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Acoustical Driving Forces (ADF), induced by propagating waves in a homogeneous and inhomogeneous
lossy fluid (suspension), are determined and compared depending on the concentration of suspended par-
ticles. Using integral equations of the scattering theory, the single particle (inclusion) ADF was calculated
as the integral of the flux of the momentum density tensor components over the heterogeneity surface.
The possibility of negative ADF was indicated. Originally derived, the total ADF acting on inclusions
only, stochastically distributed in ambient fluid, was determined as a function of its concentration. The
formula for the relative increase in ADF, resulting from increased concentration was derived. Numerical
ADF calculations are presented. In experiments the streaming velocities in a blood-mimicking starch
suspension (2 µm radius) in water and Bracco BR14 contrast agent (SF6 gas capsules, 1 µm radius) were
measured as the function of different inclusions concentration. The source of the streaming and ADF was
a plane 2 mm diameter 20 MHz ultrasonic transducer. Velocity was estimated from the averaged Doppler
spectrum obtained from originally developed pulsed Doppler flowmeter. Numerical calculations of the
theoretically derived formula showed very good agreement with the experimental results.

Keywords: streaming suspension; scattering; acoustical driving force; Doppler measurements; contrast
agents.

1. Introduction

In lossy homogenous fluid streaming results from
non elastic momentum transfer through acoustic (po-
tential) mode to a fluid (Eckart, 1948). This trans-
fer is described by the Acoustical Driving Force
(ADFh) which depends only on absorption and in-
tensity of sound. Viscous forces resist the flow. The
balance between both forces manifests in the station-
ary flow. In multi-phase medium, meaning suspen-
sion, the asymmetry in forward-backward scattering
of the sound on solid or fluid inclusions generate ad-
ditional components of ADF, which affect the stream-
ing speed (equilibrium speed). Scientific and practi-
cal importance phenomena in the range of ADF (or
acoustical radiation pressure) and streaming result
from the fact that enable testing and influences on
the thermo-mechanical properties of matter and non-
contact mass and energy flow control such as acous-

tic levitation, containerless processing, filtration and
selection of molecules etc. The possible medical appli-
cations of high-frequency-induced ADF were investi-
gated in terms of influencing the movement of blood
cells, thrombi, transport control of microcapsules and
ultrasound contrast agents in blood vessels to increase
the efficiency of thrombolytic and diagnostic therapies.
Wu and Du (1993) and Tjotta (1959) showed that
in a lossy homogeneous medium, the axial component
of the streaming speed vz is described by the Poisson
equation η∆vz = (1/c)∂zIz, where ADFh ∶= (1/c)∂zIz.
From the other side: ADFh ≅ −(2a/ηc)Iz. Variables
η, c, a are kinematic shear viscosity, speed of sound
and absorption coefficient respectively, Iz is the axial
component of the sound intensity vector, here ADFh
denotes the density of Acoustical Driving Force in ho-
mogenous fluid. The right hand side terms give the
ADFh per unit mas. The numerical solutions of this
equation for the acoustic Gaussian beam presented by
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Wu and Du (1993) and Nowicki et al. (1997; 1998)
agreed well with the experiment. There is a number
of motion models of multi-phase media (suspensions)
in the literature. The most advanced ones include the
works of Zhang and Prosperetti (1994; 1997) in
which the motion of the continuous phase (surrounding
fluid) and dispersion (heterogeneities) are described by
conjugated equations. None of these models explicitly
considered the acoustic mod. Explicitly its “inclusion”
in the existing palette of interactions further increases
the level of complexity. There are simplifications used
to avoid viscosity (in real fluids an important factor
driving the continuous phase).

In publications, ADF is determined for a single
fixed molecule. If the results of tracking of the motion
that it generates are presented, that this is a movement
of a single material point (see Lei et al., 2013). There
are no equations, generalizing the above, describing
the global stationary movement of the suspension as
a “one-fluid” heterogeneous medium.

In this work we show a method of transition from
the description, the point of ADF action to a set of
inhomogeneities stochastically distributed in ambient
fluid to a continuous, dependent on the concentration
of heterogeneity, description of the resultant ADF ac-
tion on the fluid element. Although we do not ana-
lyze the effects of “secondary” stresses generated by
stationary flow on the heterogeneities of viscosity, in
our opinion the presented method is the first step
to generalize the description of Wu and Du (1993)
and Tjotta (1959) to a hypothetical form η∆vz =

(ADFh) + (ADF) + (sec.eff ∝ ∇η). The streaming ve-
locity vz results with equilibrium between sum of driv-
ing forces (ADFh)+ (ADF) and the viscous resistance
force η∆vz. For this reason, the main goals of the work
were:

1) determining the ratio ε ∶= ADF/ADFh as a func-
tion of the concentration of heterogeneity (ADF
increments as a function of concentration);

2) experimental determination of streaming speed in-
crements (equilibrium speed) as a function of con-
centration of inclusions and comparison of both
values.

To determine the ADF acting on a single inclusions,
it is necessary to determine the scattered field. For this
purpose, we use the integral equation of the scattering
theory. This is an original and effective approach, espe-
cially when we can use a single scattering approxima-
tion. We use it because in our experiments the ratio of
heterogeneity radius (1–2 µm) to wavelength (75 µm)
was small enough. Literature uses fields in the form of
expansions into infinite series. More broadly this issue
is discussed further in the text. Although the presented
method is not limited by the shape of inclusions, we
apply it to spherical heterogeneities. An example of
one of the first works devoted to the determination

of ADF and the accompanying torque for a different
shape (infinite thin cylinder) – and with the use of field
distribution into infinite series, is the work of Czyż and
Gudra (1992).

Due to the need to carry out accurate measure-
ments of changes in the speed of streaming in the ref-
erence medium and in the scope of low concentration of
inclusions, the original pulsed Doppler flowmeter oper-
ating at 20 MHz frequency was used. Also due to the
scope of the experiment’s parameters, the presented
work covers an area not exposed in the literature.

2. Basic equations and assumptions

In this section we use normalized system of de-
pendent and independent variables. The dimensional
variables and operators are accentuated. The normal-
ization was performed as follows. The normalized co-
ordinates in space and time are x ∶= K ′

0x
′; t ∶= Ω′

0t
′,

whereas ∇ ∶= ∇′/K ′
0 is the normalized nabla vector

operator and ∂t ∶= ∂t′/Ω
′
0 is the derivation operator

with respect to time. The characteristic wave num-
ber K ′

0 and pulsation Ω′
0 are restricted by the re-

lations: K ′
0c
′
0 = Ω′

0 and Ω′
0 ∶= 2π/T ′0, where T ′0 is

the reference time (e.g. time window). The normal-
ized pulsation (frequency) and the wave number in
dispersion-less media are equal to ω ∶= ω′/Ω′

0 and
k0(ω) = ±ω, respectively. For Fourier series represen-
tations of the disturbances, ω is discrete variable (in-
teger) which enumerates the components of the series.
Normalized density and speed of sound are given by
g̃ = g̃(x, t) ∶= g̃(x, t)′/g′0, g = g(x) ∶= g

′/g′0, respectively,
and c = c(x) ∶= c′/c′0, g

′
0 and c′0 are density and speed of

sound in reference medium (in our case – volume dom-
inant reference). This means that g = g0 = 1 and c =
c0 = 1 for reference medium. The pressure and vector of
the velocity field are normalized as follows: P̃ ∶= P̃ ′/P ′

0,
υ ∶= υ′/υ′0; q ∶= υ

′
0/c

′
0 = P ′

0/g
′
0c
′
0
2 is the Mach number,

P ′
0 is the pressure amplitude of the disturbance source.

The distribution of the absorption coefficients is nor-
malized as follows a(ω,x) ∶= a′(ω′/Ω′

0,x)/K
′
0.

Despite the normalization, we retained the sym-
bolism of size, which, after normalization, assumes the
value of 1, as for example g0 = 1, c0 = 1. In this way,
these formulas retain the structure of standard ones,
which makes it easier to give them a physical dimen-
sion and identification with the standard ones used in
the literature.

We use Euler’s description of the medium in which
the primary fields g̃(x, t) and υ(x, t) are evolving in
time according to

∂tg̃ + q∇ ⋅ g̃υ = 0, (1)

∂tg̃υ + q∇ ○ g̃υυ = ∇ ○Π, (2)

∇ ○Π ∶= −∇P̃ (g̃,υ) − η∇×∇× υ, (3)
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P̃ (g̃,υ) ∶= gc2 [(g̃/g)
γ
− 1]/qγ + 2gcAvυ, (4)

where Π is the stress tensor in dissipative medium (vis-
cous, relaxing, heat conducting), g̃υυ is the Reynolds
stress tensor, P̃ (g̃,υ) is the potential mode pressure.
The nearly adiabatic transition of the medium was as-
sumed; γ is the exponent of the adiabate, Av is the
convolution type operator describing the dissipation
(Wójcik, Gambin, 2017). For classic viscous media
Av

∶= α2∇⋅, α2 ∶= (4η′s/3 + η
′
b + (γ − 1)κ′/c′p) ⋅K

′
0/2c

′
0;

η′s, η
′
b, κ

′, c′p are, respectively, kinematic coefficients of
shear and bulk viscosity, heat conduction and specific
heat. η ∶= K ′

0
2η′s/Ω

′
0 is the normalized sear viscosity,

η = K ′
0
2/∣k′s∣

2
= (K ′

0δ
′
s)

2
/2 = q/Re0, k′s ∶= (1 + i)/δ′s,

δ′s ∶=
√

2η′s/Ω′
0 is the acoustical boundary layer thick-

ness, Re0 – Reynolds number for the scale 1/K ′
0.

In Euler coordinates, Acoustical Radiation Force
(ARF) acting on the volume ϑ of the medium, bounded
by the constant in time surface S, is determined based
on the formula

F ∶=∫

ϑ

∇ ○ ⟨Π − qg̃υυ⟩ dϑ=∫
s

⟨Π − qg̃υυ⟩ ○ nds, (5)

where Eq. (5) is usually determined only on the ba-
sis of acoustic variables (see e.g. Settnes, Bruus,
2012; Mitri, 2012; Zarembo, Krasilnikow, 1966).

⟨⋅⟩ ∶=

t+T

∫
t

(⋅)/T is an average over period of disturbance

or repetition time T , n is the unit outward normal to
the surface S. The ADF is defined by Eq. (5) in which
the term g̃υυ is neglected. The term ADF is used to
emphasize the fact that in Eq. (5) we temporarily dis-
regard the Reynolds stress tensor g̃υυ describing the
inertial reaction of the medium to Π. We are inter-
ested in the basic effect of the acoustic field as an ex-
ternal factor that can control the movement of the sus-
pension. For an incompressible or poorly compressible
medium, it is often assumed (υυ) ○ n = υ(υ ⋅ n) = 0.
ARF and ADF differ in constant factors, which in our
case leads to negligible differences between them. Nev-
ertheless, in the further, numerical part of the work, we
give an equation taking into account the influence of
the omitted component, i.e. the transition from ADF
to ARF. In this way, in addition to shortening the con-
siderations, we obtain a comparison of both forces.

We assume that υ = v + w, v ∶= ∇Φ, ∇ ⋅ w = 0,
because η∇ × ∇ × υ = −η∆w, then for decomposi-
tions w = w(1) +w(2) + o2, w(1) fulfills equation (∆ +

k2
s)ŵ

(1)(x, ω) = 0, ŵ(1) = F [w(1)]; ks ∶= (1 + i)/δs and
δs ∶=

√
2η/ω are normalized counterparts of k′s, δ

′
s. If

η ≪ 1, then wave length is much larger than the bound-
ary layer thickness. In our case w(1) is restricted to
thin boundary layer of thickness δs ∼ r0/16 (r′0 = 2 µm,
ω′ = 20 MHz). Also the amplitude corrections brought
by this force are evaluated as of order δs/r0 (Settnes,
Bruus, 2012). It means that direct interactions do not

occur additionally ⟨w(1)⟩ = 0. In the second order w(2)

is the non-linear reaction of the medium to the distur-
bance w(1) and P̃ . ⟨w(2)⟩ is the speed of streaming
where component z corresponds to vz given in intro-
duction. This is a secondary effect in Π, depending on
the acoustic excitation. The case w(1) is not obvious
because it is the first order in relation to the acoustic
field. Although in our case w(1) is small (δs/r0 ≪ 1),
it is not always the case. Obviously, w has the correct
components inside the inclusions. For fluid inclusions,
they are omitted in the determination of ADF (ARF)
for the same reason as external w(1). The ⟨w(2)⟩ ≠ 0
represents inner micro streaming unlike Eckhart’s flow.
For solid inclusions, inner stationary flow does not ex-
ist. It is replaced by second-order stationary shape-
deforming stresses that can be completely neglected.

From above reasons for ADF density we have ∇ ○

⟨Π⟩ = −∇ ⟨P̃ ⟩. For perturbation solutions of Eqs (1)–
(4), in potential approximation, Φ = Φ(1) + Φ(2) + o2,
P̃ = P (1) +P (2) + o2, where v = v(1) + o = ∇Φ(1) + o, we
get P (1) = −g∂tΦ(1), where:

P (2)=−g∂tΦ(2) − q
g

2

⎛

⎝
(v(1))

2
− (

P (1)

gc
)

2
⎞

⎠
+ o2,

(v(1))
2
∶=v(1) ⋅ v(1).

(6)

The acoustical pressure is given by P = P (1) − g∂tΦ2

and for periodical disturbances ⟨P ⟩ = 0.
For the Fourier’s representation of disturbances

P (1)(x, t) =
1

2
∑
ω

C(x, ω)e−iωt + c.c, (7)

v(1)(x, t) =
1

2
∑
ω=0

u(x, ω)e−iωt + c.c,

u(x, ω) =
∇C(x, ω)

iωg
.

(8)

For mean value of P̃ we obtain:

⟨P̃ ⟩ = −q
g

4
∑
ω

(∣u∣
2
−

1

(gc)2
∣C ∣

2
). (9)

3. Scattered field determination

To determine Eq. (9), it is necessary to determine
the acoustic field, in particular in the neighborhood
of heterogeneity. Usually solutions for a scattered field
are sought in the form of infinite series of functions
that satisfy the wave equations in homogeneous phases
of the medium and appropriate boundary conditions
at the interface (inclusions). These series are slowly
converging which causes a number of difficulties in
theoretical analysis. We can limit ourselves to one or
two terms of a series in the case of extremely asymp-
totic relations between the parameters determining the
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course of the phenomenon. We use an approach based
on the integral formulation of the problem of scatter-
ing. It allows for considerable flexibility in the methods
of searching for and presenting analytical and numeri-
cal solutions, including approximations with a simpler
analytical structure, however, sufficient or very accu-
rate.

In our model of the heterogeneous medium (sus-
pension) we assume that the reference homogeneous
medium surrounds J space volumes ϑj . Each region ϑj
is filled with medium and their homogeneous density
gj ≠ g0 = 1, speed of the sound waves cj ≠ c0 = 1 and
absorption coefficient aj(ω) ≠ a0(ω), a0(ω) are nor-
malized absorption coefficient of the ambient medium,
a(ω) = F[A], F[⋅] is the Fourier transform, A ∶=Av

∇

(Wójcik, Gambin, 2017). Material parameter (den-
sity) distributions are given by:

g(x) = g0 +
J

∑
j=1

[gj − g0]χj , (10)

where χj ∶= χ(ϑj) is the characteristic function of ϑj ,
and analogously for the other parameters.

In heterogeneous lossy medium C satisfies Sturm-
Liouville equation (perturbed Helmholtz). By con-
verting this equation into an integral equation of
a scattered field, we get (Wójcik et al., 2011;
Brekhovskikh, Godin, 1990),

CS(ω,x)+ k0(ω)
2
∫

ϑ(x′)
G(x−x′)W (x′,∇x′)C

S
(ω,x′)dϑ

= −k0(ω)
2
∫

ϑ(x′)
G(x−x′)W (x′,∇x′)C

I
(ω,x′)dϑ, (11)

where G(ω,x) ∶= exp(ik(ω) ∣x∣)/4π ∣x∣ is the Green
function of the Helmholtz equations, ϑ ∶= ∪ϑj , CS ∶=

C − CI is the scattering field, C is the total field
in the medium, CI is the incident field, W (x,∇) ∶=

V (x) + ∇Γ(x) ⋅ ∇ is the scattering potential. For our

model Eq. (10), W (x,∇) ∶=
J

∑
j=1

Wj(x,∇), Wj(x,∇) ∶=

Vjχj(x) + (1/k0(ω)
2
)Γj∇χj(x) ⋅ ∇, where:

Vj ∶= (1 −
c20(1 + 2iaj(ω)/kj)

c2j (1 + 2ia0(ω)/k0)
),

Γj =
gj − g0

(gj + g0)/2
,

(12)

k2
0 ∶=

ω2

c20
(1 + 2i

a0(ω)c0
ω

),

k2
j ∶=

ω2

c2j
(1 + 2i

aj(ω)cj

ω
).

(13)

For one-component suspension, it is reasonable to
assume that all Vj , Γj are identical or can be repre-
sented by average values V , Γ. For simplification fur-
ther calculations will be made for spherical scatterers

with mean size r0 = ⟨r0j⟩j and volume ϑ0 ∶= 4πr3
0/3.

We assume that:

1) for individual scatterer the condition for applying
of the single scattering approximation is mean 2 ⋅
∥W ∥ ⋅ (k0(ω) ⋅ r0)

2
≪ 1, where ∥W ∥ = max

x,j
∣Wj ∣ is

the norm of the scattering potential;

2) the contribution of multiply scattered field on the
other scatterers to the ADF of the single scatterer
can be omitted. The results of the work (Wójcik
et al., 2011) showed that the cross-sections for
scattering in the second order are several dozen
times smaller than in the first order.

Additionally, absorption of the ambient medium
further attenuates this relationship. A stochastic
medium with large ∥W ∥ was considered, scatterers
were located at distances comparable to their sizes and
are sonicated by waves of comparable (with scatterers
dimension) wavelength.

Let vector Rj = (zj , xj , yj) = (zj ,ρj), Rj = ∣Rj ∣ de-
scribe space position of fixed point inside volume ϑj ,
introducing new vector variable ξ = x′ −Rj , ∇x′ = ∇ξ,
and r = x − Rj . In the vicinity of the point Rj

of the small particles the incident “transducer” field
may be presented as the locally plane, CI(ω,x′) =

CI(ω,Rj + ξ) ≅ CI(ω,Rj)e
ikI(ω)⋅ξ, where for ex-

ample, CI(ω,Rj) ∶= C0(ω)2∂z′ ∫
xσ ∈σ

G(Rj − xσ + ξ)dσ

is the field satisfying Dirichlet boundary conditions,
emitted by plane uniformly apodised, perpendicular
to z axis transducer. For plane wave CI(ω,Rj) ∶=

C0(ω)e
ikI(ω)⋅Rj . C0(ω) is transmitted pulse Fourier

spectrum, kI(ω) = k0(ω)eI , eI is the unit vector in
the direction of the plane wave propagation, k(ω) ≅

ω + ia0(ω). For transducer eI = Rj/Rj , σ is the trans-
ducer surface. Using above expansion in Eq. (11) we
obtain field scattered by single scatterer,

CSj (ω,Rj + r) = −k0(ω)
2CI(ω,Rj) ∫

ϑj(ξ)
G(ω, r − ξ)

⋅Wj(ξ,∇ξ)e
ikI(ω)⋅ξ dϑ. (14)

Equation (14) can be easily numerically calculated.
Because kξ2/2r ≤ kr0/2 ≪ 1 for r ≥ r0, ξ = ∣ξ∣, r = ∣r∣,
then in the Green function expansion G(ω, r − ξ) ≅

G(ω, r)⋅exp(−iks(ω)⋅ξ) Fresnel terms may be omitted.
Moreover, obtained formulas may be used (as Eq. (14))
for determination of the field on the heterogeneity sur-
face. ks(ω) ∶= k0(ω)es is the wave vector of scattering
wave, eS = (x −Rj)/∣x −Rj ∣ = r/r. Applying above
approximation in Eq. (14) we get:

CSj (ω,x) = −k0(ω)
2CI(ω,Rj)G(ω,x −Rj)

⋅
⌢
W j(kS − kI ,kI), (15)
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where

⌢
W j(kS − kI ,kI) ∶= ∫

ϑj(ξ)
e−ikS ⋅ξWj(ξ,∇ξ)eikI(ω)⋅ξ dϑ

= (V + (1/k2
0)(kS − kI) ⋅ kIΓ)

⋅
⌢
χj(kS − kI), (16)

⌢
χj(kS −kI) = F [χj(ξ),kS − kI] =

⌢
χj (k0(ω)(eS − eI))

is the space Fourier transform of χj(ξ).
In the spherical system of coordinates cente-

red at Rj , oriented respect direction eI of incident
wave eS ⋅ eI = cos(θ), r = (r cos(θ), r sin(θ) cos(ϕ),
r sin(θ) sin(ϕ)), kI ⋅ r = kr cos(θ), the total field Cj =
CIj + C

S
j = Cj(ω,Rj + r) in vicinity of the spherical

heterogeneity of radius r0 takes the form

Cj(ω,Rj , r, θ) = C
I
(ω,Rj)H(r, θ, ω), (17)

H(r, θ, ω) ∶=
⎛

⎝
eik0(ω)⋅r cos(θ)

− k0(ω)
2 e
ik0(ω)r

4πr

⌢
W (θ, r0)

⎞

⎠
,

(18)
where

⌢
W j(θ, r0) = ϑ0 ⋅ (V + (cos(θ) − 1)Γ)

⋅f (2r0k0(ω) sin(θ/2)),

f(⋅) ∶= 3 (sin(⋅) − (⋅) cos(⋅))/(⋅)3.

4. Forces determination

The velocity components uj(ω, r, θ) = (ur, uθ,0)j
are calculated on the basis of Eqs (8) and (17):

∣uj ∣
2
= ∣CI(ω,Rj)∣

2
∣U(r, θ, ω)∣

2
/(g0c0)

2, (19)

∣U(r, θ, ω)∣
2
∶= (∣∂rH ∣

2
+ ∣∂θH/r∣

2
)/k2

0. (20)

Substituting Eqs (17) and (19) into Eq. (9) then
into Eq. (5) and integrating in a spherical coordinate
system, n = r/r =eS , ds = r2

0 sin(θ)dθ dϕ we get:

Fj = q
πr2

0

2g0c20
∑
ω

∣CIj ∣
2
Q(ω, r0)eI , (21)

Q(ω, r0) ∶=

π

∫
0

(∣U∣
2
− ∣H ∣

2
)
r=r0

cos(θ) sin(θ)dθ. (22)

From Eqs (12), (16) and (22) it follows that Fj can
change the sign relative to eI or at the transition from
gj > g0 = 1 or cj > c0 = 1 to gj < 1 or cj < 1, respectively.
In our case, for capsule SF6 Q(ω, r0) < 0.

Let us consider, for simplicity and also from exper-
imental reasons, cylinder (or cylindrical shell) of the
base area Sc, length lc, volume ϑc = Sc ⋅ lc, ϑc ≫ ϑ0 and
axis parallel to eI = (1,0,0) unit vector in direction

of the incident plane wave. Let cylinder be positioned
between zc and zc + lc planes. Because ikI ⋅Rj + c.c =
−2a0(ω)zj , zj = zc + δzj , 0 ≤ δzj ≤ lc, then the sum of
the driving forces acting on J = βϑc suspension parti-
cles in volume ϑc is proportional to:

J

∑
j=1

∣CIj ∣
2
= ∣C0∣

2
e−2a0(ω)zc

J

∑
j=1

e−2a0(ω)δzj . (23)

According to the mean value theorem there exists such
δz that the sum on the right hand side in Eq. (23)
takes the form J exp(−2a0(ω)δz). In stationary flow,
spatial distributions of scatterers change from obser-
vation to observation (that means that δz fluctuates).
Suppose, however, that in a given area they are real-
izations of the same stationary stochastic process with
specific probability densities of random variables δzj .
Assume that these are identical uniform distributions
in volume ϑc.

After averaging respect this distributions, the total
driving Force acting on particles is:

F = qJ
πr2

0

2g0c20
∑
ω

∣C0(ω)∣
2
Q(ω, r0)

⋅ e−2a0(ω)zc ⋅
(1 − e−2a0(ω)lc)

2a0(ω)lc
eI . (24)

In the case of homogeneous absorbing medium the
right hand side of Wu and Du model equation, which
we gave in introduction, determined density ADFh ∶=
(1/c0)∂zIzeI . Then

Fh ≡ ADFh = eI(1/c0)∫
ϑc

∂zIzdϑc

= eI(1/c0)Sc (Iz(zc + lc) − Iz(zc)) . (25)

Because,

Iz(z) ≅ ∣C0(ω)∣
2

exp(−2a0(ω)z)/2g0c0,

then for incident plane wave in the homogenous ab-
sorbing medium the driving force for above describing
cylindrical volume:

Fh = q
Sc

2g0c20
∑
ω

∣C0(ω)∣
2
e−2a0(ω)∣zc∣ (1 − e−2a0(ω)lc)eI .

(26)
The relations ε ∶= F /Fh, F = ∣F∣, Fh = ∣Fh∣ are im-

portant for this work. It can be easily numerically de-
termined, nevertheless several approaches can be pro-
posed for simplification Eqs (24) and (26) and ε. If
the wideband of ∣C0(ω)∣

2 is narrow or/and Q(ω, r0) is
slowly varying function respect ∣C0(ω)∣

2 (it is because
is determined in the range of long-wave asymptotic of
scattering), then

ε ≅ βπr2
0Q(ωc)/2a0(ωc), (27)

ωc is carrier frequency or a frequency of the maximum
of ∣C0(ω)∣. For heterogeneous incident field (“trans-
ducer field”) we obtain the same results. Corresponding
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to Eqs (24) and (26), equations contain additional fac-
tors that are equal to each other. This is due to the
averaging process of the random variables Rj (demon-
strated above), which “sample” the field in the vo-
lume ϑc.

5. Numerical calculations

In calculations the transmitting pulse had ampli-
tude P0 = 0.225 MPa, rectangular envelope, consisted
of 10 oscillation cycles with frequency ω′c/2π = 20 MHz
and met the approximation conditions of Eq. (27).
The volume ϑc was located in the area of the far field
z′c = 0.009 m of the plane transducer beam of diameter
2 mm and in plane wave K ′

0 = 2π/0.03 1/m.
The calculations were made for a starch and capsule

suspensions in water for the following data:

1) water: density g′ = 1000 kg/m3, speed of sound
c′ = 1500 m/s, (g = g0 = 1, c = c0 = 1), co-
efficient of absorption a′0(ω

′) = α′2 ⋅ (ω′/2π)2,
α′2 = 2.54 ⋅ 10−14 Np/mHz2, a0(ω) = α2 ⋅ ω

2, α2 =

3.03 ⋅10−7, kinematic coefficients of shear viscosity
η′s = 10−6 kg/ms;

2) average starch: density g′ = 1500 kg/m3, sound
speed c′ = 2800 kg/m3 (g = 1.5, c = 1.87), ra-
dius r′0 = 2 µm. The following concentrations were
made βm = δβ ⋅mδβ = 20000 1/mm3, m = 0, 1, 2,
3, 4;

3) average capsule BR-14: mean density (lipid + gas)
g′ = 25 kg/m3 (g = 0.025), radius r′0 = 1 µm,
shell density g′sh = 1260 kg/m3, speed of sound
c′sh ≅ c

′ (gsh = 1.26, csh ≅ 1), shell thickness δr′sh =
0.005 µm, gas SF6 density g′g = 6.13 kg/m3, speed
of sound c′g ≅ 120 m/s, (g ≅ 0.006, cg = 0.08), co-
efficient of absorption a′(ω′/2π) = α′SF6 (ω′/2π)2,
α′SF6 ≅ 2.21 ⋅10−10 Np/mHz2. a′(20 MHz) ≅ 8.8 ⋅
104 Np/m, in normalized units aSF6(400) = 341.
Sound speed and absorption parameter of SF6
were estimated based on the works (Cannell,
Sarid, 1974; Estrada-Alexanders, Hurly,

a) b)

Fig. 1. Starch. Surface distributions of the Fourier component ω′c = 20 MHz: (a) of the mean pressure ⟨P̃ωc⟩, (b) of the
angle force density δFωC .

2008; The Engineering Toolbox, 2008). The fol-
lowing concentrations were made βm = δβb ⋅ m,
δβb = 1000 1/mm3, m = 0, 1, 2, 4.

Introducing additive components QU, QH and an-
gle density δQ(ω, r0, θ) ∶= (∣U∣

2
− ∣H ∣

2
) of the Q func-

tion on the surface r = r0, the Eq. (22) may be rewrit-
ten in the form

Q(ω, r0) = QU +QH

∶=

π

∫
0

(∣U∣
2
− ∣H ∣

2
)
r=r0

cos(θ) sin(θ)dθ

=

π

∫
0

δQ(ω, r0, θ) sin(θ) cos(θ)dθ.

As we see on the sphere surface

⟨P̃ (ω, r0, θ)⟩∝ −δQ(ω, r0, θ)

and force density

δF(ω, r0, θ) =∝ δQ(ω, r0, θ) sin(θ) cos(θ).

Angle distributions of ⟨P̃ ⟩ and δF for solid (starch) and
gaseous (SF6) heterogeneities are presented in Figs 1
and 2, respectively. Fourier spectrum of Q and their
“velocity” QU and “pressure” QH components for solid
and gaseous heterogeneities are in Figs 3a and 3b.

The resonant frequencies of the BR14 capsules are
located in the vicinity of 6 MHz. It was assumed that it
is not a secondary source of acoustic field. Due to the
small volume fraction of the shell (≅0.015) and simi-
lar impedances of the shell and water, gc = 1.26 and
g0c0 = 1 respectively, it was assumed that the magni-
tude of the scattering potential of the capsule is de-
termined by the speed of sound and absorption in SF6
(see Eq. (12)). Although the compressibility of the gas
is many times greater than the shell, the compressibil-
ity κ ∶= 1/(gc2) (stiffness gc2) of the lipid shell which
closes the gas, decides on the compressibility of the
capsule as the whole.
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a) b)

Fig. 2. Gas. Surface distributions of the Fourier component ω′c = 20 MHz: a) of the mean pressure ⟨P̃ωc⟩, b) of the angle
force density δFωC .

a) b)

Fig. 3. Dependence of the Q function – continuous bold lines and their components, QH – dashed and QU – doted lines,
on the frequency for the starch (a) and for capsule with the SF6 (b). Amplified of the transmitted pulse ∣C0ω′ ∣

2 – power
Fourier spectrum – thin solid line.

For ARF (see comments in Sec. 2)

δQ(ω, r0, θ) ∶= (bg ∣U∣
2
− bκ ∣H ∣

2
) ,

where bg ∶= (1 − g/g0), bκ ∶= (1 − κ/κ0), κ0 = 1/g0c
2
0 = 1.

Then:
Q(ω, r0) = bgQU + bκQH . (28)

For starch bg = −0.5, bκ ≅ 0.81. For BR14 capsule
bg ≅ 0.994 for lipid shell bκ ≅ 0.206. Bearing in mind the
relationship between the plots QH and QU in Figs 3a
and 3b, and values bg and bκ which modifying QU,
QH and Q(ω, r0) accordingly Eq. (28) in the region
20 MHz, we conclude that: in the case of starch (a) the
change made by bκ is significantly compensated by the
change made by bg, in the case of capsule BR14 (b) the
change is also small. Below, next to the values for ADF,
we give the values corresponding to the ARF obtained
after the substitution of Eq. (28) into Eq. (27).

Accordingly, in Eq. (26), the ADFh acting on
1 mm3 of water by the unit plane continuous wave is
F ′
h = 1.13 ⋅ 10−7 N, but for above described pulsed dis-

turbance, similar to using in experiment, F ′
h = 2.133 ⋅

10−9 N; F ′
h = Fh ⋅ P

′
0/K

′
0
2 in dimensional units.

For solid inclusions concentration β1 = δβ =

20 000 1/mm3, using exact formula ε ∶= F /Fh and full
wideband of the pulse intensity (see Fig. 3) we obtain,

δε ∶= ε(δβ) = 0.112. In the ARF case δε = 0.109. For
approximated Eq. (27), which is equivalent to usage
of unit plane continuous wave, δε ≅ 0.112. The ADF
acting on the one particle bay pulsed disturbance is
F ′/J = 1.2 ⋅ 10−14 N. However, ADF in the case of unit
plane continuous wave is F ′/J = 6.31 ⋅ 10−13 N.

In the case of bubbles, because of csh ≅ 1 and small
δr′sh, it can be shown that influence of the shell on
the scattering potential is negligible. It was assumed
that ω′c/2π is outside the bubbles resonance. For bub-
bles concentration β1 = δβb = 1000 1/mm3, using exact
formula ε ∶= F /Fh and full wideband of the pulse inten-
sity (see Fig. 3) we obtain δε = −1.142. In ARF case,
δε = 0.137. For approximation Eq. (27) (plane contin-
uous wave), δε ≅ −0.145. The ADF acting on the one
bubble bay pulsed disturbance is F ′/J = −3.67⋅10−13 N.
However, ADF in the case of unit plane continuous
wave is F ′/J = −1.61 ⋅ 10−11 N. For pulse disturbance,
the relations between forces acting on bubble and solid
inclusions is approximately equal ∼ 31.

6. Experiment

The measurements were done in the aqueous sus-
pension of the corn starch, with material parameters
as in point 2 of Sec. 5, and ultrasound contrast bub-
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bles with parameters as in Sec. 3. The suspension had
blood-like acoustic properties and was used as a blood
mimicking liquid (Yoshida et al., 2012). The suspen-
sions concentrations of βm = δβ ⋅m, δβ = 20 000 1/mm3,
m = 0, 1, 2, 3, 4, were investigated. As a reference liq-
uid, a 0.01 g/l (βref = 200 1/mm3) aqueous suspension
of starch was used. With such a low starch concentra-
tion, it was expected that the measured flow veloc-
ity would be similar to that of the pure water. This
concentration was sufficient to obtain 20 dB Doppler
signal-to-noise ratio and to estimate the maximum flow
velocity. The direction of the streaming of the reference
liquid corresponded to the direction of the acoustic
wave propagation. In the next experiment, the stream-
ing velocity of the bubble suspension of the Bracco
BR14 (SF6) ultrasonic contrast was measured. Con-
centrations ofβm = δβb ⋅m, δβb = 1000 1/mm3, m = 0,
1, 2, 4, were studied.

A 2 mm diameter, 20 MHz, flat ultrasonic trans-
ducer was used to generate the streaming and to
measure simultaneously the streaming velocity. The
streaming velocity was recorded in a sample volume lo-
cated 9 mm from the transducer face. The transducer
was driven by an ultrasonic Doppler flow meter. The
Doppler signal from the output of the pulse flowmeter
was recorded by the LeCroy 62Xi digital oscilloscope.
50 ⋅103 signal samples were recorded in 1 s. Bandwidth
was limited to 0–1.45 kHz at −3 dB. A 32 ⋅ 103 point
FFT with Hamming window were calculated. Doppler
spectra in 0–25 kHz frequency range and ∆f = 1.5 Hz
resolution were obtained. Next 50 spectra were aver-
aged. For the reference signal 0.01 g/l starch suspen-
sion, 1000 spectra were averaged for a 20 dB noise sep-
aration. Finally, the maximum Doppler frequency and
the maximum streaming velocity was calculated from
the Doppler formula fd = fu ⋅ (w/c′0)2 cos(θ), where
fd is the Doppler shift frequency, fu is the ultrasound
frequency (20 MHz), w is the streaming velocity, c′0
(= 1500 m/s) is the speed of sound and θ (= 0 rad) is
the angle between the flow direction and the propaga-
tion direction of the ultrasonic wave.

The spectra of the Doppler signal for the different
concentrations of the corn starch suspension are shown
in Fig. 4.

The calculated maximum streaming velocities for
the recorded spectra are presented in Table 1. The
third column contains relative velocity increase of
δεm ∶= (vm − vm−1)/vref and the average relative in-
crease of δεexp ∶= ⟨δεm⟩m = (v4 − vref)/4vref resulting
from concentration increase of the streaming veloc-
ity (v0 = vref), with step changes in concentration of
δβ = β1 (= 20 000 1/mm3). These quantities, especially
δεexp = 0.107, correspond to theoretically determined
and numerically calculated δε = 0.112. In theory, be-
cause of the linear relationship of F and β, δε = δεm.
Only for m = 1, ∣δε − δε1∣ < 0.018, when for the other
cases ∣δε − δεm∣ < 0.005.

Fig. 4. The maxima of Doppler spectra in the function of
the starch concentration β(ref,1,2,3,4), and the correspond-
ing streaming velocity v(ref,1,2,3,4). Measured profiles of the
spectra-thin lines; locally averaged measured profiles – bold

lines.

Table 1. Measured speed of the streaming vm as a func-
tion of starch concentration βm. Third column – mean
relative speed increase δεexp and relative speed increase
δεm as a function of increase of the starch concentration

δβm = βm − βm−1 = δβ = β1.

Concentrations
[1/mm3]

Velocity
[mm/s]

Relative increase
δεm ∶= (vm − vm−1)/vref

βref = 2 ⋅ 102 vref = 11.25 δεexp ∶= ⟨δεm⟩m = 0.107

β1 = 2 ⋅ 104 v1 = 12.31 δε1 = 0.094

β2 = 4 ⋅ 104 v2 = 13.63 δε2 = 0.117

β3 = 6 ⋅ 104 v3 = 14.84 δε3 = 0.108

β4 = 8 ⋅ 104 v4 = 16.06 δε4 = 0.109

The spectra for the Bracco BR14 ultrasonic con-
trast for different concentration are shown in Fig. 5.

Fig. 5. The maxima of Doppler spectra in the function of
the BR14 (SF6 capsule) concentration β(ref,1,2,4), and the
corresponding streaming velocity v(ref,1,2,4). Measured pro-
files of the spectra-thin lines while locally averaged – bold

lines.
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For bubbles, the maximum streaming velocities for
the recorded spectra are presented in Table 2.

Table 2. Measured speed of the streaming vm as a func-
tion of starch concentration βm. Third column – mean
relative speed increase δεexp and relative speed increase
δεm as a function of increase of the bubbles concentration

δβm = βm − βm−1 = δβ = β1.

Concentrations
[1/mm3]

Velocity
[mm/s]

Relative increase
δεm ∶= (vm − vm−1)/vref

βref = 2 ⋅ 102 vref = 11.25 δεexp ∶= ⟨δεm⟩2 ≅ −0.125

β1 = 1 ⋅ 103 v1 = 9.5 δε1 = −0.156

β2 = 2 ⋅ 103 v2 = 8.43 δε2 = −0.095

β4 = 4 ⋅ 103 v4 = 7.93

Due to the rapid loss of proportionality of mea-
sured velocity increase as a function of concentration
for m > 2 (see Fig. 5) only the value given in the ta-
ble was δεexp ∶= (v2 − vref)/2vref. Theoretical value for
microcapsules BR14 was δε = −0.142 while the exper-
imental one δεexp = −0.125. The case β3 = 3 ⋅ 103 was
omitted as indistinguishable from β2 and β4 (also due
to the measuring accuracy of 0.5 mm/s for all cases).

7. Discusion and conclusions

Calculating ADFh +ADF→ Fh +F on the basis of
Eqs (24) and (26) we obtain

Fh+F=qϑc∑
ω

(2a0(ω)+βπr
2
0Q(ω, r0)) Iz(ω, z)/c. (29)

This along with the experimental results seems to
confirm the hypothesis presented in the introduction
with regard to suspensions generating a positive Q
and within the range of the concentrations used. Ex-
periments with BR14 (negative Q) are much more dif-
ficult due to their short lifespan and the inability to
use large concentrations (significant costs). It should
be noted that in this case the spectra and the corre-
sponding velocities must initially be interpreted only
as BR14 bubble streaming velocity, but not the ve-
locity of the mixture with the surrounding fluid. The
velocity of the bubbles relative to the detector is posi-
tive (in a steady state), however it is negative in re-
lation to surrounding fluid. The ADFh force acting
on the surrounding fluid is positive. So the negative
ADF force acts on the bubbles and is directed opposite
to force driving the ambient liquid, which is consistent
with the predictions of the theory and calculations.

On the other hand, for this reason a significant
“capture” and destruction of the BR14 microcapsules
by the transducer especially before the setting up of
the streaming should be expected. In the description
of the local movement of a single microcapsule, its ve-
locity is determined by the balance between Stokes
driving force FSto and the negative ADF generated on

the microcapsule FSto ≡ 12πη′sg
′
0r

′
0δv = −F ′/J , where

δv is the difference of the velocity of the fluid (water)
flowing around the bubble and the velocity of the bub-
ble. Using the results of the numerical calculations of
F ′/J = −3.67 ⋅ 10−13 N a relative velocity equilibrium
δv ≅ 0.01 mm/s can be obtained (it is much less than
measurement accuracy). On this basis, for the purposes
of interpretation, despite the initial reservations, we as-
sume the equality of the velocity of both phases of the
mixture. Increasing the concentration of BR14 from β1

to β2 causes a further clear decrease of the bubble ve-
locity (mixture). However, this is not a change as pro-
portional as in the case of starch suspension. Neverthe-
less ∣δε − δεexp∣ < 0.02 and it allows us to assume that
in the range of the concentration change to β2 the ve-
locity changes are proportional and satisfactorily agree
with the theory. In the experiment, above concentra-
tion β2, we observe a violent collapse of the principle of
proportional velocity increase. According to theory, the
relative change of velocity for β4 = 4000 1/mm3 should
be equal to −0.57. The value calculated on the basis of
the experiment is ≅−0.3. The reasons for this dispro-
portion is not recognized yet. We suppose that it can
be seen in the disappearance of bubble concentration
in relation to the given or more complicated course of
the phenomenon than described in the presented the-
ory. For example, the faster the increase of the non-
linearity in relation to the concentration in the case of
negative and large ADF. We note that the theoretically
calculated force corresponding to the concentration of
BR14 of β4 = 4000 1/mm3 corresponds to the absolute
force value for starch concentration of 120 000 1/mm3.

Nevertheless, experiment and theory showed the
possibility of effective control of the movement of sus-
pensions of ultrasound, contrasts and capsules contain-
ing drugs and the dependence of the direction of force
on the relative values of material parameters.
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