastic shearing in a homogeneous and uniformly deforming crystal.
However, slip-system activity represents a macroscopic idealization of the real
effect of motion of a large number of individual dislocations, the motion that
is strongly non-uniform both in space and time. Therefore, what is called an
instantaneous slip at a material point, must be understood in an averaged sense
adopted for a certain representative element of a crystal, representative both
in space and time. The assumption of uniform activity of slip-systems within
such a four-dimensional representative element, from which the conclusion about
non-symmetry of the interaction matrix is drawn, may be an oversimplification.
This may be especially true if a constitutive law for that element is to be used
for a grain in a mean-field homogenization schemes for a polycrystal. If this
uniformity assumption is abandoned then geometric interactions between slip-
systems, and thus the conclusion about non-symmetry of the effective matrix of
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their interaction in the representative element, are to be revisited, which is done
in this paper.

Such considerations lead to a novel and milder version of symmetrization of
the slip-system interaction matrix (gKL), namely, restricted to its subset that
corresponds to active slip-systems only. In Sec. 3, such symmetry is studied with
special reference to the incremental behaviour of a crystal with non-uniform
distribution of slip-system activity, within a representative volume element or
a representative time interval. In Sec. 4, a new selective symmetrization rule is
proposed that is restricted to active slip-systems and therefore does not affect
latent hardening of inactive slip-systems. Essential differences between conse-
quences of applying the previous full symmetrization of matrix (gKL) and the
proposed selective symmetrization are illustrated in Sec. 5 by an example of
simulation of a uniaxial tension test.

2. Constitutive framework

We apply the classical rate-independent theory of elastic-plastic crystals at
finite deformation developed in [1–3]. The formulation of the theory as given
later in [4, 5] is commonly known, therefore only a brief account is given below.
We begin with quoting in Subsec. 2.1 and 2.2 some basic relationships of the
finite-strain crystal plasticity from the papers cited above. The relationships
provided in a transformed form in Subsec. 2.3 are found to be more convenient
for discussing the symmetry issue of slip-system interactions. The essence of
a novel proposal is in formula (2.19) specified further in Sec. 4.

The following notation is used. Bold-face letters denote vectors (in R3) or
second-order tensors, and doublestruck capitals like L stand for fourth-order ten-
sors. Direct juxtaposition of two tensors denotes simple contraction, a central dot
means double contraction, and the symbol ⊗ denotes a tensor product. A su-
perimposed −1, T or −T over a tensor symbol denotes an inverse, transpose or
transposed inverse, respectively. Occasionally, components on a fixed orthonor-
mal basis are used which are denoted by lower case Latin subscripts with the
summation convention adopted for repeated subscripts (e.g., A·B = AijBij). No
implicit summation is used for repeated upper case Latin subscripts that denote
slip-system indices.

2.1. Kinematics

Consider a material point that, in a more refined scale, is viewed as a rep-
resentative volume element of a metal crystal deformed plastically by shearing
on a number N of slip-systems. It is assumed that the plastic slips leave the
crystallographic lattice at a material point unchanged. The lattice deformation
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gradient, taken relative to a fixed, local, stress-free reference configuration of the
lattice, is denoted by F∗; it encompasses both (arbitrarily large) rotations and
(typically small) elastic strains of the lattice.

The reference configuration of the material is, for convenience, identified with
some stress-free configuration. The plastic slip enforces the material to flow
through the lattice, so that the coincidence of the reference configurations of
the material and lattice is only momentary in general.

Multiplicative decomposition of the deformation gradient F taken relative to
the fixed (stress-free) reference configuration yields

(2.1) F = F∗Fp, detFp = 1, detF∗ ≡ J∗ > 0,

where Fp is the plastic deformation gradient from the reference configuration to
a locally unstressed, intermediate configuration. The plastic deformation due to
activity of multiple slip-systems is described incrementally as follows:

(2.2) Ḟp
−1

Fp =
∑

K

sK

◦
γK, sK = mK ⊗ nK, mK · nK = 0.

The material time derivative (rate) is denoted by a superimposed dot. The plastic

multiplier
◦
γK represents the rate of plastic simple shear on the K-th slip-system

defined by a pair of orthogonal unit vectors, mK – the slip direction and nK –
the slip-plane normal, both in the stress-free configuration of the lattice. A circle
rather than a dot over γK is used to indicate that

◦
γK itself is not identified with

the rate of any internal state variable. On using F∗ = F
−1

Fp and

(2.3) Ḟ∗ = Ḟ
−1

Fp − F
−1

FpḞp
−1

Fp,

in the current configuration we obtain

(2.4) Ḟ∗
−1

F∗ = Ḟ
−1

F −
∑

K

s∗K
◦
γK, s∗K = F∗sK

−1

F∗.

The terms above can be classically decomposed into symmetric and antisymmet-
ric (skew) parts, denoted by sym( ) and skew( ), respectively.

2.2. Constitutive relationships

The basic rate-independent rule of slip-system activity reads

(2.5)
◦
γK ≥ 0, fK ≤ 0, fK

◦
γK = 0 (no sum over K),
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where fK is the yield function for K-th slip-system, defined by

(2.6) fK = τK − τ cr
K .

τK denotes the (generalized) resolved shear stress on the K-th slip-system, and
τ cr

K is its current critical value determined from a hardening rule with a moduli
matrix (h∗KL), cf. Subsec. 2.4 below. In accord with the normality flow rule, τK

is defined as the projection of the (symmetric) Kirchhoff stress τ , taken with
respect to the stress-free configuration,

τ = J∗σ, (σ = σT = Cauchy stress),

on the dyad s∗K defined in Eq. (2.4)1),

(2.7) τK = τ · s∗K.

The set of assumptions is completed by introducing the elastic constitutive law
for the lattice. It can be written down in various equivalent versions; for instance,
in the frequently used, objective form in the current configuration,

(2.8)
∇
τ = L

∗ · d if all
◦
γK ≡ 0,

which in the case of purely elastic straining relates the Zaremba-Jaumann flux
of Kirchhoff stress τ to the Eulerian strain-rate d by a diagonally symmetric
fourth-order tensor L

∗2), where

∇
τ = τ̇ + τw −wτ ,

w = skew(Ḟ
−1

F),

d = sym(Ḟ
−1

F).

The resulting set of constitutive rate-equations and inequalities for an elastic-
plastic crystal with multiple slip-systems, is widely known and is summarized in
Table 1 for convenience. However, most of these equations will not be used in
this paper since equivalent expressions given in Subsec. 2.3 are found to be more
convenient for the present purposes.

1)For metals under ordinary pressures, the elastic strains (but not rotations) of the crys-
tallographic lattice are negligible, and τK differs only slightly from the classical Schmid stress
defined as the projection of the Cauchy stress on a normalized dyad ∝ s∗K .

2)If other stress-rate or strain-rate measures are used, then the elastic moduli tensor L
∗ is

to be modified accordingly, cf. [11].



292 H. Petryk, M. Kursa

Table 1. Summary of constitutive rate-equations and inequalities for an
elastic-plastic crystal with multiple slip-systems.

Consistency conditions

ḟK ≤ 0, ḟK

◦
γ

K
= 0 for K ∈ P = {L : fL = 0} ⊇ A = {L :

◦
γ

L
> 0}

Constitutive rate equations (with normality structure)

▽

τ = L
∗ · d −

P

K
λK

◦
γ

K
d =

−1

L
∗ ·

▽

τ +
P

K
µ

K

◦
γ

K

ḟK = λK · d −
P

L
gKL

◦
γ

L
ḟK = µ

K
·

▽

τ −
P

L
hKL

◦
γ

L

Yield-surface normals

λK = L
∗ · p∗

K + β∗
K

λK = L
∗ · µ

K
µ

K
= p∗

K +
−1

L
∗ · β∗

K

Slip-system interaction moduli

gKL = λK · p∗
L + h∗

KL = µK · λL + hKL

Auxiliary tensors

p∗
K = sym(s∗K) β∗

K = w∗
Kτ − τ w∗

K w∗
K = skew(s∗K)

2.3. Transformation to non-symmetric variables

The (unsymmetric) Piola stress3) tensor S, and the (symmetric) Kirchhoff
stress tensor τ , and their material time derivatives, are well-known to be related
through

(2.9) S = τ
−T

F , Ṡ = τ̇
−T

F − τ
−T

F ḞT
−T

F .

The values of fK and
◦
γL are assumed to be invariant under transformation to

the non-symmetric variables. Accordingly, the constitutive rate-equations from
Table 1 are transformed to their equivalent form

Ṡ = C
e · Ḟ −

∑

K

ΛK

◦
γK,(2.10)

ḟK = ΛK · Ḟ −
∑

L

gKL

◦
γL ,(2.11)

where

(2.12) ΛK = λK

−T

F

3)For brevity we call it the Piola stress rather than the first Piola–Kirchhoff stress, although
the latter name is more popular.
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is the yield-surface normal in F-space. The relationship between ΛK and λK is
easily demonstrated by substituting Ḟ = 0 into the equation for Ṡ, or alter-
natively,

◦
γL ≡ 0 into the equation for ḟK , cf. [15]. Note that the matrix (gKL)

remains invariant under transformation to the non-symmetric variables. Details
of the standard transformation from the elastic moduli tensor L∗ to Ce = ∂S/∂F
can be found in [11]; in indicial notation with the use of the Kronecker symbol δij ,
the known relationship reads

(2.13) FipFkqC
e
jplq = L∗

ijkl −
1

2
(τjlδik + τjkδil + τilδjk − τikδjl),

implying Ce
ijkl = Ce

klij on account of L∗
ijkl = L∗

klij. The expression for τK is
conveniently transformed by using other non-symmetric stress measures, the
Piola stress S∗ taken with respect to the intermediate configuration and the
Mandel stress M [16],

(2.14) M =
T

F∗τ
−T

F∗ =
T

F∗S∗, S∗ = τ
−T

F∗ = S
T

Fp.

The projection of M on a fixed dyad sK for the K-th slip-system in a stress-free
configuration coincides with the expression in Eq. (2.7), i.e.

(2.15) τK = M · sK = S∗ · F∗sK.

The rate of the (generalized) resolved shear stress τK thus reads

(2.16) τ̇K = Ṁ · sK = Ṡ∗ · F∗sK + S∗ · Ḟ∗sK.

Ṡ∗ is related to Ḟ∗ by the (diagonally-symmetric) elastic moduli tensor C
∗ =

∂S∗/∂F∗ taken relative to the intermediate configuration, of components given
by Eq. (2.13) when substituting Fp = I. Hence, after rearranging the for-
mula (2.16), we arrive at

(2.17) τ̇K = Ḟ∗ · C∗ · F∗sK + M ·
−1

F∗Ḟ∗sK .

This formula is particularly useful for deriving a concise expression for the geo-
metric interaction moduli discussed in Subsection 3.1.

2.4. Hardening moduli

The slip-system hardening moduli h∗KL relate the rate of critical resolved

shear stress τ cr
K on the K-th slip-system to shear-rate

◦
γL on the same (L = K)

and any other (L 6= K) slip-systems,

(2.18) τ̇ cr
K =

∑

L

h∗KL

◦
γL.
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Moduli h∗KL were commonly assumed to depend only on the prior history of
◦
γL’s,

that is, on the current state of the material. It meant the lack of dependence
of the hardening moduli on how many slip-systems are currently active. That
assumption is relaxed in this paper. In fact, there is a priori no reason why the
relationship between τ̇ cr

K and
◦
γL should be precisely the same for an active and

inactive K-th system.
A study of physical mechanisms of mutual interactions between mobile and

sessile dislocations is beyond the scope of this paper. The considerations be-
low are limited to the macroscopic level of a representative volume element
of a plastically deforming crystal, and also to incremental effects correspond-
ing to a representative time increment. Strain and stress refer to quantities
obtained upon appropriate averaging over a representative volume, and their
rates are understood in an average sense of a difference quotient taken with
respect to a representative time increment. Slip rates and hardening moduli
are analogously understood in an average sense for a representative space-time
domain.

We propose to split the slip-system hardening moduli in Eq. (2.18) into two
parts as follows:

(2.19) h∗KL = HKL + hAKL, hAKL = 0 if
◦
γK = 0.

Hardening moduli HKL depend on the prior history of
◦
γL’s, that is, on the current

state of the material, in a manner analogous to that assumed so far in the litera-
ture. Moduli HKL are usually taken to be symmetric in modelling, HKL = HLK ,
and we adopt that assumption here for simplicity, although arguments can be
found for non-symmetric HKL [17]. Moduli HKL are frequently assumed in the
following two-parameter form

(2.20) HKL =
(

q + (1 − q)δKL

)

h.

Here, parameter h depends on the history of slipping on all slip-systems in a man-
ner relevant to the actual material hardening, and δKL is the Kronecker symbol.
Parameter q denotes the ratio of latent hardening to self-hardening and is usually
taken from the range 1 ≤ q ≤ 1.4 as suggested by experiments [18]. If a more
accurate description of crystal hardening is needed then a more complex form
of HKL can be adopted, for instance, by introducing changes in the value of q
along a deformation path, cf. [19], or distinguishing five different latent hardening
mechanisms in the crystal, cf. [20]. For a more recent review of other proposals,
cf. [21, 22].

The novelty of the second term hAKL lies in its relevance to active slip-systems

(K,L ∈ A) only; note that we can take hAKL = 0 for
◦
γL = 0 without any loss
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of generality. hAKL can undergo discontinuous changes when the set A of active
slip-systems changes along a loading path, which is allowed here. In the next
section, arguments are given for taking hAKL such that the resulting subset (gAKL)
of the interaction matrix (gKL) for active slip-systems in a representative crystal
element is symmetric.

3. The symmetry issue of slip-system interaction moduli revisited

3.1. Geometric interaction between slip-systems

Crystallographic slipping on some L-th slip-system of a crystal influences the
rate of generalized resolved shear stress τK on the K-th slip-system. This inter-
action is of geometric nature as it is independent of physical latent hardening.
When examined for a homogeneous and uniformly deforming crystal, the moduli
of geometric interaction between slip-systems are expressed in the following form:

(3.1) ggeom
KL ≡ −∂τ̇K

∂
◦
γL

∣

∣

∣

∣

Ḟ

= F∗sK · C∗ · F∗sL + M · sLsK .

The Proof is immediate when using the expression (2.17) for τ̇K derived in Sub-

section 2.3. By differentiating it with respect to
◦
γL and substituting the formula

∂Ḟ∗/∂
◦
γL|Ḟ = −F∗sL implied by Eq. (2.4), the result (3.1) follows.

The matrix (ggeom
KL ) added to the hardening matrix (h∗KL) yields (gKL), viz.

(3.2) gKL = ggeom
KL + h∗KL,

which is easily verified by combining Eqs. (3.1), (2.18), (2.6) and (2.11).
The first term on the right-hand side in Eq. (3.1) is symmetric and the

second one is generally non-symmetric with respect to interchange of slip-system
indices K ↔ L. However, the latter term vanishes for coplanar (nK = nL) or
collinear (mK = ±mL) slip-systems, for which nL · mK = nK · mL = 0 and
sLsK = sKsL = 0, so that ggeom

KL = ggeom
LK in those cases.

The latter conclusion is less obvious when the geometric part is equivalently
expressed in the usual way as ggeom

KL = λK ·p∗
L, cf. Table 1. A direct transformation

of that expression to Eq. (3.1) is somewhat lengthy and is omitted here as the
derivation given above is more transparent. The authors were unable to find
formula (3.1) in the literature.

As a special case, consider a perfectly plastic crystal for which τ cr
K = const by

assumption. Then we have h∗KL ≡ 0 while geometric hardening/softening is still
present, gKL = ggeom

KL , i.e. the slip-system interaction moduli matrix is of purely
geometric type. The non-symmetry of ggeom

KL transmits thus unaltered to gKL.
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This conclusion is immediately extended to any hardening rule with a sym-
metric hardening moduli matrix, viz.

(3.3) gKL − gLK = M · (sLsK − sKsL) if h∗KL = h∗LK ,

which is the case when h∗KL is assumed to reduce to HKL = HLK.
However, the situation is different when the term hAKL in Eq. (2.19) is present

and not symmetric, so that the resultant matrix gKL may be symmetric whenever
restricted to the set of indices of active slip-systems. Certain arguments in favour
of that assumption are discussed below.

3.2. Symmetry of tangent stiffness moduli

The set of constitutive rate-equations and inequalities, see Table 1 or the
counterparts for non-symmetric variables in Subsection 2.3, need not have a
unique solution even if Ḟ is fully prescribed in a given state of the crystal.
A condition sufficient for existence and uniqueness of a solution

◦
γK ≥ 0 for

any given Ḟ is that all principal minors of the matrix (gKL) with K,L ∈ P
are positive, which is also necessary for the uniqueness if the potentially active
slip-systems (of indices from set P), are linearly independent [15].

Suppose that this condition sufficient for uniqueness is satisfied. The set of
indices of the active mechanisms (

◦
γK > 0) is denoted by A ⊆ P and is uniquely

determined by Ḟ, although not specified explicitly in general. Denote the respec-
tive principal submatrix of (gKL) with K,L ∈ A by (gAKL) and components of

its inverse by (gA)−1
KL. From the consistency condition ḟK = 0 if

◦
γK > 0 and

Eq. (2.11), we obtain

(3.4)
◦
γK =

∑

L∈A

(gA)−1
KL ΛL · Ḟ > 0 for K ∈ A, ◦

γK = 0 for K /∈ A,

so that, from Eq. (2.10), the following known formula is obtained:

(3.5) Ṡ = C
A · Ḟ, C

A = C
e −

∑

K,L∈A

(gA)−1
KL ΛK ⊗ ΛL.

From diagonal symmetry of the elastic moduli tensor, C
e =

T

C
e, we have

C
A −

T

C
A =

∑

K,L∈A

((gA)−1
LK − (gA)−1

KL)ΛK ⊗ΛL.

It follows that diagonal symmetry of the tangent stiffness moduli tensor C
A is

implied by symmetry of the slip-system interaction matrix (gAKL) restricted to

active slip-systems. Hence, for C
A =

T

C
A it is sufficient that

(3.6) gKL − gLK = 0 if
◦
γK > 0,

◦
γL > 0.
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If the active slip-systems are linearly independent then condition (3.6) can be

shown to be both sufficient and necessary for CA =
T

C
A.

The diagonal symmetry of the tangent stiffness moduli tensor is known to
be a convenient property, strictly related to the variational structure which is
useful analytically [11], and to the symmetry of a global tangent stiffness matrix
useful in numerical applications to a discretized problem. This motivated in the
past the attempts to symmetrize the slip-system interaction matrix (gKL), cf.
the references listed in Introduction. However, as demonstrated above, with the
same purpose in mind, it suffices to restrict symmetrization of the slip-system
interaction matrix to active slip-systems only.

3.3. Spatial averaging

In the derivation of Eq. (3.1), activity of both slip-systems K and L was
uniformly distributed within the whole crystal under consideration, or equiva-
lently, examined at the material point level. The geometric interaction matrix
takes another form if activity of slip-systems K and L takes place in different
subdomains of the crystal. Throughout this subsection, the crystal is no longer
assumed to be uniformly deforming, so that the approach is analogous to that
of micromechanics of heterogeneous materials.

Consider the macroscopic deformation gradient F̄ and macroscopic Piola
stress S̄ for a non-uniformly deforming crystal. Under the assumptions of con-
tinuity of displacements and equilibrium of stresses, F̄ and S̄ are defined as
unweighted averages of their local counterparts, F and S, respectively, over the
volume V of the crystal in the reference configuration [23]. Moreover, to treat ˙̄F

and ˙̄S as constitutive rate-variables for the crystal as a whole, we assume that
the Hill lemma holds [23]

(3.7)
△

S̄ · ˙̄F =
1

V

∫

V

△

S · Ḟ dV,

where both the superimposed dot and triangle denote rates which need not be
related to each other. Equality (3.7) requires the assumptions of continuity of
velocities and equilibrium of stress-rates within V , and imposes restrictions on
the boundary data (for instance, they may be periodic) over the crystal boundary.

The quantity called "Hill’s bilinear invariant" is of special interest [23]. On

using the constitutive relationship (2.10) for each solution pair (Ṡ, Ḟ) and (
△

F,
△

S)
separately, in a given material state it reads:

(3.8) Ṡ ·
△

F −
△

S · Ḟ = (
△

F · Ce · Ḟ − Ḟ · Ce ·
△

F) −
△

F ·
∑

L

ΛL

◦
γL + Ḟ ·

∑

K

ΛK

△

γK.
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The term in parentheses above vanishes on account of diagonal symmetry of the
elastic moduli tensor C

e.
From the constitutive relationship (2.11), we have

(3.9) ḟK

△

γK =

(

ΛK · Ḟ −
∑

L

gKL

◦
γL

)

△

γK

and analogously

(3.10)
△

fL

◦
γL =

(

ΛL ·
△

F −
∑

K

gLK

△

γK

)

◦
γL.

Consider two pairs (Ḟ,
◦
γK), (

△

F,
△

γL) sufficiently close to each other, so that
they correspond to the same set A of active slip-systems. Then, from the con-

sistency conditions ḟK = 0 and
△

fL = 0 if K,L ∈ A, it follows that

(3.11) ḟK

△

γK = 0 and
△

fL

◦
γL = 0 if K,L ∈ A.

Hence, from Eqs. (3.8)–(3.11) we obtain

(3.12) Ṡ ·
△

F −
△

S · Ḟ =
∑

K,L∈A

(gKL − gLK)
△

γK

◦
γL

if A = {K | ◦
γK > 0} = {L | △

γL > 0}.

Assuming the same structure of macroscopic constitutive relations for the non-
uniformly deforming crystal and for its material point, and in terms of the aver-
age slip-rates for the crystal,

△̄

γK =
1

V

∫

V

△

γK dV,
◦̄
γL =

1

V

∫

V

◦
γL dV,

we can analogously write

(3.13) ˙̄S ·
△

F̄ −
△

S̄ · ˙̄F =
∑

K,L∈Ā

(ḡKL − ḡLK)
△̄

γK

◦̄
γL

if Ā = {K | ◦̄
γK > 0} = {L | △̄

γL > 0}.

The overall (effective) slip-system interaction moduli matrix (ḡKL) remains
unspecified. However, from Hill’s lemma (3.7) applied to the left-hand products
in Eqs. (3.12) and (3.13), we have

˙̄S ·
△

F̄ −
△

S̄ · ˙̄F =
1

V

∫

V

(Ṡ ·
△

F −
△

S · Ḟ) dV.
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This provides the relationship, valid under the assumptions indicated in Eqs.
(3.12) and (3.13),

(3.14)
∑

K,L∈Ā

(ḡKL − ḡLK)
△̄

γK

◦̄
γL =

1

V

∫

V

∑

K,L∈A

(gKL − gLK)
△

γK

◦
γL dV

from which some conclusions about symmetry of (ḡKL) for active slip-systems
can be drawn.

The major conclusion is as follows: for symmetry of the interaction matrix
(ḡKL) between active slip-systems in a non-uniformly deforming crystal, it is
sufficient but not necessary that the local matrix (gKL) be symmetric. On the
contrary, for an arbitrary matrix (gKL), the integrand of the right-hand integral
in (3.14) vanishes identically if the crystal is split into domains in which only
single slip operates (or none), in general on different slip-systems in different
domains. Then, the left-hand expression in (3.14) must vanish identically, and it
is concluded that the following symmetry property holds:

(3.15) ḡKL − ḡLK = 0 if
△̄

γK > 0,
◦̄
γL > 0.

The argument can be extended by appealing to the special cases of double
slip discussed in Subsection 3.1, when h∗KL = h∗LK implies gKL = gLK on account
of vanishing of the terms in parentheses in Eq. (3.3). On substituting this into
the right-hand side integral in Eq. (3.14), analogously as above we arrive at the
following conclusion: property (3.15) is obtained if either no slip or a single slip
or double slip on coplanar or collinear system operates at each material point of
the crystal (provided h∗KL = h∗LK for that double slip).

It is emphasized that the derived symmetry of the macroscopic slip-system
interaction matrix (ḡKL) refers to the active slip-systems only, under the assump-
tions specified.

The above derivation of the symmetry property (3.15) with the explicit ref-
erence to non-uniform slip-system activity in a crystal appears to be new. It may
be added that the result obtained is not unexpected, in view of transmissibility
of the symmetry of the tangent stiffness moduli tensor (3.5), and of certain other
constitutive properties, from the micro to macro level, cf. [23, 24].

3.4. Time averaging

In the preceding subsection, the overall (effective) slip-system interaction
moduli for a crystal were examined in the case of crystal subdivision, at a single
instant of time, into subdomains of single slip or of double slip on coplanar or
collinear systems. The crystal was regarded as a representative volume element
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deforming non-uniformly in space, while variations of slip-rates and strain-rate
in time have not been analyzed.

In this subsection, we consider an opposite problem, namely, the rates are un-
derstood as unweighted averages over a representative time interval at a material
point, while variations of strain-rate in space are not analyzed.

Consider a short path in deformation-gradient space, accompanied by vari-
ations of slip-rates such that the constitutive rate equations and inequalities
given in Section 2 are satisfied at each instant along the path. The path length
∆θ =

∫ t+∆t
t θ̇ dt, where θ̇ = (Ḟ · Ḟ)1/2 +

∑

K

◦
γK, say, serves as a small parameter.

We examine the deformation work calculated up to the second-order terms with
respect to ∆θ. Following [25], we use the concept of the second-order work de-
fined on arbitrarily circuitous indirect paths whose complexity can be preserved
as their length tends to zero. On integrating over a time increment the expression
ẇ = S · Ḟ for the rate of deformation work per unit volume in the reference con-
figuration, substituting the constitutive relationships, and displaying the first-
and second-order terms only, we obtain (cf. [25], Eq. (3.9))

(3.16) ∆w = S · ∆F +
1

2
∆F · Ce · ∆F

−
∆θ
∫

0

∑

K,L

(ḟK + gKL

◦
γL)γK(θ) dθ + o((∆θ)2).

A superimposed dot (or circle in
◦
γL) denotes here the rate taken with respect to

θ as a time variable, ∆ indicates an increment such that ∆ψ =
∫ ∆θ
0 ψ̇ dθ, while

γK(θ) =
∫ θ
0

◦
γK(θ′) dθ′. The values of S, C

e and gKL, that are assumed to vary
continuously with θ, are taken at θ = 0. Integration by parts (of a half of the
second integrand) yields

(3.17) ∆w = S · ∆F +
1

2
∆F · C

e · ∆F − 1

2

∑

K,L

gKL∆γK∆γL −
∑

K

∆fK∆γK

−1

2

∆θ
∫

0

∑

K,L

(gKL − gLK)
◦
γLγK(θ) dθ + o((∆θ)2),

where the complementarity condition fK

◦
γK = 0 has been used, with the impli-

cation that fK = 0 at θ = 0 if ∆γK 6= 0 for ∆θ arbitrarily small.
The value of ∆w is path-dependent in general, although all the terms dis-

played, except the last integral, depend only on final increments ∆F and ∆γK.
Suppose that those final increments from a given state of the material are given,
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and search a path γK(θ) that minimizes the respective deformation work ∆w to
second order4), that is, maximizes the integral in Eq. (3.17). The correspond-
ing Euler–Lagrange equation of the calculus of variation implies that along the
extremal path we must have

(3.18) gKL − gLK = 0 if
◦
γK > 0,

◦
γL > 0.

It is pointed out that, due to the unilateral constraint
◦
γK ≥ 0, the extremum

condition gKL − gLK = 0 need not be satisfied if
◦
γK

◦
γL = 0 at each instant

along the minimum work path. For instance, consider an example of double
slip on systems K,L with arbitrary gKL − gLK > 0. A minimum of the second-
order work is readily attained on a path consisting of two consecutive segments
such that

◦
γK > 0,

◦
γL = 0 along the first one is followed by

◦
γK = 0,

◦
γL > 0

along the second one. In general, we can define a lower bound ∆wmin such that
∆wmin ≤ ∆w (to second order) for all paths.

In turn, consider a direct path along which, by definition, the rates Ḟ and
◦
γK

are constant or deviate from constant values by a distance of order of ∆θ. Then
the last two terms in Eq. (3.17) vanish (to second order), and substitution of the
constitutive law (2.10) in the incremental form shows that Eq. (3.17) reduces to
the usual formula [23, 25]

(3.19) ∆wdirect = S · ∆F +
1

2
∆S · ∆F + o((∆θ)2).

The final argument is as follows. If the rates are understood as averages
over a representative interval (0,∆θ), then formula (3.19) should be applicable
when adopting a certain representative matrix (gKL). If the symmetry condition

(3.18), with
◦
γM interpreted now as ∆γM/∆θ, does not hold for that matrix then,

as shown above, a lower value of ∆w can be attained on a non-direct path. There-
fore, if formula (3.19) is intended to correspond to the lower bound ∆wmin then
the symmetry condition (3.18) should be imposed on the representative matrix.
This provides an argument in favour of using a slip-system interaction matrix
that satisfies condition (3.18), which is based on a more physical hypothesis of
minimization of the incremental deformation work.

A similar conclusion has been drawn from a postulate of minimum incre-
mental dissipation attained on a direct path [12]. That derivation of Eq. (3.18)
required operations on a dissipation function of (unspecified) internal state vari-
ables and their rates. The present derivation of the symmetry condition (3.18)
from the postulate of minimum incremental deformation work is independent of
thermodynamic analysis.

4)It is assumed that the side condition fK(θ)
◦
γ

K
(θ) = 0 can be satisfied by suitably adjusting

the path F(θ).
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4. Selective symmetrization

Let us summarize the conclusions obtained above regarding symmetry of the
slip-system interaction matrix (gKL) for a representative space-time element of
a crystal. The geometric interaction part of that matrix, if determined by us-
ing the uniformity assumptions that lead to Eq. (3.1), disturbs the symmetry
of (gKL) in general. All the arguments presented in the preceding section in
favour of symmetry of a representative matrix (gKL) (of course, without prov-
ing it unconditionally) have referred to active slip-systems only, K,L ∈ A. To
obtain such symmetry, the non-symmetric part of geometric interaction ma-
trix (ggeom

KL ) may be compensated by adjusting the novel term hAKL in formula
(2.19) that takes into account the differences between mutual interactions of
active slip-systems and latent hardening of an inactive K-th slip-system. As
the value of hAKL is immaterial for L /∈ A, the compensating term refers to ac-
tive slip-systems only, K,L ∈ A, precisely as the arguments for symmetry of
gKL do.

The present proposal of the selective symmetrization of the slip-system in-
teraction moduli matrix, in case HKL = HLK

5), is to define the term hAKL as
follows:

(4.1) hAKL =

{

M ·
(

r sKsL − (1 − r) sLsK

)

if K,L ∈ A,
0 otherwise,

where r is a free scalar parameter. In general, r may depend on the actual state
of the material as well as on a pair (K,L) to which it applies. The simplest way
is to take r as a constant from the interval 0 ≤ r ≤ 1; for instance, r = 1

2 .
Note that self-hardening moduli are not influenced by the proposed selective
symmetrization since hAKK ≡ 0 on account of sKsK = 0.

On using relationships (2.14)1 and (2.4)2, the expression for hAKL is given an
equivalent form,

(4.2) M ·
(

r sKsL − (1 − r) sLsK

)

= τ ·
(

r s∗Ks∗L − (1 − r) s∗Ls
∗
K

)

.

The expressions for gKL, following Eqs. (3.2), (2.19), (3.1) and (4.1), are now
summarized as follows:

gKL = ggeom
KL +HKL + hAKL, HKL = HLK ,

gKL = ggeom
KL +HKL if K /∈ A,

5)The selective symmetrization can be easily extended to non-symmetric HKL by adding to
hA

KL another term (rHLK − (1 − r)HKL) for K, L ∈ A, or by symmetrizing analogously only
the sum (ggeom

KL + HKL). The essence of the selective symmetrization is again in restricting it
to the set of active slip-systems.
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gKL = F∗sK · C∗ · F∗sL +HKL + rM ·
(

sKsL + sLsK

)

if K,L ∈ A,
gKL = gLK if K,L ∈ A.

In the special case r = 1
2 we have hAKL = −hALK, and the selective symmetrization

reduces simply to replacing the subset (gAKL) = (gKL)|K,L∈A of an original slip-
system interaction moduli matrix (gKL) by its symmetric part 1

2(gAKL + gALK). In
spite of formal resemblance, the effect is substantially different from the P.A.N.
rule [4] where the matrix gKL was symmetrized without any restriction placed
on (K,L). In result, the P.A.N. rule has affected latent hardening of inactive
slip-systems in contrast to the present proposal.

The procedure of exploiting the selective symmetrization rule in a computa-
tional algorithm will be discussed in a separate paper.

5. Example: effect of symmetrization rule on simulation

of uniaxial tension

A simple example of uniaxial tension of an f.c.c. crystal is used to illustrate
the differences between the proposed selective symmetrization of the slip-system
interaction moduli matrix (gKL), restricted to the set of active slip-systems, and
the earlier proposals to symmetrize the matrix (gKL) without this restriction. The
hardening moduli matrix is assumed in the form (2.20). Hardening parameter h

is taken to depend on γ =
∫

∑

K

◦
γK dt through h(γ) = h0

(h0 γ
n τ0

+ 1
)n−1

as in [4],
where we use n = 0.16, and the latent hardening ratio q = 1.4. Other parameters
correspond to those adopted in [26] for Cu single crystal: the initial plasticity
parameters are h0 = 180 MPa, τ0 = 16 MPa, standard elasticity moduli for
cubic symmetry are CE

11 = 170 GPa, CE
12 = 124 GPa, CE

44 = 75 GPa, and the
tensile axis is oriented initially along the [2 3 6] direction.

The material response has been simulated by using three symmetrization
rules:

(i) The present selective symmetrization rule, with r = 1
2 ,

(5.1) h∗KL =

{

HKL +
1

2
M ·

(

sKsL − sLsK

)

if K,L ∈ A,
HKL otherwise.

(ii) The P.A.N. symmetrization rule [4]

(5.2) h∗KL = HKL +
1

2
(p∗

K · β∗
L − p∗

L · β∗
K) for all K,L.

(iii) The H.S. symmetrization rule [13]

(5.3) h∗KL = H ′
KL + p∗

K · β∗
L for all K,L.
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Fig. 1. Simulation of uniaxial tension using the selective symmetrization rule: a) tensile stress-
strain curve, b) resolved τK (solid lines) and critical τ cr

K (dashed lines) shear stresses on systems
{b1, a2̄, c2̄}, c) cumulative shears on activated slip-systems, d) rotation of the tensile axis

with respect to the crystallographic lattice in the stereographic projection.

The symbols p∗
K and β∗

L are defined in Table 1; a difference between H ′
KL and

HKL is discussed below.
The results of simulation of the material response under uniaxial tension in

the above three cases are shown in Figs. 1–3, respectively. The stress-strain curves
are presented in Figs. 1a–3a, and changes of cumulative shears on activated slip-
systems are given in Figs. 1c–3c. The respective hardening or softening of relevant
slip-systems is shown in more detail in Figs. 1b–3b. The corresponding rotation
of the tensile axis with respect to the crystallographic lattice is visualized in
Figs. 1d–3d using the stereographic projection. The labeling of the relevant slip-
systems, planes and directions is as follows: b1 = (1̄1̄1)[011], a2̄ = (111)[1̄01],
c2̄ = (1̄11)[101].
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Early stages of plastic flow like stage I (easy glide) and a linear stage II are
disregarded in the example as they are inessential for activation of the conjugate
slip that takes place here later in the nonlinear regime, after overshooting the
symmetry line. Also any secondary slip accompanying the dominant slip in the
basic stereographic triangle is disregarded by the theory where latent hardening
is greater than self-hardening. These simplifications are independent of the sym-
metrization and do not affect the present comparison of the effects of different
symmetrization rules. It is worth mentioning that the solid line in Fig. 1a is sim-
ilar in shape to that obtained in [4] without symmetrization. The initial curves
up to true strain 0.27 are insensitive to the symmetrization since only a single
slip operates in this range. For the same reason, the material behaviour in this
range (and in the whole range in case (iii)) is independent of the value of q > 1.

In all cases, the primary slip-system activated is a2̄. Increase in the true
strain ε = ln(l/l0) and tensile Cauchy stress σ (Figs. 1a–3a) is associated with
rotation of the lattice and relative rotation of the tensile axis from the initial
orientation [2 3 6] marked as • in Figs. 1d–3d.

In case (i), activation of the conjugate slip-system b1 takes place after a cer-
tain overshoot of the lattice symmetry line [001]–[1̄11] by the tensile direction
and causes a change in the crystallographic lattice rotation. Subsequently, the
tensile direction goes backwards to the line [001]–[1̄11] and towards the lattice
direction [1̄12]. The onset of the second stage of the deformation process, when
two slip-systems {b1, a2̄} become active, is associated with discontinuous change
of slope of the hardening curves. The effect of adopting different values of pa-
rameter r is only illustrated in Fig. 1a, while the remaining results shown have
been obtained for r = 1/2. Activation of slip-system b1 is explained in Fig. 1b
and starts at the point where the solid curve of resolved shear stress τb1 reaches
the dashed curve of critical resolved shear stress τ cr

b1 . The resolved (τa2̄) and crit-
ical (τ cr

a2̄
) shear stress curves for the primary slip-system a2̄ overlap in the whole

plastic range of the deformation process calculated.
In case (ii), shortly after activating the conjugate slip-system b1, the third

stage of the deformation process starts with sudden decrease of the stress σ,
Fig. 2a. The sudden change in the material response results from unloading of
both slip-systems {b1, a2̄} and activation of slip-system c2̄, Fig. 2c. Activation
of system c2̄ causes an untypical rotation of the tensile axis with respect to the
lattice, cf. Fig. 2d, which is experimentally not observed in such circumstances.
The reason for the activation of the slip-system c2̄ lies in the softening of critical
resolved shear stress τ cr

c2̄ on the inactive slip-system c2̄ that is induced by the
P.A.N. rule, Fig. 2b. In result, the resolved shear stress τc2̄ reaches its critical
value τ cr

c2̄ at ε = 0.442.
In case (iii), the stress-strain curve depends on how the moduli H ′

KL in for-
mula (5.3) are defined. If a straightforward substitution H ′

KL = HKL is used
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Fig. 2. Simulation of uniaxial tension using the P.A.N. symmetrization rule. The description
as in Fig. 1.

then tensile stress σ increases initially, but as deformation and lattice rotation
develop, a significant softening is generated, Fig. 3a, although only the primary
slip-system a2̄ remains active. The reason for this behaviour, at a first glance
unexpected, lies in the presence of a negative self-hardening term p∗

a2̄
· β∗

a2̄
in

formula (5.3). The use of H ′
KL = h yields the same result since q > 1 has no

effect in this case.
Therefore, it is more reasonable to adjust H ′

KL such that the stress-strain
curve coincides with those obtained in cases (i) and (ii) in the range of activity of
the single slip-system a2̄. Moreover, in the ‘simple theory’ proposed by Havner
and Shalaby [13], only one parameter is used, say H ′

KL = h′. We adopt this
and, to adjust the stress-strain curve as mentioned above, take h′ = h−p∗

a2̄
·β∗

a2̄
.

This change in moduli H ′
KL corresponds to the change of the stress-strain

curve shown in Fig. 3a, while Figs. 3c and 3d are unaffected by that change.
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Fig. 3. Simulation of uniaxial tension using the H.S. symmetrization rule. The description as
in Fig. 1; moduli H ′

KL are discussed in the text.

The geometrical terms in the H.S. rule have significantly different effects on
critical resolved shear stresses τ cr

K on different slip-systems, which can be seen in
Fig. 3b. During the whole deformation process examined only one a2̄ slip-system
is active, Fig. 3c, also far beyond overshooting the symmetry line [001]–[1̄11]. The
deformation proceeds without changes in the tendency of lattice rotation, Fig. 3d,
and with increasing hardening rate, Fig. 3a and 3b. The H.S. rule in this case
does not predict activation of a conjugate slip-system even after considerable
overshooting, which is not in accord with experimental evidence6).

6)We have also simulated the uniaxial tension test by using the symmetrization rule pro-
posed more recently in [14] with β = 1/2. Initially the material behaviour is similar to that
shown in Fig. 3, and next activation of the slip-system c2̄ is predicted, which is also not satis-
factory.
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To summarize, the proposed selective symmetrization rule removes the draw-
backs observed in the present modelling of uniaxial tension of a single crys-
tal at finite plastic deformation that are induced by geometric terms in the
P.A.N. [4] and H.S. [13] rules of full symmetrization of the slip-system interac-
tion matrix (gKL).

The above example is, of course, insufficient to draw a conclusion that the
proposed selective symmetrization does not contradict experimental observations
in general. We have deliberately avoided here any quantitative comparison with
existing rich experimental data for uniaxial tension tests of different metals, as
this would be a matter of curve fitting. It is fully possible that for a number of
tests from a big collection discussed so far, cf. [6], satisfactory predictions are
obtained by other approaches. Nevertheless, the above example is sufficient to
conclude that the selective symmetrization, restricted to the set of currently ac-
tive slip-systems, allows us to avoid certain undesired features introduced into the
model by symmetrization of the entire matrix (gKL). In particular, the proposed
symmetrization eliminates (by definition) artificial latent hardening or softening
of inactive slip-systems that is introduced by terms proportional to stress in the
full symmetrization rules.

6. Conclusion

We have re-examined the symmetry issue of the slip-system interaction ma-
trix in the theory of crystal plasticity at finite deformation. It has been shown
that partial symmetrization of the representative matrix can be supported by
physically plausible reasoning, although it requires certain specific assumptions
given in Section 3. The key point is that this finding refers only to the submatrix
of interaction between the active slip-systems in the representative space-time
element of a crystal, and not to the entire interaction matrix for all slip-systems.

In accord with this observation, a new selective symmetrization rule has been
proposed that is restricted to active slip-systems only. The latent hardening of in-
active slip-systems, specified by any physical hardening law, remains unaffected.

In comparison to the earlier proposals of unrestricted symmetrization of the
interaction matrix, no extra stress-dependent hardening or softening of inactive
slip-systems is introduced here. The illustrative simulation of uniaxial tension
test has revealed that this is advantageous as it avoids undesired effects met when
applying the full symmetrization. Further work on examining other consequences
of the present proposal is in progress.
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