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A micromechanical scheme is developed for the analysis of elastic micro-strains
induced by local incompatibilities at the austenite-twinned martensite interface. The
aim of the paper is to estimate the elastic micro-strain energy which is an important
factor in the formation of microstructures during the martensitic transformation. The
finite deformation framework is applied, consistent with the crystallographic theory
of martensite, and full account is taken for elastic anisotropy of the phases. As an
example, the microstructures in the cubic-to-orthorhombic transformation in CuAlNi
shape memory alloy are analyzed by the finite element method for the assumed class
of zigzag shapes of the austenite-martensite interface at the micro-level. Finally, the
effect of the interphase boundary energy on the microstructure of the transition layer
is studied.

1. Introduction

Engineering materials at a suitable scale of observation are usually heteroge-
neous and thus characterized by some microstructure; often different microstruc-
tures can be observed in the same material at different scales of observation.
Consequently, the interfaces separating different elements of the microstructure
(grains, precipitates, twins, etc.) constitute a common feature of microstructured
materials. The related interfacial energies can be of different origin and are recog-
nized to be important factors affecting the properties of these materials as well as
the formation and evolution of microstructures. In particular, the characteristic
microstructural dimensions can be governed by the relations between different
kinds of interfacial and bulk energies. The behaviour of advanced materials can
be to much extent determined by the interfacial phenomena. This is, for exam-
ple, the case for nano-materials in which the role of interfacial energies increases
with decreasing grain size. Interfacial phenomena are also essential in materials
that undergo phase transformations.

This paper is concerned with martensitic microstructures in shape memory
alloys. The unusual effects, such as the shape memory effect and pseudoelastic-
ity, observed in these materials, are associated with martensitic phase transfor-
mations which can be induced either by changing temperature or by applied
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mechanical loading, see for example Otsuka and Wayman [16] and Bhat-
tacharya [3]. Martensitic transformation is a diffusionless phase transformation
between a high temperature, high symmetry parent phase and a low tempera-
ture, low symmetry product phase, called austenite and martensite, respectively.
Due to the change of symmetry the austenite can transform to several marten-

site variants which are crystallographically equivalent but rotated with respect
to each other.

A stress-free interface between austenite and a crystallographically perfect
single variant of martensite is usually not possible during progressive transfor-
mation due to the lack of kinematic compatibility between these phases at zero
stress (as discussed below). For this reason the martensitic transformation is
usually accompanied either by twinning (internally twinned martensites) or by
stacking faults (internally faulted martensites).

In the case of internally twinned martensites, studied in this paper, the
martensite appears as a fine mixture of two twin-related variants. The classical
description of the related microstructure at the austenite-martensite interface,
cf. Fig. 1, is provided by the phenomenological theory of martensitic transforma-

tion of Wechsler, Lieberman and Read [26], and Bowles and MacKenzie [4],
which later has been rigorously reformulated within the nonlinear thermoelastic-
ity theory by Ball and James [1]. The latter theory is called the crystallographic

theory of martensite. According to this theory, the requirement of displacement
continuity is applied at zero stress and implies that the deformation gradients
on both sides of the unstressed martensite-martensite interface (twinning plane)
and austenite-martensite interface (habit plane) are rank-one connected. Thus,
assuming that the elastic strains are equal to zero, the corresponding conditions
can be written, cf. Ball and James [1], in the form of the twinning equation,

(1.1) QUI − UJ = a ⊗ l,

and the habit plane equation,

(1.2) Q̂[λQUI − (1 − λ)UJ ] − I = b ⊗ m.

Here UI and UJ are the transformation stretch tensors of martensite variants
I and J , known from the crystallography of the transformation. The unknowns
are the twinning plane and habit plane normal vectors, respectively l and m,
the twinning shear vector a, the shape strain vector b, the twin fraction λ and
rotation tensors Q and Q̂. The solution method for equations (1.1) and (1.2)
can be found, for example, in Ball and James [1] and Bhattacharya [2].
The microstructures satisfying the twinning equation (1.1) and the habit plane
equation (1.2) will be called compatible, meaning that they satisfy compatibility
conditions (1.1) and (1.2) at zero stress.
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The habit plane Eq. (1.2) is a macroscopic compatibility condition relating
the deformation gradient of austenite, taken as the identity tensor, and the aver-

age deformation gradient of twinned martensite, i.e. the term in square bracket
in Eq. (1.2). Thus, the microstructure predicted by the theory provides macro-
scopic compatibility at the austenite-martensite interface at zero macroscopic
stresses. However, the transformation stretches UI and UJ of the martensite
variants, when taken separately, are not compatible with undeformed austenite
across any interface. This local incompatibility must be accommodated by non-
zero local elastic strains (micro-strains) accompanied by related micro-stresses
which, in accord with the Saint-Venant rule, can be expected to be effectively
concentrated within a relatively thin transition layer, schematically depicted in
grey in Fig. 1. It is the corresponding elastic strain energy that is the subject of
this work.

Fig. 1. Microstructure at the austenite–twinned martensite interface (A – austenite,
MI , MJ – martensite variants, in grey – a transition layer).

It is well recognized that the elastic micro-strain energy decreases as the
twin spacing decreases, and that the actual dimensions of the microstructures
are the result of the interplay of this energy and the interfacial energy of twin
boundaries, see for example Khachaturyan [10], Kohn and Müller [11],
Petryk et al. [17]. The tendency of the material to minimize the total energy
may lead to twin branching (i.e. the refinement of twin spacing in the vicinity
of the austenite-martensite interface) as well as to the formation of complex
microstructures of the transition layer itself. This is studied theoretically and
also observed in experiments, cf. Ball and James [1], James et al. [9], Kohn
and Müller [11], Liu and Dunne [13].
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The elastic micro-strain energy can be computed for an a priori assumed mi-
crostructure of the transition layer by solving the problem of theory of elasticity
with the eigenstrains being constant and given within each phase. For example,
Sridhar et al. [21] presented an analytical solution for a simple microstructure
(with the phases occupying rectangular domains) in the case of linear elasticity,
the whole system being elastically isotropic and homogeneous. A simple esti-
mate of the elastic micro-strain energy, calibrated using the results of Sridhar
et al. [21], has been provided by Roytburd [18].

A more general approach is proposed in this work. A micromechanical analy-
sis performed with the help of the finite element method is carried out to estimate
the elastic micro-strain energy at the austenite-twinned martensite interface. The
finite deformation setting is used, and the analyzed microstructures are com-
patible with the predictions of the crystallographic theory. Further, the elastic
anisotropy of the phases is fully accounted for and a class of non-planar local
austenite-martensite interfaces is considered. Finally, the effect of interfacial en-
ergy of interphase austenite-martensite boundaries on the elastic micro-strain
energy and on the local interface shape is studied. To illustrate applicability of
the proposed approach the case of austenite-martensite interface in the cubic-
to-orthorhombic (β1 → γ′1) transformation in a CuAlNi shape memory alloy is
examined. A simple zigzag shape of the local austenite-martensite interface is
assumed in the numerical example, but more complex microstructures of the
transition layer can also be studied using the present approach.

The paper is organized as follows. In Sec. 2 the continuum framework is
developed and the variational problem for the representative volume element of
a periodic microstructure is formulated. A unit cell suitable for the analysis of the
transition layer is defined and some remarks on the finite element implementation
are provided. The results of finite element simulations of the microstructures in
a CuAlNi single crystal are reported in Sec. 3. Finally, the effect of interfacial
energy of interphase boundaries on the elastic micro-strain energy and on the
microstructure of the transition layer is studied in Sec. 4.

2. Micromechanical framework

2.1. Continuum formulation and variational problem

Consider a representative volume element (RVE) of a material with a periodic
microstructure induced by martensitic phase transformation. The RVE occupies
a domain R of volume V in the reference configuration. The macroscopic (overall)
deformation gradient F̄ is given by

(2.1) F̄ = {F}, {·} ≡ 1

V

∫

R

(·) dX,
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where {·} denotes the averaging operation in the reference configuration. The
local deformation gradient F,

(2.2) F = ∇ϕ = F̄ + ∇ϕ̃,

is defined by the local deformation mapping x = ϕ(X), such that

(2.3) ϕ(X) = F̄X + ϕ̃(X).

Here ϕ̃ is the displacement fluctuation field such that {ϕ̃} = 0.
In the assumed absence of other contributions to the deformation, the de-

formation gradient F can be multiplicatively decomposed into its elastic and
transformation (i.e. inelastic) parts, Fe and Ft, respectively, so that

(2.4) F = FeFt.

The inelastic deformation gradient Ft is related to the shape change of crystalline
lattice during martensitic transformation and defines the intermediate stress-free
configuration. For austenite, we take Ft = I, the identity tensor, and for marten-
site variant I we take Ft = Ft

I , where Ft
I is known from the crystallography of

transformation and U2
I = FT

I FI . For any pair (I, J) of martensite variants, their
deformation gradients due to transformation are related by Ft

J = QIJF
t
IQ

T
IJ ,

where QIJ is a proper orthogonal tensor belonging to the symmetry point group
of austenite.

The local constitutive relation is specified by the elastic strain energy func-
tion, per unit volume in the reference configuration, assumed here in the form

(2.5) W (F) =
1

2
(detFt)Ee · LEe,

where Ee =
1

2
(FeTFe − I) is the elastic Green strain tensor and L is the elastic

moduli tensor, both referring to the intermediate stress-free configuration. Note
that juxtaposition of a second-order tensor and either another one or a vector
means simple contraction, while a fourth-order tensor followed by a second-order
one denotes here double contraction. Double contraction of two second-order
tensors is indicated by a central dot.

Equation (2.5) is a simple generalization of anisotropic elasticity at infinites-
imal strain to the case of finite strains of sufficiently small magnitude. In fact, in
the problem examined here the elastic strains are so small that the choice of an
elastic strain measure is not essential, and the use of W as a convex quadratic
function in Ee (but not in F) is justified. At the same time the effects of finite
rotations and finite Ft are treated correctly.
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The specific form of the elastic strain energy function (2.5) of austenite is

(2.6) WA(F) =
1

2
Ee · LAEe, Fe = F,

and that of martensite variant I is

(2.7) WI(F) =
1

2
(detFt

I)E
e · LIE

e, Fe = F(Ft
I)

−1.

Note that the elastic moduli tensors of martensite variants I and J are
symmetry-related, i.e. (LJ)ijkl = (QIJ)ip(QIJ)jq(QIJ)kr(QIJ)ls(LJ)pqrs. A ma-
terial point within the RVE, except on the interfaces, may thus take one of N+1
possible material states (the austenite and N variants of martensite). Once the
microstructure (i.e. spatial arrangement of different phases within the RVE) is
specified, the spatial distribution of the material properties, Ft(X) and L(X), is
given, as Ft and L are known for each phase.

The local nominal stress S and, for a self-equilibrated field S (Hill [7]), the
macroscopic one S̄ are given by

(2.8) S =
∂W

∂F
, S̄ = {S},

while the macroscopic density of elastic strain energy is a functional defined for
any piecewise differentiable field ϕ̃ as

(2.9) W̄ = W̄ (F̄, ϕ̃) = {W}.

We assume periodicity of the microstructure, which implies that the boundary
∂R can be divided into two parts ∂R+ and ∂R− such that ∂R = ∂R+ ∪ ∂R−,
∂R+ ∩ ∂R− = 0 and

(2.10) ϕ̃
+ = ϕ̃

− , t+ = −t− ,

where ϕ̃
± and t± are, respectively, displacement fluctuations and nominal trac-

tions at the corresponding points on ∂R+ and ∂R−.
Let us introduce the total potential energy Π as a sum of the elastic strain

energy and the potential energy of the applied loading, namely

(2.11) Π(F̄, ϕ̃) = W̄ (F̄, ϕ̃) − S∗ · F̄ ,

where S∗ is a prescribed macroscopic nominal stress. At mechanical equilibrium
Π is stationary with respect to F̄ and ϕ̃, however, ϕ̃ must additionally satisfy
the periodicity constraint, ϕ̃

+ = ϕ̃
−. Let us thus define the Lagrangian L,

(2.12) L(F̄, ϕ̃,µ) = Π(F̄, ϕ̃) − 1

V

∫

∂R+

µ · (ϕ̃+ − ϕ̃
−) dS ,
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where µ, the Lagrange multiplier field defined on ∂R+, is introduced to enforce
the periodicity constraint; the value of ϕ̃

− is obviously taken at a point on ∂R−

corresponding to that on ∂R+.
This leads in a standard way to the variational equality obtained by taking

the Gateaux derivative of L equal to zero, namely

(2.13) DL(F̄, ϕ̃,µ; δF̄, δϕ̃, δµ) = (S̄(F̄, ϕ̃) − S∗) · δF̄

+
1

V





∫

R

S(F̄, ϕ̃) · ∇δϕ̃ dV −
∫

∂R+

µ · (δϕ̃+ − δϕ̃−) dS

−
∫

∂R+

δµ · (ϕ̃+ − ϕ̃
−) dS



 = 0 ∀ δF̄, ∀ δϕ̃, ∀ δµ.

We note that for F̄, ϕ̃ and µ satisfying the equilibrium and periodicity conditions
all the terms on the right-hand side of (2.13) vanish. Note also that the Lagrange
multipliers µ have the interpretation of nominal tractions acting on the boundary
∂R, so that t+ = µ, t− = −µ.

Concluding, for given S∗, the solution of the variational problem (2.13) pro-
vides the macroscopic deformation gradient F̄, the displacement fluctuation field
ϕ̃ and Lagrange multipliers µ such that the RVE is in equilibrium and the macro-
scopic stress is equal to the prescribed stress S∗, i.e. S̄ = S∗. In particular, S∗

can be set equal to zero.

2.2. Unit cell for the analysis of the transition layer

As already mentioned in the Introduction, the aim of this paper is to inves-
tigate the elastic micro-strains in the transition layer at the austenite-twinned
martensite interface. Accordingly, the discussion below is restricted to the case
of internally twinned martensites.

The basic microstructure element of stress-induced martensites is a twinned
martensitic plate, i.e. a plate-like inclusion within the austenite matrix. In the
simplest case the transformation proceeds by the formation of a family of par-
allel plates. The microstructure is then a rank-two laminate as the plates are
themselves laminates of twin-related martensite variants. Such microstructures
appear when the transformation is induced by a macroscopic stress, so that the
layers of austenite and martensite are stressed. The mismatch of elastic prop-
erties (naturally expected to exist due to different anisotropy of parent and
product phases) leads to development of additional residual stresses in the lay-
ers (Stupkiewicz and Petryk [23]). Moreover, if detwinning (i.e. mobility of
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twin boundaries) is allowed during transformation the residual stresses may be
even higher due to the variation of twin fraction and the related incompatibility
of the effective transformation strain of the martensitic plate. This is related to
the reduced shear resistance of twinned martensite associated with twinning de-
formation (Roytburd and Slutsker [20], Stupkiewicz and Petryk [24]).
Note also that the microstructural parameters (habit plane orientation, twin
fraction, etc.) of martensitic plates formed under stress may deviate from those
predicted by the crystallographic theory in the stress-free conditions (Royturd
and Pankova [19], Oliver et al. [14], Stupkiewicz [22]).

The situation is quite different when the martensitic transformation is in-
duced by stress-free cooling from austenitic state. The microstructures are geo-
metrically more complex as, in addition to differently oriented plates, microstruc-
tures such as wedges and self-accommodating groups may appear
(Bhattacharya [2, 3]). However, in all these cases the austenite and marten-
site can coexist through the basic austenite-twinned martensite microstructure
of Fig. 1 conforming to the crystallographic theory (1.1)–(1.2). Also, in agree-
ment with the assumptions of the crystallographic theory the elastic strains and
the stresses are expected to (practically) vanish sufficiently far from the interface
(i.e. outside the transition layer).

Consider now a periodic laminated microstructure formed by parallel plates
of twinned martensite in the austenite matrix. The microstructure is defined by
the following microstructural parameters: l, m, λ, h and H; where h and H
are, respectively, the twin spacing and the plate spacing as shown in Fig. 2 a.
Parameters l, m and λ satisfy the twinning and habit plane Eqs. (1.1)–(1.2),
so that the microstructure is compatible. In macroscopically stress-free condi-
tions the transition layer in this laminate is fully representative for the auste-
nite-twinned martensite interfaces of other stress-free microstructures with the
periodic arrangement of twins, provided that the spacing H of neighbouring
austenite-martensite interfaces is sufficiently large relative to twin spacing h.
The stresses are expected to decay exponentially with the distance from the
interface (cf. Sridhar et al. [21]) so that the requirement of sufficiently large
H/h (which amounts to the requirement that the interaction of neighbouring
austenite-martenisite interfaces is negligible) can easily be satisfied in practice.
Also, assuming that the elastic energy decays similarly with the distance from
the interface towards austenite and towards martensite, the uniform spacing
of austenite-martensite interfaces (which corresponds to the volume fraction of
martensite η = 0.5) is the most natural choice. Note that for the present pur-
pose the actual values of parameters H/h and η can be taken arbitrarily as
long as the solution in the transition layer is practically not sensitive to their
variation. Once the microstructure is defined, the solution of the variational
problem (2.13) for a unit cell such as that shown in Fig. 2 b provides the distrib-
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ution of the elastic energy in the transition layer which can further be integrated
to yield the macroscopic interfacial energy associated with the elastic micro-
strains.

a)

H
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Fig. 2. Schematic view of the analyzed laminated microstructure.

When the macroscopic stress is not equal to zero, as in the case of stress-
induced transformation, or when the microstructure is not compatible, so that
residual stresses develop everywhere, the situation is more complex. The defor-
mation of the laminated microstructure consists of uniform stress and strain
fields with superimposed non-uniform fields in the transition layer. Formally,
the elastic micro-strain energy can be defined as the difference between the total
energy of the actual microstructured material and the energy of uniform states
weighted by respective volume fractions of austenite and martensite variants, viz.

(2.14) W̄ ∗ = W̄ − (1 − η)WA(FA) − η[λWI(FI) + (1 − λ)WJ(FJ)],

where FA, FI and FJ are the uniform parts of the deformation gradients in
austenite and martensite variants I and J , respectively. These deformation gra-
dients may be determined by solving the micro-macro transition relationships
for laminates (generalizing the small strain analysis of Stupkiewicz and
Petryk [23]) or, alternatively, they may be approximated by the respective
deformation gradients far from the austenite-martensite interface obtained by
the numerical solution of the variational problem (2.13).

It should be noted that even for a fixed microstructure the elastic micro-strain
energy (2.14) depends on the external stress S∗, because of the adopted finite de-
formation kinematics and nonlinear constitutive relationship (2.5)–(2.8)1. This
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dependence is, however, expected to be negligible in view of the elastic strains
being relatively small. Note that within the linear elasticity framework, the elas-
tic micro-strain energy is constant for fixed microstructure of the transition layer
and independent of the macroscopic stress and volume fraction of martensite (as
long as the distance between the neighbouring interfaces is sufficiently large for
their interaction to be negligible). In the following, only the macroscopic stress-
free situation is considered, and the dependence of W̄ ∗ on the external stress is
not pursued any more.

The real shape of the austenite-martensite interface at the micro level can be
rather complex, see for example Liu and Dunne [13], Hÿtch et al. [8]. In this
work, as a first approximation, we consider a zigzag-shaped interface as shown
in Fig. 2 b) with the orientation of the macroscopic (i.e. average) austenite-
martensite interface determined by the habit plane normal m. The zigzag shape
is fully characterized by the wedge angle θ indicated in Fig. 2 b. The planar
interface corresponds thus to θ = 180 [deg].

The adopted microstructure is in fact two-dimensional as it does not change
in the direction perpendicular to l and m. A two-dimensional generalized plane

strain analysis can thus be carried out within the plane specified by these two
vectors. The global Cartesian coordinate system is adopted such that the x-
and y-axes lie in that plane, x-axis being aligned with l. Thus, the displacement
fluctuation field ϕ̃ does not depend on z-coordinate, so that

(2.15) ϕ̃ = ϕ̃(x, y).

However, note that ϕ̃(x, y) is a field of three-dimensional vectors, so that locally
a fully three-dimensional stress state occurs.

Once the unit cell with periodic boundary conditions is defined, e.g. such
as that shown in Fig. 2 b), the elastic energy associated with the elastic micro-
strains in the transition layer can be computed from formula (2.14) using the
scheme of Sec. 2.1 with the unit cell as RVE at zero macroscopic stress, i.e. by
putting S∗ = 0, cf. Eq. (2.13). In particular, if the microstructural parameters
are determined from the compatibility equations (1.1) and (1.2), i.e. for the
compatible microstructure, then W̄ ∗ at S∗ = 0 reduces simply to W̄ . When W̄ ∗

is computed, the related interfacial energy γe can be determined from

(2.16) γe =
V

A
W̄ ∗,

where A is the nominal area of the macroscopic austenite-martensite interfaces
(habit planes) contained within the periodic cell. We note that the interfacial
energy γe depends on the size of the periodic cell. More specifically, it follows
from dimensional analysis that γe is proportional to the twin spacing h. The
proportionality factor Γe,
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(2.17) Γe =
γe

h
,

can thus be introduced which is a characteristic (size-independent) quantity of
the considered microstructure. Parameter Γe depends on the microstructure of
the transition layer and, for the assumed class of zigzag shapes, on angle θ.

2.3. Finite element implementation

Let us introduce a finite element discretization of displacement fluctuations
ϕ̃ within the domain R and of Lagrange multipliers µ on the boundary ∂R+,

(2.18) ϕ̃
h =

∑

i

Niϕ̃i , µ
h =

∑

i

Nµ
i µi ,

where ϕ̃i and µi are the nodal quantities and Ni and Nµ
i are the corresponding

shape functions.
The discretized problem for the unknown nodal quantities ϕ̃i and µi follows

from the condition of a stationary point of Lh = L(F̄, ϕ̃h,µh), cf. Eqns. (2.12)
and (2.13), namely

(2.19)
∂Lh

∂F̄
= S∗ ,

∂Lh

∂ϕ̃i

= 0 ,
∂Lh

∂µi

= 0 .

Equations (2.19) constitute a system of nonlinear algebraic equations for the
unknown {F̄, ϕ̃i,µi}. Note that, in addition to nodal displacement fluctuations
ϕ̃i and Lagrange multipliers µi, the macroscopic deformation gradient F̄ is an
unknown of the problem.

The system of nonlinear equations (2.19) can be solved using the iterative
Newton scheme. This part is very standard thus the details are omitted here.

Two types of finite elements are developed: solid finite elements modelling
the material behaviour according to (2.2)–(2.5) and (2.18)1 and additional ele-
ments used to enforce the periodicity conditions with the Lagrange multipliers
interpolated on the boundary ∂R+ according to (2.18)2. For the reason of com-
putational efficiency, in the latter case, the method of augmented Lagrangians
is used rather than the classical Lagrange multiplier technique. Thus the aug-
mented Lagrangian functional is introduced in the form

(2.20) Laug(F̄, ϕ̃,µ) = L(F̄, ϕ̃,µ) +
1

V

∫

∂R+

ρ

2
(ϕ̃+ − ϕ̃

−) · (ϕ̃+ − ϕ̃
−) dS,

where ρ > 0 is a regularization parameter. The computational scheme follows
that outlined above, Eqs. (2.18)–(2.19), with L replaced by Laug.
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The generalized plane strain solid elements interpolate the three-dimensional
displacement fluctuations ϕ̃ over a two-dimensional domain in the (x, y)-plane.
Here isoparametric 8-node serendipity elements are used with 3 × 3 Gauss in-
tegration scheme. The Lagrange multiplier term defined along ∂R+ in (2.12) is
integrated nodally using a 3-point Lobatto scheme.

Note that the z-axis is a two-fold symmetry axis of the periodic cell, cf.
Fig. 2 b. Thus the model of the whole periodic cell with periodicity constraints
enforced along its opposite edges, can equivalently be replaced by one half of
the cell, say the upper half, with periodicity constraints enforced for the left and
right edge of the cell and with anti-periodicity constraints enforced along the
top and bottom edges. Clearly, the latter case is computationally more efficient
as the same accuracy can be achieved for the size of the problem reduced by,
approximately, the factor of two.

The FE implementation has been performed within the Computational Tem-

plates environment using a symbolic code generation system AceGen [12]. The
FE procedures are written in a high-level computer language of Mathemat-

ica [27] taking advantage of the additional functionality of AceGen (i.e. auto-
matic differentiation technique, automatic code generation, simultaneous opti-
mization of expressions and theorem proving by stochastic evaluation of the
expressions) and of Computational Templates environment (templates for au-
tomatic generation of FE procedures based on the symbolic description of the
problem).

3. Finite element computations

3.1. Material properties

In this section the elastic micro-strain energy is analyzed for the cubic-to-
orthorhombic β1 → γ′1 transformation in a CuAlNi alloy. In this transforma-
tion six martensite variants exist with a total of 96 different austenite-twinned
martensite microstructures, cf. Hane and Shield [6]. However, all the mi-
crostructures can be divided into four groups of 24 microstructures in a group,
such that the microstructures belonging to the same group are crystallographi-
cally equivalent, i.e. they are related by the symmetry point group of the cubic
parent phase. Thus four microstructures, one from each group, sufficiently char-
acterize all the possible microstructures.

The parameters of four crystallographically distinct microstructures that fol-
low from the crystallographic theory, Eqs. (1.1)–(1.2), corresponding to the twin
pair (I = 1, J = 3) are provided in Table 1 (vector components refer to the cubic
basis of austenite). The respective transformation stretch tensor components of
martensite variants in the cubic basis of austenite are
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(3.1)

U1 =





(α+ γ)/2 0 (α− γ)/2
0 β 0

(α− γ)/2 0 (α+ γ)/2



 ,

U3 =





(α+ γ)/2 (α− γ)/2 0
(α− γ)/2 (α+ γ)/2 0

0 0 β



 ,

where the stretch parameters α = 1.0619, β = 0.9178 and γ = 1.0230 are
computed from the lattice parameters provided by Otsuka and Shimizu [15].

Table 1. Microstructures in the β1 → γ′
1 transformation in CuAlNi (I = 1, J = 3).

Type I twins

Microstructure M1 Microstructure M2

λ 0.2902 0.2902

l (0., 0.7071,−0.7071) (0., 0.7071,−0.7071)

a (0.05153, 0.16374, 0.18688) (0.05153, 0.16374, 0.18688)

m (0.6350, 0.7486, 0.1908) (−0.7151, 0.6497,−0.2579)

b (0.06564,−0.06574, 0.02385) (−0.05760,−0.07476,−0.01710)

Type II twins

Microstructure M3 Microstructure M4

λ 0.3008 0.3008

l (−0.2282,−0.6884,−0.6884) (−0.2282,−0.6884,−0.6884)

a (0.00358,−0.16909, 0.19205) (0.00358,−0.16909, 0.19205)

m (−0.6345,−0.7276,−0.2607) (0.7304,−0.6679, 0.1430)

b (−0.06530, 0.06539,−0.01219) (0.05595, 0.07070, 0.02367)

The elastic constants of single-crystalline austenite and martensite of CuAlNi,
measured by Suezawa and Sumino [25] and Yasunaga et al. [28], are given in
Table 2.

The microstructural parameters l, m and λ provided in Table 1 define the
geometry of the unit cell used in the computations and, in particular, the global
coordinate system in which the analysis is carried out. The components of the
inelastic deformation gradient tensors, Ft

1 = U1 and Ft
3 = U3, and the compo-

nents of elastic moduli tensors in this coordinate system are obtained by applying
proper rotations from the local coordinate system associated with the cubic basis
of austenite to the global one.
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Table 2. Elastic constants of CuAlNi single crystals.

Cubic β1 phasea

c11 c12 c44 [GPa]

142 126 96

a) Suezawa and Sumino (1976)

Orthorhombic γ′
1 phaseb

c11 c22 c33 c44 c55 c66 c12 c13 c23 [GPa]

189 141 205 54.9 19.7 62.6 124 45.5 115

b) Yasunaga et al. (1983)

3.2. Results

The geometry of the unit cell is defined by the microstructural parameters
of Table 1, and by the geometrical parameters such as the wedge angle θ de-
termining the zigzag shape of the interface, the volume fraction of martensite η
(η = 0.5 is used), and the ratio of plate spacing to twin spacing, H/h. The value
of H/h = 40 has been adopted for the computations (further increase of H/h by
the factor of two results in the increase of the energy by less than 0.01 per cent).

A structured mesh of 56× 64 8-node elements with the total of about 34000
degrees of freedom has been used to discretize one half of the unit cell. The
mesh has been significantly refined in the vicinity of the austenite-martensite
interface and in particular in the vicinity of the triple junctions (i.e. points of
intersection of twinning planes and austenite-martensite boundaries), as the so-
lutions at these points are expected to be singular. For example, a logarith-
mic singularity is predicted in the case of linear isotropic elasticity, cf. e.g.
Evans et al. [5]. No attempt has been made to include the singularities into
the present finite element model. However, it has been verified that the
total elastic strain energy does not change appreciably with further mesh re-
finement.

The results of the finite element computations are summarized in Fig. 3 where
the computed values of parameter Γe as a function of angle θ are shown for the
four microstructures of Table 1. The dashed line at θ = 180 [deg] indicates the
case of a planar interface. We note that the effect of the wedge angle θ on the
micro-strain energy is significant. For example, in the case of microstructure M2,
the minimum value of Γe (at θ ≈ 55 [deg]) is less than half of that corresponding
to the planar interface, see Table 3 where selected values of parameter Γe are
provided for comparison. The shapes of the minimum energy interfaces are shown
in Fig. 4 for the four microstructures.
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Fig. 3. Elastic micro-strain energy parameter Γe as a function of the wedge angle θ of a
zigzag-shaped austenite-twinned martensite interface.

Microstructure M1 Microstructure M2 Microstructure M3 Microstructure M4

Fig. 4. Austenite-twinned martensite interface shapes corresponding to the minimum values
of elastic micro-strain energy parameter Γe, cf. Fig. 3.

As expected, the elastic strains and the elastic strain energy are concentrated
in the vicinity of the austenite-martensite interface. This is illustrated in Fig. 5
where the distributions of the elastic energy density W and of a sample elastic
Green strain component Ee

yy are shown within the transition layer of the mini-
mum energy interface in microstructure M2. Note that the maximum values ofW
and Ee

yy indicated in Fig. 5 are mesh-dependent in view of expected singularity
at the triple junctions.

In order to check the effect of elastic properties of the phases on the elastic
micro-strain energy, the transition layer with a planar interface has additionally
been analyzed assuming that martensite has the elastic properties of austen-
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ite (elastically homogeneous case), cf. Table 3. It can be seen that the elastic
heterogeneity effect is in most cases smaller than the effect of the interface shape.

a)

AceGen

0.9058e-7
Min.
0.7907e-1
Max.
En

0.790e-2
0.158e-1
0.237e-1
0.316e-1
0.395e-1
0.474e-1
0.553e-1
0.632e-1
0.711e-1

b)

AceGen

-0.321e-1
Min.
0.3596e-1
Max.
Eyy

-0.25e-1
-0.18e-1
-0.11e-1
-0.48e-2
0.192e-2
0.872e-2
0.155e-1
0.223e-1
0.291e-1

Fig. 5. Distribution of a) elastic energy density W and b) elastic Green strain tensor Ee
yy

in the vicinity of austenite-martensite interface in microstructure M2.

Table 3. Selected values of parameter Γe.

Γe [MJ/m3] M1 M2 M3 M4

minimum 14.8 3.2 6.9 14.4

planar interface 15.5 7.6 8.3 14.4

planar interface, elastically homogeneous 16.1 7.8 8.3 15.7

4. The effect of interphase boundary energy

It is frequently assumed that the microstructures formed during the transfor-
mation minimize the total free energy. The elastic micro-strain energy studied
in the previous section naturally contributes to the total energy of a material
undergoing phase transformation.

But clearly it is not the only kind of energy related to formation of the mi-
crostructure. For example, the twin boundary energy is an important parameter
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affecting the characteristic dimensions of real microstructures, such as twin spac-
ing h, cf. e.g. Kohn and Müller [11], Petryk et al. [17]. However, as long as
twin branching is not considered, the twin boundary energy has no direct effect
on the microstructure pattern of the transition layer.

Below, another parameter, namely the energy of austenite-martensite inter-
phase boundaries and its effect on the microstructure of the transition layer, is
studied on the basis of numerical results of the previous section. We take now
into account also the interfacial energy γaI of the boundaries between austenite
and single martensite variants at the micro-level.

Consider thus the interfacial energy density per unit nominal area of the
habit plane,

(4.1) γi = Γeh+ ψγaI ,

which is the sum of the elastic micro-strain energy γe = Γeh and of the energy of
interphase boundaries ψγaI , where ψ = ψ(θ) ≥ 1 is the ratio of the real area of
the zigzag-shaped interface to the nominal area of austenite-twinned martensite
interface. Parameter ψ is a purely geometrical factor dependent here only on θ
for fixed l, m and λ. Note that the interphase boundary energy γaI can in general
depend on the relative orientation of crystalline lattices and on the orientation
of the boundary. Here, due to the lack of respective experimental data, this
energy is assumed to be identical for both variants of martensite, i.e. for both
orientations of local austenite-martensite interfaces, γaI = γaJ .

Let us introduce the parameter Γi,

(4.2) Γi =
γi

h
= Γe + ψ

γaI

h
,

which depends on γaI and h only through their ratio γaI/h. The dependence of
Γi on angle θ of the zigzag shaped interface and on ratio γaI/h is shown in Fig. 6
for microstructure M2. The dotted line in Fig. 6 connects the points of minimum
Γi. As expected, for increasing γaI/h the angle θ corresponding to the minimum
interfacial energy tends to θ = 180 [deg]. This can also be seen in Fig. 7 where
the variation of the wedge angle θmin corresponding to the minimum of Γi is
plotted as a function of γaI/h. The jump visible in Fig. 7 for microstructure M3
is related to the jump from one local minimum to another, cf. the corresponding
shape of the graph in Fig. 3.

As it is illustrated in Fig. 8, the relative importance of the two components
of the interfacial energy depends on the ratio γaI/h. In the limit γaI/h → ∞,
the energy of interphase boundaries dominates and thus the planar interface
minimizes the interfacial energy.

As the final result of this section, the minimum interfacial energy parameter
Γmin

i as a function of γaI/h is shown in Fig. 9 for all the four microstructures. The
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Fig. 6. Interfacial energy parameter Γi of microstructure M2 as a function of wedge angle θ
for different values of the ratio γaI/h.
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Fig. 7. Wedge angle θmin corresponding to the minimum of interfacial energy parameter Γi

as a function of γaI/h.
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Fig. 8. Minimum interfacial energy parameter Γmin
i and its part due to elastic micro-strains,

Γe, as a function of γaI/h (microstructure M2).
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dependence is nearly linear except at low values of γaI/h where the influence of
the elastic-micro strain energy is dominant. It is seen that the interfacial energy of
microstructure M2 is lowest in the whole range of parameters γaI/h. This could
suggest that microstructure M2 is energetically preferable to microstructures
M1, M3 and M4. Note that all four microstructures provide similar macroscopic
transformation strains. However, when h is small, the differences between the
values of surface densities γi of different microstructures are relatively small,
and other factors may affect the choice of microstructure.
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Fig. 9. Minimum interfacial energy parameter Γmin
i as a function of γaI/h for all analyzed

microstructures.

5. Concluding remarks

A method to estimate the elastic micro-strain energy of the transition layer at
the austenite-twinned martensite interface has been proposed in the paper. The
micromechanical scheme is based on the variational principle for the unit cell of
a periodic rank-two laminate and employs the finite deformation framework so
that the microstructures predicted by the crystallographic theory of martensite
can be consistently analyzed.

As an application, the estimation of the elastic micro-strain energy is provided
for the microstructures in the cubic-to-orthorhombic (β1 → γ′1) transformation
in CuAlNi alloy using the available experimental data. A simple class of one-
parameter zigzag shapes of the interface at the micro-level is considered. Other
shapes of the interface can also be analyzed within the present approach, how-
ever, in case of multi-parameter descriptions of the interface shape, optimization
techniques must be applied to find the minimum energy shape. Clearly, this is
much simpler in the present case of only one shape parameter.
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It has been shown that the effect of the interface shape is significant, and that
the deviation from planar shape can significantly reduce the elastic micro-strain
energy. However, in this context, the energy of austenite-martensite interphase
boundaries is also an important parameter affecting the microstructure of the
transition layer.
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