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A proposition of an energy-based hypothesis of material effort for isotropic materials ex-
hibiting strength-differential (SD) effect, pressure-sensitivity and Lode angle dependence is dis-
cussed. It is a special case of a general hypothesis proposed by the authors in [11] for anisotropic
bodies, based on Burzyński’s concept of influence functions [2] and Rychlewski’s concept
of elastic energy decomposition [16]. General condition of the convexity of the yield surface
is introduced, and its derivation is given in the second part of the paper. Limit condition is
specified for Inconel 718 alloy, referring to the experimental results published by Iyer and
Lissenden [7].

1. Introduction

1.1. Motivation

In recent years, the number of new materials (e.g. composites, modern al-
loys) exhibiting certain uncommon properties – such as low elastic symmetry,
pressure sensitivity, Lode angle dependence, strength differential effect – still
increases and they become more and more commonly used. Furthermore, the
precision of the measurement tools and accuracy of mathematical or numerical
models used for the description of industrial processes is still improved, so some
of the mentioned phenomena, which for decades have been considered negli-
gible, now seem to be necessary to be involved in the mechanical analysis of
the considered processes. Classical yield criteria, which are still commonly used
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both in elastic and plastic analysis (as limit conditions or plastic potentials in
case of associated flow rule), cannot deal with those specific features of modern
materials in a satisfactory way.
Many propositions of the yield criteria for anisotropic bodies were already

stated (e.g. Mises [10], Burzyński [2], Hill [4], Hoffman [5], Tsai-Wu [20],
Rychlewski [15], Theocaris [19] etc.), however some of them were poorly
motivated physically being just of purely mathematical nature [5] or having
only empirical character [19, 20]. Such approach enables one-to-one correlation
between the final values of the parameters of the criterion and the limit quan-
tities obtained from the experiment. Despite its great practical meaning, such
an approach makes no contribution to the research on the nature of material
effort. Furthermore, mathematical form of the criterion (arbitrary chosen by
author) often constrains it in such a way that it is not possible to account for
some of the phenomena mentioned above. In case of physically motivated limit
criteria by Burzyński [2] and Rychlewski [15], other problems occur. Strictly
energy-based limit condition by Rychlewski as a quadratic function of stress
cannot account for the strength differential. In case of Burzyński’s hypothesis,
some misstatements in the final formulation of the limit condition for anisotropic
solids were recently found and discussed in [18].

1.2. General proposition of a yield criterion for anisotropic
bodies exhibiting SD effect

In [11] the authors have introduced a new proposition of a limit condition for
anisotropic materials with asymmetric elastic range. It was directly motivated
by ideas of spectral decomposition of compliance tensor C and elastic energy
decompositions introduced by Rychlewski [15, 16] and the idea of stress state
dependent influence functions introduced by Burzyński [2], which enabled him
improvement of the classical Huber–Mises [6] condition so that it accounted
for the SD effect. It is stated that as a measure of material effort one can consider
the following combination:

(1.1) η1Φ(σ1) + ...+ ηχΦ(σχ), χ 6 6

such that:

(1.2)





T 2
sym = H1 ⊕ ...⊕ Hχ

Hα⊥̇Hβ for α 6= β

⇒





σ = σ1 + ...+ σχ, σα ∈ Hα,

σα • σβ = σα · (C · σβ) = 0 for α 6= β,

where ηα is a certain stress-state dependent function. To keep mutual indepen-
dence of the terms of the criterion, it is assumed that it depends only on the
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stress state component corresponding with the proper elastic energy density σα

(the projection of σ onto Hα)

(1.3) ηα = ηα(σα)

and that it is isotropic in its domain (subspace Hα), thus it can be expressed
only in terms of invariants of σα

(1.4) ηα(σα) = ηα (I1(σα); I2(σα); I3(σα)) .

More details can be found in [11].
Among all possible energetically orthogonal decompositions of the space of

symmetric second order tensors T 2
sym = H1 ⊕ . . .⊕ Hχ, the choice of the decom-

position into eigensubspaces of compliance tensor C is the best motivated both
physically (due to clear physical interpretation of those subspaces) and mathe-
matically (since it is the only decomposition of T 2

sym which is both orthogonal
and energetically orthogonal).

2. General limit condition for pressure-sensitive, Lode angle
dependent isotropic bodies exhibiting SD effect

Even in case of the simplest materials, namely those macroscopically homo-
geneous and isotropic, such as modern alloys, many classical yield criteria (i.e.
Huber–Mises [6, 9], Burzyński [2], Drucker–Prager [3] etc.) fail to de-
scribe them correctly either due to lack of pressure-sensitivity or the Lode angle
dependence. The special isotropic case of the yield criterion introduced above is
found suitable for accounting for the influence of both the pressure and Lode’s
angle.
From the spectral decomposition of isotropic compliance tensor we obtain

a one-dimensional subspace of spherical tensors (hydrostatic stresses) and five-
dimensional subspace of deviators (shears). Energy density is decomposed into
energy density of distortion Φf and energy density of volume change Φv. Yield
condition (1.1) can be rewritten in the following form:

(2.1) η̃v(I1(Aσ); I2(Aσ); I3(Aσ))Φv + η̃f (J1, J2, J3)Φf = 1,

where Aσ is the isotropic component of the stress tensor and J1, J2, J3 are
invariants of the stress tensor deviator. It is known that:

(2.2)

I1(Aσ) = 3p, I2(Aσ) = 3p2, I3(Aσ) = p3,

J1 = 0, J2 =
1

2
q2, J3 =

1

3
√
6
q3 cos(3θ),

Φv =
p2

2K
, Φf =

q2

4G
,
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where K is the Helmholtz bulk modulus, G is the Kirchhoff shear modulus, p is
the hydrostatic stress, q deviatoric component of stress and θ is the Lode angle
– they can be expressed in terms of stress state components in any coordinate
system as well as in principal stresses:

(2.3)

p =
1

3
(σ11+σ22+σ33) =

1

3
(σ1+σ2+σ3),

q =

√
1

3

[
(σ22−σ33)2+(σ33−σ11)2+(σ11−σ22)2+6(σ223+σ

2
31+σ

2
12)
]

=

√
1

3
[(σ2−σ3)2+(σ3−σ1)2+(σ1−σ2)2],

θ =
1

3
arccos

[
3
√
3

2

J3
(J2)3/2

]
.

Please note that the second invariants of the spherical and deviatoric part
of the stress tensor are proportional to the volumetric and distortional part of
the elastic energy density respectively. Since all invariants of the hydrostatic
component of the stress state depend on p, it is enough to state that ηv = ηv(p).
It is also clear that it is the third invariant of the stress tensor deviator which
makes the qualitative, not only quantitative, distinction between various modes
of shearing, so it is assumed that the influence function corresponding to the
distortional part of energy density depends only on Lode angle θ. Including
constant parameters (i.e. elastic moduli) in the influence functions, the limit
condition (1.1) can be finally obtained in the following form:

(2.4) ηv(p)p
2 + ηf (θ)q

2 = 1.

2.1. Influence functions

Many authors have been already considering various functions describing
the influence of pressure or Lode’s angle on the material effort. It seems that in
case of pressure influence function, the one proposed by Burzyński is one of the
most general – it enables description of various relations between hydrostatic
and deviatoric stresses – linear, paraboloidal, hyperboloidal and elliptical. It is
a two-parameter rational function of the following form:

(2.5) ηv(p) =

(
ω +

δ

p

)
.

There is a large variety of different functions describing the influence of the
Lode angle – valuable summary of propositions of Lode angle dependences was
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made by Bardet and published in [1]. Some other suggestions of the Lode angle
influence function were also presented in [12]:

• Two-parameter power function (Raniecki, Mróz [14])

ηf (θ) = [1 + α cos(3θ)]β .

• Two-parameter exponential function (Raniecki, Mróz [14])

ηf (θ) = 1 + α
[
1− e−β(1+cos(3θ))

]
.

• One-parameter trigonometric function (Lexcellent [8])

ηf (θ) = cos

[
1

3
arccos [1− α(1 − cos(3θ))]

]
.

• Two-parameter trigonometric function (Podgórski [13])

ηf (θ) =
1

cos(30◦ − β)
cos

[
1

3
arccos (α · cos(3θ))− β

]
.

It is often assumed that the Drucker’s postulates are true – as a consequence
of this assumption, the yield surface should be convex. Convexity condition for
the limit surface determined by yield condition (2.4) for arbitrary chosen form
of influence function was derived and will be published in the second part of the
current paper [17].

3. Limit criterion specification

An attempt to specify the limit condition referring to experimental data
available in the literature was made. A series of experiments performed by Iyer,
Lissenden [7] for Inconel 718 alloy was taken as the reference data. Analysis of
the results obtained by Iyer and Lissenden, both in experiments and numerical
simulation, lead to the choice of Burzyński’s pressure influence function with
ω = 0 (paraboloid yield surface) and slightly modified Podgórski’s Lode angle
influence function with α = 0.8, β = 30◦ – for details see [12]. The Levenberg–
Marquardt algorithm was used to find the values of the rest of parameters of the
criterion by optimal fitting the assumed surface to the twelve points obtained
from the experiments. The final form of the yield criterion was obtained as
follows:

(3.1)
q2

cos(30◦ − β)
cos

[
1

3
arccos [α · cos(3(θ − 90◦))]− β

]

+

(
ω +

δ

p

)
· p2 −H = 0,
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where α = 0.8, β = 30◦, δ = 215.95 MPa, ω = 0, H = 201670.46 MPa2. The plot
of the limit surface and its cross-sections at octahedral plane and Burzyński’s
plane [21] are given in Figs. 1–3. In the latter figure the cross-sections of the yield

Fig. 1. Yield surface given by Eq. (3.1).

Fig. 2. Lode angle dependence – cross-section of the yield surface given by (3.1) at
octahedral plane.
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Fig. 3. Pressure-sensitivity – cross-section of the yield surface given by (3.1) at Burzyński’s
plane. Straight lines denoted C, S and T determine uniaxial compression, shear and uniaxial

tensile stress states respectively.

surface (3.1) at Burzyński’s plane for two values of the Lode angle is presented
– θ = 0◦ + n · 60◦ (n ∈ N), which corresponds with uniaxial stress states, and
θ = 30◦ + n · 60◦ which corresponds with pure shears.

4. Summary

A new proposition of a limit condition for the pressure-sensitive isotropic and
homogeneous bodies exhibiting Lode’s angle dependency and strength differen-
tial effect was presented. The straightforward derivation of the discussed yield
criterion from the general idea of an energy-based limit condition for anisotropic
bodies with asymmetric elastic range introduced by authors in [11] was shown.
Some propositions of the pressure and Lode’s angle influence functions were
given. Condition for convexity of the yield surface corresponding with the dis-
cussed limit condition will be presented in the second part of the paper. Spec-
ification of the limit criterion for assumed influence functions referring to the
experimental data published in [7] was presented.
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