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Abstract: Structural damage identification plays an important role in providing effective evidence
for the health monitoring of bridges in service. Due to the limitations of measurement points and
lack of valid structural response data, the accurate identification of structural damage, especially
for large-scale structures, remains difficult. Based on additional virtual mass, this paper presents
a damage identification method for bridges using a vehicle bump as the excitation. First, general
equations of virtual modifications, including virtual mass, stiffness, and damping, are derived. A
theoretical method for damage identification, which is based on additional virtual mass, is formulated.
The vehicle bump is analyzed, and the bump-induced excitation is estimated via a detailed analysis
in four periods: separation, free-fall, contact, and coupled vibrations. The precise estimation of
bump-induced excitation is then applied to a bridge. This allows the additional virtual mass method
to be used, which requires knowledge of the excitations and acceleration responses in order to
construct the frequency responses of a virtual structure with an additional virtual mass. Via this
method, a virtual mass with substantially more weight than a typical vehicle is added to the bridge,
which provides a sufficient amount of modal information for accurate damage identification while
avoiding the bridge overloading problem. A numerical example of a two-span continuous beam is
used to verify the proposed method, where the damage can be identified even with 15% Gaussian
random noise pollution using a 1-degree of freedom (DOF) car model and 4-DOF model.

Keywords: structural health monitoring; damage identification; vehicle bump; additional virtual
mass; bridge

1. Introduction

Bridges are key components of transportation infrastructure. In recent decades, due to
environmental effects, the ageing process, and increased traffic loading [1], the demand of bridge
condition monitoring to maintain the service safety of bridges is increasing [2]. Structural health
monitoring (SHM) [3–8] has been extensively employed in practical civil engineering projects, especially
for large-scale structures such as bridges [9,10]. Structural damage identification [11–15] has an
important role in providing effective evidence for bridge maintenance and assessment.

In structural dynamics, if the system parameters and its excitations are known, the calculation of
the corresponding structural response is a direct problem. The identification of system parameters or
excitations using the known response constitutes an inverse problem, and damage identification is thus
an inverse problem. Structural dynamic characteristics are often used to detect damage by assessing
their changes between an intact structure and a damaged structure. Structural modal parameters, such
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as natural frequencies, mode shapes, modal mass and stiffness, are popular as dynamic indices for
damage identification [16–19], and are easily obtained due to the rapid development of experiment
modal analysis techniques. For example, Wang et al. [20] extracted the fundamental frequency
of a bridge from the responses of an ordinary vehicle with its parameters calibrated in advance.
Ubertini et al. [21] provided an estimate of the modal parameters of a newly built suspension with
uncertainty bounds considering variations in identified modal features. Kong et al. [22] proposed
an efficient method for numerical extraction of bridge modal properties from dynamic response of
moving vehicles using a specialized test vehicle that consists of a tractor and two following trailers.
Qin et al. [23] applied a kriging model and particle swarm optimization algorithm for the dynamic
model updating of bridge structures using the higher vibration modes in a large-amplitude initial
condition. Magalhaes et al. [24] presented an automated identification method of the modal parameters
with the related bridge response under different wind conditions. Brownjohn [25] presented the first
full modal survey of Jiangyin Yangtze River Bridge to identify the important features of the modal
behavior. Guo et al. [26] presented a damage detection method based on the modal strain energy
equivalence index (MSEEI) to solve structural multi-damage identification problems. Cui et al. [27]
presented a damage detection method that was based on strain modes for beam-type structures
with ambient excitation. Hou et al. [28] carried out the local structural damage Identification using
Frequency-Domain Substructure Isolation Method. Liang et al. [29] performed damage detection
of a real cable-stayed bridge using the proposed frequency co-integration technique, which could
effectively eliminate the influence of the changing environmental temperature and accurately identify
the structural damage. Li et al. [30] proposed a substructure damage identification method based
on dynamic response reconstruction in the frequency domain, which was validated by a laboratory
experiment of a steel plane frame structure. Zhang et al. [31] used the Substructure Virtual Distortion
Method to rapidly construct the structural frequency response function for substructural damage
identification of a frame structure based on structural modes.

Many studies of damage identification based on structural modal parameters have been carried
out. However, practical difficulties exist in accurate damage identification due to the limited number
of measurement points. Usually low-order modes are obtained, which are insensitive to local damage,
especially for bridges that are large and complex. To increase the quantity of valid measured modal
data, physical parameters are added to structures. Nalitolela et al. [32,33] proposed the mass and
stiffness addition technique to perform structural modal updating, where modal information of the
perturbed structures was utilized. Cha et al. [34] developed an approach to modal updating that
involves the addition of known masses to the involved structure, where the modes of the modified
system are employed in conjunction with the initial modal survey. Dems et al. [35] studied damage
identification using modal, static and thermographic analysis by introducing additional control
parameters, such as supports, mass or loads to increase the sensitivity with respect to the identified
parameters. Dinh et al. [36] performed modal identification in several mass-modified conditions and
verified the robustness of the identification numerically and experimentally. Lu et al. [37] analyzed
the influence of the additional mass on the damage identification of a beam structure to improve the
identification accuracy and discovered that the size, number, and position of the additional mass impact
damage identification. Compared with other physical parameters, adding masses to physical structures
can be easily performed. However, heavy structures such as bridges require a substantial amount
of additional mass to enable distinct changes in the structural dynamic characteristics and improve
their sensitivity to damage, which may cause structural overloading or damage. Zhang et al. [38,39]
introduced a virtual control system to improve the accuracy of identification. Hou et al. [40] proposed
a damage identification method in which virtual masses are added to the original structure based
on the Virtual Distortion Method [41], where the frequency responses of the virtual structure with
additional virtual mass can be constructed using the measured excitation and the related acceleration
responses of the original structure. This method can afford a sufficient amount of modal information
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with a high sensitivity to local damage. Hou et al. [42] extended the approach based on virtual masses
with Bayesian theory and verified it by experiments with a 3-story frame structure.

This paper presents a damage identification method for bridges that utilizes additional virtual
mass. Traditional methods of exciting a bridge using a hammer or a shaker have the limitations of
small impact energy [43]. A vehicle bump is chosen in this paper to excite the responses required for
constructing a virtual structure with an additional virtual mass. The bump test is easily performed
in practice. However, vehicle action can modify the dynamic characteristics of the bridge, and the
coupling between the bridge and the vehicle should be considered. Tan et al. [44–46] divided the
process of the vehicle bump into three stages: the static state before the bump, the bump itself, and
the free-decay vibration after the bump. They computed the dynamic response in each stage, and
the computed strain responses were similar to those of the field test. In references [44–46], the static
strain state was analyzed before the bump because the static force also resulted in a displacement.
In this paper, the acceleration of the bridge is required for the application of the additional virtual
mass method, and therefore, the bridge state before the bump does not have to be calculated since
no acceleration occurs when the vehicle is stationary. The structural acceleration response generally
contains a larger amount of high-frequency information about the bridge. A detailed analysis of
a bump-induced excitation is presented in four stages: separation, free-fall, contact, and coupled
vibrations, in order to accurately simulate the structural acceleration responses with a vehicle bump.

The paper is structured as follows: first, general formulas are derived for the response of a
virtual structure with additional virtual parameters, including virtual mass, stiffness, and damping.
Second, the method of damage identification based on additional virtual mass is reformulated. Third,
vehicle bump-induced excitation is analyzed in four stages. Fourth, the main steps of the proposed
methodology are stated. Last, a numerical example of a two-span continuous beam is used to verify
the proposed method using a 1-degree of freedom (DOF) car model and 4-DOF car model.

2. Damage Identification Based on Additional Virtual Masses

First, a general formula for constructing the responses of a virtual structure with additional virtual
physical parameters, such as mass, damping and stiffness, is introduced. Second, the calculation
formula related to only additional virtual mass is provided. Last, an objective function for damage
identification based on the additional virtual mass is presented.

2.1. Virtual Structure with Additional Virtual Physical Parameters

The structural modal parameters are inherent characteristics of a structure. The structural damage
can be determined by comparing the modal parameters of the intact structure and the damaged
structure. Assume a structure with nd DOFs. The mass matrix, damping matrix and stiffness matrix of
the original intact structure are denoted as M, C and K, respectively. Thus, the equation of motion in
the frequency domain is as follows:

M
..
X(ω) + C

.
X(ω) + KX(ω) = BF(ω) (1)

where F(ω) is the excitation vector composed of nf excitations applied to the structure and B represents
the excitation position matrix. The response is expressed in Equation (2), as follows:

Y(ω) = H(ω)BF(ω) (2)

where Y(ω) is the structural response measured by involved sensors for the given excitation; and H(ω)

is the related frequency response function (FRF) of the structure.
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Assume that the changes to the mass, damping and stiffness of the original structure occur in the
form of the incremental matrices ∆M, ∆C, ∆K, respectively. The equation of motion of the modified
structure can be expressed in the frequency domain as:

(M + ∆M)
..
X

V
(ω) + (C + ∆C)

.
X

V
(ω) + (K + ∆K)XV(ω) = BF(ω) (3)

where XV(ω) refers to the responses of the modified structure. By moving the incremental terms to the
right side of Equation (3), it can be reformulated as Equation (4):

M
..
X

V
(ω) + C

.
X

V
(ω) + KXV(ω) = BF(ω) − ∆M

..
X

V
(ω) − ∆C

.
X

V
(ω) − ∆KXV(ω) (4)

In Equation (4), the incremental matrices ∆M, ∆C, ∆K that represent the related modifications can be
expressed as ∆M = TT

m∆mTm, ∆C = TT
c ∆cTc, ∆K = TT

k ∆kTk, respectively, where TT
m, TT

c , TT
k represents

the coordinate transformation matrices for structural mass, damping and stiffness. The parameters

∆m, ∆c, ∆k represent the mass, damping and stiffness modification values, respectively. Let
..
zV

= Tm
..
X

V
,

.
zV

= Tc
.

X
V

, zV = TkXV , and ZV =
[ ..
zV

(ω
) .

zV
(ω

)
zV(ω

)]T
, and substitute them into Equation (4) to

obtain the response of the modified structure, expressed as follows:

YV(ω) = H(ω) [BF(ω) − TT
m∆m

..
zV
− TT

c ∆c
.
zV
− TT

k ∆kzV
]

= Y(ω) −
[

H(ω)TT
m∆m H(ω)TT

c ∆c H(ω)TT
k ∆k

]
ZV (5)

Let hm(ω) = H(ω)TT
m, hc(ω) = H(ω)TT

c , and hk(ω) = H(ω)TT
k , and assemble all matrices into

a matrix hv = [ hm hc hk
]
. In this way, Equation (5) can be further simplified into Equation (6) as:

YV(ω, ∆) = Y(ω) − hv∆vZV (6)

where the diagonal matrix ∆v = Diag
[

∆m ∆c ∆k
]
. Let P be the observation matrix that is an

invertible matrix related to the sensors adopted in the test. The responses of the modified structure YV

can be expressed as follows:
YV = PZV (7)

To construct the responses of the modified structure using the measured responses of the actual
structure, sensors are placed in positions where the structure has changed locally, and the excitations
are applied at the same locations as the sensors. Let Qi j(ω) and Yi j(ω) represent the excitation and
response, respectively, at the ith position, where the additional parameters are applied to the j-th group
test. Denote Q(ω) =

[
Qi j(ω)

]
and Y(ω) =

[
Yi j(ω)

]
. The excitation and the measured responses of

the actual structure Y(ω) can be related as in Equation (8),

Y(ω) = h(ω)Q(ω) (8)

By combining Equations (6)–(8), the frequency response Hv
∆(ω, ∆v) of the modified structure with

modified or additional physical parameters ∆v can be expressed as in Equation (9):

Hv
∆(ω, ∆v) =

(
I + Y(ω)Q(ω)−1∆vP−1

)−1
Y(ω

)
Q(ω)−1 (9)

In Equation (9), the matrix Q(ω) is a square matrix for computing its inverse, and the number of
test groups should be equivalent to the number of additional virtual physical parameters.

For any system modification parameter ∆v, the responses of the modified structure can be
calculated using Equation (9), which only requires the responses of the original structure Y(ω) and the
corresponding excitation Q(ω) to be measured or determined in advance. In this way, the responses
of the structure with modified parameters can be numerically constructed without adding any real
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physical parameters to the actual structure. Such a modified structure is referred to as a virtual
structure with additional virtual mass, damping and stiffness. In practice, the additional virtual
physical parameters may be selected according to the specific project conditions, that is, ∆v may consist
of the additional mass ∆m, damping ∆m or stiffness ∆k, or a combination of these parameters. Note
that the adopted sensors should correspond to the type of the additional virtual parameters, that is,
the acceleration sensor corresponds to the virtual mass, the velocity transducer corresponds to the
virtual damping, and the displacement sensor corresponds to the virtual stiffness.

2.2. Additional Virtual Mass Method

In practical engineering, the acceleration response of a structure and the acceleration that
corresponds to the virtual mass are often measured. Thus, this paper adopts the additional virtual
mass method to perform damage identification.

When multiple excitations are applied to a structure, a joint solution is required to obtain the
responses of the virtual structure. Assume that the number of excitations is nf, then nf groups of
dynamic tests are required to solve Equation (9) and each group of excitations must be different.
The load time history of each excitation is measured to form the excitation matrix Q(ω). The acceleration
sensors are arranged only in the positions of the excitations, and the corresponding responses are
assembled to form the responses matrix Y(ω

)
. Equation (9) is rewritten as the frequency response

Hv
∆(ω, ∆m) of the virtual structure with the additional virtual mass ∆m:

Hv
∆(ω, ∆m) =

(
I + Y(ω

)
Q(ω)−1∆mP−1

)−1
Y(ω

)
Q(ω)−1 (10)

When a single excitation is applied to the structure, only one sensor is required to measure the
responses. Equation (10) can be further simplified. Figure 1 shows a diagram of the virtual mass
construction using a single excitation. Denote by y(t) the structural acceleration measured in the same
DOF as the single excitation q(t). Let Y(ω) and Q(ω) be the Fourier transforms of the acceleration and
the excitation, respectively.
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For a virtual structure with an added virtual mass ∆m, its frequency response hv
∆(ω, mv) in Figure 1

can be calculated using Equation (11), which is a simplified form of Equation (10), as deduced in detail
in [42]:

hv
∆(ω, ∆m) =

Y(ω)
Q(ω) + ∆mY(ω)

(11)
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Using the constructed frequency response Hv
∆(ω, ∆m) or hv

∆(ω, mv), the modes of the virtual
structure with the added virtual mass ∆m can be identified as the indicators for damage identification.

2.3. Damage Identification

In practice, for complex structures such as bridges, it is generally feasible to divide them into
substructures, and to identify the substructural damage. For each substructure, a virtual mass is
applied, and then the natural frequencies of the corresponding virtual structures are identified using
the structural frequency responses hv

∆(ω, mv) constructed via Equation (11). Denote by ωm
ij as the

identified i-th frequency of the virtual structure with the virtual mass applied to the j-th substructure.
All identified frequencies are combined to identify the structural damage via the following equation:

∆(µ) =
∑

qi j

∣∣∣∣ωA
ij(µ) − ω

m
ij

∣∣∣∣/ωm
ij (12)

where ωA
ij(µ) is the calculated i-th frequency of the finite element model of the virtual structure

with the virtual mass applied to the j-th substructure under the given damage µ, and qi j are the
weight coefficients.

3. Process Analysis of Vehicle Bumps

Damage identification using additional virtual mass [42] requires that the excitation be known. A
modal force hammer is often used to constitute the additional virtual mass, but it has a limited impact
energy. In recent years, a vehicle bump has become popular as an excitation due to its convenient
application in practice with an impact energy sufficiently large for a bridge structure. However, a
bump-induced excitation is complex because the vibrations of the vehicle and the bridge are coupled.
Therefore, a precise analysis of the entire process of the bump-induced excitation is necessary to provide
an accurate excitation time history, as is required for the construction of the additional virtual mass.

In this paper, first, a 1-DOF vehicle model with is employed as an example to analyze the entire
process of the bump-induced excitation, as shown in Figure 2. Second, a 4-DOF vehicle model is
considered in the bump analysis, as shown in Figure 3, where one wheel is on the bump board, and
the other wheel stops on the bridge. Denote the left wheel as the T1 wheel, and the right wheel as
the T2 wheel. The analysis of the T1 wheel bump is the same as that of the 1-DOF vehicle model in
Figure 2, with the exception that the coupled vibration of wheel T2 with the bridge is considered during
the process. For simplicity, only a 1-DOF vehicle model is considered as an example to illustrate the
analysis of the bump-induced excitation. In the numerical simulation, a more complex 4-DOF vehicle
model is adopted.
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Figure 3. Diagram of vehicle bump on a bridge using a 4-DOF vehicle model.

The vehicle is modeled as a single mass-spring, as shown in Figure 2. Let m, c, k denote respectively
the mass, damping, and stiffness of the vehicle. The motion of the vehicle is a free-fall after leaving the
jumping board, and when the vehicle contacts the bridge, the vehicle and bridge vibrate simultaneously.
Generally, a bump-induced excitation was often analyzed as an impact applied to a structure. This
paper presents a detailed analysis of the bump-induced excitation in four stages: separation, free-fall,
contact and coupled vibrations, see Figure 4.
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Figure 4. Four stages of bump excitation.

3.1. Separation Stage

Before the bump test, the vehicle stops on a triangle board, and its weight Fmg = mg causes a
deformation of the bridge. The system state at this moment is defined as the equilibrium state. Due
to the elastic deformation of the vehicle tire and its non-planar surface, the separation of the vehicle
from the board requires the time t1, although it is very short. The pressure of the vehicle to the bridge
gradually decreases from Fmg to zero during the time period [0, t1], and the corresponding structural
vibration can be found by integrating Equation (13):

M
..
x(t) + C

.
x(t) + Kx(t) = F(t) (13)

F(t) = mg(1− cos(tπ/t1))/2, t ∈ [0, t1] (14)

The decreasing vehicle pressure is approximatively simulated by the excitation F(t) using the
cosine function shown in Equation (14), which is applied at the position of the vehicle, as shown in
Figure 5:



Sensors 2020, 20, 394 8 of 23

Sensors 2020, 20, x  7  of  23 

 

Figure 3. Diagram of vehicle bump on a bridge using a 4‐DOF vehicle model. 

 

Figure 4. Four stages of bump excitation. 

3.1. Separation Stage 

Before  the bump  test,  the vehicle stops on a  triangle board, and  its weight Fmg = mg causes a 

deformation of the bridge. The system state at this moment is defined as the equilibrium state. Due 

to the elastic deformation of the vehicle tire and its non‐planar surface, the separation of the vehicle 

from the board requires the time t1, although it is very short. The pressure of the vehicle to the bridge 

gradually decreases from Fmg to zero during the time period [0, t1], and the corresponding structural 

vibration can be found by integrating Equation (13): 

𝑀𝑥ሷሺ𝑡ሻ  +  𝐶𝑥ሶ ሺ𝑡ሻ  +  𝐾𝑥ሺ𝑡ሻ = 𝐹ሺ𝑡ሻ  (13) 

𝐹ሺ𝑡ሻ  ൌ  𝑚𝑔ሺ1 െ  𝑐𝑜𝑠ሺ𝑡𝜋/𝑡ଵሻሻ/2,   𝑡 ∈ ሾ0, 𝑡ଵሿ (14) 

The decreasing vehicle pressure is approximatively simulated by the excitation F(t) using the 

cosine function shown in Equation (14), which is applied at the position of the vehicle, as shown in 

Figure 5: 

 

Figure 5. Force analysis in the separation period. 

  

① ② ③ ④

t

F(t)

① separation
② free-fall
③ contact
④ coupled vibrations

F (t)

Figure 5. Force analysis in the separation period.

3.2. Free-Fall Stage

In this stage, the vehicle has left the jumping board as a free-falling body. The height of the board
is h. The time th =

√
2h/g is required for the vehicle to fall to the bridge with the velocity v0 = th g.

Denote the time moment t2 = t1 + th. The bridge vibration can be analyzed using Equation (13), where
the excitation F(t) is equal to the weight of the vehicle mg, that is:

F(t) = mg, t∈[t1, t2] (15)

3.3. Contact and Impact Stage

In this stage, as shown in Figure 6, the vehicle and bridge simultaneously vibrate with their initial
states obtained from the last period. Denote by v0 the initial velocity of the vehicle at the contact
moment, and let xb be the initial state of the bridge. Traditionally, the vehicle tire force applied to the
bridge at the initial contact is equal to cv0, where c is the vehicle damping, and the impact is large.
Since the vehicle tire is constructed of rubber, the interface force is assumed to gradually increase.
The damping of vehicle tire c3(t) is assumed to change with time as in Equation (16), where t3 is the
moment of the largest deformation of the vehicle spring:

c3(t) = c(t − t2)/(t3 − t2), t∈[t2, t3] (16)
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Figure 6. Interface between the vehicle and the bridge in the contact stage.

Trial and iteration are required to determine t3 and c3(t). The main steps are described as follows:
first, given an initial large value of t3, c3(t) is determined via Equation (16). Second, the vibration of
the vehicle in Figure 6 during time period [t2, t3] is computed by integrating Equation (17) with the
initial velocity v0 and the initial state xb of the bridge. Based on the results, the maximum deformation
moment t′3 during time [t2, t3] for the next iteration can be determined. Set t3 = t′3, and then the steps
are repeated until the values of t′3 in two consecutive iterations are similar:

M̃
..
xs(t) + C̃

.
xs(t) + K̃xs(t) = F(t) (17)

where M̃, C̃, K̃ are respectively the mass, damping and stiffness matrix of the coupled vehicle-bridge
system, including the variable vehicle damping c3(t), the vehicle mass m and the vehicle stiffness k.
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We denote by xc(t) and vc(t) the relative displacement and velocity between the vehicle and the
bridge, which are computed using Equation (17). The vehicle tire force, i.e., the excitation applied to
the bridge F(t), can be computed by the following Equation (18):

F(t) = mg − c3(t)vc(t) − kxc(t), t∈[t2, t3] (18)

3.4. Coupled Vibration

In this stage, the vibration response of the coupled system can be computed by Equation (17),
where the vehicle damping is c, and the excitation applied to the bridge F(t) is expressed as:

F(t) = mg − cvc(t) − kxc(t), t > t3 (19)

4. Procedure of the Proposed Methodology

Based on the additional virtual mass method, the vehicle-bump is taken as an excitation to identify
the bridge damage. The main steps are as follows:

(1) Locate a vehicle, acceleration sensors and force sensors on the bridge properly. The number of the
sensors should correspond to the number of the excitations caused by the vehicle. For example,
one acceleration sensor and one force sensor are required if 1-DOF vehicle model is adopted,
while two acceleration sensors and two force sensors are demanded if a two-wheel vehicle model
is used. In addition, sensors should be located along the DOF of the respective excitations.

(2) In the field test, both the bump-induced excitation and the structural accelerations are measured.
In the numerical simulation of this paper, the bump-induced excitation and the accelerations are
computed as described in Section 3.

(3) Perform the Fourier transform of the excitation and the measured accelerations respectively to
obtain the frequency responses of the original structure, and then substitute the virtual additional
mass value to construct the frequency responses of the virtual structure by Equation (10).

(4) Using the constructed frequencies and the finite element model, minimize the objective function
∆(µ) in Equation (12) for damage identification.

5. Numerical Verification

The two-span continuous bridge model shown in Figure 7 is employed to verify the proposed
methodology. The length of each span is 24 m. The bending stiffness EI is 1.2 × 109 N/m2 and the
mass is 1.0 × 104 kg/m. The height of the jumping board is 0.1 m. The structure is divided into 10
substructures. In the finite element model, each substructure has two elements. Damage identification
with a 1-DOF and 4-DOF vehicle models are discussed in this section.
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Figure 7. Two-span continuous bridge with a 1-DOF vehicle model.

5.1. Structural Damage Identification Using 1-DOF Vehicle Model

The vehicle mass is m = 2.0 × 103 kg, the damping is c = 1.5 × 104 kg/s, and the stiffness is
k = 3.5 × 105 N/m. The first four modal shapes and natural frequencies of the bridge are shown in
Figure 8 and Table 1 “Bridge”. The vehicle is located in the middle of the fourth substructure shown in
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Figure 7 and simulated with a single-spring model. The first four natural frequencies of the coupled
vehicle-bridge system are listed in Table 1 “With Spring”. If the vehicle is simulated as a point mass
without the spring, the first four natural frequencies of the coupled system are shown in Table 1
“Only Mass”.Sensors 2020, 20, x  10  of  23 
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Table 1. First four natural frequencies (Hz).

Order First Order Second Order Third Order Fourth Order

Bridge 0.945 1.476 3.779 4.783
With Spring 0.941 1.472 2.112 3.786
Only Mass 0.942 1.474 3.765 4.762

Table 1 shows that the natural frequencies of the system are dependent on the vehicle model,
that is the vehicle model influences the system modal characteristics. In this paper, only the vehicle
tire forces are considered, which avoids the influence of vehicle models. In the following sections,
the vehicle located in the middle of the fourth substructure is considered as an example to illustrate the
additional virtual mass construction using the vehicle bump-induced excitation.

5.1.1. Analysis of Vehicle Bump-Induced Excitation

By the analysis in Section 3, considering the vehicle-bridge coupled system, the relative
displacement xc(t) and velocity vc(t) between the vehicle and the bridge, as well as the entire
time history of the vehicle bump-induced excitation F(t), can be computed, see Figures 9 and 10.
The corresponding excitation F(t) of the bridge is shown in Figure 11 ‘Coupling’.
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Figure 11. Comparison of the time history of vehicle bump-induced excitation considering
different factors.

Assume temporarily that the bridge is a rigid body, which means that the structural deformation
is not considered. The corresponding bump-induced excitation is computed and shown in Figure 11
‘No coupling’. Apparently, it seems to be similar to the excitation ‘Coupling’ in Figure 11. The bridge
deformations caused by the bump-induced excitations are thus small.

However, if the frequency spectra of the responses in the ‘Coupling’ and ‘No coupling’ cases
are computed and compared, see Figure 12, it turns out that there are clear differences in the crucial
ranges near the bridge natural frequencies. Therefore, it is necessary to consider the bridge-vehicle
coupled system.

Sensors 2020, 20, x 11 of 23 

. 

Figure 10. Relative velocity vc(t) between the vehicle and the bridge. 

 

Figure 11. Comparison of the time history of vehicle bump-induced excitation considering different 

factors. 

However, if the frequency spectra of the responses in the ‘Coupling’ and ‘No coupling’ cases are 

computed and compared, see Figure 12, it turns out that there are clear differences in the crucial 

ranges near the bridge natural frequencies. Therefore, it is necessary to consider the bridge-vehicle 

coupled system. 

 

Figure 12. Comparison of the structural responses due to the bump-induced excitations in the 

frequency domain considering different factors. 

In existing studies of bump excitations, a vehicle falls to the bridge with full contact, which 

means that the impact forces are instantaneously applied to the structure. In this way, the computed 

vehicle excitations are shown in Figure 11 ‘Tradition’, which are different from the excitations 

computed using the proposed method. The structural accelerations that are computed considering 

the instantaneous impact (Figure 13 ‘Tradition’) are compared with the accelerations that are 

computed using the proposed method (Figure 13 ‘proposed’), which shows that the differences 

Figure 12. Comparison of the structural responses due to the bump-induced excitations in the frequency
domain considering different factors.



Sensors 2020, 20, 394 12 of 23

In existing studies of bump excitations, a vehicle falls to the bridge with full contact, which means
that the impact forces are instantaneously applied to the structure. In this way, the computed vehicle
excitations are shown in Figure 11 ‘Tradition’, which are different from the excitations computed using
the proposed method. The structural accelerations that are computed considering the instantaneous
impact (Figure 13 ‘Tradition’) are compared with the accelerations that are computed using the proposed
method (Figure 13 ‘proposed’), which shows that the differences primarily exist at the beginning of the
structural responses. The structural free responses are concerned for the system modal identification
in bridge monitoring, and thus the existing studies work well. However, the construction of the virtual
additional mass in this paper requires the entire time history of the structural responses and demands
a precise estimation of the responses.
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5.1.2. Construction of Additional Virtual Mass

Figure 14 shows the vertical accelerations of the bridge at the location of the vehicle. They
are computed for the coupled system (excitation ‘Coupling’ in Figure 11) and contain additionally
5% Gaussian random noise to simulate the measurement noise. The FFTs of the excitation and the
acceleration are computed and used to determine the FRF of the original structure, as shown in Figure 15
‘original’. Then a virtual additional mass, 20 times the actual vehicle mass, is employed to cause distinct
changes in structural natural frequencies while avoiding an overload to the physical structure.Sensors 2020, 20, x 13 of 23 
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The value of the virtual additional mass, i.e., ∆m = 4.0 × 104 kg, is substituted into Equation
(11). The frequency responses of the corresponding virtual structure can be constructed, see Figure 15
‘VDM’. In Figure 15, the gridlines ω0 and ωm denote respectively the natural frequencies of the original
system and of the system with the additional virtual mass 4.0 × 104 kg, as computed using the finite
element model. The corresponding frequencies are listed in and denoted by “Original” and “With
mass” in Table 2. The frequencies denoted as “VDM” in Table 2 refer to the natural frequencies of the
virtual structure identified using the constructed frequency responses, as shown in Figure 15 ‘VDM’.
They are very similar to the frequencies “With mass”, which confirms the effectiveness of the virtual
additional mass method.

Table 2. First three natural frequencies (Hz).

First Order Second Order Third Order

Original 0.945 1.476 3.779
With mass 0.895 1.439 3.509

VDM 0.896 1.438 3.517

5.1.3. Damage Identification

Assume that the 2nd, 3rd, and 8th substructure of the bridge is damaged with the damage extents
shown in Figure 16. Vehicle bump tests are successively carried out in the middle of each substructure,
and the corresponding bump-induced force is obtained via the analysis in Section 3. It is then applied to
the middle of each substructure to construct the virtual structure with the large virtual additional mass
∆m = 4.0 × 104 kg. On each substructure, the vehicle bump tests is performed five times. Each time,
the frequencies of the virtual structure are identified using the constructed responses (Equation (1)).
The frequencies identified in the five tests are averaged to decrease the effects of the noise. In this
way, for all ten substructures, ten groups of frequencies are obtained. Each group has three orders of
frequencies; see Table 3 “VDM”. The frequencies that correspond to Table 3 “Actual” are computed
using a finite element model of the actual damaged structure with an additional mass of 4.0 × 104 kg,
and they are found to be similar to the identified frequencies, which confirms the accuracy of the
frequencies identified using the virtual additional mass method. Using the constructed frequencies and
the finite element model, the objective function ∆(µ) in Equation (12) is built for damage identification,
where ωm

ij refers to the frequencies in Table 3 “VDM”, and ωA
ij(µ) are the values obtained using the

finite element model. The optimization problem is solved using the function ‘Patternsearch’ from the
optimization toolbox of MATLAB. Damage to the ten substructures is identified, as shown in Figure 17
and Table 4 (Noise 5%). The damage extents and locations can be accurately identified.



Sensors 2020, 20, 394 14 of 23
Sensors 2020, 20, x 14 of 23 

 

Figure 16. Damage extents of the substructures. 

 

Figure 17. Damage identification results using 1-DOF vehicle model. 

Table 3. First four natural frequencies (Hz). 

Vehicle 

Location 

VDM Actual 

First 

Order 

Second 

Order 

Third 

Order 

First 

Order 

Second 

Order 

Third 

Order 

1 0.846 1.345 3.446 0.847 1.346 3.451 

2 0.798 1.280 3.321 0.798 1.281 3.326 

3 0.780 1.289 — 0.781 1.290 — 

4 0.812 1.337 3.250 0.811 1.338 3.255 

5 0.848 1.359 3.468 0.849 1.362 3.468 

6 0.848 1.360 3.483 0.849 1.361 3.489 

7 0.815 1.322 3.383 0.814 1.322 3.384 

8 0.789 1.267 — 0.790 1.267 — 

9 0.814 1.275 3.390 0.813 1.276 3.395 

10 0.849 1.345 3.495 0.849 1.346 3.493 

Note: ‘—’ denotes that the respective frequency is unattainable. 

To test the robustness of the proposed method to noise, damage identification is performed in 

the cases without noise and with 5%, 10% and 15% Gaussian random noise. The results are shown in 

Figure 17 and Table 4. The identification errors increase with the increasing noise level. The results 

are still acceptable in the case of 15% noise pollution, which results in the maximum error smaller 

than 10%. Therefore the proposed method is robust to noise.  

  

Figure 16. Damage extents of the substructures.

Table 3. First four natural frequencies (Hz).

Vehicle Location
VDM Actual

First Order Second Order Third Order First Order Second Order Third Order

1 0.846 1.345 3.446 0.847 1.346 3.451
2 0.798 1.280 3.321 0.798 1.281 3.326
3 0.780 1.289 — 0.781 1.290 —
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10 0.849 1.345 3.495 0.849 1.346 3.493

Note: ‘—’ denotes that the respective frequency is unattainable.
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Free
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(%)
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To test the robustness of the proposed method to noise, damage identification is performed in
the cases without noise and with 5%, 10% and 15% Gaussian random noise. The results are shown in
Figure 17 and Table 4. The identification errors increase with the increasing noise level. The results are
still acceptable in the case of 15% noise pollution, which results in the maximum error smaller than
10%. Therefore the proposed method is robust to noise.

5.2. Structural Damage Identification Using 4-DOF Vehicle Model

A 4-DOF vehicle model is used to verify the effectiveness of the proposed method, as shown in
Figure 18. Since the vehicle model has two wheels, both wheels generate excitation for the bridge,
which is a multi-point excitation. Thus, simulation of two vehicle bumps are required to construct
the responses of the virtual structure with the additional virtual mass, which can be calculated by
Equation (10). Two wheels are adopted for the bump separately with the other wheel stopping on the
bridge, and two virtual masses are added at the position of the two wheels in each test.
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Figure 18. 4-DOF car model.

The vehicle parameters assumed for Figure 18 are as follows: m = 1.75× 103 kg, J = 1.4 × 103 kg·m2,
m1 = 1.0 × 102 kg, m2 = 1.5 × 102 kg, k1 = 4.0 × 105 N/m, k2 = 3.0 × 105 N/m, k3 = 1.0 × 105 N/m,
k4 = 1.0 × 105 N/m, c1 = 1.5 × 104 kg/s, c2 = 2.0 × 104 kg/s, c3 = 1.5 × 104 kg/s, c4 = 2.0 × 104 kg/s,
e1 = 1.35 m, e2 = 1.65 m. Let wheel T1 be located 10.5 m from the left end of the bridge, as shown in
Figure 19. Consider that wheel T1 performs the bump and that the entire bump-induced excitation is
analyzed as in Section 3, but the coupled vibration of the other wheel T2 with the bridge is considered
during the process. The estimated time histories of the excitations at the wheels T1 and T2 are shown in
Figure 20, and the corresponding acceleration responses are shown in Figure 21. Consider then wheel
T2 to perform the bump, as shown in Figure 22. The estimated time histories of the excitations at wheel
T1 and T2 are shown in Figure 23, and the corresponding acceleration responses are shown in Figure 24.Sensors 2020, 20, x  16  of  23 
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Figure 19. A two-span continuous bridge with 4-DOF vehicle model (T1 bump).
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Figure 20. Estimated time histories of the excitations at wheels T1 and T2 in case wheel T1 bumps.
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Figure 22. A two-span continuous bridge with 4-DOF vehicle model (T2 bump)).
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Figure 23. Estimated time histories of the excitations at wheel T1 and T2 in case wheel T2 bumps.
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To simulate noise pollution, 5% Gaussian white noise is added to the excitations and responses.
If the virtual mass is 4.0 × 104 kg at wheel T1 and 0 kg at wheel T2, the virtual mass matrix can be

expressed as ∆m =

[
4 0
0 0

]
× 104. The frequency response of the virtual structure is then obtained

by substituting ∆m and the Fourier transforms of the excitation and response into Equation (10).
The computed acceleration frequency responses at the T1 wheel position are shown in Figure 25
‘VDM’, and the first three natural frequencies of the structure can be identified as [0.7784, 1.2793,
3.5613] Hz. Similarly, the addition of the virtual mass of 4.0 × 104 kg and 0 kg at position T2 and T1,

respectively, results in the virtual mass matrix ∆m =

[
0 0
0 4

]
× 104. The computed acceleration

frequency responses at the T2 wheel position are shown in Figure 26, and the identified first three
natural frequencies of the virtual structure are [0.78584, 1.30304, 3.47824] Hz.
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Figure 25. Acceleration frequency responses at T1 wheel position with the virtual mass added to the
wheel T1.

The wheel T1 is separately located at the positions [2.00 10.50 19.00 26.00 34.50 43.00] m on the
bridge from its left end. At each position, two bumps are analyzed as described above, one for each
wheel, and the corresponding excitations are computed. An additional virtual mass of 4.0 × 104 kg
is placed at each position, and the related responses and natural frequencies of the virtual structure
are determined and listed in Table 5 “VDM”. In addition, the natural frequencies computed using
the finite element model of the structure with the added masses (Table 5 “Actual”) are computed
and found to be very similar to the VDM-estimated frequencies. The results confirm the accuracy
of the estimated frequencies of the virtual structure using the constructed acceleration frequency
responses via Equation (10). The damage to the bridge is identified using the frequencies in Table 5
“VDM” and shown in Figure 27 as “VDM (4 DOF)”. Both the locations and extents of damages can
be accurately identified. The accuracy is almost the same as in the case of a 1-DOF vehicle, see also
Table 6 (Error_1DOF, Error_4DOF).
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Figure 26. Acceleration frequency responses at T2 wheel position with the virtual mass added to the
wheel T2.

Table 5. First four natural frequencies (Hz).

Vehicle Location
(m)

Mass
Location

VDM Actual
First

Order Second Order Third
Order

First
Order Second Order Third

Order

2.00
T1 0.849 1.350 3.489 0.849 1.350 3.486
T2 0.822 1.304 3.273 0.822 1.305 3.271

10.50
T1 0.778 1.279 3.561 0.780 1.281 3.556
T2 0.786 1.303 3.478 0.786 1.304 3.484

19.00
T1 0.830 1.354 3.276 0.831 1.355 3.270
T2 0.851 1.348 3.495 0.851 1.362 3.499

26.00
T1 0.851 1.360 3.511 0.851 1.362 3.513
T2 0.832 1.346 3.360 0.832 1.347 3.359

34.50
T1 0.793 1.279 3.550 0.793 1.280 3.556
T2 0.792 1.261 3.547 0.792 1.261 3.540

43.00
T1 0.832 1.305 3.358 0.832 1.305 3.362
T2 0.851 1.350 3.515 0.851 1.351 3.517Sensors 2020, 20, x 19 of 23 
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Table 6. Damage identification results in different cases with 5% noise.

Substructure Actual VDM-
1DOF

VDM-
4DOF

Dir
-Ten

Dir
-Four

Error_1DOF
(%)

Error_4DOF
(%)

Error_Ten
(%)

Error_Four
(%)

1 1 0.985 1 1 0.792 1.5 0 0 20.8
2 0.6 0.598 0.596 0.597 0.642 0.2 0.4 0.3 4.2
3 0.8 0.792 0.823 0.799 0.787 0.8 2.3 0.1 1.3
4 1 1 1 0.983 0.988 0 0 1.7 1.2
5 1 1 1 1 0.981 0 0 0 1.9
6 1 1 1 0.985 1.000 0 0 1.5 0
7 1 1 1 1 1.000 0 0 0 0
8 0.7 0.691 0.687 0.698 0.723 0.9 1.3 0.2 2.3
9 1 1 1 0.997 1.000 0 0 0.3 0
10 1 1 1 0.979 0.912 0 0 2.1 8.8

5.3. Direct Identification of Damage Using Structural Modal Parameters

For comparison and in order to verify the advantage of the proposed method, the damages of the
considered two-span bridge are also identified directly using structural modal parameters. The free
vibration responses under environmental excitation are measured using acceleration sensors located
in the middle of the ten substructures, as shown in Figure 28. Gaussian noise at the level of 5% is
considered. First, the first three natural frequencies and mode shapes (Figure 29) are identified from
the responses. The damages are optimized using the objective function considered in [47] and shown
in Equation (20), where nϕ is the number of the structural mode shapes and nω is the number of the
natural frequencies, while αϕ and αω are the respective weighting coefficients:

f (µ) = αϕ

nϕ∑
i = 1

(
1 − MAC

(
ϕi(µ),ϕi

))
+ αω

nω∑
i = 1

(
ωi(µ) − ωi

ωi

)2

(20)

MAC
(
ϕi(µ),ϕi

)
=

(
ϕT

i ϕi(µ)
)(
ϕT

i (µ)ϕi

)(
ϕT

i (µ)ϕi(µ)
)(
ϕT

i ϕi

) (21)
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Figure 28. Location of the acceleration sensors.

First, all ten sensors S1~S10 are adopted, which yielded results similarly accurate as these of the
proposed methodology, see Figure 27 “10 Sensors” and Table 6 (Dir_Ten, Error_ Ten). Then the damages
are identified by employing four sensors S2, S4, S7, S9, located in the middle of the corresponding
substructures as shown in Figure 28. The identification results are shown in Figure 27 “4 Sensors” and
in Table 6 (Dir_Four, Error_ Four). The maximum error is large, i.e., over 20%.
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5.4. Discussion of Results

In the numerical simulation, 1-DOF vehicle model is used to clearly introduce the method
proposed in this paper. The bump-induced excitations computed using the 4-DOF model, shown
in Figure 23, reveal that the excitation amplitude of the other wheel is as high as 30% of that of the
bumping wheel. Therefore, in practice it is necessary to consider the 4-DOF model.

Then, using the computed bump-induced excitation, an additional virtual mass, 20 times the
actual vehicle mass, is employed to increase the amount of the dynamic information gained from
the tests. The natural frequencies of the virtual structure are identified, and the objective function is
established for identification. The damage can be identified accurately using the vehicle bump and the
additional virtual masses, even under relatively high levels of noise pollution, shown in Figures 17
and 27, as well as in Tables 4 and 6.

The proposed methodology, based on the vehicle bump and an additional virtual mass, requires
only two acceleration sensors and two force sensors. For comparison, the tested typical identification
method that used directly the modal parameters needed considerably more sensors to give similarly
precise results. Such a low number of required sensors significantly facilitates practical implementation
of the proposed approach.

6. Conclusions

A damage identification method for bridge structures, based on vehicle bump-induced excitations
and an additional virtual mass, is proposed. A numerical model of a two-span continuous beam is
used to verify the effectiveness of the proposed method. The main conclusions can be stated as follows:

(1) The paper derives the basic equations used for constructing the frequency response of the virtual
structure with additional virtual parameters (virtual mass, damping, and stiffness), which is a
convenient and flexible way for effective addition of multiple physical parameters to the structure.
The proposed approach broadens the potential application scope in practical engineering by
using additional virtual physical parameters.

(2) The analysis of the vehicle bump is performed in four stages: separation, free-fall, contact, and
coupled vibrations. Such an analysis yields accurate time histories of vehicle-induced excitations,
which allows the additional virtual mass method to be applied to identify structural damage.
The analysis can provide supportive evidence for analyzing bump-induced excitations in practice.
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(3) Using the vehicle bump and the corresponding responses of the bridge, the responses of a virtual
structure with an additional virtual mass can be accurately constructed to increase the response
sensitivity to local damage. This allows the damage to be accurately identified with the error
less than 10% even under 15% Gaussian noise pollution. The proposed process is effectively
equivalent to an addition of a significant mass to the bridge for testing purposes, however without
the risks of overloading the structure.

(4) A field validation of the proposed method is currently under preparation. The numerical
computations of the bump-induced excitations will guide the height design of the springboard.
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