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Abstract. The success of virtually all structural health monitoring (SHM) methods depends on the information content of 
the measurements, and thus on the placement of the available sensors. This paper presents an efficient method for finding 
optimal sensor distribution over structural system with many degrees of freedom (DOFs). The objective function is based 
on the classical Fisher information matrix. Originally, this yields a computationally hard discrete optimization problem. 
However, the proposed numerical solution method is based on a concept taken from structural topology optimization, where 
a discrete optimization problem is replaced with a continuous one. Two numerical examples demonstrate the effectiveness 
of the proposed methodology. These are a 5-bay truss with 24 DOFs and a two-story frame structure whose finite element 
model has been condensed to 14 DOFs. 

INTRODUCTION 

Damage identification attracted a lot of attention during the last three decades [1-5]. The reason is the fact that 
large number of existing civil infrastructures reached their service life and growing number of structures is equipped 
with Structural Health Monitoring (SHM) systems. A successful structural damage identification is determined by 
three inseparably coupled factors: sensor placement, damage location and its extent, and finally location and time-
frequency characteristics of the applied excitation [6,7]. 

The purpose of this study is to address the first of the mentioned aspects, namely optimal sensor placement. A vast 
literature has been devoted to optimal sensor placement methods, and a very recent example is an approach based on 
the Virtual Distortion Method and described in [8]. The Effective Independence (EI) method proposed by Kammer 
[9] is one of the most successfully applied in practice. However, the EI method is dedicated rather to test-analysis 
correlation and therefore more specific methods for damage identification are still needed. Additionally, in the case 
of large civil structures, which are intended to be equipped with large amount of sensors of different types, other 
sensor placement methods can be more efficient. Recently, a promising idea of utilizing a topology optimization 
approach for the purpose of sensor placement has been proposed by Bruggi and Mariani [10]. The goal of this study 
is to extend their method, which has been verified on a plate structure, to the case of finite element (FE) models of 
truss and frame structures that consist multi degrees of freedom.  

The main purpose of this work is to find the optimal arrangement of sensors on the structure to detect defects most 
accurately. The objective function for the problem formulated in this way is the total weighted difference between the 
deformation of a damaged and undamaged state. This problem is very similar to the topological optimization, where 
one searches for the optimal material distribution minimizing the mass of the structure while meeting the conditions 
related to some mechanical properties such as the maximum displacement of the structure, stress intensity or load 
capacity [11]. This similarity suggests that topological optimization can be applied to the problem of optimal 

4th Polish Congress of Mechanics and the 23rd International Conference on Computer Methods in Mechanics
AIP Conf. Proc. 2239, 020002-1–020002-11; https://doi.org/10.1063/5.0007817

Published by AIP Publishing. 978-0-7354-1998-8/$30.00

020002-1



placement of damage locating sensors [12]. Two numerical examples presented in this study prove the applicability 
of topological optimization for the optimal sensor placement problem. 

DISCRETE FORMULATION FOR THE SENSOR PLACEMENT OPTIMIZATION 

Sensor placement is essentially a combinatorial problem, which can be expressed by the following well-known 
formula 
 
 , (1) 

 
where  denotes the number of the candidate sensor locations and  represents the number of sensors to be 
distributed over all candidate locations. It will be shown in the next section dealing with numerical examples that even 
for relatively simple problems the number of combinations arising from eq. (1) can be very large and in general case 
the exact global optimum is not known. Before describing efficient methods for finding an approximate solution to 
the sensor placement problem some basic results from the estimation theory will be briefly recalled. 

Estimation error and metrics for optimal sensor placement 

In this section one of the most frequently used metrics for this problem is considered. The derivation of the formula 
for estimation error starts with the following observation equation: 

 
 , (2) 

 
where ,  and . The vector  contains the measurement data from sensors,  is modal 
matrix obtained by choosing columns representing measured modes and rows corresponding to the degrees of freedom 
(DOFs) at which sensors are located. The vector  in eq. (2) contains modal coordinates of the measured modes,  is 
vector of measurement errors,  is number of sensors and  is number of measured modes. The vector  is assumed 
as stationary Gaussian white noise which is uncorrelated and has the expected value equal to zero. The noise is 
characterized by the variance  for each sensor. 

Estimation of the modal coordinates  can be obtained by the least squares: 
 

  (3) 
 
Estimation error of the modal coordinates shown above is equal to . The covariance matrix  of 
the estimation error is given by the formula below 
 
  (4) 

 
The operator  represents here the expected value operator. Estimator (3) is unbiased and efficient, so the covariance 
matrix  is equal to the inverse of the Fisher information matrix  [13]: 
 
  (5) 

 
In this case the Fisher information matrix is expressed by the formula below  
 
  (6) 

 
If the variance  is the same for each sensor, the Fisher information matrix can be written in a simplified form: 
 
 . (7) 
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From eq. (7) it follows that the norm of  can be minimized by maximization of the norm of . Three norms are 
frequently used in the literature [14]: 

1. A-optimality - average-variance criterion,  . 
2. E-optimality - largest-eigenvalue criterion,  . 
3. D-optimality - determinant criterion,  . 

Previously for finding the optimal sensor configurations the A-optimality was used, however recently some advantages 
of the D-optimality have been shown [15] and nowadays this norm is the most frequently applied in search for the 
optimal sensor arrangement. Determinant of  takes into account non-orthogonality of the vectors that appear in  
matrix. Thanks to this property motion of the structure in one of the identified modes disturbs less the measurement 
of other identified modes. In this study, the D-optimality norm is considered in further calculations. 

Background information about the Effective Independence method 

This subsection introduces the Reader into the famous Effective Independence (EI) method. The goal for recalling 
this basic information is that it will be helpful in comparison with the topology optimization based method described 
here. Derivations performed in this subsection will be used in the next subsection to show the convergence of the 
topology optimization based method. 

The idea of the so-called Effective Independence has been introduced by Kammer in 1991 [9]. Based on this 
concept, he proposed an algorithm that allows an approximate solution to be found in iterative manner. His approach 
consists in removing in each iteration the -th DOF from the set of the candidate sensor locations , which has the 
least contribution to . This method, in its essence, does not maximize the determinant of the Fisher information 
matrix  but provides the least decrease of the determinant during all iterations, when the rows of  corresponding 
to the candidate sensors locations are removed. 

Fisher information matrix is symmetric so its determinant can be calculated as the product of all eigenvalues: 
 
 . (8) 

 
From symmetry of  it follows also that 
 
 , (9) 

 
where:  is the matrix of the eigenvectors  that constitute an orthonormal basis 
(  called by Kammer the absolute identification space, . Formula (10) follows 
from eq. (9). 
 
  (10) 

 
Here  is the Hadamard product (element by element). Each -th column of the matrix  sums to , and in the matrix 

 to the unity, i.e., each column is normalized by the appropriate eigenvalue. Maximization of such a normalized sum 
is equivalent to maximization of the product in eq. (8). It is convenient to define the vector 
 
  (11) 

 
containing in each its -th element  participation of the -th sensor in the effective independence along all 
identification directions , where  is element of the matrix : 
 
 . (12) 

 
Here  is -th row of the matrix . From equations (9) and (10) it follows that vector  can be defined as the 
diagonal of matrix :  
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  (13) 

 
The vector  serves for calculation of effective independence distribution. Algorithm proposed by 
Kammer in each iteration removes the row of  that is related to the least element of  [16]. Then having the matrix 

 reduced by one row,  is calculated once again using  from equation (13) and the iteration is repeated for 
another row. Repeating of iterations is interrupted when the number of rows in  is smaller than the number of the 
desired sensors or the rank of  is smaller than the number of modes . 

The last line of eq. (13) shows that the matrix  is idempotent, i.e. . The matrix  is of rank  for 
each iteration while the matrix  consists of  linearly independent columns. The matrix , as each idempotent 
matrix, after a suitable transformation of coordinates (diagonalization) can be expressed in the form shown below:  
 

 , (14) 

 
where:  is the transformation matrix consisting of the eigenvectors of ,  is the identity matrix of rank , 

, and  are zero matrices of appropriate dimensions. From properties of the trace operator and 
transformation (14) it follows that the rank of any idempotent matrix is equal to its trace. Equation (14) tells that until 

 there exist sensor locations which are not necessary to achieve the linear independence of the identified 
mode shapes. The dimensions of the matrices  and  decrease by one with each iteration of the algorithm. If during 
an iteration for any -th DOF , then the removal the -th DOF causes a reduction of the identity matrix  
into  inside the matrix  and a collapse of the linear independence. Removal of the DOF for which 

 causes dimension reduction from matrices ,  and  to ,  and . 

CONTINUOUS APPROACH BY MEANS OF THE PROPOSED TOPOLOGY 
OPTIMIZATION BASED METHOD 

The proposed method transforms the combinatorial problem described in previous section into a continuous 
one [14]. The method is called topology optimization based because of its similarity to the topology optimization 
based methods used in structural optimization [11]. 

The proposed approach consists in providing the so called sensor density function. For a discretized structure, such 
a function is a vector 

 
 . (15) 

 
Instead of an iterative removal of rows from , each -th row of the matrix  is multiplied by the -th element  of 

 related to the -th DOF according to formula (16). 
 
 , (16) 

 
where  is the diagonal matrix with  on the diagonal. In eq. (16),  is the full available modal matrix, and  
has rows scaled by the sensor density function . The sensor density function  in the proposed method represents the 
distribution of the sensors throughout the structure, and it can be compared to the diagonal  of the idempotent 
matrix, which quantifies the participation of the individual sensors in the effective independence, see eq. (11).  

Each iteration of the method consists of the two following main steps: 
1. Update the values in the vector  while keeping it normalized as . 
2. Change the participation of rows in the determinant of the Fisher information matrix with the use of the sensor 

density function  (16). 
In each iteration the elements of the vector  should change their values in such a way that some of them increase 
asymptotically to 1 when others decrease asymptotically to 0. Such a procedure reveals the sensors which have the 
largest contribution to the linear independence in the sense of the metric . 
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In the further part of this paper it will be shown that the proposed method always choses such a number of sensors 
that it is equal to the number  of modes selected for monitoring, except a special case of spatial symmetry of the 
FEM mesh. Numerical example of such a symmetry is shown in the further part of the paper. From this fact it follows 
that it is not possible to separate sensor placement into two different formulations, namely: 
 

 Minimize the number of sensors subject to the permitted chosen norm of . 
 Minimize the chosen norm of variation  subject to the permitted number of sensors. 

Proposed method imposes the following problem formulation:  
 

 maximize determinant of the isher nformation atrix,
 subject to: number of sensors equal to number of identified mode .  

 
If it is desired to have more sensors than the number of the identified modes, it is possible to impose a larger value of 

. 
At each iteration of the algorithm, the elements of the vector  are normalized similarly to the elements of  in 

eq. (11) by the eigenvalues of , see eq. (10). It follows that during the iterative process suitable elements of the vector 
 can increase only at the expense of the other ones. The matrix  is also idempotent, but instead of changing its size 

at each iteration, like in Kammers’s method, only the transformation matrices into the matrix  introduced in equation 
(14) are changed. Here, the dimension of the matrix  is the same for each iteration and equals . 

 

ILLUSTRATIVE EXAMPLES 

This section presents two illustrative examples. The first of them demonstrates a local behavior of the proposed 
algorithm. On a relatively simple example of a planar truss it is shown that the proposed method produces results 
similar to the Effective Independence method, but still cannot guarantee finding the global optimum. The second 
example in the form of a two-story frame structure demonstrates the effectiveness of the method and its fast 
convergence to the final solution. 

 

Example 1: Five-bay truss structure 

The first example concerns the five-bay truss structure shown in Figure 1. The structure is assumed to be made of 
steel elements with a length of lx=ly=51 cm having the cross section areas A=10-4 m2, mass density ρ=7850 kg/m3 and 
Young’s modulus E=200 GPa. 

 
 
 
 
 
 
 
 
 

FIGURE 1. Five-bay truss structure 
 
The task is to find the location for three sensors that the first three modes to be optimally monitored. These mode 

shapes and the corresponding natural frequencies are shown in Figure 2a-c). The sensors are equally allowed to 
measured vertical or horizontal displacement. The node numbering is presented in Figure 3. The following formulas 
have been used to identify the number of the degrees of freedom corresponding to the individual nodes: 

 and  for horizontal and vertical directions, respectively. Based on these formulas, one can 
easily find that node no. 1 has assigned DOF no. 1 and 2, node no. 2 DOF no. 3 and 4 and so on. 

 
 

5 x 0.51 m = 2.55 m 

0.51 m 
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a) 
1st bending mode 

1=919.0 rad/s 

 

 
b) 
1st longitudinal mode 

2=1745.2 rad/s 

 

 
c) 
2nd bending mode 

3=3044.7 rad/s 

FIGURE 2. First three mode shapes of the analyzed truss 
 

 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 3. Node numbering in the analyzed truss 
 
 
From Figure 3 it is also evident that in this example there were 24 DOFs and all of them were used as candidate 

locations ( ). As it was mentioned earlier, the goal is to find the optimal location of 3 sensors for identification 
of the modal amplitudes of the first three modes ( ). Substituting these numbers into eq. (1), as many as 2024 
possible configurations for sensor location are obtained.  
 

TABLE 1. Comparison of the optimal solution obtained by different methods 
Optimization method No. of measured 

degree of freedom 
Value of FIM 
determinant 

Effective independence 10, 18, 21 2.0491 
Proposed method 10, 18, 21 2.0491 
Full enumeration 10, 20, 23 2.0569 

 
 

The results obtained using three different optimization approaches, namely EI, the proposed method and the full 
enumeration have been shown in Table 1. From this table we can conclude that both approximate methods found the 
same local optimum (objective function value = 2.0491), while the full enumeration gave a slightly better global 
optimum with the objective function value equal to 2.0569. Graphically both solutions have been shown in Figure 4. 

10 

1 

2 4 12 

11 

8 6 

3 5 7 9 
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  a) 
 
 
 
 
 
 
 
 
 
 
  b) 
 
 
 

FIGURE 4. Local (a) vs global (b) optimal solution 
 
 

Example 2: Two-story frame structure 

The second example concerns a two-story steel structure consisting of two vertical columns and two horizontal 
beams assembled using pin connections. The structure and its dimensions are shown in Fig. 5. It has been assumed 
that the lengths of both horizontal beams is equal to . The properties and dimensions of the structure are listed 
in Table 1. 

 
The structure has been discretized with the aid of the finite elements method. A mesh of equidistant nodes has been 
imposed with the distance between nodes equal to . The vertical beams have 6 finite elements (FE) and the 
horizontal beam has 3 FE based on the Euler-Bernoulli beam theory. The cubic shape functions have been assumed. 
The first four mode shapes and the corresponding natural frequencies are shown in Fig. 6. It is visible that third and 
fourth modes are orthogonal to the remaining other ones, but first and second are not. 
 
 
 
 
 

 

 
 

TABLE 2. Properties of the considered structure 
Quantity Symbol Value 

Young modulus (steel)   [Pa]  
Material density (steel)   [kg/m3] 7860 

length   [m] 2 
Cross section area (square)   [mm2]  

 
 
FIGURE 5. Frame structure 
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FIGURE 6. Mode shapes and natural frequencies of modes selected for identification 

 
 

In this example, the execution of iterations is stopped when the condition below is satisfied.  
 
 . (17) 

 
Here  is the number of iteration and  is the index of element of , while  is an arbitrarily imposed value. From 
the fact that the matrix  from eq. (17) is idempotent and has the same trace for each iteration equal to , it follows 
that all elements of  are always smaller than 1. This is the reason why the elements of the sum in eq. (17) are not 
normalized by any norm of . Here, . Value of  is not so important because the algorithm chooses 
sensor locations related to these values   that are significantly greater than the remaining ones. In this case DOFs for 
which  are chosen for sensor placement. 

The obtained results are shown in Fig. 7. The set of candidate sensor locations has been limited only to the 
translational DOFs. As it can be seen in Fig. 7a-b), the condition (17) was satisfied after eight iterations and the 
calculations were stopped. Figure 7a) shows that the determinant of the Fisher information matrix is not monotonically 
decreasing like in the Effective Independence method, but initially decreases to eventually increase at the final 
iterations. The reason of this phenomenon is visible in Fig. 7b). The matrix  initially – in the first iteration – has all 
rows multiplied by ones, in the second iteration the rows of the matrix  are multiplied by the elements  from the 
first iteration where only one element had a significant value. Thus, the determinant of the matrix  decreased. 
In further iterations, the participation of DOFs with the largest contribution to linear independence is gained, hence 
the determinant of the matrix  monotonically increases. 

One can see that for this special symmetric case, the candidate DOFs 11-14 have the same participation in the 
linear independence. It is because they are related to the DOFs in which the same displacements appear for modes 3 
and 4, see the final result in Fig. 7c). Six DOFs are selected instead of 4 DOFs because of the condition that each DOF 
with  is to be selected. The algorithm cannot maximize their participation at the expense of other ones. This 
problem can be avoided by a small disturbance of the initial value of the sensor density vector . Such a case is shown 
in Fig. 8. The elements  and  have been multiplied by 1.1, see Fig 8b). After such an operation, the equilibrium 
in participation of DOFs 11-14 is disturbed and the contribution of the candidate locations no. 12 and 14 can be 
maximized at the expense of the others. The final result is shown in Fig. 8c). As it was mentioned, the number of the 
selected DOFs is finally equal to the number of the modes to be monitored.  
 
 
 
 
 
 
 
 
 
 
 

0,358 Hz 2,175 Hz 5,860 Hz 5,860 Hz 
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FIGURE 7. Results given by topology optimization based method: a) values of determinant of the Fisher information matrix for 

each iteration, b) values of the elements of , c) resulting sensor locations 
 
 

 
FIGURE 8. Results given by topology optimization based method with initially disturbed : a) values of determinant of the 

Fisher information matrix for each iteration, b) values of the elements of , c) resulting sensor locations 
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CONCLUSIONS 

The paper can be summarized with the following most important aspects: 
- An efficient method for a sensor network deployment over civil engineering structures was presented. The 

proposed approach is based on an analogy between the sensor placement and the topology optimization 
problems. 

- A sensor density function has been introduced, which allows the optimal solution to be approached in an 
iterative way instead of the sequential removal of individual least significant degrees of freedom. 

- The effectiveness of the proposed methodology has been demonstrated numerically using two case studies: 
a simple 5-bay truss bridge and a two-story frame structure. 

In future work, an extension of the approach to the problem of optimum actuator placement will be studied, including 
local and modular control [17,18]. Moreover, formulations specific to substructural monitoring [19], as well as 
specializations to local monitoring of modular structures [20] and wide-span roofing structures [21] will be 
investigated and developed. 
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