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Abstract. In this work we investigate the usefulness and robustness
of transfer learning with deep convolutional neural networks (CNNs)
for breast lesion classification in ultrasound (US). Deep learning models
can be vulnerable to adversarial examples, engineered input image pixel
intensities perturbations that force models to make classification errors.
In US imaging, distribution of US image pixel intensities relies on applied
US image reconstruction algorithm. We explore the possibility of fool-
ing deep learning models for breast mass classification by modifying US
image reconstruction method. Raw radio-frequency US signals acquired
from malignant and benign breast masses were used to reconstruct US
images, and develop classifiers using transfer learning with the VGG19,
InceptionV3 and InceptionResNetV2 CNNs. The areas under the receiver
operating characteristic curve (AUCs) obtained for each deep learning
model developed and evaluated using US images reconstructed in the
same way were equal to approximately 0.85, and there were no associ-
ated differences in AUC values between the models (DeLong test p-values
> 0.15). However, due to small modifications of the US image reconstruc-
tion method the AUC values for the models utilizing the VGG19, Incep-
tionV3 and InceptionResNetV2 CNNs significantly decreased to 0.592,
0.584 and 0.687, respectively. Our study shows that the modification of
US image reconstruction algorithm can have significant negative impact
on classification performance of deep models. Taking into account medi-
cal image reconstruction algorithms may help develop more robust deep
learning computer aided diagnosis systems.
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1 Introduction

Ultrasound (US) imaging is widely used for breast mass detection and differen-
tiation in clinics. However, US data acquisition needs to be carried out by an
experienced radiologist or physician who knows how to efficiently operate the
ultrasound scanner. The operator has to locate the mass within the examined
breast and properly record US images. Moreover, interpretation of the US images
is not straightforward, but requires deep knowledge of characteristic image fea-
tures related to breast mass malignancy.

Various computer-aided diagnosis (CADx) systems have been proposed to
support the radiologists and improve differentiation of malignant and benign
breast masses [6,10,11]. Currently, with the rise of deep learning methods, CADx
systems based on convolutional neural networks (CNNs) are gaining momen-
tum for breast mass classification [2–4,13,18,26]. These networks process input
images using convolutional filters to learn useful data representations and provide
the desired output, such as a single binary decision related to the presence of par-
ticular object in the input image. However, better performing deep CNNs were
developed using large sets of natural images [8]. Since medical image datasets are
usually too small to train efficient CNNs from scratch, transfer learning meth-
ods are applied to develop deep learning models [20]. The aim of the transfer
learning techniques is to employ a CNN model pre-trained on a large dataset of
images from a different domain to address the medical image analysis problem of
interest. In the case of the breast mass classification, deep models pre-trained on
natural images were used to extract high level image features and utilize those
to train binary classifiers, such as logistic regression or support vector machine
algorithm [2–4].

In this paper we assess the usefulness of several deep learning models for
transfer learning based breast mass classification. In comparison to the previous
studies we investigate the impact of US B-mode image reconstruction algorithm
on the classification performance [2–4,13,18,26]. Our work is motivated by sev-
eral studies reporting that deep learning systems can be vulnerable to adversar-
ial examples, input images engineered to cause misclassification due to complex
nonlinear behaviors of deep models [9]. Adversarial attacks can be performed by,
for example, adding small artificially crafted perturbations to input image pixel
intensities, which slightly modifies appearance of objects’ edges and texture, and
force deep model to perform wrong classification [12,15,16]. In medical image
analysis, the vulnerability of deep learning models to adversarial attacks was
demonstrated in the case of chest X-rays and dermoscopy images [9], raising con-
cerns about the robustness of CADx systems based on CNNs [24]. Appearance
of tissues in US imaging is related to applied image reconstruction algorithm.
US scanners record raw radio-frequency (RF) backscattered signals and process
them to reconstruct B-mode images. During routine US scanning the operator
can modify scanner settings to differently reconstruct B-mode images to enhance
specific B-mode image features. Due to high dynamic range RF US signals are
commonly non-linearly compressed before B-mode image reconstruction. Mod-



Impact of Ultrasound Image Reconstruction Method 43

ifications of the compression level result in different brightness levels of tissue
interfaces and different speckle patterns. Here, we investigate the impact of US
image reconstruction algorithm on breast mass classification with deep learning.
We study whether small modifications of compression threshold levels related
to applied B-mode image reconstruction may cause CNN based models to make
classification errors.

2 Materials and Methods

2.1 Dataset

To develop deep learning models for breast mass classification we used an exten-
sion of the freely available breast mass dataset, the OASBUD (Open Access
Series of Breast Ultrasonic Data) [5,17], which includes RF US data (before B-
mode image reconstruction) recorded from breast focal masses during routine
scanning performed in the Maria Sk�lodowska-Curie Memorial Cancer Centre
and Institute of Oncology in Warsaw. The study was approved by the Insti-
tutional Review Board. The data were collected using the Ultrasonix Sonix-
Touch Research ultrasound scanner with an L14-5/38 linear array transducer.
The dataset includes RF signals recorded from 231 breast masses, 82 masses were
malignant and 149 masses were benign. All malignant masses were histologically
assessed by core needle biopsy. Benign masses were assessed either by the biopsy
or a two year observation (every six months). For each scan a region of interest
was determined by an experienced radiologist to correctly indicate breast mass
area in B-mode image. More details regarding the dataset can be found in the
original paper [17].

2.2 Ultrasound Image Reconstruction

Reconstruction scheme of a single B-mode image line is presented in Fig. 1. First,
the RF signal acquired by the transducer is used to detect the envelope with the
Hilbert transform. Second, since the dynamic range of US signal amplitudes is
too high to fit on the screen directly, the amplitude samples are logarithmically
compressed. In this work we used the following formula to compress amplitude
samples:

Alog = 20log10(A/Amax) (1)

where A and Alog are the amplitude and the log-compressed amplitude of the
ultrasonic signal, respectively. Amax indicates the highest value of the ampli-
tude in the data. Next, the compressed amplitude samples are mapped to B-
mode image pixel intensities based on a specified threshold level. Figure 2 shows
three B-mode images of benign and malignant breast masses reconstructed using
threshold levels of 45 dB, 50 dB and 55 dB, which are typically used in prac-
tice. Moreover, Fig. 3 shows the RF signal amplitude to pixel intensity mapping
functions for these three different threshold levels. Physicians commonly select
the threshold level to obtain desired image quality e.g. good speckle pattern
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Fig. 1. Pipeline illustrating reconstruction of a single B-mode image line based on
a radio-frequency ultrasound signal acquired by the transducer. The scheme includes
envelope detection, logarithmic compression and mapping of compressed amplitude
samples to B-mode image pixel intensities.

visibility or edge enhancement. For example, setting low threshold level results
in removal of speckles that originates from US echoes of low intensities. Setting
high threshold level may result in removal of important edge details.

2.3 Transfer Learning with Convolutional Neural Networks

We used three deep CNNs to perform transfer learning and classify breast masses,
namely the VGG19, InceptionV3 and InceptionResNetV2 [14,22,23], all pre-
trained on the ImageNet dataset [8] and implemented in TensorFlow [1]. These
models achieved good performance on the ImageNet dataset and were used for
breast mass classification with transfer learning in the previous studies [2,4,
13]. In this work, we employed one of the most widely used transfer learning
approaches, which aims to extract high level neural features from the last layers
of the pre-trained model and use those to develop a classifier. In the case of
the VGG19 CNN, we extracted features from the first fully connected layer.
Moreover, average pooling layers of the InceptionV3 and InceptionResNetV2
CNNs were used to extract neural features.

2.4 Experiments and Evaluation

We performed several experiments to evaluate the usefulness of each CNN for
the breast mass classification, and to explore the possibility of fooling the mod-
els by the compression threshold level modification. The experimental setup is
presented in Fig. 4. We selected average compression threshold level of 50 dB
and investigated how small perturbations (in range from 45 dB to 55 dB) can
affect the classification. To assess the classification performance we applied leave-
one-out cross validation. For each cross validation round, B-mode images in the
training set were reconstructed using compression threshold level of 50 dB. In
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Fig. 2. B-mode images of (a) benign and (b) malignant masses reconstructed using
compression threshold levels of 45 dB, 50 dB and 55 dB, respectively.

Fig. 3. B-mode image pixel brightness mapping function for logarithmic compression
using compression threshold levels of 45 dB, 50 dB and 55 dB, respectively. Small modi-
fications of the threshold level result in small change of B-mode image pixel intensities.

the case of the first experiment, each test B-mode image was reconstructed in
the same way as those in the training set, using the threshold level of 50 dB.
Therefore the perturbations were not applied for the first experiment. Next, to
explore the possibility of fooling the models, we performed the second experi-
ment. Again, all training B-mode images were reconstructed using the threshold
level of 50 dB. But this time we reconstructed each test B-mode image using
different threshold levels, ranging from 45 dB to 55 dB. Each classification model
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Fig. 4. Pipeline illustrating the experiments performed in our study. B-mode images
for training were reconstructed using fixed compression threshold level of 50 dB. In the
case of the test set, for the first experiment B-mode images were reconstructed using
threshold level 50 dB, for the second (third) experiment the threshold was selected
to maximally decrease (increase) the classification performance of each deep learning
model. CNN - convolutional neural network.

developed on the training set was evaluated using all differently reconstructed
test B-mode images, and we selected the B-mode image corresponding to the
worst possible classification performance. If the test breast mass was malig-
nant (benign), then we selected the B-mode image corresponding to the lowest
(highest) obtained a posteriori probability of malignancy determined by the
model. Studies on adversarial attacks in deep learning usually focus on efficient
engineering of adversarial examples that would result in classification errors. In
comparison to those studies, we also explored the possibility of using B-mode
image perturbations to increase deep learning model classification performance.
While the second experiment corresponded to the worst possible scenario, the
third experiment corresponded to the best possible scenario. This time the test
B-mode images were perturbed with the aim to increase classification perfor-
mance.

To extract features for classification from deep CNNs we applied the fol-
lowing approach. Each B-mode image was cropped using the region on interest
provided by the radiologist to contain the mass and a 5 mm band of surrounding
tissues, see Fig. 2. Next, the US images were resized using bi-cubic interpolation
to match the resolution originally designed for each neural network, 224× 224
for the VGG19 CNN and 299× 299 for the two other CNNs. Intensities of each
image were copied along RGB channels and preprocessed in the same way as
in the original papers [21–23]. The same approach utilizing the VGG19 CNN
was employed in the previous studies on breast mass classification with transfer
learning [2,3,13]. To perform binary classification we used the logistic regression
algorithm. To address the problem of class imbalance, we used class weights
inversely proportional to class frequencies in the training set. We used a linear
classifier to omit possible issues related to the properties of non-linear classi-
fiers, which could introduce additional non-linearity behaviors to the models in
addition to those already related to deep CNNs.



Impact of Ultrasound Image Reconstruction Method 47

To asses the classification performance we calculated the receiver operating
characteristic (ROC) curves using model outputs obtained in each experiment.
Next, we determined the areas under the ROC curves (AUC) for different models,
the sensitivity, specificity and accuracy of the classifiers were calculated based
on the ROC curve for the point on the curve that was the closest to (0, 1). The
AUC value of 0.5 in the case of binary classification indicates random guessing,
while the AUC value of 1 correspond to perfect classification. The AUC values
of different models were compared with the DeLong test [7,19]. All calculations
were performed in a programming environment including Python, R and Matlab
(Mathworks, USA).

3 Results

Table 1 summarizes the classification performances obtained in all three experi-
ments. In the case of the first experiment, for the test B-mode images recon-
structed in the same way as the training images, the classification models
achieved AUC values of 0.858, 0.829 and 0.860 for the VGG19, InceptionV3
and InceptionResNetV2 CNNs, respectively. There were no associated statisti-
cal differences between the AUC values obtained for the models developed using
different deep CNNs (DeLong test p-values > 0.15).

In the case of the second experiment, based on the B-mode image reconstruc-
tion method modification we were able to decrease classification performance of
each deep learning model. Results presented in Table 1 show that the AUC val-
ues significantly decreased (DeLong test p-values < 0.05). For the VGG19, Incep-
tionV3 and InceptionResNet CNNs the AUC values were equal to 0.592, 0.584
and 0.687, respectively. The model trained based on features extracted from
the InceptionResNetV2 CNN was less vulnerable to B-mode image modification
than the other models. Figure 5 shows four adversarial examples engineered with
our approach corresponding to two malignant and two benign breast masses. For
example, benign breast mass present in Fig. 5a) was correctly classified as benign
by all models, the corresponding a posteriori probabilities of malignancy were
equal to 0.31, 0.38 and 0.23 for the models developed using VGG19, InceptionV3
and InceptionResNet CNNs, respectively. Due to the reconstruction threshold
value modification, the corresponding probabilities increased to 0.62, 0.68 and
0.36, what caused classification errors in the case of the models developed using
the VGG19 and InceptionV3 CNNs. The adversarial examples in Fig. 5 are very
similar to the original B-mode images, with only slightly modified edge visibility
and speckle patterns.

Additionally, Table 1 shows the results obtained in the case of the third exper-
iment, which aimed to maximally increase classification performance by perturb-
ing B-mode image pixel intensities. The AUC values for the VGG19, InceptionV3
and InceptionResNet CNNs significantly increased (DeLong test p-values < 0.05)
to 0.970, 0.961 and 0.963, respectively.



48 M. Byra et al.

Fig. 5. Correctly classified breast mass B-mode images reconstructed using compres-
sion threshold level of 50 dB and corresponding B-mode images reconstructed to cause
misclassification, (a), (b) benign masses and (c), (d) malignant masses.
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Table 1. Classification performance of each deep learning model developed using trans-
fer learning. The regular results were obtained for the models developed and evaluated
using train and test B-mode images reconstructed in the same way. The worst (best)
results were determined for the test B-mode images perturbed with the aim to max-
imally decrease (increase) classification performance. AUC - area under the receiver
operating characteristic curve, standard deviations were calculated using bootstrap.

Network Type AUC Accuracy Sensitivity Specificity

VGG19 Regular 0.858± 0.027 0.822± 0.038 0.768± 0.038 0.852± 0.034

Worst 0.592± 0.034 0.649± 0.023 0.548± 0.040 0.7018± 0.030

Best 0.970± 0.007 0.926± 0.015 0.890± 0.022 0.946± 0.025

InceptionV3 Regular 0.829± 0.028 0.757± 0.023 0.7682± 0.038 0.752± 0.038

Worst 0.584± 0.030 0.584± 0.027 0.573± 0.062 0.590± 0.061

Best 0.961± 0.008 0.896± 0.017 0.878± 0.026 0.901± 0.027

InceptionResNetV2 Regular 0.860± 0.026 0.792± 0.023 0.768± 0.038 0.801± 0.033

Worst 0.687± 0.028 0.692± 0.028 0.573± 0.044 0.59± 0.049

Best 0.963± 0.009 0.926± 0.023 0.890± 0.035 0.946± 0.032

4 Discussion

Our study shows the usefulness of the transfer learning with deep CNNs for
breast mass classification in US. The model based on InceptionResNetV2 CNN
achieved AUC value of 0.860. Our results are in agreement with those reported
in the previous studies on breast mass classification with deep learning [2–4],
where the authors obtained AUC values in range from 0.79 to 0.90. In [13] a
specific approach to transfer learning was applied, which included fine-tuning
and modification of the InceptionV3 architecture and ImageNet dataset. The
authors used an ensemble of deep models for classification and reported high
AUC value of 0.960. In our case, we used the InceptionV3 model for transfer
learning in a more standard way following the approach proposed in [2].

Classification performance of all three developed deep learning models was
sensitive to B-mode image reconstruction modifications. The decrease in clas-
sification performance was significant for all models, with the largest decrease
obtained for the models developed using features extracted from the VGG19 and
InceptionV3 CNNs (AUC values of 0.592 and 0.584). The model trained based
on InceptionResNetV2 features was less vulnerable to US image reconstruction
method modification (AUC value of 0.687). Figure 5 shows that the adversarial
examples are very similar visually to the B-mode images reconstructed using
threshold level of 50 dB. In comparison to the previous studies investigating
how to engineer successful adversarial attacks [9], we additionally explored the
possibility of manipulating image pixel intensities to artificially improve breast
mass classification. By modifying the B-mode image reconstruction method we
improved the performance of all models and achieved AUC values of around
0.97.
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Our study depicts several important issues related to the development of
CADx systems using transfer learning with deep pre-trained CNNs. First of all,
the image reconstruction procedures implemented in medical scanners should
be taken into account during CADx system development. It is important to
know how B-mode images were acquired and reconstructed. Classification errors
may result from issues related to applied B-mode image reconstruction methods,
such as using non-standard scanner settings. To improve performance and make
deep learning models more robust it might be necessary to develop the models
based on B-mode images acquired using different scanner settings. The second
possibility is to always use the same image reconstruction algorithms and scanner
setting for B-mode image acquisition. In our study we used a unique dataset of
RF signals collected with a research US scanner. Regular clinical US scanners,
however, usually don’t have access to RF data, and such data are not stored in
hospital databases. Researchers, who would like to develop deep learning models
based on large sets of retrospectively collected B-mode images extracted from
a hospital database should take into account what apparatus and procedures
were used to scan the patients. Unfortunately, usually little is known about the
applied B-mode image reconstruction algorithms implemented by different US
scanner manufacturers.

There are several issues related to our approach, which should be addressed
in future. First, to develop the models we used one of the most widely used,
but relatively simple, transfer learning method. In this case the pre-trained deep
CNNs were used as fixed feature extractors. It remains to be studied whether
deep learning models developed from scratch would be similarly vulnerable to B-
mode image reconstruction method modifications. Second, we only explored the
possibility of fooling models based on the modification of compression threshold
levels, but it is also possible to modify other parameters related to the B-mode
image reconstruction method. For example, perturbations of B-mode image pixel
intensities can also arise from setting different logarithm base for compression.
Moreover, the texture of B-mode images depends on applied beamforming tech-
nique [27] and imaging frequency [25]. Nevertheless, in the case of our study
it was sufficient to modify compression threshold values to significantly change
classification performance of the deep learning models.

5 Conclusions

In this work we investigated the impact of B-mode image reconstruction method
on breast mass classification with deep learning. By modifying B-mode image
reconstruction method we were able to significantly decrease or increase classi-
fication performance of each deep learning classifier. We believe that our work
is an important step towards the development of robust deep learning computer
aided diagnosis systems.

Conict of interest statement. The authors do not have any conicts of interests.
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