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Preface

The content of this book presents a comprehensive review of my recent
work on optical beams at dielectric interfaces. Some indication of results
published on this topic by other authors the reader may find in the lists of
references enclosed. The same concerns experimental verifications and
possible applications of reflection and transmission of narrow beams at
dielectric interfaces.

I have tried to be as rigorous as possible. However, when rigor might
disturb clarity of the presentation, clarity has won out. The book is aimed at
the level of the graduate or Ph.D. students in physics and electronics. It
should also appeal to the wider audience of researches and engineers working
within the range of optics. I hope that the material presented in this book will
appear helpful for anyone who works on the theory or applications of various
phenomena of optical beam interactions with planar dielectric interfaces and
multilayers.

WOJCIECH NASALSKI

Warszawa, May 2007
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Introduction

Optical beam interactions with a planar dielectric interface, understood as
the plane boundary between two semi-infinite dielectric media of different
values of a refractive index, have been under continuing interests of many
researches even since Newton’s time. For incidence of narrow beams the
reflected and refracted beams suffer from several distortions of their spatial
shape. These beam distortions are commonly understood as geometrical
modifications - the shifts or displacements - of the beams and these beam
shifts have been primarily under intense studies in early research on the
beam-interface interactions. Later on, it has been gradually recognised that
the geometrical effects of beam reflection and transmission were accom-
panied by other effects, those related to amplitude, polarization and spatial
distribution of intensity and phase of the incident beam.

The existence of a spatial shift at total internal reflection of an optical
beam incident on a plane interface was suggested by Newton [1] in XVIII
century on the grounds of his corpuscular theory. Two centuries later Pitch
(1929) [2] reported results of his theoretical studies on energy flux inside
evanescent waves caused by total internal reflection. He also predicted a
lateral spatial shift of the reflected beam and related this shift with a finite
transverse cross-section of the beam. The lateral shift was next experi-
mentally observed in 1947 by Goos and Hänchen [3] and called after their
names as the Goos-Hänchen shift. Analytical expressions for this shift were
derived by Artmann in 1948 [4], on the grounds of a stationary-phase
approach, and by Fragstein in 1949 [5], who used energy-flux conservation
principles. These reports were followed by further publications on this topic
of Schilling (1961) [6], Renard (1964) [7] and many others. Detailed
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overview of early studies on this problem was published by Lotsch in a series
of his papers in 1970 [8].

Reflected and refracted or transmitted beams are usually described by
spatial changes of their field amplitude and polarization. The changes in the
beam spatial structure and polarization are evaluated with respect to
predictions of geometrical optics governed by the well-known Fresnel and
Snell laws of plane wave reflection and refraction. They are known as effects
of nonspecular reflection and refraction or as nonspecular effects of reflection
and refraction. Essentially two basic approximate approaches have been
primarily used in their evaluation - the first approach based on the stationary-
phase arguments and the second one based on the energy-flux conservation
arguments. More recently other, more accurate methods have been devised,
based mainly on analytical beam field evaluation and mode expansion
techniques.

The spatial changes in the beam field spatial distribution can be described
up to the second-order approximation by real displacements of a beam
internal coordinate frame and scaling of the beam coordinates dependent on a
beam width. All of these spatial effects can be defined in two mutually
orthogonal planes: the incidence plane that contains a beam axis and a normal
to the interface, and the transverse plane, understood as the plane that
contains a beam axis and is transverse to the incidence plane. In each of these
two planes there are one lateral (transverse to the beam axis), one
longitudinal (along the beam axis) and one angular (a change of the beam
axis direction) displacements of the beam frame. In addition, there are also
changes of a beam width in each of the two orthogonal planes. Moreover,
each displacement is specific to one of two orthogonal states of beam polari-
zation, say of the TM and TE type. Therefore one has sixteen parameters of
beam geometrical reconfiguration, four for each of two orthogonal planes and
for each of two orthogonal polarizations.

From all the nonspecular phenomena the longitudinal shifts of beams, that
is the shifts observed in the incidence plane, are known the most. They were
mainly analysed in the two-dimensional configuration, as they are common to
two-dimensional and three-dimensional models of beams. Besides the Goos-
Hänchen shift of a beam waist position along the axis orthogonal to the beam
axis [1-9], the angular shift equal to the angle of rotation of the beam axis has
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been found to exist by Ra, Bertoni, and Felsen in 1973 [10]. The beam focal
shift, understood as the shift of a beam waist position along the beam axis,
has been predicted by McGuirk, Carniglia and Brownstein in 1977 [11,12].
Studies on the nonspecular phenomena continued further [13-20] and, finally,
the fourth effect, called the beam waist modification or the increment of a
beam cross-section radius, has been reported by Tamir in 1986 [21]. It was
also shown that the first three composite geometric longitudinal effects: the
lateral, focal and angular beam shifts, contribute together to the net longi-
tudinal shift of the beam in the interface plane [22-24].

The lateral shifts have been commonly considered in two-dimensional
configurations, where the beam field and the reflecting/transmitting structure
were assumed to be independent of the coordinate transverse to the incidence
plane of the beam. However, the transverse shifts, that is the shifts observed
in the plane transverse to the incidence plane, disappear in two-dimensional
approximate models of beams. These shifts are specific only to real three-
dimensional beams and as such they have been analysed in the three-
dimensional configurations. Among these effects the transverse lateral shift
has been predicted first by Fedorov in 1955 [25] and experimentally
confirmed by Imbert in 1972 [26], who also derived pertinent analytical
expressions and compared them with previous theoretical predictions of
Costa de Beauregard (1965) [27], Schilling (1965) [28] and Ricard (1970)
[29]. Next studies treated the three-dimensional beams in detail, with their
profiles displaced by both, transverse and longitudinal, shifts at the same time
[30-34]. In general, besides some special cases like that of the beam TM or
TE polarization, both types, longitudinal and transverse, geometrical non-
specular effects exist together for three-dimensional narrow beam reflection
and transmission.

In spite of the geometrical parameters of the longitudinal and transverse
beam spatial deformations, other four additional parameters on the beam
reflection and transmission problem also exist for arbitrary beam polarization
(Nasalski (1989) [35]). Two of them are attributed to changes of beam
complex on-axis amplitude and the next two are attributed to changes of
beam polarization. It was shown that the amplitude modifications could be
quite strong, especially at layered structures [36]. The longitudinal and
transverse nonspecular effects of the geometrical, amplitude and polarization
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type exist in general altogether during reflection and transmission of narrow
beams. Therefore, for interactions of three-dimensional beams with the inter-
face, one has to consider at least twenty independent parameters of the non-
specular beam deformations for arbitrary beam shape and polarization, and
for arbitrary type of the interface, including interfaces composed of nonlinear
or inhomogeneous media (Nasalski (1996) [37]).

All these parameters depend on the spatial structure of the beam incident
upon the interface, mainly on the beam width and direction of an incident
beam axis with respect to the normal to the interface. In addition, they depend
on the polarization state of the incident beam. They depend also on parame-
ters characteristic of the two media of which the interface is composed; for
instance, on dielectric contrast in the simplest case of the two lossless,
isotropic, linear media [37-39] and, in addition, on the strength of a nonlinear
coefficient in nonlinear media of Kerr type [40-43]. Theoretical predictions
of the nonspecular effects and beam deformations have been subsequently
followed by advanced experimental measurements [26], [31] and [44-54].

Still, the story on enumerating the parameters of the beam-interface
interactions does not seem to be finished yet. The above list of the parameters
may be regarded as complete only under the fundamental assumption,
common for paraxial beams propagating in free space, according to which
their amplitude spatial distribution can be treated independently of their
(transversely uniform) polarization. However, the polarization of beams of
finite cross-section can be considered as transversely uniform only approxi-
mately and even this approximation does not seem to be always justified in
vicinity of singular points of the beam field.

The separation of the beam amplitude distribution from the beam
polarization is not valid at medium discontinuities like the interface is in the
first place. Therefore, for singular points of the beam field, the amplitude-
polarization coupling may become dominant over other effects of non-
specular reflection and transmission, especially for very narrow (nonparaxial)
beams of diameter comparable with a beam field wavelength or less. Recent-
ly, however, the beams with singularities present in their field-amplitude
spatial distribution, for example in a form of optical vortices, are now in
frontiers of optical research [55,56]. Considering temporal variations of
optical wave packets and, in addition, their partial coherence, instead of
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relatively simpler cases of monochromatic or quasi-monochromatic beams,
complicates the problem under consideration even further.

The author does not intend to go too far with relaxing approximations
convenient for analysis presented in this book. Thus, the beams are consid-
ered monochromatic or completely coherent with their polarization being
spatially uniform in any transverse plane of the beam. Moreover, numerical
simulations presented will not go below the one-wavelength limit in the
incident-beam cross-section diameter. Still the beams of this limiting width
are very close to the range of nonparaxial beams. That makes problems con-
cerning convergence and accuracy of numerical procedures rather demand-
ing.

In the beam field evaluation, the results of which are presented in this
book, the field is expressed first in spectral domain as a composition of plane
waves. Two complex quantities called the complex lateral and focal shifts
[11,12,18,21] are defined, real and imaginary parts of which correspond to
the geometrical effects of nonspecular reflection and refraction. Next, the
results are converted analytically into configuration domain, where a beam
coordinate frame, together with their on-axis complex amplitude and
polarization parameter, are redefined [24,37]. Note that the beam shifts
obtained in the configuration domain are of finite values for all angles of
incidence. A number of beam field representations, leading to this otherwise
rather obvious feature of beam reflection and refraction, have been devised
and discussed in the past [9,20,23,24].

The theoretical approach to the beam-interface interactions presented in
the book basically employs the plane wave (spectral) decomposition of the
beam field and in this respect corresponds to the earlier approach proposed
by Schilling (1965) [28]. Other approaches based on application of con-
servation principles [5,26,29,57], entropy of optical systems [58] or methods
of moments [59], geometrical optics [60] and quantum mechanics [61] are
outside the scope of this book. Most numerical procedures applied here have
rather a semi-analytical character and have been devised by the author espe-
cially for treatment of narrow, three-dimensional beams at linear and non-
linear interfaces. The methods start with parameterisation of beam field dis-
tribution and next, with beam parameters evaluated, mimic dynamics of beam
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field rearrangements during beam propagation and interactions with planar
interfaces.

One method, known as the method of Monotonic Iteration of Gaussians
(MIG) [40-41], iterates the beam field distribution at the interface using the
nonspecular effects evaluated in subsequent steps of the iteration. The MIG
method has been devised primarily to treat three-dimensional reflection and
refraction nonlinear problems [40-43] and generalises previous author’s work
on the two-dimensional linear problems of the same type [24]. The second
semi-analytical method, called the scaled complex ray tracing (SCRT) [62],
has been devised especially for treatment of the beam propagation in non-
linear media. The SCRT method converts a nonlinear propagation problem
into a problem of linear propagation, augmented by specified evolution of
beam parameters.

Effects of beam field rearrangements, similar to the effects of nonspecular
reflection or transmission, are observed during beam propagation in nonlinear
media of Kerr type [62-64]. These effects, called as aberrationless effects of
nonlinear propagation [63], have been derived analytically within parabolic
approximation to the nonlinear Schrödinger equation (NLSE). They can be
described in terms of beam parameters like: a beam waist position, beam
radius and phase front curvature, a beam on-axis complex amplitude and a
nonlinearly modified wave number of a beam field. All of them evolve along
the propagation distance of the beam.

Within the SCRT method the problem of beam propagation in nonlinear or
inhomogeneous media is reformulated into the problem of linear propagation,
with the help of an appropriate parabolic approximation to the wave equation
and analytical scaling of the beam parameters. The aberrationless effects of
the beam-field-distribution rearrangements in nonlinear media result in
inhomogeneous distribution of the medium dielectric permittivity.  There-
fore, in general, the SCRT method [62-64], together with the MIG method
[40-43], can be directly applied as well in analysing the problems of beam
propagation in inhomogeneous media.

It is pertinent to note that, recently, a method of collective variables (CVs)
has been developed to treat pulse nonlinear propagation in dispersion-man-
aged fibres (cf. Refs. [65-67] and references therein). It appears that there is a
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close analogy between the pulse parameters considered within the CVs
method in temporal domain and the beam parameters analysed within the
SCRT method in spatial domain. In fact, the SCRT method has been devised
in a form suitable for treatment of monochromatic, one- two- or three-
dimensional beams, as well as polychromatic, two-, three- or four-
dimensional wave packets in one unified manner.

Note also that the MIG and SCRT methods have been devised primarily to
treat beams within the range of paraxial optics. Their results coincide in this
range with results of a separate numerical method based on direct integration
of the Maxwell equations [68] and with other available numerical data
[39,69]. However, the MIG and SCRT methods provide also quite accurate
results even for really narrow beams of their transverse radii of the order of
one wavelength.

The intention of writing this book is to put the results concerning the
beam-interface interactions, recently reported by the author elsewhere [70-
74], in one comprehensive publication, and to discuss main features of these
interactions in some appropriate order. After a brief introduction into basic
definitions of first-order optics given in Chapter 2, next five chapters of this
book treat, in some convenient to the reader sequence, several aspects of the
problem of three-dimensional beams reflected or refracted at dielectric
interfaces. The beam geometrical displacements, the beam amplitude distrib-
ution and polarization changes, the cross-polarization coupling between beam
components of opposite polarization, as well as effects of vector beam mode
switching at linear and nonlinear interfaces and multilayers, will be described
and discussed in detail.

Chapters 3-7 follow almost chronologically, somewhere with substantial
extensions, author’s latest main publications [71], [70] and [72-74] in this
field. All chapters are written in a self-contained manner, with the content,
notation and references of the respective publications preserved. The beams
are considered as three-dimensional with arbitrary polarization and the prob-
lem under consideration is inherently of vector nature. This implies that the
beam characteristics presented differ substantially from those specific for
two-dimensional beams of linear (TM or TE) polarization. The beam-inter-
face characteristics of the two-dimensional scalar case have been already
summarised by the author in the past [42].
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Introduction into the formalism of first-order optics is given in Chapter 2.
Basic definitions, necessary to interpret optical phenomena involving coher-
ent paraxial beams are presented. A link between concepts of optical rays and
ray-transfer matrices on the one hand and canonical integral transforms and
Lorentz transformations on the other hand is shown. The formalism presented
is limited to homogeneous optical transformations because, to the best of the
author’s knowledge, the formalism of inhomogeneous transformations still is
not available in a finite, self-contained and concise form. Although the beam-
interface interactions belong to the range of the inhomogeneous first-order
optics, the inhomogeneous phenomena that occur at dielectric interfaces are
usually, although probably not always, small enough to interpret them as
small corrections to the formalism of homogeneous first-order optics. Some
other technical issues, which also may provide connections with next chap-
ters of this book, are discussed in comments and conclusions of this chapter.

In Chapter 3, three-dimensional beams reflected at the interface are con-
sidered in their general form, with arbitrary transverse distribution of their
intensity, phase and polarization [71]. The interface is assumed to be planar
and composed of two linear media although some basic results that pertain to
nonlinear interfaces are also given. Complex amplitude distribution of the
beam field is assumed as being factorised into two spatially orthogonal
factors. Roles of paraxial approximation, cross-dimensional coupling and
cross-polarization coupling in the beam description are discussed. Analytical
expressions for all the first-order and the second-order, longitudinal and
transverse, nonspecular effects are derived. Results of their numerical evalua-
tion are given for beam incidence close to the critical incidence of total in-
ternal reflection.

It is shown that the transverse effects exist even for linear-diagonal
polarization. Expressions showing the symmetry that occurs between linear
and circular polarization of beams and transverse lateral and angular
displacements of beams are analytically derived. A possibility to achieve a
bistable switch of beams at a nonlinear interface is discussed and numerically
confirmed, the fact that was unclear or even disputed previously. The in-
teresting problem of the cross-polarization coupling between the beam com-
ponents of opposite polarization risen in Section 5 has been further under in-
vestigation in [49,68,74]. It will be also explicitly shown in Chapter 7 how



Introduction       9

this coupling interrelates the beam field distribution in its magnitude and
phase and the beam polarization state.

In Chapter 4, a detailed description of the method of treatments beam
fields at nonlinear interfaces is presented [70]. A special case of the
nonlinear-linear interface with medium nonlinearity of the Kerr local type is
analysed. The reduced variational technique is applied that converts a system
of nonlinear Schrödinger equations into a system of ordinary differential
equations. The beam deformations are described by aberrationless effects of
nonlinear propagation and nonspecular effects of reflection. Analytical
expressions of these effects are derived and numerical simulations of their
rearrangements during the beam-interface interactions are given. It is shown
that, for certain sets of incident beam and interface parameters, a bistable
switch of the reflected beam is possible to achieve. Characteristic features of
this switch appear different from those of plane wave reflection. In the
Appendix, a concise summary of the complex ray tracing the nonlinear
propagation of a single Gaussian beam is also given. Results of the analysis
presented in this chapter confirms, contrary to common opinions on this
problem, that the bistable switching of the nonlinear interface could, at least
in principle, be obtained by incidence of a single beam.

Definitions of beam amplitude and beam polarization are discussed in
Chapter 5 [72]. In this context new definitions of the nonspecular effects of
beam reflection and transmission are also introduced. The problem is
formulated and solved in such a manner that the beams are obtained with
uniquely defined uniform spatial displacements of their axes in a spatial
domain and angular displacements of their spectral components in a spectral
domain. It is shown that additional modifications of the beam polarization
state remain non-uniform throughout the entire beam spectrum, although they
are generally rather small. A special role of beam polarization states of linear-
diagonal and circular-diagonal types is indicated. The results of this chapter
are confronted with results of different approaches presented in this context
in the past. The role of beam on-axis phase in the beam field evaluation in
this context is indicated.

In Chapter 6, the problem of beam interactions with a single planar
discontinuity of the medium is generalised to the case of a planar layered
medium [73]. The problem is formulated and solved analytically. Transmis-
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sion and reflection matrices are rederived in beam reference frames depen-
dent on a polarization state of the incident beam. Spinor representations of
two-by-two polarization matrices, Jones two-vectors and Stokes four-vectors
are defined. Scattering and transfer matrices of the layered structure are given
with the help of Stokes reciprocity relations for incidence of beams of
arbitrary polarization. Factorisation of these matrices results in scalar
complex transformations separately for beam polarization and for beam
amplitudes. While the transformations of beam polarization describe
multilayer action in terms of Lorentz transformations, the amplitude trans-
formations yield spatial beam shaping. Therefore scattering vector problems
of three-dimensional beams at multilayers, as well as at a single interface,
resolve into two independent transformations of two scalar parameters.

In Chapter 7, an exact description of spatial versus polarization character-
istic interrelations  of optical beam fields at a planar isotropic interface is
given [74]. Three-dimensional monochromatic beams of uniform polarization
interacting with a planar boundary between two homogeneous, isotropic and
lossless media are analysed in the most general, exact manner. Generalised
Fresnel transmission and reflection coefficients for beam spectra are derived.
Interrelations induced by cross-polarization coupling between beam profile
and phase and beam polarization, or between spin and orbital angular mo-
mentum of beams, are derived for normal incidence of the beams. In this case
the analysis directly indicates that these interelations exist independently of
the beam nonspecular shifts.

It is shown that Hermite-Gaussian beams of linear polarization and
Laguerre-Gaussian beams of circular polarization, all projected at the inter-
face and in their complex-valued or elegant version, may be considered as
normal modes at this interface. Their creation and annihilation are shown,
with total angular momentum being conserved on the total beam field and
single photon levels. That results in the beam amplitude-sensitive rearrange-
ments of beam polarization and in the polarization-sensitive rearrangements
of beam amplitude spatial distribution even at the plain isotropic interface
[74]. In the final appendix of this book, basic relations for the beam shifts at
the dielectric interface are collected together and commented.

Let me finally mention on some possible applications of the theory pre-
sented in this book. The dielectric interface, or, in general, any planar multi-
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layered structure, can be used, for example, as a mean of control the interplay
between the beam field distribution, in its magnitude and phase, and the beam
field polarization. The control process is based on the cross-polarizarion
coupling (XPC) effect acting at the interface [71] and depends on the incident
beam parameters like the beam polarization, shape and angle of incidence
[49,68,74]. The ability to control the beam shape and polarization may appear
useful in many applications in contemporary optics.

In three-dimensional optical imaging the polarimetric passive imaging
systems are used to extract three-dimensional information from an object
scene. The three-dimensional imaging can be achieved by computing orien-
tation angles of normal vectors of the light-reflecting surface. Values of these
angles can be retrieved from Stokes vector parameters of the reflected optical
field with the help of the well-known Fresnel equations and Snell’s law [75].
The imaging process depends considerably on shape and polarization of the
illuminating beam, especially when the elements of the object scene are of a
nanometric scale.

In nanoscopic space-time-resolved spectroscopy polarization pulse shap-
ing can be used to control spatial and temporal evolution of optical near field.
By appropriate control of two polarization components of an incident femto-
second laser wave-packet, pump and probe excitation occur at different posi-
tions and at different times, with nanometer spatial and femtosecond temporal
resolution [76]. Narrow or focussed beams are commonly used to trap dielec-
tric or metallic particles in optical tweezers [77,78]. The corresponding field
distribution generates a trapping potential, strongly influenced by, for
example, a metal nanostructure located in the vicinity of a focus of the beam
[79]. In such a trapping configuration the superposition of a non-resonant
beam field with a resonant beam or plane wave illumination provides the
possibility to modify the trapping potential. The processes of this sort
strongly depend on distribution of the optical field intensity, phase and
polarization [80,81].

It is well-known that light beams carry, besides the spin angular
momentum (SAM) associated with beam polarization, the well-defined
orbital angular momentum (OAM) associated with their spiral wave fronts
[55]. Both parts of the beam angular momentum can be used to cause trapped
particles to rotate [82]. Moreover, as it has been shown here for beam
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reflection and transmission, exact relations induced by the XPC effect exist
between these two parts of the beam angular momentum at the interface.
Both of them can be used in the planar configuration for beam sorting on the
basis of SAM and OAM, per analogy to the known methods of encoding and
processing optical information that is carried by individual photons [83-85].

It seems that coexistence of the XPC effect with the beam shifts of
nonspecular reflection can be also observed for beam fields in optical
resonators. Meanwhile the XPC effect determines a transverse pattern of the
beam field in an optical cavity the beam shifts should enter into the resonance
condition for beam eigenmodes of this cavity. This type of interplay between
polarization and shape of nonspecularly reflected beam fields in an optical
resonator has been recently reported for the case of a dome cavity [86].

Having in mind the applications mentioned above, as well as many others
reported elsewhere, interactions of optical beams with dielectric interfaces
are analysed in this book.
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CHAPTER  2

Basic framework of first-order optics

This chapter provides a brief overview of basic definitions of
first-order optics concerning propagation of three-dimensional
paraxial beams in centred optical systems. Parallel descriptions of
beam propagation in terms of ray-transfer matrices and canonical
transforms of optical systems are outlined. Relations between
transformations of amplitude and polarization of beam fields and
homogeneous Lorentz transformations are shown. The formalism
presented yields basic framework within which the beam-
interface interactions will be analysed in next chapters.

2.1  Introduction

Any optical system acts on amplitude and polarization of beams
propagating through this system. When the system is of first-order type and
the beams are treated approximately as paraxial of uniform polarization in
their transverse planes, then the transformations of beam amplitude and beam
polarization can be treated independently. The analysis of beam propagation
phenomena usually employs expansions of the beam amplitude distribution
in terms of Hermite-Gaussian or Laguerre-Gaussian functions on the one
hand and Jones vectors, polarization matrices and Stokes parameters of the
beam polarization on the other hand. Transformations of the beam amplitude
can be expressed by ray-transfer symplectic matrices or, equivalently, in
terms of linear canonical transformations and integral transforms associated
with them. Similarly, unimodular Jones matrices represent linear transforma-
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tions of polarization states of beams. Basic content of this formalism will be
outlined in this chapter.

There are a number of textbooks devoted to certain aspects of, linear and
nonlinear, first-order optics. A few examples of them [1-12] can be found in
the reference list enclosed to this chapter. However, the sequence of
definitions given below follows rather the approach that has been gradually
developed in several separate publications [13-28] over a few last decades
and has not been commonly regarded as a unified formalism of first-order
optics yet. The formalism translates the conventional description of optical
transformations in terms of rays and matrices [13-15] into the language of
canonical operator transforms and homogeneous Lorentz transformations
[16-28]. The set of definitions given in this introductory chapter should be
regarded only as a short guide through fundamentals of first-order optics.
Most equations will be given without proofs and mathematical details. The
material presented may serve as a convenient self-contained theoretical tool
for interpretation of several aspects of beam propagation in first-order optical
systems.

2.2  Paraxial wave equation

First-order optical systems are understood as optical systems composed of
medium or media with quadratic variation of their, generally complex,
refractive indices. This quadratic variation occurs in planes yx −  transverse
to an optical axis of the system, assumed here along the z-axis of a Cartesian
coordinate frame Oxyz . The optical systems will be considered as an iso-
tropic, lossless, dispersion-free bulk nonmagnetic medium or as a stratified
structure that consists of several layers of media of this type. Therefore, the
magnetic permeability is equal to that of free space and in each layer the
medium is specified by the, uniform (constant) in space, scalar electric
permittivity ε .

Let us assume first that the medium is linear and homogeneous. The
optical field will be analysed in a source-free range of this structure. In each
layer of the structure, transverse xE , yE  and longitudinal zE  components of
the propagating beam field ),,( zyx EEE=Ε  satisfy the homogeneous wave

equation
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[ ] 0),(222 =Ε∂−∇ − trc t ,    (2.1)

where ncc v=  is the phase speed of light in the medium, related to the phase
speed vc  in a vacuum by a relative refractive index n . We will use inter-
changeably the notation Oxyz  and ),,( zyx  to indicate coordinate frames, as
well as ),,(),( zyxzrr =≡ ⊥  and ),,(),( zyxz ∂∂∂=∂∇≡∇ ⊥  to indicate, where
necessary, the planes yx −  transverse to the optical axis z .

Any solution to the wave equation in a homogeneous medium of the
uniform permittivity ε  should also fulfil the Gauss law

[ ] 0)( =⋅∇ rE ,   (2.2)

which interrelates, through their derivatives, the longitudinal component zE
with the transverse components xE  and yE  of the optical beam field.

However, for the case of dielectric inhomogenous or nonlinear media, each
layer of the structure is specified by the nonuniform electric permittivity

)(rεε ≡ .  Therefore, in this case, )(rcc ≡  and )(rnn ≡  are also nonuniform
and the Gauss law reads:

[ ] 0)()( =⋅∇ rErε .    (2.3)

Moreover, it can be proved that the wave equation (2.1) still approximately
holds even in each inhomogeneous layer if the increment ε∆  of ε  does not
vary significantly within a range of one wavelength λ  in this layer, that is
when 1)2( 1 <<∆− επε  in this range [2,7]. Only the cases of such weakly
inhomogeneous media, together with homogeneous media, will be considered
in this book.

The beam field will be considered as monochromatic,

)exp()(),( ikctrEtr −=Ε ,   (2.4)

with the wave number )(rkk ≡  and the wave vector )(rkk ≡ ,
),,(),( zyxz kkkkkk == ⊥ , in the medium related, through the refractive index

n , to the wave number in the vacuum vk , that is with )()( rnkrk v= . In this
chapter, we will be interested only in the transverse electric field components

xE , yE  and xE~ , yE~  in the configuration yx −  and spectral yx kk −

transverse planes, respectively. They form two two-dimensional vectors
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in these transverse planes, interrelated by the two-dimensional Fourier
transform in the transverse coordinates ⊥r  and ⊥k :

)](exp[),(~)2(),( 2
⊥⊥⊥⊥⊥

−
⊥⊥ ⋅= ∫∫ rkizkEkdzrE π .    (2.7)

The transverse field vectors ),( zrE ⊥⊥  and ),(~ zkE ⊥⊥  obey the homogeneous
Helmholtz (reduced wave) equation in the configuration space and its
counterpart in the spectral or momentum space:

[ ] 0),(222 =+∇+∂ ⊥⊥⊥ zrEkz ,    (2.8)

[ ] 0),(~222 =+−∂ ⊥⊥⊥ zkEkkz ,    (2.9)

respectively.
Let us assume that the optical system is centred, where the beam axis

coincides with the axis of the system and the refractive index takes its
extreme values at this axis:

0|))(( 0,0
2 =∂∂ == yxzxn ,

0|))(( 0,0
2 =∂∂ == yxzyn .  (2.10)

Then, the quadratic approximation of the refractive index in any transverse
plane of this system results in the parabolic form of the transverse increment

2
0

22 1 nnn −=∆  of the refractive index squared:

222222
0

22
0 ))(())((),,( 22 yznxznzyxnnnn yx ∆−∆−≅∆≡∆ ,  (2.11)

0,0
222

2
122 |))(()(22 ==∂∂=∆≡∆ yxxx zxnznn ,

0,0
222

2
122 |))(()(22 ==∂∂=∆≡∆ yxyy zynznn ,  (2.12)
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where on the beam axis yx == 0  and at the beam waist centre 0=== zyx
we have, respectively:

),0,0()(00 znznn =≡ ,

),0,0()(00 zkzkk =≡ ,  (2.13)

)0,0,0()0(0 nnnw =≡ ,

)0,0,0()0(0 kkkw =≡ .  (2.14)

The above quantities still may be dependent on z:

)],,(1)[(),,( 22
0

22 zyxnznzyxnn ∆−≅≡ ,  (2.15)

)],,(1)[(),,( 22
0

22 zyxnzkzyxkk ∆−≅≡ .  (2.16)

Equations (2.11)-(2.16) describe the fundamental parabolic approximation
usually taken for centred optical first-order systems. For example, in cases of
the square-law in lens-like media [3] 02 >∆n  ( 02 <∆n ) correspond to a
focusing (defocusing) medium.

Let us define the slowly varying amplitude (SVA) of the beam:









→ ∫⊥⊥⊥⊥ )'('exp),(),( 0

0

zkdzizrEzrE
z

,  (2.17)

by factoring out the beam on-axis phase accumulated along the beam axis.
Note in Equation (2.17) the convention taken in this chapter that preserves
notation of quantities redefined by their factoring or scaling. Under the
paraxial approximation of the wave equation (2.8), the second derivatives
with respect to z can be neglected with respect to the terms proportional to
the first derivatives:

xzxz EkE ∂<<∂ 0
2 ,

yzyz EkE ∂<<∂ 0
2 ,  (2.18)

and the wave equation (2.8) converts into the equation of the parabolic type



Basic framework of first-order optics      25

[ ] 0)(2 22
0

22
0 =∆−∂+∂+∂ ⊥ rEnkik yxz .  (2.19)

The form of Equation (2.19) is identical to the Schrödinger equation of a
particle with z  replacing time, the wave number 0k  playing the role of �m
and the term 22

0 nk ∆  corresponding to the particle potential.

Next, the reduction of the z-dependent refractive index )(0 zn  at the beam
axis with respect to the refractive index wn  at the centre )0,0,0(),,( =zyx  of
the beam waist:

zzndzn
z

w →∫
0

0 )'(' ,  (2.20)

yields the paraxial wave equation,

[ ] 0)()(2 222
0

222 =∆−∂+∂+∂ ⊥ rEnnnkik wwyxzw ,  (2.21)

in the form dependent on the wave number wk  at the beam waist centre
regarded as the beam parameter. This is the paraxial wave equation in the
non-normalised form. As wk  does not depend on z, the reduction (2.20)
considerably simplifies further definitions.

The coordinates in Equation (2.21) are not dimensionless and some
appropriate scaling of them seems necessary. To this end, let us introduce the
beam parameter ww , as the radius of the beam cross-section at the beam waist
placed here at 0=z , with its value common in both transverse dimensions.
For a fundamental Gaussian beam of cylindrical symmetry, for example, this
parameter has such clear geometrical meaning. Introduction of two other
beam parameters: the diffraction length Dz  and the scaled wave number κ :

2
wwD wkz = , wwwk=κ ,  (2.22)

leads to the scaled parabolic equation for the SVA of the beam:

[ ] 0)()(2 222
0

222 =∆−∂+∂+∂ ⊥ rEnnni wwywxzz wwD
κ .  (2.23)

Note that the presence of the transverse field ⊥E  in (2.8), (2.21) and (2.23) is
not accidental. Rigorous derivation of the paraxial equation (2.23) from the
Maxwell equations yields the electric field expansion in powers of 1−κ  [29]:
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...)4(4)3(3)2(2)1(1)0( +++++=+= ⊥
−−

⊥
−−

⊥⊥ EEEEEEEE zzz κκκκ ,  (2.24)

valid for 1>>κ . The subsequent even and odd terms in (2.24) approximate
the transverse ⊥E  and longitudinal zE  field components, respectively. The
first, zero-order, field term is purely transverse indeed, )0(

⊥⊥ ≡≅ EEE , and
exactly this term appears in the paraxial equation (2.23).

Further, in this chapter, we will use the coordinates scaled in the
configuration domain and the spectral domain, respectively:

xwx w → , ywy w → ,

zzz D → ,  (2.25)

xwx kwk → , ywy kwk → ,

κ≡→ www kwk .  (2.26)

Then, after the additional replacement:
2222

0
2

22)( nnnn xxw ∆→∆κ ,

2222
0

2
22)( nnnn yyw ∆→∆κ ,

2222
0

2 )( nnnn w ∆→∆κ ,  (2.27)

the scaled parabolic equation (2.23) is obtained in the in dimensionless form:

[ ] 0)(2 222 =∆−∂+∂+∂ ⊥ rEni yxz .  (2.28)

In the transversely homogeneous ( 02 =∆n ) media this equation resolves into
the well-known Fock equation [3]:

[ ] 0),(2 22 =∂+∂+∂ ⊥⊥ zrEi yxz ,  (2.29)

in its scaled version with constant coefficients. Note that in the scaled
coordinates Eqs. (2.28) and (2.29) do not depend now on the field wave
number wk  and the beam half-width ww . Therefore, they describe a general
case of paraxial beam propagation with arbitrary values of the spatial
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frequency and the beam half-width, provided that the scaled wave number
wwwk  is small enough to fulfil the conditions (2.18).

In isotropic and homogeneous medium both field components xE  and yE

of the three-dimensional beam satisfy separately the same scalar Helmhotz
equation (2.8). The same happens if the homogeneous medium is replaced by
weakly inhomogeneous medium of cylindrical symmetry with respect to the
z-axis. Therefore, when the structure is axially symmetric and stratified with
respect to the z-axis, the field components xE  and yE  in each weakly

inhomogeneous layer may be treated as independent scalar quantities for TM
polarization ( EEx = , 0=yE ) and for TE polarization ( EEy = , 0=xE ).

The decomposition of the electromagnetic field in each layer into its TM and
TE components can be rigorously derived with the help of two scalar Hertz
potentials. The derivation follows that for the case of isotropic and
homogeneous medium and can be found, for example, in [30] or in [31]. Note
also that, in spite of the TM-TE decomposition of the beam field within each
layer, the TM and TE beam field components are coupled at plane boundaries
(interfaces) of the layers.

Still, however, one should be aware that for three-dimensional beams the
TM and TE beam field components still depend on the longitudinal (z-)
coordinate and on the two transverse (x-) and (y-) coordinates, that is on

),,( zyxEE xx ≡  and ),,( zyxEE yy ≡ , respectively. However, in each layer of

the optical system filled by the weakly inhomogeneos medium, the three-
dimensional scalar problems (in x , y  and z ), governed in the paraxial
approximation by (2.28) or (2.29), reduce into two independent two-
dimensional scalar problems (in x  and z  or in y  and z ) [3]. Then, the beam
field amplitude ),,( zyxEE ≡  is factorised into two-dimensional field
amplitudes ),( zxE  and ),( zyE  in two planes zx −  and zy −  and these
amplitudes are governed by two independent two-dimensional parabolic
equations, respectively [3]:

),(),(),,( zyEzxEzyxE ≅ ,  (2.30)

[ ] 0),(2 222
2 =∆−∂+∂ zxExni xxz ,  (2.31)
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[ ] 0),(2 222
2 =∆−∂+∂ zyEyni yyz .  (2.32)

Once the two-dimensional solutions (2.31) and (2.32) are obtained within the
paraxial approximation, the three-dimensional paraxial solution is given by
Equation (2.30).

The scaling procedure can be also applied in the transverse coordinates x
and y  independently, with different scale parameters wxw  and wyw . Such a

scaling is conventionally applied in the case of, for example, a fundamental
Gaussian beam with elliptic cross-section. However, and only to avoid
unnecessary complication of the notation, we will use below in this chapter
the paraxial wave equation in its scaled version (2.28) with wwywx www == ,

like for beams of cylindrical symmetry in their fundamental order.

2.3  Beam amplitude and polarization

Any spectral constituent of the electric field of the paraxial beam takes the
form of a plane wave )exp(),(~

⊥⊥⊥ rkizkE  defined by two components xE~

and yE~  of the transverse electric field ⊥E~ . Polarization of the plane wave is
parameterised by a complex polarization parameter χ~ , given by the ratio of
the transverse field components:

),(~),(~),(~ zkEzkEzk yx ⊥⊥⊥ =χ .  (2.33)

The field of the plane wave can be also alternatively described as a product
two complex, in general, quantities: a scalar complex amplitude E~  and a
polarization complex vector e~  of the plane wave:

),(~),(~),(~ zkezkEzkE ⊥⊥⊥⊥ = .  (2.34)

One additional restriction should be imposed on the definitions of the field
polarization and amplitude to make this factorisation unique. To this end, let
us assume that the polarization vector in the transverse plane [ ]T

yx eee ~,~~ =
(the superscript T means transpose) satisfies the condition 1~~ =yxee  instead of

the conventional condition to have this vector normalised to unity [32]. That
uniquely defines the complex amplitude of the plane wave,
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( ) 21
),(~),(~),(~ zkEzkEzkE yx ⊥⊥⊥ = ,  (2.35)

and the  polarization vector of the beam:
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x
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.  (2.36)

Both entities are symmetric with respect to the replacement yx EE ~~ ↔  of

transverse field components and to the change 1~~ −↔ χχ  of beam polar-
ization, as it should be. It appears that such definition of the base polarization
vectors makes the reflection and transmission matrices at the interface
unimodular [32].

The same factorisation procedure can be applied as well to the beam field
in the configuration domain [32]:

)()()( rerErE =⊥ ,  (2.37)

[ ] 21)()()( rErErE yx= ,  (2.38)
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x
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χ

,  (2.39)

)()()( rErEr yx=χ .  (2.40)

Dependence of the quantities xE~ , yE~  and χ~  on ⊥k  and z , as well as the
dependence of xE , yE  and χ  on ⊥r  and z , will be further understood as

implicit. In this way the beam polarization and the beam complex amplitude
has been uniquely defined in the configuration and spectral domains. For
example, i�== χχ~  for beams of right-handed (-) and left-handed (+)
uniform (constant) circular polarization, respectively. Note that the assump-
tion that the parameters χ  and χ~  are equal to each other (i.e. yxyx eeee ~~= )

for all points of the transverse planes, direct and spectral, implies that these
parameters are constant in these planes.

The beam amplitude-polarization factorisation is unique but remains
singular in two distinctive cases in the spectral and configuration domains. In
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the spectral domain, when one of the transverse field components xE~  or yE~

is zero at one specific spatial transverse frequency ⊥k , the field is of the TM
( 0~ =yE , 0~ 1 =−χ ) or TE ( 0~ =xE , 0~ =χ ) type at ⊥k , respectively. Similarly,
in the spatial domain, when one of the transverse field components xE  or yE
is zero at one specific point ⊥r  in the transverse plane, the field is of the TM
( 0=yE , 01 =−χ ) or TE ( 0=xE , 0=χ ) type at ⊥r , respectively. Then, at

this point:









==⊥ 0

1)(
xxx

TM EeEE ,









==⊥ 1

0)(
yyy

TE EeEE ,  (2.41)

for the beam polarization of the TM or TE type, respectively.
Moreover, if in one transverse plane the field TM or TE polarization does

not vary from point to point in the spatial and spectral domains, then the field
is totally of the TM or TE polarization in any transvese plane. In general, for
paraxial beams in free space, when the polarization parameters χ~  and χ  are
constant and equal χχ =~  in the transverse planes, then the beam polarization
is independent of the beam field distribution in these planes. Then the
complex amplitude  (2.38) of the beam field is described by the scalar
paraxial wave equation:

[ ] 0),,(2 222 =∆−∂+∂+∂ zyxEni yxz ,  (2.42)

and the problem under consideration becomes a scalar one.
In the next sections of this chapter the beams will be analysed as paraxial,

that is for their rays being close to the beam axis and with their angular
deviations from the beam axis direction being small. Beam polarization will
be assumed constant at any transverse plane. Within this range the beam
polarization and the beam complex amplitude are independent of each other
and will be treated separately.
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2.4  Hamilton’s canonical equations

Action of any first-order optical system can be described within the
formulation of Hamiltonian optics [1,2]. As a part of this formalism, linear
canonical transformations are well suited for the treatment of parabolic
differential equations. The transformations of this kind are present in classical
and quantum theoretical formulations in optics and are common in many
aspects with those one can meet in mechanics. The Hamilton’s equations for
optical ray data will be given in this section. The issue of canonical operator
transforms will be discussed in the next sections.

The paraxial scalar wave equation (2.28) can be recast in the form of the
nonrelativistic Schrödinger equation with the Hamiltonian Η  [21]:

),,(),,( zyxEzyxEi z Η=∂ ,

)],,([),,,,( 222
2
1 zyxnppzppyx yxyx ∆++=Η≡Η  (2.43)

and with the generalized momenta xp  and yp  defined by:

),,(),,( zyxEizyxEp xx ∂−= ,

),,(),,( zyxEizyxEp yy ∂−= .  (2.44)

At this level of analysis the eigenvalues xp  and yp  in the differential
equations (2.44) depend on the solution ),,( zyxE  to the Schrödinger
equation, which is not known yet. Therefore xp  and yp  are also not known.
They can be found in the paraxial approximation to ),,( zyxE  by use of a
point-spread function of the optical system and this issue will be discussed
below.

For the time being, however, let us assume that ),,( zyxE  is known. Then,
at arbitrary point ),( yx  in any transverse plane .constz =  of the optical
system, a solution ),,( zyxE  to the Schrödinger equation defines a vector
normal to a phase front of this solution at this point. Direction of this vector
or its tilt with respect to the axis of the optical system is given by the
momentum components xp  and yp . Note that for a plane wave, which may

be regarded as an approximate model of a sufficiently wide beam, the
momentum vector is equal to the transverse (normalised here) wave vector
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⊥k  of this plane wave, that is ),(),( yxyx kkpp =  in this case. For beams of
finite width, a set of the data ),( yx  and ),( yx pp  in subsequent transverse
planes defines optical rays passing from some point )','( yx  in an input
(transverse) plane to some point ),( yx  in an output (transverse) plane.
Therefore the data ),( yx  and ),( yx pp  are dependent on z . This pair

constitutes, for any ray progressing through the first-order system, the two
two-dimensional ray data vectors:









=

)(
)(

)(
zp
zx

z
x

x
η ,









=

)(
)(

)(
zp
zy

z
y

y
η ,  (2.45)

defined in phase space of three-dimensional, paraxial first-order optics.
Vectors )(z

x
η  and )(z

y
η  belong to the phase space of ray data for rays

advancing through the optical system. They represent points of intersections
( )(zx , )(zy ) of the rays with any transverse plane of this system and
directions of these rays, through their generalised momenta ( )(zpx , )(zpy ) at

the intersection points.
To put the definitions (2.45) in a more formal perspective, note that action

of any first-order system can be defined by its impulse response function,
)];','|,(exp[);','|,( zyxyxiIzyxyxg ∝  with quadratic dependence of its point

characteristic )();','|,( zIzyxyxI ≡  on the transverse coordinates  'x , 'y  and
x , y  in the input and output planes, respectively. Note that linear terms are
absent in );','|,( zyxyxI  because misaligned first-order systems are not
considered in this chapter. The point characteristic is determined by elements
of the ray-transfer ABCD matrix specific to this system (see Equation (5.57)
in Section 5, as well as Equations (6.91)-(6.92) in Section 6 in the case of the
system of cylindrical symmetry). The solution ),,( zyxE  to the Schrödinger
equation (2.42) can be obtained by use of this function when the initial beam
field distribution )0,','( yxE  in the input plane are known. The momenta

)(zpx  and )(zpy  are then given by partial derivatives )()( zIzp xx ∂=  and
)()( zIzp yy ∂=  of the point characteristic, and the ray vectors )(z

x
η  and
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)(z
y

η  are obtained, for any value of z, from the solution of the Hamilton-

Jacobi partial differential equation and Jacobi’s theorem [21]. That results in
the Hamilton’s canonical equations for the ray data (2.45):

zxpx ∂∂=∂Η∂ ,

zpx x ∂∂−=∂Η∂ ,  (2.46)

zypy ∂∂=∂Η∂ ,

zpy y ∂∂−=∂Η∂ ,  (2.47)

valid at any transverse plane .constz =  of the optical system, provided that
the initial conditions at the input plane 0=z  are known. Therefore, the
solution )(z

x
η , )(z

y
η  of Equations (2.46)-(2.47) in the output plane depends

on the initial condition )0(
x

η , )0(
y

η  for the optical ray in the input plane.

For paraxial beams in the first-order optical system, the refractive index
contribution 2n∆  to the Hamiltonian is approximated by its quadratic
variation in the transverse coordinates x  and y ,

][ 222222
2
1 ynxnpp yxyx ∆+∆++≅Η  (2.48)

and the canonical equations reduce to the set of the four first-order equations:

xpzx =∂∂ ,

xnzp xx
2∆−=∂∂ ,  (2.49)

ypzy =∂∂ ,

ynzp yy
2∆−=∂∂ ,  (2.50)

or, only for the optical ray data )(zx  and )(zy , to the two second-order
differential equations:

0222 =∆+∂∂ xnx xz ,
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0222 =∆+∂∂ yny yz .  (2.51)

Note that in the homogeneous medium 22 0 nn yx ∆==∆  and the solution of

(2.51) consists only of straight rays. In general, however, 22 0 nn yx ∆≠≠∆

and the ray data are determined by the ray-transfer matrix. This issue will be
discussed in the next section.

Now let us return to the notion of a canonical transformation. Consider
two pairs of the ray data )()1( z

x
η , )()1( z

y
η  and )()2( z

x
η , )()2( z

y
η  representing

two optical rays advancing through the optical system from one transverse
plane to another plane according to the Hamilton’s equations. Then the
Poisson (Lagrange) brackets for the optical rays:

)2()1()2()1( )(},{
a

T
aaa

ηεηηη = ,  (2.52)

a=x,y, remain invariant during beam propagation in any first-order system
[21]:

0},){( )2()1( =
aa

dzd ηη ,  (2.53)

where the four-by-four antisymmetric matrix










−
=

0
0
I

I
ε ,  (2.54)

Tεεε −=−= −1 , 12 −=ε  is composed of the two-dimensional identity I  and
null 0  matrices [21]. For two pairs of the ray data )(zx , )(zpx  and )(zy ,

)(zpy  this invariance explicitly reads:

[ ] 0)( )1()2()2()1( =− xx pxpxdzd ,  (2.55)

[ ] 0)( )1()2()2()1( =− yy pypydzd ,  (2.56)

and means that these data are canonically conjugate variables in the first-
order system. Then the optical transformation described by them is
understood as canonical.
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2.5  Ray-transfer matrices

The transformation performed by optical system transfers the amplitude
distribution of the input beam given in the input transverse plane, say at

0=z , to the amplitude distribution of the output beam in the output plane
taken at some value of z . If the optical system is of the first-order type, its
action can be described by a linear transformation represented by four-by-
four ray-transfer ABCD matrix:









=

⊥ DC
BA

M
)(

,  (2.57)

where the elements of the matrix )(⊥M  are viewed with explicit dependence

on z  not displayed for brevity. The matrix )(⊥M  is composed of the four

two-by-two matrices A , B , C  and D  and relates the position ⊥r  and
momentum 

⊥
p  of the incoming ray in the input plane to the position ⊥'r  and

momentum ⊥'p  of the outcoming ray in the output plane:
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⊥
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DC
BA

p
r

'
'

.  (2.58)

The ray-transfer matrices represent linear canonical transformations of the
first-order optical systems, that is the transformations that preserve Poisson
brackets and commutation relations during mapping of the canonically
conjugate variables given in the input plane into their counterparts in the
output plane. To fulfil this condition, the ray-transfer matrices have to be
symplectic, that is they have to satisfy the symplecticity condition [21]:

εε =
⊥⊥ )()(

MM T ,  (2.59)

where ε  is the four-dimensional antisymmetric matrix (2.54) and )(⊥
TM

means the matrix transposed of 
)(⊥

M . If the matrix 
)(⊥

M  is symplectic, then

its inverse 1
)(

−
⊥

M  exists and is symplectic as well. Unit matrix 1 is symplectic

too. The product of two symplectic matrices is also symplectic and
associativity holds for this product. Therefore, symplectic matrices form a
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group. If the optical system is lossless and without gain, the ray matrix is
unitary, i.e. 1)()( =⊥

+
⊥ MM , where the superscript “+” denotes the combined

action of transposition and conjugation. However, the symplecticity condition
(2.59) remains also valid for any ray-transfer matrix representing
transformations of paraxial beams in a first-order system with arbitrary
quadratic distribution of the, complex in general, refraction index.

In order to simplify further derivations let us consider now the separable
symmetric optical system. Then the field amplitude of a beam can be
factorised into two independent factors in two orthogonal transverse
coordinates, say in x  and y . The beam propagation in such a system is
described by two independent two-dimensional vectors [ ]T

xx
px,=η  and

[ ]T
yy

py,=η  in two independent two-dimensional phase spaces of the beam

field. Next, alternatively to the four-dimensional position-momentum ray
vector [ ]Tpr

⊥⊥ , , (cf. (2.45) and (2.58)), define a new four-dimensional

vector, composed of the two two-dimensional position-momentum vectors:












=

⊥ )(
)(

)( z
z

z
y

x

η
η

η .  (2.60)

The four-vector ray-data )(z
⊥

η  describes also adequately the positions and

directions of the optical ray in each transverse plane of the optical system. Its
optical transformation is also described by the four-by-four ray-transfer
matrix )(⊥m  of the first-order system, with arrangements of its elements

different, however, than that of matrix 
)(⊥

M  (2.57). Because the system is

assumed now as separable, )(⊥m  is composed of two-by-two abcd matrices

placed on its diagonal. Further, if this system is also circularly symmetric in
any transverse plane yx − , then these two two-by-two abcd matrices are
equal to each other.

In the paraxial approximation the relation between the vector 
⊥

η , defined

in the input plane and the vector 
⊥
'η , defined in the output plane, is linear

and given in terms of the ray-transfer matrix )(⊥m :
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⊥⊥⊥ = ηη
)(

' m .  (2.61)

When the optical system is separable, the four-by four ray matrix )(⊥m

decomposes into two identical two-by-two ray transfer matrices )( xm  and

)( ym :












=⊥

)(

)(
)( 0

0

y

x

m
m

m  (2.62)

and acts independently on the two-dimensional ray vectors:

xxx
m ηη =' ,

yyy
m ηη =' .  (2.63)

In addition, for the system of cylindrical symmetry, these ray matrices are
mutually equal:









===

dc
ba

mmm yx )()(  (2.64)

and instead of two ray vectors 
x

η  and 
y

η  we may consider only one of

them, say ηη ≡
x

.

The matrix m  is unimodular, a feature common to all two-dimensional
symplectic transformations:

1det =−= cbadm .  (2.65)

Note that the scaling (2.25)-(2.26) of Cartesian coordinates implies also the
scaling

aa → , bzb D → ,

cc → , dzd D → ,  (2.66)

already accounted for in the defintion (2.64) of the abcd matrix. The ray-
transfer matrix m  describes directly transformations of ray data η  under

action of elements of the circularly symmetric optical system [27-28].
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For example, refraction of the beam at the dielectric interface at (int)zz = ,
that is at the boundary between two semi-infinite dielectric media, is
governed just by the identity matrix )( Im :

ηηη == )(' Im ,









=≡

10
01

)( (int))()( zmm II ,  (2.67)

due to the reduction (2.20) of the axial coordinate z  by the refractive index
of the medium. The ray vector 'η  in two-dimensional phase space of ray data
at the output plane, just behind the interface, equals the ray vector η  in the

input plane – just before the interface.
Beam propagation in free space between the input and output planes is

described by the matrix )(Fm :
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)()()( z
zmm FF ,  (2.68)

with the upper off-diagonal term of )(Fm  equal to the scaled propagation

distance z , positive 0>z  for propagation from the waist plane 0=z . The
position of a ray intersection with the output plane is displaced from its
counterpart in the input plane by a product of z  and p .

Action of the thin lens of a focal length 1−−= ρf , positive 0>f  for a
convex lens and negative 0<f  for a concave lens, is described by the matrix

)(Lm :
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ρ
ρLL mm ,  (2.69)
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with the lower off-diagonal term 1−−= fρ  equal to the minus reciprocal of
the scaled focal length f  of the lens. The generalised momentum or the
direction of the optical ray is then angularly displaced or tilted by xρ . Note
that, for Rf 2−=  and 2R=ρ , the matrix transformation )(Lm  describes

also action of a spherical mirror with radius of curvature R .
Other optical transformations commonly encountered in optics are the

phase-shift, the magnification and the rotation. The optical phase-shifter
introduces relative phase difference µ  between the phase-space coordinates
and is given by the matrix )(Pm :
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Action of the magnifier that scales x  by the factor )2exp( ξ+=w  and xp

by )2exp(1 ξ−=−w , is given by the matrix )(Mm ,
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ξMM mm ,  (2.71)

and the rotation in the phase space about the z-axis by an angle 2ϕ  is given
by the matrix )(Rm :
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)()()(

ϕϕ
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ϕRR mm .  (2.72)

The angle ϕ  is taken positive when a right-handed screw associated with this
rotation (in the x-y plane) is advancing in the positive direction of the z-axis.
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An arbitrary first-order optical system may be regarded as composed of
several optical elements, represented by such the ray-transfer matrices. A
cascade of these elements whose ray-transfer matrices are )1(m , )2(m ,…,

)(mm  is then equivalent to a single first-order optical element with the ray-
transfer matrix m  given by the matrix multiplication in reverse order,

)1()2()( ... mmmm m= .  (2.73)

Consider now the reverse problem – having postulated the total ray-transfer
matrix m  known, find an optical system composed of optical elements

represented by )( jm , j=1,2,…, which yield the total matrix m  according to

(2.73). The problem is not unique - there are several equivalent decompo-
sitions of an arbitrary unimodular matrix m . For instance, any non-singular
matrix can be decomposed into a product of two matrices, one Hermitian and
one unitary, what implies that any two-by-two unimodular matrix m
decomposes into the product of one Hermitian matrix and one rotation
matrix.

However, the decomposition of other type appeared especially suitable in
considerations of the behaviour of optical beams in optical systems. It is the
lens-magnifier-rotation decomposition, known also as the Iwasawa three-
parameter decomposition [27,33]:

)()()( )()()( ϕξρ −= RML mmmm .  (2.74)

According to the decomposition (2.74), action of first-order optical systems
can be interpreted in terms of successive actions of the basic optical elements
- the rotator, the magnifier and the lens - performed in the phase space of
positions and tilts of rays of the optical beam fields propagating in these
systems.

2.6  Optical canonical transforms

Consider the Hilbert space of square-integrable complex-valued functions
),,( zyxE , in any transverse plane =z constant and define the position x̂ , ŷ

and momentum xp̂ , yp̂  canonically conjugate operators in the input plane

0=z  of the optical system:
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)0,,()0,,(ˆ yxExyxEx = ,

)0,,()0,,()0,,(ˆ yxEpyxEiyxEp xxx =∂−= ,  (2.75)

)0,,()0,,(ˆ yxEyyxEy = ,

)0,,()0,,()0,,(ˆ yxEpyxEiyxEp yyy =∂−= ,  (2.76)

where ∞<∫∫
2|),,(| zyxEdxdy . The upper hat denotes an operator. These

Hermitian operators correspond to the position x , y  and momentum xp , yp

phase-space coordinates of optical rays introduced in Section 4. They satisfy
the commutation relations [27]:

[ ] [ ]yx pyipx ˆ,ˆˆ,ˆ == ,  (2.77)

[ ] [ ]xy pypx ˆ,ˆ0ˆ,ˆ == ,  (2.78)

where, for arbitrary operators q̂  and p̂ ,

[ ] qppqpq ˆˆˆˆˆ,ˆ −≡  (2.79)

stands for a commutator of these operators.
The canonically conjugate position and momentum operators x̂ , ŷ , xp̂

and yp̂  (2.75)-(2.76) have been defined in the input plane at 0=z . In

another transverse plane, say in the output plane, they may take, in general,
another form, as it will be explicitly postulated in Equation (2.86). Therefore
a form of these operators is changing from one transverse plane to another
and thus it depends on z. These changes are induced by a transfer operator of
the system 

⊥
m̂  defined in Equation (2.82) below. The operators x̂ , ŷ , xp̂

and yp̂  can be arranged in two two-dimensional column vectors
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or in one four-dimensional column vector
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z
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η
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η ,  (2.81)

now written in an arbitrary transverse plane at .constz =
Define a linear transfer operator )(ˆˆ zmm ⊥⊥ ≡  of the first-order separable

optical system, that relates the input beam-field-amplitude )0,,( yxE  given in
the input transverse plane taken at 0=z , to the output beam-field-amplitude

),,( zyxE  obtained in the output transverse plane at arbitrary .constz = :

)0,,()(ˆ),,( yxEzmzyxE
⊥

= ,












=
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y

x

m
m

m ˆ0
0ˆ

ˆ .  (2.82)

Next, postulate the integral form of )(ˆ zm⊥ ,

)0,','();','|,('')0,,()(ˆ yxEzyxyxgdydxyxEzm ∫∫=
⊥

,  (2.83)

involving an impulse-transfer (impulse-response) function );','|,( zyxyxg of
the optical system [2]. Then, the condition )0,,(),,( yxEzyxE =  at 0=z
implies:

)'()'()0;','|,( yyxxyxyxg −−= δδ .  (2.84)

The definitions of the canonically conjugate operators (2.75)-(2.76) describe
the action of these operators )0(ˆ

⊥
η  on the field function )0,,( yxE  in the

input plane at 0=z .
Define this action in the output plane at .constz =  by the ray-transfer

operator )(ˆ zm
⊥

[20],

)0,,()0(ˆ)(ˆ),,()(ˆ yxEzmzyxEz
⊥⊥⊥

= ηη ,  (2.85)

or equivalently by the self-similar relation:

)(ˆ)0(ˆ)(ˆ)(ˆ 1 zmzmz −
⊥⊥⊥ ⊥

= ηη .  (2.86)
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The definition (2.86) states that the operators 
⊥

η̂ , one defined in the input

plane 0=z  and one in the output plane .constz = , are equivalent or self-
similar.

What we expect now is that the self-similar transformation (2.86) of the
vector 

⊥
η̂  (2.81) of the conjugated pairs of operators x̂ , xp̂  and ŷ , yp̂ ,

induced by the operator transformation ⊥m̂  of the beam-field-ampli-
tude ),,( zyxE  (2.82) or, equivalently, by the matrix transformation 

⊥
m

(2.61) of the ray-data vector 
⊥

η  (2.60), is canonical. This means that the

operators x̂ , xp̂  and ŷ , yp̂  given in any transverse plane are (i) linear

superposition of these operators given in the input plane and (ii) satisfy the
commutation relations (2.77)-(2.78) in any transverse plane of the optical
system. The condition (ii) implies that the linear ray-transfer transformation

⊥
m  should be symplectic (2.59) or, in separable optical systems, unimodular
(2.65) ( 1det =

⊥
m ).  Moreover, in addition to the action of the ray-transfer

matrix 
⊥

m  on the ray-data vectors 
⊥

η :

)0()()(
⊥⊥⊥

= ηη zmz ,  (2.87)

the equivalent transformation of the vector 
⊥

η̂  exists [20,27]:

)0(ˆ)()(ˆ 1
⊥

−
⊥⊥

= ηη zmz .  (2.88)

The definitions (2.85)-(2.88) display the explicit correspondence between the
symplectic matrices ⊥m  (2.62) and the canonical transfer operators ⊥m̂

(2.83) [20]. It is a homomorphism; an algebraic structure of the group of
symplectic matrices is preserved under this correspondence. However
globally it is not an isomorphism; this correspondence is not one to one - the
two operators ⊥m̂  and ⊥− m̂  represent the same matrix ⊥m . In spite of that,
the definitions (2.85)-(2.88) state that the transfer operator ⊥m̂ , that
transforms the beam field amplitude )0,,( yxE  from the input plane to the
beam field amplitude ),,( zyxE  in the output plane of a first-order optical
system, is canonical.
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For separable optical systems with cylindrical symmetry, the
transformation (2.88) is explicitly given by only one two-dimensional abcd
ray-transfer matrix of the system [20]:

)0(ˆ)(
)0(ˆ

)0(ˆ
)(ˆ

)(ˆ
)(ˆ 1

xx
xx

x
zm

p
x

ac
bd

zp
zx

z ηη −=
















−
−

=







= ,

)0(ˆ)(
)0(ˆ

)0(ˆ
)(ˆ

)(ˆ
)(ˆ 1

yy
yy

y
zm

p
y

ac
bd

zp
zy

z ηη −=
















−
−

=







= ,  (2.89)

where the equality of the ray-transfer matrices mmm yx ==  entails the same

relation for the transfer operators: mmm yx
ˆˆˆ == . It can directly be shown [20]

that, for the nonsingular case ( 0≠b ), the outcome of the action (2.82)–(2.83)
of the transfer operator )(ˆ zm⊥  on the beam field distribution )0,,( yxE  at the

transverse input plane at 0=z  can be described by the beam field
distribution ),,( zyxE  at the transverse output plane at .constz =  This leads
to the integral form [20]:

)0,','();','|,(''),,( yxEzyxyxgdydxzyxE ∫∫= .  (2.90)

An impulse-response function of the system is given by the kernel
);','|,( zyxyxg  of this integral,

)];','|,(exp[)2();','|,( 1 zyxyxiIbizyxyxg −= π ,  (2.91)

with the phase term determined by the abcd matrix:

byxayyxxyxdzyxyxI )]''()''(2)([);','|,( 2222
2
1 +++−+= .  (2.92)

This phase term is known as a point characteristic of a first-order system
[21]. For z=0 Im = , 1== ca , 0→b , as it should be, and the response

function converts into the two-dimensional Dirac function, according to the
stipulation (2.84),

.]})'()'[()(exp{)2(lim
)'()'(

221
2
11

0 yyxxibib
yyxx

b −+−−=
−−

−−
→ π
δδ

 (2.93)
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The beam field representation (2.90)-(2.92) is known as the generalised
Huygens integral [20]. For the singular case, that is in the case, when the
upper-right non-diagonal element of the abcd matrix equals zero ( 0=b ), the
integral representation (2.90)-(2.92) is replaced by a simple algebraic relation
[27]:

)0,,()])((exp[)||()0,,( 22
2

2 ayaxEyxacaayxE i += .  (2.94)

Any transfer operator m̂  can be decomposed in several ways into basic
optical operators, per analogy to decompositions of the ray-transfer matrices
m  mentioned in Section 5. For example, the Iwasawa decomposition (2.74)
of the transfer matrix m , entails the same decomposition of the transfer
operator m̂  and 

⊥
m̂ :

)(ˆ)(ˆ)(ˆˆ )()()( ϕρ −= RML mwmmm ,

)(ˆ)(ˆ)(ˆˆ )()()( ϕρ −=
⊥⊥⊥⊥
RML mwmmm .  (2.95)

Therefore, action of any first-order optical system can be described by
successive actions of three basic transfer operators on the beam field
distribution at the input plane, that is the action of the lens )(ˆ Lm

⊥
,

)0,,()](exp[)0,,()(ˆ 221
2

)( yxEyxyxEm iL += −
⊥

ρρ ,  (2.96)

the magnifier )(ˆ Mm
⊥

,

)0,,()0,,()(ˆ 111)( −−−
⊥

= wywxEwyxEwm M ,  (2.97)

where we have changed the argument of this operator from ξ  to
)2exp(ξ=w , and the rotator )(ˆ Rm

⊥
,

{ }.)2sin()]'')(2cos()''(2)2cos()[(exp

)0,','(''))2sin(2()0,,()(ˆ
2222

2

)(

ϕϕϕ

ϕπϕ

yxyyxxyx

yxEdydxiyxEm
i

R

+++−+−

=− ∫∫⊥

   (2.98)

For πϕ −=  one gets Im R =)()( π  and the rotator induces the Fourier

transformation,
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)0,,(~)2()0,,()(ˆ )( yxEiyxEm R ππ = ,  (2.99)

where E~  means the conventional two-dimensional Fourier transform of E ,

)]''(exp[)0,','('')0,,(~ yyxxiyxEdydxyxE += ∫∫ .     (2.100)

Otherwise, for arbitrary values of ϕ , the rotator is equivalent to the fractional
Fourier transform in two dimensions, of the order πϕ− . For example, if

21=πϕ , then the rotator is a square root of the Fourier transformation.

The operators )(ˆ )( ρLm
⊥

, )(ˆ )( ξMm
⊥

and )(ˆ )( ϕ−
⊥
Rm  can be explicitly related

to the position x̂ , ŷ  and momentum xp̂ , yp̂  operators by three Hermitian

operators [27]:

)ˆˆˆˆ(ˆ 2222
4
1

2 yx ppyxj +++−= ,     (2.101)

)ˆˆˆˆ(ˆ 2222
4
1

1 yx ppyxk −−+−= ,     (2.102)

)ˆˆˆˆˆˆˆˆ(ˆ
4
1

3 ypxppypxk yxyx +++= ,     (2.103)

which, through their exponentials, generate three unitary transformations
applied in the Iwasawa decomposition (2.95):

))ˆˆ(exp()(ˆ
12

1)( kjim L +−= −
⊥

ρρ ,     (2.104)

)ˆexp()(ˆ
3

)( kimm M ξ−=
⊥

,     (2.105)

)ˆexp()(ˆ
2

)( jim R ϕϕ −=−
⊥

.     (2.106)

On the ground of the relations (2.86) and (2.88), the action of the transfer
operators 

⊥
m̂  is related to the action of the ray-transfer matrices 

⊥
m  by the

identity [20,27]:

)0(ˆ)()(ˆ)0(ˆ)(ˆ 11
⊥

−
⊥

−
⊥⊥

=
⊥

ηη zmzmzm .     (2.107)

Hence the canonical transformations 
⊥

m̂  of beam amplitudes distributed

across transverse planes of any first-order symmetric optical system
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correspond to members of a three-parameter symplectic group represented by
unimodular matrices 

⊥
m . We will return to this group representation in the

discussion on transformations of beam polarization.

2.7  Hermite-Gaussian beams

There are several families of beams, for instance: Hermite-Gaussian and
Laguerre-Gaussian beams [3,6], generalized Gaussian beams [34], Bessel-
Gaussian beams [35], [36], spiral Laguerre-Gaussian beams [37] or Hermite-
Laguerre-Gaussian beams [38], which propagate through first-order optical
systems according to the paraxial wave equation. Their propagation is shape-
invariant, that is they do not change their transverse shape in spite of scaling
their beam-field parameters and changes of their on-axis amplitude and
phase. In this chapter two basic families of such beams will be considered,
one of rectangular symmetry and one of cylindrical symmetry in their field
amplitude distribution in the transverse planes, namely the standard Hermite-
Gaussian (SHG) and the standard Laguerre-Gaussian (SLG) beams,
respectively [6]. As they can be generated in standard laser cavities, their
features are commonly well known and have been extensively discussed in
many textbooks, for example in [3-6]. Here we will show how their field
amplitude is determined by the ray-transfer matrix of the paraxial
propagation in a dielectric infinite medium.

The ray-transfer matrix of beam propagation in free space:














=⊥ )(0

0)(
)( )(

)(
)(

zm
zm

zm F

F
F ,     (2.108)









=

10
1

)()( z
zm F ,     (2.109)

leads, through the Huygens integral (2.90)-(2.92) to Fresnel integral formula
for the field of a optical beam:

{ }.])'()'[(exp)0,','('')2(

)0,,()(ˆ),,(
22

2

)(

zyyxxyxEdydxzi

yxEzmzyxE
i

F

−+−−=

=

∫∫
⊥

π
   (2.110)
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Assume that in the input plane the beam field has a form of the two-
dimensional fundamental Gaussian-beam-function modulated by Hermite
polynomials )(xHm  and )(yHn :

)](exp[)()()0,,()0,,( 22
2
1

,
)(

, yxyHxHcyxGyxE nmnm
SH

nm +−== ,    (2.111)

where the Hermite polynomials are defined as:

)exp())(exp()1()( 22 xdxdxxH mmm
m −+−= .     (2.112)

The function )0,,()(
, yxG SH
nm  is exactly the two-dimensional standard Hermite-

Gaussian (SHG) function of the order N=m+n [3-6]. It describes the SHG
beam at its waist plane, taken here at 0=z . The SHG beam (2.111), through
the amplitude normalisation factor [23]

21
, )!!2( −+= nmc nm
nm π ,     (2.113)

can be normed in intensity to one:

1),,(
2

,∫∫ =zyxGdxdy SH
nm .     (2.114)

This implies that the amplitude of the normed fundamental SHG beam, that is
for n=0=m, is equal 21−π  at the centre of its waist at 0=== zyx .

The SHG function )0,,()(
, yxG SH
nm  in two dimensions factorises into two

one-dimensional SHG functions,

)0,()0,()0,,( )()()(
, yGxGyxG SH

n
SH

m
SH

nm = ,     (2.115)

)exp()()!()0,( 2
2
12141)( xxHmxG m

SH
m −= −−π ,     (2.116)

)exp()()!()0,( 2
2
12141)( yyHnyG n

SH
n −= −−π ,     (2.117)

of the orders m and n, respectively. Note that the left-hand side of Eq. (2.115)
is separated in the coordinates x  and y  and thus the 2D problem can be
solved by solving separately two identical 1D problems. Therefore, let us
temporarily restrict our considerations only to one 1D problem with one
coordinate x . The one-dimensional SHG function )0,()( xG SH

m  is a solution of
the differential equation:
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)0,()0,()1( )()(22
2
1 xGmxGx SH

m
SH

mx =−∂− ,     (2.118)

or, equivalently, an eigenfunction of the number operator xN̂ , with the
eigenvalue m equal to the order m of this function,

)0,()0,(ˆ )()( xGmxGN SH
m

SH
mx = .     (2.119)

The operator xN̂  can be expressed by the ladder differential operators ±
xâ :

−+= xxx aaN ˆˆˆ ,     (2.120)

)(2ˆ 21
xx xa ∂= −±

� ,     (2.121)

where +
xâ  is Hermitian transpose of −

xâ  [23]. As the ladder operators obey the
standard commutation rules:

1]ˆ,ˆ[ =+−
xx aa ,

]ˆ,ˆ[0]ˆ,ˆ[ ++−− == xxxx aaaa ,     (2.122)

they lower and rise the order of the SHG functions:

)0,()0,(ˆ )(
1

21)( xGmxGa SH
m

SH
mx −

− = ,     (2.123)

)0,()1()0,(ˆ )(
1

21)( xGmxGa SH
m

SH
mx +

+ += .     (2.124)

Hence, the higher-order SHG beams )0,()( xG SH
m  can be obtained from the

fundamental (of zero order) beam )0,(xG  by applying consecutively the
raising operator +

xâ ,

)0,()ˆ()!()0,( )(
0

21)( xGanxG SHm
x

SH
m

+−=     (2.125)

to the fundamental Gaussian beam function:

)exp()0,()0,( 2
2
14141)(

0 xxGxG SH −== −− ππ .     (2.126)

The higher-order beams )0,()( xG SH
m , m=1,2,…, together with the fundamental

beam )0,()(
0 xG SH , constitute a complete set of solutions of the one-dimen-

sional paraxial wave equation [23].
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With the differential equation (2.118) in its two-dimensional version in
mind we may consider the two-dimensional SGH function )0,,()(

, yxG SH
nm  as

an eigenstate of the operator 
2

ĵ :

)0,,()1()0,,(ˆ )(
,2

1)(
,2

yxGnmyxGj SH
nm

SH
nm ++−= ,     (2.127)

where

)(ˆ 2222
4
1

2 yxyxj ∂−∂−+−= .     (2.128)

In fact, the operator 
2

ĵ  corresponds to the Hamiltonian operator Η̂  of a two-

dimensional isotropic oscillator with eigenvalues equal m+n+1:

)(ˆ2ˆ 2222
2
1

2 yxyxj ∂−∂−+=−=Η .     (2.129)

Moreover, the operator 
2

ĵ  generates, through its exponential

)ˆexp()(ˆ
2

)( jim R ϕϕ −=
⊥

, rotation in the phase-space by an angle 2ϕ . There-

fore, the SHG functions are also eigenstates of the operator )(ˆ )( ϕ−
⊥

Rm  with

eigenvalues ))(exp( , zi nmϕ− :

 )0,,())(exp()0,,()(ˆ )(
,,2

)(
,

)( yxGzyxGm SH
nmnm

iSH
nm

R ϕϕ −=−
⊥

,

)()1()(, znmznm ϕϕ ++= .     (2.130)

The phase )(,2
1 znmϕ  is the well-known Gouy on-axis phase of the SHG beam

of the order m+n, [2-7]. The phase function )(zϕ  is still to be found under
the condition that 0)0( =ϕ  at the input plane 0=z , as the beams

)0,,()(
, yxG SH
nm , m, n=1,2,…, have been defined above only in one plane - the

input plane at 0=z .
Now we are prepared to consider the propagation of the beam field,

defined by the distribution (2.111) of the SHG beam in the input plane.
Characteristics of this propagation are completely determined by the ray-
transfer matrix of this system. To show this let us apply the Iwasawa
decomposition (2.74) defined as:
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)()()()( )()()()( ϕρ −= ⊥⊥⊥⊥
RMLF mwmmzm ,     (2.131)

to the free-space ray-transfer matrix [27], that is solve the algebraic equation










−















=








−− )2(cos)2(sin

)2(sin)2(cos
0

0
1
01

10
1

11 ϕϕ
ϕϕ

ρ w
wz

    (2.132)

in terms of the beam parameters ρ , w  and ϕ . Note that all these parameters
are dependent on the propagation distance z . The solution is:

1)( −+=≡ zzzρρ ,     (2.133)

212 )1()( zzww +=≡ ,     (2.134)

)arctan()(2
1

2
1 zz =≡ ϕϕ ,     (2.135)

with the beam waist at 0=z  and with the relation

2)(sin)( =zz ϕρ     (2.136)

equivalent to the unimodularity of the ray-transfer matrix (2.132);
1)(det )( =

⊥
zm F . The Gouy on-axis phase of the fundamental Gaussian beam

increases its value by π  between −∞=z  and +∞=z .
As it will be evident later, ρ  denotes the radius of phase front curvature

of the beam, w  stands for the radius of the beam cross-section (beam half-
width) and the phase 2)(zϕ  is the well-known Gouy on-axis phase of the
fundamental SHG beam [2-7]. For further purposes we define also the
complex radius of the beam:

21)1()( izzvv +=≡ ,     (2.137)

which also yields the radii w  and ρ , and the phase ϕ ,

)()()( zwzvzv = ,     (2.138)

)2)(exp()()( zizvzv ϕ−= ,     (2.139)

]2)(exp[)()()()( 1122 zizwzizwzv ϕρ −=−= −−−− .     (2.140)
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Now, with the beam parameters (2.133) - (2.140) known, let us apply the
operator of the beam propagation in free space )(ˆ )( zm F  in its Iwasawa
decomposition (2.131) to the beam field )0,,()(

, yxG SH
nm  given in the input

plane:

.)0,,()](exp[)exp(

)0,,()(ˆ
)(

,
221

2
1

,2,

)(
,

)(

wywxGyxwc

yxGzm
SH
nm

i
nm

i
nm

SH
nm

F

+−= −−

⊥

ρϕ
     (2.141)

We then finally get the SHG beam field with its three parameters ρ , w  and

nm,ϕ , all dependent implicitly on z:

])(exp[)()()](exp[

)exp(),,(
222

2
1221

2

1
,2,

)(
,

wyxwyHwxHyx

wczyxG

nm
i

nm
i

nm
SH
nm

+−+×

−=
−

−

ρ

ϕ
.   (2.142)

The SHG functions ),,(, zyxG SH
nm  are eigensolutions of the Hamiltonian Η̂

(2.129) with the eigenvalue m+n+1:

),,()1(),,(ˆ),,( )(
,

)(
,

)(
,2 zyxGnmzyxGzyxGi SH

nm
SH
nm

SH
nm ++=Η=∂ϕ ,

),,()ˆ()ˆ()!!(),,( )(
0,0

21)(
, zyxGaanmzyxG SHn

y
m

x
SH
nm

++−= ,     (2.143)

and with their lowering −
xâ  and rising +

xâ  operators:

][2)(ˆ 221
xx vxza ∂+= −− ,

][2)(ˆ 221
xx vxza ∂−= −+ ,     (2.144)

still obeying their relations (2.123)-(2.125) given before in the beam waist
plane 0=z  [23]. Outside the beam waist plane these operators are dependent
on the propagation distance z . The functions ),,()(

, zyxG SH
nm  form a complete

set of solutions of the Schrödinger equation (2.143) equivalent to the paraxial
wave equation (2.29) in free space.

Finally, the definition (2.137) of the complex radius of the beam )(zv
yields a more compact form of the SHG beam field:

),,())(()(),,( ,
)(

, zvyvxGvvwyHwxHczyxG nm
nmnm

SH
nm

+= ,
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])(exp[),,(),,( 222
2
12)(

0,0
1
0,0

−−− +−== vyxvzyxGczvyvxG SH ,     (2.145)

where ),,( zvyvxG ; 1)0,0,0( =G , is the well-known two-dimensional fun-
damental Gaussian beam defined for arbitrary value of z . In this way the
Equation (2.145) defines the SHG beam at any transverse plane of the first-
order optical system. The SHG beam-field-function is scaled in the transverse
coordinates x  and y  and possesses the additional on-axis phase factor

nmvv +)( . Note that the scaling parameters w  and ν  are dependent on z  and
both resolve into the (real) beam half-width at the beam waist for 0=z
(equal one in the convention assumed in this chapter). The scaling parameters
are different for the fundamental Gaussian beam and the Hermite
polynomials. Meanwhile these coordinates in the Gaussian function

),,( zvyvxG  are scaled by the complex beam half-width v , they are scaled
by the real beam width w  in the Hermite functions )( wxH m  and )( wyH n .

The ladder rising operators +
xâ  and +

yâ  have been defined in the Cartesian
coordinates x  and y . Per analogy, however, a new complete set of solutions
of the paraxial equation can be also obtained with the aid of the ladder rising
operators +

±â  defined in the circular polarization basis [23]:

),,()ˆ()ˆ()!!(),,( )(
0,0

21)(
, zyxGaannzyxG SHnnSL
lp

−+ +
−

+
+

−
−+= ,

)ˆˆ(2ˆ 21 ++−+
± ±= yx aiaa ,     (2.146)

where ),min( −+= nnp  and −+ −= nnl . The functions ),,()(
, zyxG SL
lp  represent

the SLG beams and these beams will be described in the next section.

2.8  Laguerre-Gaussian beams

The SHG beams form a complete, orthogonal, infinite-dimensional base
for any scalar paraxial beam field, with its transverse distribution represented
by a square integrated function. That is, any light beam of linear polarization
and finite power can be described as a superposition of the (scalar) SHG
beams. The characteristic feature of the SHG beams is their rectangular
symmetry in any plane transverse to the propagation direction. Now we
present another infinite-dimensional, complete and orthogonal family of
beams of circular rather than rectangular symmetry in the transverse planes –
a family of the standard Laguerre-Gaussian (SLG) beams [39-40].
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Let us introduce the cylindrical coordinates ⊥r  and ψ ; ψcos⊥= rx ,
ψsin⊥= ry , and rewrite the paraxial wave equation in these coordinates:

0),,(]2[ 222 =∂+∂+∂
⊥⊥ zyxEri rz ψ .     (2.147)

Then it can be shown by inspection that the SLG beams of the order N=2p+l
[3,6]:

,),,()exp()()()()1(

),,(
222

,

)(
,

zvyvxGilwrLwrvvc

zrG
l
p

llp
lp

p

SL
lp

ψ

ψ

−−= ⊥⊥
+

⊥ (2.148)

obey Equation (2.147), where l
pL  is the generalized Laguerre polynomial,

)]exp([]))][(exp([)(! xxxdxdxxxLp lpll
p −+= − .     (2.149)

By introduction of the normalisation factor [40],
2121

, ])!(![ lppc lp += −π ,     (2.150)

the SLG function can be normed in its intensity to one:

1),,(
2)(

,∫∫ =⊥⊥⊥ zrGdrdr SL
lp ψψ .     (2.151)

Note that we use interchangeably the Cartesian or cylindrical coordinates as
arguments of the beam functions what, for example, may be seen in the
expression ),,(),,( )(

,
)(

, zyxGzrG SL
lp

SL
lp ≡⊥ ψ . The definition (2.148) is given here

for positive values of l and p. For negative values of l
),,(),,( )(

,
)(

, zyxGzyxG SL
lp

SL
lp −= − .

There is no need to derive the definition of the SLG beam along the lines
shown already for the SHG beams. As both families of these beams form
complete sets of solutions of the paraxial wave equation, any SLG beam can
be expressed by a linear combination of the SHG beams and vice versa. To
compound the SLG beam in this way let us start with the SHG beam, whose
principal axes make an angle 4π  with x  and y  axes of the Cartesian
coordinate frame ),,( zyx . Such the “diagonal” SHG beam can be decom-
posed into the set of “non-diagonal”, that is in not rotated in the ),( yx  frame,
SHG beams of the same order N=n+m according to the rule [40]:
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),,(),,()),(2),(2( )(
,

0

2121)(
, zyxGknmbzyxyxG SH

kkN

nm

k

SH
nm −

+

=

−−
∑=−+ ,

[ ] 0
2121 |)1()1()(]!)!([)!!2(

),,(

=
−+ +−−+= t

nmkknm ttdtdkknmnm
knmb

.  (2.152)

Note that the expansion coefficients ),,( knmb are real and therefore all of
them are in phase in the “diagonal” expansion (2.152).

It can be shown that the SLG beam of the order N=2p+l also decomposes
into the set of SHG beams of the same order N=m+n in a similar way [40]:

),,(),,(),,( )(
,

0

)(
, zyxGknmbizyxG SH

kkN

N

k

kSL
lp −

=
∑= ,     (2.153)

with exactly the same coefficients ),,( knmb  augmented by the factor ki ,
where m=p, n=l+p for m<n and m=l+p, n=p for m≥n. That corresponds to
an additional 2π  relative phase difference between successive expansion
coefficients. For example, the diagonal SHG beam of m=0 and n=2 and the
SLG beam of p=0, l=2, both of the order N=m+n=2p+l=2, can be represented
by the following decompositions in terms of the non-diagonal SHG beams of
the same order:
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The “diagonal” decompositions (2.154) are visualised in beam intensity in
Fig. 2.1 and Fig. 2.2 (see also figures in [40,41]).

The decomposition (2.154) is not only a pure theoretical result. Any HG
beam can be transformed into a corresponding LG beam, and any LG beam
can be transformed into a corresponding HG beam, by passing them through
an astigmatic beam-mode converter, composed of a specific set of cylindrical
lenses [40]. Direct comparison of the two expansions (2.152) and (2.153), for
the diagonal SHG beams and the SLG beams, respectively, indicates that
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such conversion should change phase in the coefficients ),,( knmb  of these
decompositions. It has been shown that this operation can be accomplished
by manipulation of the Gouy on-axis phase of the beam [40].

Figure 2.1.  Intensity distribution of the components in the
decomposition (2.154) of the diagonal SHG beam )(

2,0
SHG  (left) into the

non-diagonal SHG beams )(
0,2

SHG , )(
1,1
SHG  and )(

2,0
SHG  of the same order

(right). All components of the decomposition are in phase.

Figure 2.2.  Intensity distribution of the components in the
decomposition (2.154) of the SLG beam )(

02
SLG  (left) into the non-

diagonal SHG beams )(
0,2

SHG , )(
1,1
SHG  and )(

2,0
SHG  of the same order

(right). The second and the third components of the decomposition
differ in phase by 2π  and π , respectively, with respect to the

decomposition components in Fig. 2.1.

There is a distinct asymmetry in arguments of the standard HG beams
(2.145) and the standard LG beams (2.148) – the arguments of their Hermite
and Laguerre polynomials are scaled by the real beam radius )(zw ,
meanwhile the argument of the fundamental Gaussian function (2.145) is
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scaled by the complex beam radius )(zv . However, there are also two other
parallel families of three-dimensional paraxial beams, with all their
arguments scaled by the complex beam parameter )(zv  only. They have been
named as the complex-valued or “elegant” HG beams and LG beams [6].
Their definitions (up to the normalisation factors) will be given in Section 4,
Chapter 7.

The elegant HG and LG beams also form two separate, complete and
infinite-dimensional bases for any solution of the paraxial wave equation of
finite power. Contrary to the SHG and SLG beams, these sets of the elegant
(EHG or ELG) beams are biorthogonal rather than orthogonal [6]. Still, the
diagonal relation (2.153) remains valid for the elegant EHG and ELG beams
with the same expansion coefficients as for the standard SHG and SLG
beams [41]:
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They play a special role in beam interaction with a planar dielectric interface,
or, in general, with any planar dielectric multilayer. Their definitions will be
given and their interaction with the interface will be analysed in the last
chapter of this book.

2.9  Spinors of beam polarization

The formalism, outlined in previous sections, treats the beam field
amplitudes as scalar quantities, independent of beam polarization.
Transformations of the beam polarization, assumed to be approximately
uniform (constant) at any beam cross-section, will be briefly discussed
below.

The amplitude distribution of the beam field has been analysed by use of
the beam field expansions in the Hilbert space of square-integrable functions,
spanned by the complete and orthogonal (or bi-orthogonal) sets of HG or LG
beam fields. Similarly, beam polarization can be analysed in a two-
dimensional vector space spanned by one particular pair of orthogonal
polarization states. These states are usually taken as of the linear, TM and
TE, or the circular, right-handed (CR) and left-handed (CL), polarization
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states. Our choice here is the TM polarization state with the base vector xe ,
directed along the x-axis, and TE polarization state with the base vector ye ,

directed along the y-axis:
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1
0

ye .     (2.156)

An arbitrary state of the beam polarization will be expressed by the
complementary and equivalent - for coherent beams - entities: Jones spinors,
Stokes vectors and polarization matrices. The analysis will be restricted only
to paraxial beams of their polarization states uniform in any transverse plane
of the optical system.

Recall that the vector beam field )exp( ⊥⊥⊥ = rkieEE  has been defined in
Section 3 as the product of the scalar complex amplitude E  and the
polarization vector T

yx eee ],[= , known as the Jones vector. For beams of

arbitrary polarization this vector has been defined in Section 3 in terms of the
polarization parameter yx EE=χ . An inner product of two such vectors 1e
and 2e  is defined by:

2121 ),( eeee +≡ .     (2.157)

Thus two Jones vectors
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are mutually orthogonal:

0),( 2 == + eeee DD     (2.159)

and possess a common norm || e :

222 |||||| −+++ +=== χχeeeee CC ,     (2.160)

where the overbar “-“ stands for complex conjugate.
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The Jones vectors e  and eC  span a two-dimensional vector space of beam
polarization states. For two abitrary polarization vectors u  and v :

yyyxxx eeueeuu += ,

yyyxxx eeveevv += ,     (2.161)

of arbitrary polarization parameters yx uuχ  and yx vvχ , respectively, their

inner product vuvu +=),(  reads:
1||||),( −+= χχ yyxx vuvuvu .    (2.162)

For the polarization base composed of the linear or diagonal polarization
states of beams, that is for the linear TM ( ±∞=χ , 0=ye ) and TE ( 0=χ ),
linear diagonal ( 1±=χ , 0=xe ) or circular diagonal ( i�=χ ) states, the
magnitude of the polarization parameter equals one ( 1|| =χ ). In the space
spanned by one these pairs, the inner product (2.162) of the polarization
vectors simplifies to the form independent of χ :

yyxx vuvuvu +=),( .     (2.163)

Therefore, the TM/TE or diagonal polarization states (linear and circular)
should be regarded as special types of beam polarization. The role of these
states in the beam polarization representation is similar to the role of the HG
beams and LH beams in the beam-field-amplitude representations. Further
the analysis in this chapter will be continued in the TM/TE polarization basis.

In optics most of the lossless elements of first-order systems act on a Jones
vector e  according to the linear, unimodular and Jones transformation L :
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where 1det =L . For rotations, being the special case of these

transformations, the complex Jones matrix L  is unitary in addition to be
unimodular. Two-component entities that transform linearly according to
unimodular transformations are regarded as two-component spinors.
Therefore the vectors e  are polarization or Jones spinors. In a more general
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case, when the polarization transformations are not necessarily unimodular,
the vectors e  are regarded plainly as Jones vectors. Note that the matrix L ,
representing optical transformations in the two-dimensional space of beam
polarization states, possesses the same dimension and the same unimodular
property as the ray-transfer matrix m , acting, however, in the different
infinite-dimensional phase-space of transverse-field-amplitude distribution of
the beams.
 With the definitions of the polarization spinors given above all constructs
necessary for the description of beam polarization can be conveniently
introduced. For completely coherent beams - only such beams are considered
here - the polarization spinors define a two-by-two polarization matrix C
[42]:

++ == eeCC ,     (2.165)
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Note that, for any spectral constituent of a partially coherent beam, the
counterpart of C  is known as a coherency matrix [8].

The polarization matrix is Hermitian and as such can be expressed as a
linear combination of the four basic two-by-two matrices µσ , µ =1,2,3,4:
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with the coefficients µΣ  of this expansion known as the Stokes parameters.
The first three matrices kσ , k=1,2,3, are the well-known Pauli matrices [43],
the fourth one is the unit matrix:
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All of them are Hermitian µµ σσ =+  and unitary 1=+
µµσσ . The three Pauli

matrices are traceless 0=
k

trσ  and obey the anticommutation and

commutation relations:

12},{ ijijjiji
δσσσσσσ =+= ,     (2.169)

kijkijjiji
i σεσσσσσσ 2],[ =−= ,     (2.170)

where i,j,k=1,2,3 and ijkε  is the Levi-Civita skew tensor, ikjjikijk εεε −=−= ,
1123 =ε .

The Stokes parameters form the Stokes four-vector

[ ]T
4321 ,,, ΣΣΣΣ=Σ .     (2.171)

With a metric
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a scalar product of two Stokes vectors )(aΣ  and )(bΣ  is given by:
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The norm of the Stokes vector squared

 2
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2
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1

22 )(|| Σ+Σ−Σ−Σ−=ΣΣ=Σ≡Σ Tg ,     (2.174)

is called a Stokes scalar.
From the expansion (2.167) the components µΣ  are determined by

elements of the polarization matrix C :

)()( 2
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2
1

1 xyyxyxxy eeeeCC +=+=Σ ,

)()( 222 xyyx
i

yxxy
i eeeeCC −=−=Σ ,
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)()( 2
1

2
1

3 yyxxyyxx eeeeCC −=−=Σ ,

)()( 2
1

2
1

4 yyxxyyxx eeeeCC +=+=Σ ,     (2.175)

with the fourth Stokes parameter 4Σ  being always positive ( 04 >Σ ). Note
that the matrix C  can be directly expressed by Stokes parameters and
depends explicitly on the magnitude 21)( +χχ  and phase 21)( +χχ  of the
polarization parameter χ :
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The Stokes scalar is equal to the determinant of the polarization matrix
which, for completely coherent beams, is zero,

0det2 ==−=Σ CCCCC yxxyyyxx .     (2.177)

Therefore, for coherent beams, the condition 02 =Σ  remains valid in any
transverse plane of all optical systems, which leave coherency of optical
beams invariant.

The definition of the polarization matrix given above differs to some
extent from its conventional definition (2.178). The magnitude of the beam
complex amplitude || yx EE  is extracted from this definition. This choice

seems to be natural as the beam polarization depends on the polarization
parameter χ , that is )(χCC ≡ , rather than on the complex amplitude of the

beam. However, for singular cases of polarization, where the beam amplitude
extraction does not make sense, that is for the linear TM ( ±∞=χ ) and TE
( ±∞=−1χ ) polarization, the polarization matrix is conventionally defined as:
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and reads:
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where 0±  means ∞±1 . For other, non-singular cases, both versions (2.176)
and (2.178) of the definitions of C  yield the same results up to the unrelevant
factor. For example, for the diagonal linear ( 1±=χ ) and the diagonal
circular ( i�=χ ) polarization, one gets:
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Jones vectors are useful in analysis of completely coherent beams. Their
introduction is not, however, sufficient to deal with partially coherent beams.
To see the above sequence of definitions in more complete perspective, let us
mention only that, for beams of arbitrary coherency, the polarization matrix
should be time-averaged [8],
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where < > represents averaging. Such a matrix is commonly known as the
coherency matrix. The same time-averaging pertains also to the Stokes vector

[ ]T>Σ<>Σ<>Σ<>Σ<>=Σ< 4321 ,,, ,     (2.182)

now with ><=>Σ< Cdet2 , in general, different from zero. The degree of
beam coherence is then defined by:

>Σ<>Σ<+>Σ<+>Σ<= 4
212

3
2

2
2

1 )(P .     (2.183)

For completely coherent beams 1=P , for completely incoherent beams the
coherency matrix is diagonal and unimodular, that yields 0=P , cf. Eq.
(2.174). For other, intermediate cases of partially coherent beams 10 << P .
Further, only completely coherent beams ( 1=P ) will be considered, with
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singular polarization matrices of their determinant nil ( 0det =C ) and Stokes
vectors orthogonal to themselves ( 02 =Σ ).

2.10  Lorentz transformations

Let us now look into the transformation of beam polarization, preserving
coherency of a paraxial beam propagating down the optical system. Such
transformations imply that the Stokes scalar 2'Σ  in the output plane equals its
counterpart 2Σ  in the input plane of the optical system:
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2
4 '''' Σ−Σ−Σ−Σ=Σ−Σ−Σ−Σ .     (2.184)

As the Stokes scalar is expressed by components of the polarization matrix
C , the above equality reads

22 det'det' Σ===Σ CC .     (2.185)

At this point recall that the the polarization matrix += eeC  is composed of
the product of the polarization spinor and its Hermitian transpose. Therefore,
any complex trasformation L  of the polarization spinor e  induces the
transformation of the polarization matrix C :

eLe =' ,

+= LCLC ' ,     (2.186)

which, under condition that the matrix L  is unimodular, 1det =L , satisfies
the invariance condition (2.184) for coherent beams, as well as for partially
coherent beams in a more general case. Note that the transformation L  leaves
a value of the fourth component 4Σ  of the Stokes vector positive ( 04 >Σ  and

0'4 >Σ ) and that the transformations L  and L−  induce the same
transformation of the polarization matrix C .

There is a direct correspondence between the Stokes four-vector Σ
(2.171), the Stokes scalar 2Σ  (2.174) and its invariance condition

22' Σ=Σ (2.184), valid under the optical transformations on the one hand, and
the space-time vector X , TT ctrX ],[= , its space-time interval 222 rtc −  and
its invariance condition
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2222222222 '''' zyxtczyxtc −−−=−−− ,     (2.187)

on the other hand [24]. The condition (2.187) is valid under the action of
homogeneous Lorentz transformations in the Minkowski space, well known
from the special theory of relativity [43]. In the language of spinors, the
polarization matrix C  corresponds to a Hermitian second-rank space-time
spinor
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with its matrix elements determined by the components of the space-time
vector

[ ]TctzyxX ,,,= .     (2.189)

The vector X  corresponds to the Stokes vector Σ  (cf. (2.167) and (2.171)).
For any two-by-two unimodular matrix transformation L  of a space-time

spinor x , the matrix 
)( X

C  is transformed according to the law identical to

that of Equation (2.186) specific to the polarization transformations,

xLx =' ,

+= LCLC XX )()'(' .     (2.190)

Therefore, optical transformations of beam polarization, represented by the
matrix L  in the space of Jones spinors, are equivalent to the transformations
operating, without coordinate inversions, in the space-time vectors in the
Minkowski space. In both cases the matrices L  are two-dimensional

representations of the homogeneous Lorentz transformations. The condition
1det =L  implies that the corresponding Lorentz transformations belong to

the six-parameter group of the restricted (proper and orthochronous) Lorentz
transformations [43]. Therefore, the group of optical transformations of beam
polarization corresponds to the six-parameter group of the restricted Lorentz
transformations [25-26]. The correspondence is two-valued, that is for every
Lorentz (or optical) transformation there are two corresponding matrix
transformation L+  and L− .
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Optical transformations of beam field amplitudes introduced in previous
sections are also represented by the unimodular two-by-two, this time abcd,
ray-transfer matrices m . Therefore they also correspond, like the trans-
formations of beam polarization, to the same group of Lorentz trans-
formations. Both types of transformations, those of beam amplitude and these
of beam polarization, are defined in planes transverse to the beam
propagation direction, under the assumption that the beam axis coincides with
the axis of the first-order system. In order to look closer into the family of
these transformations let us relate them to the three Pauli matrices iσ ,
i=1,2,3.

The Pauli matrices form three generators 
i

J  of the rotation trans-

formations

iiJ σ2
1= ,     (2.191)

together with three other generators iK  shifted in phase by 2π  with respect
to 

i
J ,

i
i

iK σ2= .     (2.192)

Their commutation relations

kijkji
JiJJ ε+=],[ ,     (2.193)

kijkji
KiKJ ε+=],[ ,     (2.194)

kijkji JiKK ε−=],[ ,     (2.195)

i=1,2,3, constitute the most general closed set of commutation relations of the
restricted Lorentz group [43]. Thus, the six traceless matrices iJ  and iK
generate, through the exponential representation:
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the six-parameter group of Lorentz transformations, represented by the
complex, symplectic or unimodular two-by-two matrices L . They consist of
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the pure rotations )(RL  and the boosts )(BL , acting in the two-dimensional

space of Jones spinors. The boosts are the pure Lorentz transformations
between two reference frames moving with different velocities [43]. The pure
rotations are generated by Hermitian matrices 

j
J  represented by the unitary

matrices )(RL . Their set of the commutation relations (2.193) is also closed.

Thus, the rotations form a three-parameter subgroup of the group of the
restricted Lorentz transformations [25]. As, for the unit vector n  in the
direction of the rotation axis, the Pauli matrices obey the identity:

1)( 2
321

=++ zyx nnn σσσ ,     (2.197)

the rotation matrices can be separately written in a more explicit form [44]:

)2sin()2cos(1)exp()()(
jjjjjj

R iJiL ϕσϕϕϕ −=−= .     (2.198)

Let us now show some examples of beam polarization transformations [25-
26].

The rotation of the beam polarization state are now represented by the
matrix )(RL :
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which rotates the polarization spinor components by 2ϕ . This
transformation describes the action of the optical rotator on the beam
polarization state.

Similarly, the transformation )(PL  induced by the generator 
3

J , leads to
the creation of a relative phase shift µ  between two orthogonal components

xe  and ye  of the polarization spinor:
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This transformation describes the action of the optical phase shifter on the
beam polarization state.

Similar examples can be also given using the generators of the Lorentz
transformations of the other type - the boosts. For instance, the generator 

3
K

induces the transformation )(ML , which increases the magnitude of the x-

component of the polarization spinor by ξexp2 =w  with respect to the y-
component and describes the action of the optical compensator on the beam
polarization state:
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For 1>>w  ( 1<<w ) the compensator acts as the projection operator, which
eliminates the y component (x component) of beam polarization.

The matrix representation (2.199)-(2.201) of the beam polarization
transformations )(RL , )(PL  and )(ML  is exactly of the same form as the

matrix representation (2.70)-(2.72) of the beam-field-amplitude
transformations )(Rm , )(Pm  and )(Mm . Both representations may be regarded

as optical analogies of the homogeneous Lorentz transformations. However,
they are defined in different spaces – in the beam polarization space of Jones
spinors and in the phase space of ray-transfer data, respectively. Certainly, in
spite of their formal equivalence, they have quite different physical meaning.

2.11  Comments and conclusions

Polarization properties of coherent beams in first-order optical separable
systems can be described by two-component Jones spinors or two-by-two
polarization matrices, interrelated by four Stokes parameters of the beam.
Evolution of beam polarization along the optical system is then given with
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the aid of two-by-two Jones matrices, or operators corresponding to them,
acting on Jones spinors, polarization matrices and Stokes parameters.

Similarly, spatial structure of field amplitudes of the paraxial beams in
first-order optical systems can be expressed by their expansion in terms of the
Hermite-Gaussian or Laguerre-Gaussian beams. Evolution of beam field
structure is then described by tracing optical rays with the help of the
symplectic ray-transfer matrix or, alternatively, by the integral canonical
transformations, involving the impulse response of the optical system. The
impulse response function provides a link between these two modes of
viewing the beam-field-amplitude evolution in optical systems.

On the other hand, in the special theory of relativity, one deals with the
space-time four-component vectors, linear combinations of the two-by-two
Pauli matrices and two-component spinors, of the form identical,
respectively, to the Stokes vectors, polarization matrices and Jones spinors,
used in the treatment of beam polarization. Although these entities are of
different origin, transformations of all of them belong to the same group of
the homogeneous, restricted Lorentz transformations. Moreover, the ray-
transfer symplectic matrices, yielding evolution of beam amplitude
distribution in the optical system, are also the representations of the same
Lorentz group. Therefore, evolution of field amplitudes and polarization of
optical beams in first-order systems can be described in self-contained and
unified manner in the language of Lorentz transformations.

In spite of its usefulness and formal clarity, the framework of first-order
optics outlined in this chapter is not sufficiently general to cover all possible
configurations of optical systems. For example, it pertains only to centred
optical systems, where the optical axis of the overall optical system coincides
with optical axes of its individual elements. In general, however, axes of
individual optical elements may be displaced or tilted with respect to the
nominal axis of the overall system. Treatment of dispersive optical elements,
such as prism and gratings, should also account for effects equivalent to the
shifts in position and direction of optical axes of the system or of the beam.
Moreover, considering temporal variations of optical signals complicates the
analysis even further. The formalism that accounts for such phenomena needs
extension of the presented approach into the range of three-by-three or even
four-by-four ray-transfer matrices, inhomogeneous canonical transforms and,
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perhaps, inhomogeneous Lorentz transformations. These direct extensions of
the homogeneous version of first-order optics remain, however, outside the
scope of this chapter. Examples of such treatment of the inhomogeneous
problems of first-order optics can be found, for instance, in publications [45-
48].

The inhomogeneous contributions to centred first-order optical systems
are usually small. Therefore, they can be directly treated as well as additional
corrections to predictions obtained within the framework pertinent to the
homogeneous first-order systems. These corrections are then understood as
geometrical modifications of three-dimensional beam field structure,
augmented by additional modifications of beam polarization and on-axis
amplitude in its magnitude and phase [49-50]. Similar rearrangements of
beam spatial structure can be also observed in nonlinear optics, during beam
propagation in nonlinear media [51-53], including beam interactions with
nonlinear interfaces [53-55]. They can be also regarded as inhomogeneous
contributions, nonlinear this time, to homogeneous centred first-order optics.

Effects of this inhomogeneous type exist, among others, in cases of beam
interactions with layered optical structures and beam propagation in, linear
and/or nonlinear, inhomogeneous media. They are known as nonspecular
(NSP) effects of beam reflection and transmission [49-50] and have their
analogy in nonlinear propagation described by aberationless effects of beam
propagation [51-52]. The effects of NSP reflection and transmission have
been measured in sophisticated experimental setups [56-66] and simulated by
advanced numerical methods [67-72]. Some numerical procedures directly
mimic dynamics of beam field linear and nonlinear rearrangements by
monotonic iteration of the analytical solution obtained [67-68]. Some other
procedures have been also used in evaluation of final effects of the beam field
rearrangements by use of beam-mode-expansion techniques [68-69], by
direct integration of Maxwell equations [69-70], by evaluation of a beam
centre of gravity [73-74] or by other methods specific to the problem
considered [75-76]. It appeared that, in the beam-mode-expansion analyses,
beam modes of the “elegant” type, especially the elegant HG and LG beam
modes [6], appear preferable in treatment of such inhomogeneous problems
[70,72].
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In the inhomogeneous problems like, for example, these of the beam
interactions with  dielectric interfaces, field structure of the elegant HG and
LG modes is strictly correlated with their polarization states. Spin-orbit
interaction or exchange between spin and orbital parts of total angular
momentum of beams takes place in such cases and is governed by
conservation laws of optical angular momentum [70] and [76-78]. That
results in field-amplitude distribution-sensitive rearrangements of beam
polarization on the one hand and in polarization-sensitive rearrangements of
beam-field-amplitude distribution on the other hand [70,72]. The beam field
rearrangements exist in parallel to other, already well-known phenomena,
like the longitudinal and transverse displacements of beams [49,72]. The
first-order transverse displacements have been also recently rederived on the
grounds of approximate methods of geometrical optics and related to the
Berry geometrical phase [76-77]. All of that confirms that, in opposition to
the homogeneous first-order optics, the beam-field amplitude-polarization
separation does not occur within the inhomogeneous first-order optics.

The beam amplitude-polarization interactions are discussed separately in
the last chapter of this book, in the context of the cross-polarization coupling
of opposite beam components at the interface. Other effects of beam
interactions with dielectric interfaces may be regarded exactly as the
inhomogeneous corrections introduced into the standard, three-dimensional
and homogeneous, framework of the homogeneous first-order optics. Some
of these phenomena are discussed in detail in next chapters of this book, with
implicit understanding that the results obtained can be interpreted as
additional corrections to the formal framework of the centred first-order
optics presented in this chapter.

Appendix 1:  Note on the scaling

Let us now return back to the unscaled spatial ),( yx  and spectral ),( yx kk

coordinates transverse to the beam propagation direction (along the z-axis of
the beam) and show how the scaling convention (2.25)-(2.26) works in the
case of the fundamental Gaussian beam at its waist plane z=0. For simplicity
of notation we limit the discussion below to only one transverse dimension
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and write a one-dimensional Fourier transform pair of a beam field in the
convention determined by the scaling transformations (2.25)-(2.26):

)2()exp()(~)( πwxxwxw wkdxikwkwx +Ψ=Ψ ∫ ,

)()exp()()(~
wxwwx wxdxikwxwk −Ψ=Ψ ∫ .     (A.2.1)

The integration is performed from ∞−  to ∞+  with ww  being the scaling
parameter of the transverse coordinates x  and xk . Note that wwx  and

π2wxwk  are the scaled (dimensionless) spatial coordinate and spatial fre-
quency of the beam field Ψ , respectively. Then the Fourier transform pair of
the fundamental Gaussian beam G  reads:

])(exp[)( 2
2
1

ww wxwxG −= ,

])(exp[)2()(~ 2
2
121

wxwx wkwkG −= π .     (A.2.2)

It is stipulated in Eq. (A.2.2) that the beam has a unit amplitude of the beam
at a centre ( )0=x  of its waist plane.

Similarly, for the fundamental Gaussian beam g  taken as the beam
normalised in intensity:

1)(|)(| 2 =∫ ww wxdwxg ,

1)2(|)(~| 2 =∫ πwxwx wkdwkg ,     (A.2.3)

its Fourier transform pair reads:

])(exp[)( 2
2
141

ww wxwxg −= −π ,

])(exp[2)(~ 2
2
14121

wxwx wkwkg −= π .     (A.2.4)

Note that ∫ =− πdxx )exp( 2 . The parameter ww  is equal to the half-width at

1/e power-maximum of the fundamental Gaussian beam (A.2.2) or (A.2.4) of
the beam transverse cross-section at the beam waist and known as the radius
or half-width of the beam. It also equals to the root-mean-square (rms) spatial
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half-width of the beam and its inverse 1−
ww  equals the rms spectral half-width

of the Gaussian beam [7], what entails:

1)()()()()( 2 =∫∫ wwwww wxdwxgwxdwxgwx ,

1)()(~)()(~)( 2 =∫∫ wxwxwxwxwx wkdwkgwkdwkgwk .     (A.2.5)

Note that ∫ =− π2)exp( 2
2
1 dxx  and ∫ =− π2)exp( 2

2
12 dxxx . The beam

half-width ww , together with the wave number k , determines the diffraction
length 2

wD kwz =  of the Gaussian beam, being the scaling parameter of the z-
coordinate along the beam axis (cf. the derivation of the beam propagation
given in Section 7). Certainly, the same relations (A.2.5) hold for the
functions )( wwxG  and )(~

wx wkG  defined by (A.2.2).

There are also other definitions of the mean beam widths based on beam
power. The spatial xσ  and spectral 

xkσ  power-rms half-widths [7]

21)(|)(|)(|)(|)()( 2222 == ∫∫ wwwwwwx wxdwxgwxdwxgwxwσ ,

21)(|)(~|)(|)(~|)()( 2222 == ∫∫ wxwxwxwxwxwk wkdwkgwkdwkgwkw
x

σ ,

    (A.2.6)

are expressed by ww :

212−= wx wσ ,

2112−−= wk w
x

σ .     (A.2.7)

and yield the well-known width-bandwidth reciprocity relations for the
fundamental Gaussian beam [7]:

21=
xkxσσ .     (A.2.8)

Note that ∫ =− πdxx )exp( 2  and ∫ =− π2
122 )exp( dxxx . The fundamental

Gaussian beam (A.2.2), together with the definition (A.2.1), reads in terms of
xσ  and 

xkσ :
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])(exp[)( 2
4
1

xw xwxG σ−= ,

])(exp[)2()(~ 2
4
121

xkxwx kwkG σπ −= .     (A.2.9)

Note that quite frequently the equivalent, slightly different definition of
the beam half-width 212ww ww =I  is used (see [49], [50] and [53]). In such a
case the fundamental Gaussian beam (A.2.2), together with the definition
(A.2.1), reads:

])(exp[)( 2
ww wxwxG II −= ,

])(exp[)2()(~ 2
4
121

wxwx wkwkG �� −= π ,   (A.2.10)

with the diffraction length 22
2
1

wwD kwwkz == I . The parameter ww�  is equal to
the half-width at 1/e2 power-maximum of the fundamental Gaussian beam.
Note that in (A.2.9) and (A.2.10) the Fourier transform pair (A.2.1), still
normalised by the parameter ww , are used.

Appendix 2:  Note on the notation

Next chapters of this book treat some aspects of beam-interface
interactions as published previously by the author in separate articles. Certain
elements of the notation used in those chapters will be taken differently than
these taken in this chapter, in order to make them more suitable to the
specific issues discussed in these chapters and to fit them closely to the
notation taken previously in the respective author’s publications. The reader
may find below some comments concerning these differences in the notation.

Through all chapters of this book, the scale parameter ww  of beams will
be specified according to the definitions (A.2.2) of the Gaussian beam. It will
be assumed as the scaling parameter not only for the fundamental Gaussian
but also for any higher-order Hermite-Gaussian or Laguerre-Gaussian beam.
In some figures of Chapters 3, 4, and 5, however, magnitudes of the
normalised spatial frequency will be given for 212ww kwwk =I , instead of wkw
(cf. Eqs. (A.2.2) and (A.2.9)), in order to relate them to the numerical data
published on the same topic previously. Each such case will be explicitly
indicated in the text.
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Note that in all figures in this book, the common convention is assumed to
view the longitudinal and transverse shifts as normalised to the beam widths
and the focal shifts as normalised to the diffraction lengths. Dimensionless
coordinates ),,( zyx  and ),,( zyx kkk , scaled according to the scale prescrip-

tion (2.25)-(2.26), are used in Chapter 2 and in the treatment of nonlinear
problems in Chapter 4. In other cases the unscaled coordinates are used.

In all linear problems treated in the next chapters of this book the on-axis
amplitude of the Gaussian beam will be normalised to one at the centre of its
waist, according to the definition (A.2.2). Only in the nonlinear problems (at
the end of Chapter 3 and in Chapter 4) this unit amplitude will be multiplied,
as it should be, by a square root of the beam total intensity.

In Chapter 2 the spectral χ~  (2.33) and direct χ  (2.40) polarization para-
meters of beams are considered, in general, to be nonuniform in transverse
cross-sections of the beam and as such, they are in general unequal χχ ≠~ . In
other chapters the polarization parameters will be stipulated as uniform, that
is constant in any transverse cross-section of beams, what implies χχ =~  in
these planes. That justifies in this case their common notation χχ ~≡ , and
also xx ee ~≡  and yy ee ~≡ . Therefore, from Chapter 3 to Chapter 7, the symbol
χ~  will be reserved for the definition of the polarization parameter defined in
the coordinate frame ),,( ZYX  tied to the interface plane and the symbol χ
still will be defined in the coordinate frame ),,( zyx  tied to the beam.

The uniform notation is used through the book for vectors, matrices and
(differential and integral) operators: vectors are indicated by symbols
underlined once, matrices are indicated by symbols underlined twice, and the
operators are indicated by symbols with an upper hat.

Finally, the orientation of the beam ),,( zyx  and interface reference frames
),,( ZYX  with respect to the interface will be taken in Chapters 3-5 different

from that in Chapters 6-7, as it will be indicated in Figures 6.1 and 7.1
assigned separately to these chapters. These changes result from different
frame orientations used in parallel in literature in this field and correspond to
author’s previous publications, which the subsequent chapters of this book
will follow.
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CHAPTER  3

Beam reflection at dielectric interfaces

Polarization, amplitude and phase aspects of the three-
dimensional beam reflection at dielectric interfaces are analysed
in this chapter within a framework of the aberrationless approach.
Expressions for all geometrical effects of nonspecular reflection
are derived. Roles of the paraxial approximation, the cross-
dimensional coupling and the nonparaxial cross-polarization
coupling in the beam description are indicated and discussed. Its
is shown that the substantial first-order transverse beam modi-
fications exist for both - linear and circular - beam polarization
states. Modifications of beam amplitude at a nonlinear interface
of Kerr type are shown through numerical simulations of beam
reflection. Characteristic features of the single beam bistable
switch at such a nonlinear interface are discussed and numerical
examples of the reflected beam reshaping are presented.

3.1  Introduction

In this chapter several aspects of three-dimensional (3D) beam reflection at
a planar boundary between two dielectric media [1-5] are discussed. The
problem is not new and many contributions, mainly devoted to the two-
dimensional (2D) beam reflection and transmission in the case of total
internal reflection (TIR), have been published since the first reports on this
problem [6]. It is impossible to cite all of them; a certain list of references can
be found in Refs. [1,2]. Recently, surface plasmon excitation at the dielectric-
metal interface was analysed to interpret images of the photon scanning
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tunnelling microscope [7]. Beam reflection at plane boundaries between
anisotropic [8] or nonlinear [9] media has been discussed. Reports on the 2D
pulse reflection/transmission [10-12] indicate the possibility of
multidimensional analysis of such transient problems as well.

This chapter contains discussion on characteristics of the 3D-beam
reflection within the framework of the aberrationles analysis [2]. The main
points of this approach not commonly recognised yet are described in detail.
Distinctions between the total field and its paraxial part forming the beamlike
field structure in a vicinity of the interface are indicated. Qualitative
differences between the 2D reflection and the 3D reflection, displayed in
polarization characteristics of the transverse deformations of the reflected
beam, are addressed. Results of Ref. [2] remain valid, however, some
extensions of this approach, like the cross-dimensional coupling or the
reflection at nonlinear interfaces, are also presented.

The paraxial approximation, applied to the exact solution to the problem,
leads to a decomposition of a rigorous solution to the 3D problem into a
product of two 2D solutions, given in two mutually orthogonal planes: the
incidence plane and the plane transverse to the incidence and interface planes.
This decomposition results in the straightforward interpretation of the
reflected beam field distribution and provides deep insight into the process of
beam or pulse shaping in linear [1-8,10-13] and nonlinear [9,14-21] media. In
what follows, the optical beam geometrical modifications observed during its
reflection at the interface are described by a few beam parameters introduced
previously for 2D beams as effects of nonspecular (nsp) reflection [13]. They
modify the beam spectrum within a frame of first-order optics and are
interpreted in the space domain as beam shape modifications. Sometimes,
they are called the beam shifts. Effects of the similar sort occur also in the 3D
configurations. All of them, together with changes in the beam amplitude and
polarization [2], are inherently originated in finite cross-sections of beams.

The geometrical nsp effects common to the 2D and 3D beam reflection
exist in the incidence plane. The other geometrical nsp effects are specific
only to the 3D beam reflection and can be observed in planes transverse to the
of the states of their polarization, they are characterised by their spatial shape
in planes transverse to their beam axes. In the following we limit our
incidence plane. What qualitatively distinguishes the 3D beam reflection
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from the 2D beam reflection is that these effects are essentially dependent on
relative - between the TE and TM polarization - characteristics of the beams,
as defined in the beam-interface configuration.

Each section of this chapter is devoted mainly to one aspect of the
reflection problem. Basics of the exact electromagnetic formulation of the
problem are presented in Section 2. The beam-like paraxial contribution to
the exact field is described in Section 3. Extension of the analysis onto the
cross-dimensional contribution to the beam field is analysed in Section 4. The
nonparaxial part of the reflected field is defined in Section 5. Main features of
nsp longitudinal and transverse beam geometrical deformations are shown in
Sections 6 and 7, respectively. Nonlinear interfaces and the beam amplitude
modifications are discussed in Sections 8 and 9. Section 10 contains
conclusions and final comments. In Appendix, definitions of the geometrical
effects of nsp reflection are derived and commented.

3.2  Exact analysis

Consider two isotropic, lossless dielectric semi-infinite linear media
separated by a plane boundary 0=X . The Y -axis is chosen perpendicular to
the incidence plane ),( ZX , the incident (reflected) beam axis is placed in the
incidence plane and is directed at polar angles )(

01
iϑ  ( )(

01
rϑ ) with respect to the

normal Xe  (along X -axis) to the interface plane ),( ZY . The incidence and
reflection angles are assumed to be equal at the linear interface, that is

)(
01

iϑ = )(
01

rϑ = 01ϑ , where 20 01 πϑ << . In general, however, )(
01

iϑ ≠ )(
01

rϑ  in
inhomogeneous or nonlinear media, as discussed in Sections 8 and 9.
Moreover, the incidence far from the Brewster angle and close to the critical
angle of reflection is assumed.

The right-handed systems of the interface ),,( ZYX  coordinates, as well as
the incident ),,( 321 xxx , g-o reflected ),,( 321 xxx , i.e. predicted by
geometrical optics (g-o), and the actual reflected ),,( 321 rrr xxx  beam
coordinate frames are sketched in Fig. 3.1. Note common notation for the
incident and g-o reflected beams and that 2xY =  for both these beams.
Besides the orientation of the coordinate frames of the beams and in spite of
the states of their polarization, they are characterised by their spatial shape in
planes transverse to their beam axes. In the following we limit  our  conside-
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Figure 3.1.  The dielectric interface with the beam and interface
coordinate frames projected on the incidence plane; the orientation of
the beam frames concomitant with internal reflection for the incidence
angle )(

01
iϑ  larger than the Brewster angle. The lateral (Goos-Hänchen)

δ x1 , the focal δ z1  and the angular δ ϑ1  longitudinal nonspecular shifts

modify the geometry of the g-o reflected beam and contribute to the net
beam shifts 1Sδ  and 1intδ  at the interface.

rations only to two parameters in the description of the beam shape de-
formations - the radii 1w  and 2w  of waist cross-sections of the incident beam
in the principal incidence and transverse planes, respectively. They determine
completely, together with location of the beam waist planes, a shape of any
fundamental Gaussian beam of the elliptical cross-section. Moreover, they are
also decisive in the description of beam shape deformations for higher-order
Gaussian beams, for example Hermite-Gaussian or Laguerre-Gaussian
beams, at least in their second-order-approximated evaluation within a frame
of the paraxial limit. Within this convention the radii 11wµ  and 22wµ  of the
reflected beam are described by the beam width modification factors 1µ  and

2µ  in the two orthogonal principal planes of the beam, respectively.
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The incident (a=i) and reflected (a=r) time-harmonic ( )exp( tiω−∝ ) beam
fields are represented by two-element vectors E a( ) , composed of independent
electric field components parallel to the interface, i.e.,

TaaTa
Y

a
Z

a EEEEE ),cos(),( )(
01

)(
||

)()()(
⊥== ϑ� , where “T” means transpose and

“||” and “⊥” denote TM and TE field polarizations, respectively. Henceforth,
the upper and lower signs are assigned to the incident and reflected beams,
respectively. Note also that, for arbitrary plane-wave component of the
incident beam, the definition of the TM field components

01
)()(

|| cosϑa
Z

a EE �=  depend on the incidence azimuthal angle )(
02

iϑ  [2] and

complies with the common definition of the TM field component only in the
principal incidence plane defined by 0)(

02 =iϑ .

The beam fields above the interface are expressed by the superposition of
plane waves:

( )[ ] ,exp),(~
)2(),,(

2)(

2)(

γαβγαγα

π

ddkZYXikE

ZYXE
a

a

∫ ∫ ++±×

= −

      (3.1)

where tilde “~“ indicates spectral field quantities. Each plane wave is defined
in the local incidence plane with its azimuth incidence angle )(

02
iϑ ;

.tan )(
02 consti == βγϑ , and the local frame formed by the triplet:

)()(1)( aa
s

a
p keke ×= − , X

aa
s ekke ×= − )(1)(  and )(1 akk − , with direction cosines

βγα ,,± ; 222 1 γαβ −−= , a wave number k  and a wave vectors
),,()( βγα±= kk a  of the beam fields. The (p) and (s) spectral components:

)()( ~ a
p

a
p Ee  and 

)()( ~ a
s

a
p Ee  are parallel and perpendicular to the local incidence

plane .const=βγ , respectively. The plane wave polarization ratios
)()(

),(
~~~ r

s
r

pspr EE=χ  and )()(
),(

~~~ i
s

i
pspi EE=χ of the reflected and incident beams,

respectively, are interrelated by the ratio sp rrr =  of the reflection

coefficients )()( ~~ i
p

r
pp EEr =  and )()( ~~ i

s
r

ss EEr = . The (p) and (s) reflection
coefficients pr  and sr  represent all characteristics of the, in general, stratified

or inhomogeneous dielectric medium placed in the half-space ( 0>X ) below
the interface. In Appendix, Eqs. (A.3.1) specify these coefficients for the case
of plane wave reflection at a single planar interface.
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Similar definitions hold for the beam spectral amplitudes 
)(~ a

E , given in
the principal incidence plane 0=γ  by projection onto this plane the beam
spectral components determined previously at the local incidence plane. The
spectral amplitudes ),(~~ )()(

γα
aa

EE ≡  are composed of the Jones vectors
),(~~ )()( γαaa ss ≡ , belonging to the orthonormal basis of beam polarization

states, and the spectral beam field envelopes ),(~~ )()(
γα

aa
EE ≡ , both specified

by the polarization parameter aχ~ :

),)(~(),(~ )()(
γαγα a

aa
EsE = ,

[ ]Taa
as 1,~)~1(~ 212)( χχ −+= ,

)(212 ~)~1(~ a
Yaa EE χ+= ,

)()( ~~~ a
Y

a
Za EE�=χ .      (3.2)

Note that, in the paraxial approximation, aχ~  is expressed by the ratio aχ  of
the TM and TE beam components:

0101
)()(

|| coscos)~~(~ ϑχϑχ a
aa

a EE =≅ ⊥ .   (3.3)

That also yields the spectral reflection matrix ),( γαrr ≡ , relating the spectral
beam constituents in the interface coordinate frames ( ZYX ,, ) and ( βγα ,, )
(cf. Eq. (61) of Ref. [5]):

),(~),(~ )()(
γαγα

ir
ErE = ,













−+
+−−

+=ℜ −

psps

spsp

rrrr
rrrr

22

22
122

)(
)(

)(
γβγβ

γβγβ
βγ ,   (3.4)

A detailed derivation of this reflection matrix can be found in the last chapter
of this book.

Subsequently, application of the definitions (3.2)-(3.3) in Eqs. (3.4) makes
ℜ  equivalent to the diagonal matrix ),( γαrr ≡  with the following  non-zero
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TM ( 11|| rr ≡ ) and TE ( 22rr ≡⊥ ) components [2]:

),)(~~(),)(~~( )()( γαγα i
i

r
r EsrEs = ,

[ ]1111221
|| )~()~()(~ −−−−− +−−+=ℜ+ℜ= rrr iipiZYZZ χβγγχγβββγχ ,

[ ]111122 )~()~()(~ +++−
⊥ −−++=ℜ+ℜ= rrr iisYYiYZ χβγγχγβββγχ .  (3.5)

Note that, contrary to the form of ℜ , the matrix r  is diagonal ( 2112 0 rr == ).
Its elements depend through iχ~  on the incident beam polarization and through
r  on the polarization characteristics if the interface. Since the divergence of
the electric field equals zero, Eqs. (3.2) and (3.3) provide further
interrelations between the polarization parameters ),( spiχ , iχ~  and ),( spiχ , iχ~

of the incident and reflected fields, respectively:

),(
1

),(
~~

spisprsp rr χχ −= ,

ir rr χχ ~~ 1
||

−
⊥= ,

1
),(),( )~)(~(~ −+±= γαχββαχγχ aspaspa � ,         (3.6)

The entities )(~ as  and aχ~  in Eqs. (3.2), (3.3) and (3.6) depend on α  and γ
and determine, in general, local characteristics of beam polarization. However
if, in the global description of the beam, aχ~  is replaced by the approximation

01),( cos~~ ϑχχ spaa ≅  evaluated at 0=γ , then the last one of Eqs. (3.6) becomes

redundant in further considerations. Note also that Eq. (18) in Ref. [2] corre-
sponds to the definition of iχ~−  applied in (3.6).

The reflection matrix r  is defined in the coordinate system ),,( ZYX  tied

to the interface plane. However, sometimes it is convenient to know the
reflection matrix ),( 21 αα

BB
rr ≡  that relates the transverse beam field com-

ponents 
)(~ a

E  in the beam frames ),,( 321 xxx  and ),,( 321 ααα :

.),)(~~(),(~
),)(~~(),(~

21
)(

21
)(

21
)(

21
)(

αααα

αααα

i
i

B

i

B

r
rr

EsrEr

EsE

==

=
        (3.7)
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Henceforth, the beam quantities are distinguished from those related to the
interface frame just by arguments related to these beam frames. Moreover, in
the new beam frames, aχ~  is replaced by aχ  in the definitions (3.2) of )(~ as

and Taaa
EEE )~,~(~ )(

2
)(

1
)(
= .

To obtain the beam field representation in the incident and reflected beam
frames, the rotation of the ),,( ZYX  and ),,( βγα  frames by angles
± −( )π ϑ2 01  around the Y and γ  axes, respectively, is applied. In these

coordinate frames the spectral representation of the transverse parts 
)(~ a

E  of

the beam fields Taaaa
B EEEE )~,~,~(~ )(

3
)(

2
)(

1
)(
=  is given by:

[ ] ,)(exp),)(~~(

)2(),,(

21
2

33221121
)(

2
321

)(

ααααααα

π

ddkxxxikEs

xxxE

a
a

a

∫ ∫ ++±×

= −

   (3.8)

and that yields the reflection matrix 
B

r :

























=

⊥ 10
sin)(

0
0

10
sin)( 0133||013 ϑαγααϑαγαα

r
r

r
B

.   (3.9)

Up to this point, no approximation in Eqs. (3.1)-(3.9) is used. The beam
field spectral representation (3.8) fulfils a full set of Maxwell’s equations in
homogeneous linear media and the continuity conditions of the tangential
electromagnetic field components at the interface. That implies that the beam
field possesses also the nonzero longitudinal component:

1
3

)(
22

)(
11

)(
3 )~~(~ −+±−= ααα aaa EEE ,  (3.10)

and the beam reflection matrix 
B

r  differs from r  by the nonparaxial part
rrr

B
γ∆=− ,









+=∆ −

⊥ 00
10

sin)( 01
1

|| ϑαrrr , (3.11)

that couples the TM component )(
1

~ rE  of the reflected beam to the TE
component  )(

2
~ iE  of the incident beam. Note also that analogical TM-TE

coupling appears for the H-field formulation of the beam reflection.
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Figure 3.2.  Normalised magnitudes of the incident and reflected beam
amplitude distributions at the interface for the critical TE incidence and
decreasing dielectric interface contrast: ϑ c

o= 45 (a), ϑ c
o= 80  (b),

ϑ c
o= 87  (c). Variations of the net shift 1intδ  and the beam amplitude

modification || srr⊥  evaluated at cϑϑ =  are clearly visible. The

distance along the interface is scaled by the projection of the beam
half-width; the beam axis crosses the interface at the point (0.0).

The incident and reflected field amplitude distributions at the cross-section
of the incidence and interface planes is depicted in Fig. 3.2 for different
values of the dielectric contrast n measured by the angle of critical reflection

)arcsin( 1−= ncϑ  and for cϑϑ =01 . The procedure of the field incidence plane
to the diffraction length 1Dz , the transverse jx -coordinates are normalised to

the numerical evaluation described in [9] is applied (see the next chapter).
The incident beam has a fundamental Gaussian shape and is focused at the
interface, the 3x -coordinate is normalised in the incident beam radii

211)2( −= kzw Djwj  at the waist. It is assumed, as in the most numerical
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examples in this chapter, that the normalised wave number 21
1)2( Dkz  equals

50, where wjw , j=1,2, mean waist half-widths at 1/e2-maxima of the beam

intensity in the incidence and transverse principal planes of the incident
beam. Note that, in the numerical examples shown in this chapter, the
definition (A.2.9) from Chapter 2 of the Gaussian beam is assumed, that
means that )](exp[ 2

2
2
2

2
1

2
1 ww wxwxE �� +−∝  at the beam waist and wjw  in fact

equals wjw� , according to the convention taken in numerical examples in [2,

9,17].
The net displacement 1intδ  of the field amplitude maximum from the g-o

beam position is clearly vivid. It increases as the dielectric contrast decreases
and approaches values of the order of 1ww , as the incidence angle approaches
the grazing angle oi 90)(

01 ≅ϑ . How this displacement is related to the beam
geometrical deformations will be explained in the next section.

3.3  Paraxial approximation

In the paraxial approximation 2
2

12
1

1
3 221 ααα −− −−≅  and the longitudinal

field components )(
3

~ aE  are neglected, i.e. Taaa
B EEE )0,~,~(~ )(

2
)(

1
)(
≅ . Moreover,

the 3D beam field spectral envelopes ),,(~
321 xEa αα  are factored out into the

product of two appropriately normalised 2D beam envelopes
),0,(~),(~

31311 xExE aa αα ∝  and ),,0(~),(~
32322 xExE aa αα ∝ , defined in the

planes 02 =α  and α 1 0=  in the spectral domain, respectively:

),(~),(~)exp(~),,(~
3223113

)(
321

)(
xExEikxsxE aa

aa
αααα = ,

[ ]
[ ] ,)2(exp),)1((~)2(

)(exp),)1((~)exp()2(

),(

3
21

3
1

3333
1

3

jjjjj
j

aj

jjjjj
j

aj

jaj

dkxxikxE

dkxxikxEikx

xxE

ααααπ

ααααπ
−−

−

−±≅

+±−=

∫

∫

),(~),(~~),(~),(~~
322311

)(
322311

)( xExEsrxExEs ii
i

rr
r αααα = .      (3.12)

Within the paraxial regions of the beam axes 21
3 21 jj αα −−≅  and the field

representations (3.8) and (3.12) remain equivalent. Hereinafter the spectral
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envelopes aE~  and ajE~ , j=1,2, are assumed to be dependent not only on jα
but also on 3x , to account approximately for possible inhomogeneouities or
nonlinearities of the medium [9].

The nonparaxial component r∆γ  disappears in the paraxial
approximation. The reflection matrix retains only diagonal elements, i.e.

rr
B
≅  and, in the parabolic approximation, is factored out into the product of

the g-o (or zero-order) reflection matrix 
0

rr
g
≡  equal to )0,0(~r  and the

matrix of the nsp contribution 
∆

r :

















=≅

⊥⊥
∆ )exp(0

0)exp(
0

0 ||

0

||0
0 r

r
r

r
rrr

δ
δ

,

[ ])(2 2
22

2
11

1
2211 ααααδ FFLLikr +−+−= − ,

jjDjxjj izL ϑδµδ 2+≅ ,

wjjDjzjj izF δµδ 2+≅ ,     (3.13)

j=1,2. In Eqs. (3.13) 
∆

r  is expressed by the complex shifts jL  and jF  of the
reflected beam [13] and Djz  denote diffraction lengths of the incident beam in

the incidence plane (j=1) and transverse plane (j=2).
For brevity of notation, the suffixes “||” and “⊥” will be henceforth omitted

in expressions valid for both polarization’s. The matrix 
0

r  and the shifts L j

and Fj  are defined by the TM ( ||0rr = ) and TE ( ⊥= 0rr ) reflection coefficients
and their first two (logarithmic) derivatives, i.e. by: bbj rr

j
lnα∂≡  and

bbij rr
ji
lnαα∂≡ , b=|| ,⊥ , evaluated at the beam spectrum centre α α1 20= =

(cf. also definitions of these expressions given in Appendix). The real and
imaginary parts of the complex shifts are commonly expressed by the lateral

jxδ , angular jϑδ , focal jzδ  and waist radius squared 21 −−= jjw µδ  shifts, the
last one determined by the beam waist size modification factor µ j . All these

effects  describe  the  reflected  beam  deformations  with  respect  to  the  g-o
predictions determined by the approximation  gbbb rrr ≡≅ 0 .
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The definitions of jϑδ  and µ j  in (3.13) are approximate; in the plane wave

representations (3.8) and (3.12) their values are given by [2]:

])Im(1[)Im( DjjDjjj zFzLtg +=ϑδ ,

224 ])Im(1[])[Im( DjjDjjj zFzL ++=µ . (3.14)

The lateral, angular and focal shifts contribute to the net shifts 1intδ  down the
interface, being the projection of the composite shifts 1Sδ  of the beam axis on
the interface (cf. Fig. 3.1):

jjzjxjjSjj x 0
1

30
1

int cos]tan)([cos ϑδδδϑδδ ϑ
−− −+== . (3.15)

Exactly this shift is shown, in the plane of incidence (j=1), by the beam
amplitude peak displacements in Fig. 3.2.

It will be further assumed that the polarization parameters ),( 21 ααχχ aa ≡
loose their local character in favour of the global beam polarization ratios aχ
evaluated at α α1 20= = . New Jones vectors )(as  and new beam envelopes
Ea  are then expressed in terms of these parameters but still the local
character of the beam polarization can be retained in this formalism, if
necessary.

The final expressions for polarization, amplitude and shape of the reflected
beam r

rr EsE )()( =  are given, in the reflected beam coordinates, in terms of
the first-order jL  and the second-order jF  complex modifications of the g-o

reflected beam g
gg EsE )()( = :

),(),()exp(),,( 3223113
)(

0321
)( xxExxEikxsrxxxE gg

ig = ,

,),(),()exp(

),,(

23222131113
)(

0

321
)(

FxLxEFxLxEikxsr

xxxE

gg
i

r

−−−−=
(3.16)

where ),(),( 311311 xxExxE ig −=  and ),(),( 322322 xxExxE ig =  are the 2D

envelopes of the g-o reflected beam, and i
i

g
g EsrEs )(

0
)( = . The signs of the

arguments  of  1gE  account  for  possible  incident  beam  asymmetry  in   the
transverse to 3x -axis planes. In spite of the common amplitude and Jones
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vector, the 3D beam envelope rE  is expressed directly, in the paraxial
approximation, by the product of two 2D g-o beam envelopes gjE  modified
by the complex shifts jL  and jF .

Relations between the beam field representations (3.8) and (3.12), as well
as their counterparts (3.19) given in the next section, reflect major features of
the beam field description in the paraxial region. They are: the parabolic
approximation to the beam spectrum and spatial shape changes in beam
amplitude and phase, the transversality of the beam polarization and the
decomposition of the 3D beam field into the product of the two 2D factors.
The reference frame, in which this decomposition is accomplished, specifies

pr  and sr  used in Eqs. (3.4)-(3.5) as the Fresnel reflection coefficients. Note
that pr  and sr  are the p and s are coefficients of plane wave reflection at the

interface as well as at any planar reflecting and/or transmitting structure.
It should be also stressed that within the paraxial approximation the

definitions given in Sections 2-3 are approximately independent of the
incident beam shape. They are valid for arbitrary beam shapes, provided that
the accuracy of the expansions (3.13) and (A.3.3)-(A.3.4) in Appendix are
justified by numerical simulations. Therefore, the results can be applied to
more general cases of beams than that of the fundamental Gaussian shape.
Moreover, in the next step of this analysis, the incident beam shape can be
accounted for by integration of the beam field representations (3.8) and (3.16)
(cf. Section 6 and the next chapter).

For a beam with arbitrary shape, i.e. when the field factorisation (3.12)
does not directly apply, the presented analysis ought to be applied
independently to each component of the pertinent beam field expansion.
Upon reflection, the components of such expansion suffer from the nsp
deformations determined by the complex shifts jL  and jF . The reflection, for

example,  of  the  Laguerre-Gaussian  beams,   represented  by  expansions  in
terms of Hermite-Gaussian beams in two transverse dimensions, can be
analysed in this manner (see, for example, Eqs. (A.3.26) in Appendix).

The analysis is mainly devoted to the beam reflection although it yields
also the transmission matrix t  and the transmitted or total beam field )(tE  at
the interface, e.g. ⊥⊥ += rt 1  and )()()( rit EEE ⊥⊥⊥ +=  for the TE  polarization.
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Figure 3.3.  Variation of the second-order transverse nps effects for
the TE and TM components of the reflected beam: the focal shifts δ z2

and the beam waist radius relative modifications µ 2  versus incidence
angle changes ϑ ϑ01

( )i
c−  (in degrees) around the critical incidence

ϑ ϑ01 45( )i
c

o= =  for the linear polarization 1=iχ  of the incident

beam. Dotted curves show the nsp effects modified by the cross-
dimensional coupling; 5021 == kwkw . The shifts δ z2  are scaled by
the diffraction lenght 2Dz  of the incident beam.

Moreover, for the homogeneous medium filled the semi-infinite space below
the interface, deformations of the transmitted beam field in the partial
transmission case can be also derived. It can be accoplished step by step
along the lines of Sections 2 and 3, provided that in the quantities r , α and β
for the reflected beam )(rE  are replaced by their counterparts t , )(tα− and

)(tβ  for the transmitted beam )(tE  (see Chapter 7 for more details). For the
stratified medium the backward field constituents can be also evaluated in the
similar manner (see Chapter 6 for more details). Other extensions of the
formalism will be also sketched in the next sections.
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3.4  Paraxial cross-dimensional coupling

The strict beam field decomposition (3.16) into the two 2D beam
envelopes leaves next terms in the reflection coefficient expansion (3.13)
outside the formalism described above. However, the first cross-dimensional
second-order term 212112 )( ααrr +  can be included in the reflection coefficient
expansion without changing solution structure. To this end, the second-order
complex shifts Fj  should be modified by the complex, in general, angle ε ,

defined by the second-order derivatives of r  (cf. Eq. (A.3.9)):

εεε 2sinsincos 12
12

2
2

11 rikFFF −−+=
D

,

εεε 2sinsincos 21
12

1
2

22 rikFFF −++=
D

,     (3.17)

where

)()(2tan 22112112 rrrr −+=ε . (3.18)

The cross-dimensional coefficient 2112 rr +  induces rotation of the transverse
coordinates in the spatial and spectral domains through the angle ε  and that
leads to the formal redefinition (3.17) of the second-order complex shifts in
the new principal planes 11 0 x==α  and 22 0 x==α .

However, ε  appears, in general, a complex quantity, different for TE and
TM polarization. Therefore, the direct geometrical interpretation of beam
deformations seems to be blurred in these planes. This difficulty proves to be
only a formal one, at least in the range of paraxial approximation near the
reflected beam axis. The plane wave (3.8) and the paraxial (3.12)
representations are equivalent in this range. Therefore, in the primary
principal planes 11 0 x==α  and 22 0 x==α  the reflected beam can be then
reexpressed by analogy to Eqs. (3.16):

.),(),()exp(

),,(

23222131113
)(

0

321
)(

FxLxEFxLxEikxsr

xxxE

gg
i

r

II

−−−−=
(3.19)

The beam field retains its factored form in the paraxial approximation. In
spite of theintroduced extension, the first-order complex shifts Lj , as well as
the real shifts xjδ  and jϑδ , continue being unchanged even for 0≠ε . In other
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words, the second-order terms in the expansion of rln  (A.3.4) result only in
the second-order effects (3.17) of beam deformations. Moreover, the
expansion coefficient 2112 rr +  is proportional to iχ  ( 1−

iχ ), the cross-
dimensional beam deformation effects disappear altogether for the pure TE
(TM) incident beam polarization.

The cross-dimensional modifications of the longitudinal shifts are usually
negligibly small because the transverse effects are commonly approximately
one order of magnitude smaller than their longitudinal counterparts. The
second order transverse nsp effects 2zδ  and 2µ  and their modifications by the
cross-dimensional coupling are shown in Fig. 3.3. They still are not
substantial although they may become larger close to the grazing incidence.
Note that in all figures in this book the common convention is assumed to
view the longitudinal and transverse shifts as normalised to the beam widths
and the focal shifts as normalised to the diffraction lengths.

3.5  Nonparaxial cross-polarization coupling

The effect of cross-polarization at the interface stems from the presence of
the non-zero off-diagonal elements in the reflection matrix (3.4). They are
proportional - through γ  - to the transverse component yk  of the wave vector
k . Thus, these elements are responsible for excitation of higher-order modes
at the interface, as will be shown in detail in Chapter 7. However, the cross-
polarization effect arises also from the nonparaxial nature of the beam fields,
being solutions of the full set of Maxwell equations. This aspect of the cross-
polarization coupling is discussed in this section.

The field representations (3.16) and (3.19) were evaluated within the
paraxial approximation and that permits the beam description in terms of
effects of nsp reflection. The nonparaxial TE-TM part r∆γ  (3.11) of the
reflection matrix 

B
r  indicates deviations of the total reflected field

distribution and polarization from its presumed beamlike structure. Still,
however, this part of the reflected beam can be evaluated per analogy to the
evaluation of the paraxial part of the beam given in Section 3. The evaluation
of the representations (3.16) and (3.19) yields:
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with jL∆  and jF
I

∆  obtained by substitution of r  by 12r∆  from [11] in the

expressions for, jL  and jF
I

 and for

 010 tan)( ϑps rrr +=∆ . (3.21)

For the fundamental Gaussian incidence with transverse envelope 2gE  Eq.

(3.21) yields the first-order Hermite-Gaussian in the transverse planes
3x =constant:
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2 Fxizkxv D

D

∆−+= − , (3.22)

where 2v  means the complex transverse half-width of the beam. The
nonparaxial contribution (3.20) to the reflected beam field has pure linear TM
polarization shifted in its phase by 2π  with respect to the paraxial beam and
its amplitude is proportional to the sum of the p and s reflection coefficients.

The nonparaxial coupling is rather a weak contribution to the beam field,
at least not too close to the grazing incidence. In normalised units (cf. Ref. [9]
and the next chapter) its amplitude is of the order of the normalised wave
number 21

22 )( Dw kzkw =  less than the amplitude of the paraxial part of the
field. On the other hand, it is inherent to the finite beam cross-section; for
wide beams, that is in the plane wave limit, 21

2 )( Dkz  becomes large and the
coupling vanishes. The nonparaxial TE-TM coupling appears one more effect
of nsp reflection, related this time to the beam polarization and its
amplitudedistribution in the transverse cross-section of the beam (see also
Chapter 7). The TE-TM coupling effect becomes stronger near the grazing
incidence.  Its nature suggests possible excitation of surface waves by finite-
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width beams at,  or instance, metallic interfaces. Note in this context that
surface plasmon excitation at the dielectric-metal interface by a narrow 3D
Gaussian beam of the TE polarization was recently discussed and numerically
confirmed in [7].

3.6  Longitudinal nonspecular effects

The analysis presented seems attractive because it is simple and
straightforward. However, numerical evaluation of beam fields that bases
directly  on  the  expansions  (A.3.3)-(A.3.4)  and  (A.3.9)   of  rln   may   be
inaccurate, especially in the most interesting cases, such as proximity of the
critical incidence, i.e. for cϑϑ ≅01 , where cϑ  is the angle of critical reflection.
Besides the divergence of the reflection matrix expansion (3.13) at the branch
point at cϑϑ ≅01 , this expansion accounts for the reflection coefficient
behaviour only from one side of the spectrum singularities, meanwhile the
(wide) beam spectrum is also substantially modified by other side of these
singularities, usually with different behaviour characteristics.

To obtain accurate numerical results, more refined numerical techniques
should be applied. In numerical calculations applied in this chapter the two-
point expansion around the branch point of rln  is used in evaluation of the
beam fields, instead of the one-point expansions of rln  (A.3.3)-(A.3.4) and
(A.3.9). Moreover, the shape of the incident beam should be accounted for by
exact integration of subsequent terms in the reflected beam expansion (see
Section 4 of the next chapter for details of this approach). Such evaluation of
the beam field reveals that, for instance, the longitudinal shifts 1xδ  and 1zδ  do
not disappear, in general, for cϑϑ <01 , as well as magnitudes of 1ϑδ  and 1wδ
are even larger for cϑϑ >01 , contrary to what may appear from straight-
forward application of Eqs. (3.13) and (3.14), or (3.17) and (3.19). Moreover,
the beam reflection complex coefficient r  also appears different from gr  by a
factor grr  [9,17].

The longitudinal complex shifts 1bL  and 1bF , and beam deformations 1xδ ,

1ϑδ , 1zδ  and 1µ  depend on sr  and pr  and their derivatives through Eqs.

(A.3.3), in a manner known from the 2D beam reflection. The shifts of the
TM polarization are larger than those of the TE polarization. All of them



100      Chapter  3

increase as the dielectric contrast cn ϑ1sin−=  at the interface decreases (cf.
Fig. 3.2). In Figs. 3.4 and 3.5 the first-order and second-order geometrical
effects are shown versus variation of the incidence angle around the critical
angle (in degrees). The plots are given for =1wkw  50, 100, the parameter
regarded  as  the  measure  of  the  propagating  beam  diffraction.  Evidently,
magnitudes of the nsp effects and positions of their extremal values depend
on the beam diffraction. Their magnitudes are larger and their extreme
positions are placed further apart from the critical incidence for smaller
values of 1wkw .

3.7  Transverse nonspecular effects

For the TE and TM polarization the longitudinal beam shifts depend only
separately on the Fresnel coefficients sr  and pr . On the other hand, the

transverse effects depend, through the simple algebraic expressions (A.3.7)
and (A.3.8), on the beam ( iχ ) and the relative polarization parameters sp rr
of the reflecting structure. The first-order complex shifts 2bL  are proportional
to the polarization ratio iχ  ( 1−

iχ ) for the pure TE (TM) polarization and  thus
the  first-order  beam  deformations  2xδ   and  2ϑδ  disappear  for the pure TE
(TM)  beam polarization, for which 0=iχ  ( 01 =−

iχ ) holds. However it is a
very exceptional case  of  the  beam  polarization.  Moreover,   the  (non-zero)
transverse deformations 2xδ , 2ϑδ , 2zδ  and 2wδ  are not inherently related to
the elliptic polarization ( 0)Im( ≠iχ ) of the beam. They exist also for the
mixture of TE and TM beam field components of the incident beam, with the
linear polarization direction inclined with respect to the incidence plane, i.e.
for 0)Im( =iχ  and 10 −≠≠ ii χχ  [2].

The asymmetry of r  with respect to the transverse direction cosines

2αγ =  in Eqs. (3.5) implies that the first derivatives γ∂∂r  are nonzero

quantities at the reflected beam axis and leads, in general, to nonzero values
of the transverse first-order nsp effects δ x 2  and 2ϑδ  (cf. Eqs. (A.3.7)).
Moreover, the second-order transverse effects of nsp reflection  exist  even
for  pure  TE and TM polarizations - the second-order complex shits 2bF , 2zδ
and 2wδ  still possess finite nonzero values in these cases (cf. Eqs. (A.3.8)).
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Figure 3.4.  First-order longitudinal nsp effects: the lateral shift δ x1

and the angular δ ϑ1  shift (in degrees), versus incidence angle changes

ϑ ϑ01
( )i

c−  around the critical incidence ϑ ϑ01 45( )i
c

o= = . Cases of the

different incident beam polarization (TE and TM) and width
( 1wkwkw ≡ ) of the incident beam are shown. The lateral shift is

normalised to the incident beam half-width.

Any evaluation of the transverse effects should properly account from the
be-ginning for this asymmetric feature of r , being a consequence of the

vectorial nature of the problem. For example, for equal contributions of the
TM and TE field components, i.e. for 1=iχ , both first-order transverse

shifts attain nonzero values. Equations (A.3.7) imply that, in the TIR state
1=sp rr  and for the incidence angle 01ϑ  larger that the critical angle cϑ , the

first-order transverse shifts of the TE beam field are for the  (diagonal)  linear
polarization  of  the  incident beam ( 1±=iχ ):
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Figure 3.5.  Second-order longitudinal nsp effects for the TE and TM
components of the reflected beam: the focal shift 1zδ  and the beam
waist radius relative modification µ1 , versus incidence angle changes
ϑ ϑ01

( )i
c−  (in degrees) around the critical incidence ϑ ϑ01 45( )i

c
o= = .

Cases of the different beam polarization (TE and TM) and widths
( 1wkwkw ≡ ) of the incident beam are shown. The focal shift is scaled

to the diffraction length of the incident beam.

01
1
2

1)1(
2 ))Re(1( ϑδ ϑ ctgrrzk spD +±= −−±

⊥ , (3.23)

and for the (diagonal) circular polarization ( ii ±=χ ):

01
1)(

2 ))Re(1( ϑδ ctgrrk sp
i

x += −±
⊥ � ,

01
1
2

1)(
2 )Im( ϑδ ϑ ctgrrzk spD
i −−±

⊥ = � , (3.24)

all of them being evaluated at the beam axis, that is for 21 0 αα == . The
TM transverse shifts 01

2
22|| cos ϑδδ xx ⊥+=  and 01

2
22|| cos ϑδδ ϑϑ ⊥−=  are

larger than the transverse TE shifts by a factor cos−2
01ϑ  for both types of
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Figure  3.6.  First-order transverse nsp effects for the TE and TM
components of the reflected beam: the lateral shift δ x2  and the angular
δ ϑ 2  shift (in degrees), versus incidence angle changes ϑ ϑ01

( )i
c−

around the critical incidence ϑ ϑ01 45( )i
c

o= = . The case of the
diagonal linear polarization χ i = 1 of the incident beam;

5021 == kwkw . The lateral shift is scaled to the incident beam half-

width.

beam polarization. Note that, meanwhile  all  first-order  transverse  effects
depend on the incidence angle, only the angular shifts become larger for
narrow beams, i.e. for small values of 2Dkz . Moreover, in  the  contrary  tothe
lateral  shifts,  the  angular shifts are of opposite signs in the TE and TM
field  components.
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Figure 3.7.  First-order transverse nsp effects for the TE and TM
components of the reflected beam: the lateral shift δ x2  and the angular
δ ϑ 2  shift (in degrees), versus incidence angle changes ϑ ϑ01

( )i
c−

around the critical incidence ϑ ϑ01 45( )i
c

o= =  for the diagonal circular
polarization χ i i=  of the incident beam; 5021 == kwkw . The lateral

shift is normalised to the incident beam half-width.
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⊥ += ϑδδ . (3.25)

Therefore, the first-order transverse shifts exist simultaneously for both -
circular and linear – diagonal polarizations. Their magnitudes are interrelated
by the diffraction length of the beam; the lateral shifts prevail for the circular
polarization, meanwhile the angular shifts are more vivid for the linear can be
polarization and for narrow ( )100)( 21

2 <Dkz  beams. Similar considerations
can be given for the second-order transverse shifts, on the grounds of Eqs.
(3.13) and (A.3.8).

The first-order transverse nsp effects are depicted in Fig. 3.6 for the
diagonal linear polarization and in Fig. 3.7 for the diagonal circular
polarization. Note large values of the lateral shifts for the circular polarization
and of the angular shifts for the linear polarization - they are approximately
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only five times less that their longitudinal counterparts. In [1] extensive
independent numerical simulations were presented for the 3D beam reflection
and transmission at the dielectric interface. The numerical method was based
on equations equivalent to the exact analysis of Section 2 and the results
obtained there seem to comply with predictions of [2] and results of this
section.

3.8  Nonlinear interfaces

In Eqs. (3.12) the dependence of the beam spectral envelopes aÊ  on the
propagation coordinate 3x  was introduced in order to extend the formalism
into the cases of inhomogeneous and/or nonlinear media. Let by 2n  and

222
Laa nnn −=∆  denote the refractive index squared of the inhomogeneous

medium and its deviation from some background value 2
Ln , respectively.

Then, in the paraxial approximation and for the linear polarization, the beam
propagation is governed by the parabolic approximation to the Helmhotz
equation for the slowly varying beam envelopes )exp( aLaa zikEV −= :

{ } 0),,(2 321
22222

213
=∆+++ xxxVnnkik aLaLxxxL ∂∂∂ , (3.26)

where Lk  is a background value of the wave number k for the beam field and
)( 3

22 xnn aa ∆≡∆ .

In the homogeneous medium 02 =∆ an , kkL = , and Eq. (3.26) reduces to
the Fock equation. Otherwise, the analysis of Sections 2 and 3 still remains
valid provided that the solution is sought in a self-similar form specific to the
Fock equation, e.g. in a form of Gaussian beams. This approach is widely
used in nonlinear optics, where the medium inhomogenuities are induced by
beam fields of high intensity [14-20]. The beam amplitude changes the
reflection due to the nonlinear effects of self-focusing and cross-focusing and
lead to the positive feedback between these changes and the incident beam
power. It is the nonlinear medium where the nsp changes of the beam
amplitude are vivid the most.

The 3D beam of the TE polarization reflected at the boundary between the
nonlinear Kerr type medium and a linear medium was analysed in [9] and this
case will be discussed in the next chapter. Cylindrical symmetry for the
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incident beam approaching the interface from the nonlinear medium was
assumed, i.e. DDD zzz == 21 . Averaging integration of the Lagrangian density
specific to Eq. (3.26) in planes parallel to the interface at 0=X  was
performed. The cross-focusing terms 2

22 aL Vnn  in 2
an∆ , where 2n  and Ln

stand for the nonlinear and linear indices of refraction, were incorporated in
the self-focusing terms by the cross-focusing factors )( Xgg aa ≡ :

( ) 2
2

22
2

2 2 iiLriLi VgnnVVnnn ≅+=∆ ,

( ) 2
2

22
2

2 2 rrLirLr VgnnVVnnn ≅+=∆ ,

∫∫∫∫+= dYdZVdYdZVVg aria
42221 . (3.27)

That leads to two standard nonlinear Schrödinger equations (NLSE’s) (3.26),
given separately for the incident (a=i) and reflected (a=r) beams, with the
nonlinear self-focusing terms modified by the factors ag  dependent on X.
The incoherent interaction between the beams was assumed to secure
comparison of the results obtained with the reported plane wave predictions
[16], although the coherent interaction can be also treated in the similar
manner.

The beams are modelled as fundamental Gaussians with parameters (waist
centre position, propagation direction and the waist radius) dependent on the
propagation distance 3x . In this way, the solution to the reflection problem at
the nonlinear-linear interface is obtained in a form typical of the reflection at
the linear interface. However, nonlinear changes an∆  of the refractive index
are transferred to the appropriate changes of beam parameters [9,15]. These
changes, known as aberrationless effects of nonlinear propagation, can be
derived and interpreted in the same form of the complex shifts (3.13). They
are induced by nonlinear propagation this time. Let us denote them as )(ab

jL

and )(ab
jF . At the focusing ( 02 >n ) nonlinear-linear interface the effects of

nonlinear propagation and nsp reflection may contribute constructively to the
total complex shifts )()( ab

jj
nl
j LLL +=  and )()( ab

jj
nl

j FFF +=  and enhance the

process of the reflected beam reshaping [9].
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For the incidence from a linear side of the linear-nonlinear interface only
one, transmitted beam exists in the nonlinear medium. The cross-focusing
terms in the NLSE (3.26) disappear, 1=ag , but the nonlinear enhancement
of the nsp effects still can be achieved. Nonlocal approximation [18] (with an
infinite radius of the nonlocality of 2n ) to such a case was discussed in [17]
in the context of a defocusing ( 02 <n ) linear-nonlinear interface.

The presence of the nsp effects is not restricted to interface configurations
based on TIR - any angularly dispersive interface, like that of the phase-
conjugate reflection [19], will do as well. The beam shifts have also been
observed in soliton dragging configurations [20-21]. Two cross-polarised
beams enter the nonlinear medium, mutually interact and experience shifts in
their axes positions and directions. The asymmetry produced by the interface
makes these shifts essentially different from those produced by the beam
collision in the unbouded nonlinear medium.

3.9  Beam amplitude nonspecular modifications

The method of treatment of the nonlinear interface is similar to that of the
linear interface, but the results are not [9]. Let us restrict this discussion to the
beams of the TE polarization and to the plane of incidence ( 0=Y ). Let
simplify also the notation by: )(

01
i

i ϑϑ ≡  and )(
01

r
r ϑϑ ≡  or )(

01
g

g ϑϑ ≡ , where the

suffix replacement a=r by a=g indicates the g-o approximation in the first step
of the numerical iteration of the solution (cf. [17] and the next chapter). The
nonlinearly scaled propagation distances az , the beam wave numbers ak , the

critical angle cϑ  and the g-o reflection angle gϑ , a=i, g, depend on the
normalised beam powers ap  (normalised to one at the self-trapping power
level), where, for instance, close to the beam waists [9]:

2
3

22 )1( xpz aa −≅ ,

112 −−+≅ DaLa zpkk . (3.28)

On the grounds of the law of reflection:

)sinarcsin( 1
iigg kk ϑϑ −= ,
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Figure 3.8.  Angles of reflection ϑ 01
( )g  and ϑ 01

( )r  (in degrees) (a) and
relative waist radii squared µ1

( )g  and µ1
( )r  (b) of the g-o reflected and

the actual reflected beams, respectively, versus the normalised power
pi  of the beam incident of TE polarization at the focusing nonlinear-

linear interface. Changes of the angle of critical reflection ϑ c  are also

shown by the dotted curve; the small circle indicates the point of the
critical incidence ϑ ϑ01

( )g
c= ; oi 4.86)(

01 =ϑ ; 5021 == kwkw . The

waist radii are scaled by the incident beam half-width.

)arcsin( 11 −−= nkk igcϑ ,  (3.29)

the g-o reflection angle gϑ  differs from the incident angle iϑ   and, for the
focusing nonlinear medium, ig ϑϑ <   in the partial reflection range  to r .

With  the higher-order terms included in  the  expansion  of  rln   (3.13)   the
actual reflection angle rϑ  is modified by the angular shift ϑδ , i.e.

ϑδϑϑ += gr . This modification appears so large that the sign of the
inequality between rϑ  and iϑ  may become even the opposite of that one
between gϑ  and iϑ . That indicates distinct differences between the finite-
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Figure 3.9.  Magnitudes R  and Rg  of the reflection coefficients r
and gr  of the nonspecularly reflected and the g-o reflected beams,
respectively, versus the normalised power pi  of the beam of TE

polarization incident at the focusing nonlinear-linear interface;
5021 == kwkw . The ratio grr  of these coefficients yields the nsp

modification of the beam amplitude. In the case (a): 13.03 =x , q=2.0,

the effects of the nonlinear self-focusing prevail over the effects of the
angular detuning more than in the case (b): 10.03 =x  and q=2.1.

width beam reflection [9] and the plane wave reflection [16]. It is pertinent to
note here that iϑ  depends on the type of the incident beam excitation in the
nonlinear medium and may, in general, also vary with changes of the beam
power.

Plots in Fig. 3.8 confirm these predictions, where the angular and beam
radius variations are shown versus variations of the incident normalised beam
power ip . The beam and the reflecting structure parameters are taken such to
achieve a bistable reflection, for instance the angle of the low-power critical
incidence amounts here 88.2 degrees (cf. [9] and the next chapter). Although,
in the power range below the point of critical incidence, the g-o reflection
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angle gϑ  is less than the critical angle cϑ , the actual reflection angle rϑ  is
much larger and stays close to cϑ  within a whole range of the bistable
reflection. In this way, gϑ  is less than the incidence angle iϑ  and increases at
the higher switching threshold (switch-on), meanwhile rϑ  is larger than iϑ
and, together with cϑ , decreases much at the same time. These angular
changes reverse their signs at  the lower switching threshold (switch-off), as
expected.

Plots of the normalised beam radii squared

)())(1)(()(2 1
22

1
2
1

2
1

11
ggDzgggD zzzzzzkwz ρδµ ≅−+= −−− (3.30)

indicate substantial impact of this focussing effect on the reflected beam
radius 1w , the phase front curvature 1ρ , the critical and reflection angles, and
thus on the beam switch [9]. In effect, the average beam spatial spectrum is
moved towards the range of TIR. In turn, this induces the increase in
magnitude of the reflection coefficient from gr  to a new value of r .

Moreover, the positive feedback between r  and the nonlinear angular shift
ϑδ  is so strong that the bistable switch can be achieved for some sets of the

beam and nonlinear medium parameters [9].
Figure 3.9 depicts this situation for the two cases of the angular detuning

)2()2( ciq ϑπϑπ −−=  and the cumulative effect of nonlinear focusing,
measured by the positions 3x  of the incident beam waist with respect to the
interface. The last parameter indicates the strength of the nonlinear focusing.
Large magnitudes of the beam amplitude nsp modification grr  are clearly

vivid. Distant positions of the switching thresholds from the critical incidence
indicate that the narrow beam switching at the nonlinear-linear interface may
become qualitatively different from predictions based on the plane wave
considerations.

10  Comments and conclusions

The analysis presented treats the 3D beam reflection on the grounds of the
exact electromagnetic solution to the problem. The paraxial approximation
extracts from this rigorous solution the beamlike part of the total field and
yields the description of the reflection within the frame of first-order optics.



Beam reflection at dielectric interfaces      111

In this context, the effects of nsp reflection are parameters, which provide
clear qualitative interpretation and precise quantitative evaluation of
characteristic features of the beam reflection. The remaining nonparaxial part
of the exact solution can be also recognised as the first-order modes - here,
for the Gaussian incidence, the first-order Hermite-Gaussian beams excited
by the cross-polarization nonparaxial coupling at the reflecting structure.

It is demonstrated that the transverse beam deformations are determined by
the relative - between the TE and TM polarization - characteristics of the
incident beam. The formalism reveals, in the first place, direct relation
between the first-order transverse nsp beam angular deformations for the
diagonal linear and circular beam polarization. It is shown that the transverse
lateral shifts of the beam of circular polarization are replicas of the transverse
shifts for the linear polarization and that these effects are interrelated by the
diffraction length of the beams. Several other characteristic features of the
longitudinal and transverse effects of nsp reflection are also discussed.

In relation to the previous report on this approach [2] some extensions are
outlined. It is shown that the next term in the expansion of the reflection
coefficient - the cross-dimensional coupling term - can be directly included in
the formalism. This term influences only quantitatively the second-order,
mainly transverse, effects of nsp reflection. It is also shown that the method,
augmented by the numerical iteration of the nonlinear feedback in the final
solution [9], works also well in cases of nonlinear interfaces. The bistable
switch of the single finite-cross-section beam at the NLI of small dielectric
contrast is confirmed, with characteristics distinct from those of the plane-
wave reflection.

Some important aspects or extensions of the approach still need further
investigation. It is now well known that the beam polarization changes with
propagation and, even for beams initially uniformly polarised, becomes
nonuniform across the beam cross-section [22,23]. The process depends on
the coherence and vector nature of the beam field, and appears enhanced by
the anisotropy locally self-induced in nonlinear media [24]. It seems that
analogical behaviour of the coherent field at dielectric interfaces may be
investigated by the beam polarization spectral parameters determined by Eqs.
(3.3) and (3.6). Impact of the nondiffractive features of beams [25,26], the
photon angular momentum [27,28], the azimuthal and radial polarization of
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higher-order beam modes [29,30] and the beam rotation [31,32] on the
reflection process deserves further specifications as well.

It is pertinent to note that the 3D character of the beam reflection was
imposed in this work by the finite transverse cross-section of the incident
beam. That results in the coupling of the TE and TM components of the beam
field at the interface and in the nonzero cross-coefficients of the reflection
matrix (3.4). However, the third dimension of the reflection problem may be
introduced instead by anisotropy or periodicity of the media separated by the
interface [33,36]. In both cases the finite cross-section of the incident beam
leads in addition to the longitudinal and transverse nsp distortions of the
beam in the zeroth-order (anisotropic interfaces) or arbitrary-order (periodic
interfaces) reflection.

Finally, it should be also noted that the 3D beam reflection is closely
related to the (3+1)D wave packet reflection. The paraxial factorisation of the
3D beam field into the product of 2D solutions can be directly extended by
adding one more dimension in the presented analysis. In the 2D case the
spatio-temporal analogy is complete and straightforward - the spatial beam
nsp deformations are just translated into their temporal counterparts, that is
besides the pulse delay, also in the pulse velocity, temporal waist location and
pulse duration changes [36]. In the multidimensional 4D case the described
above the field factorisation into the 2D field factors should be made first,
with the cross-dimensional, and this time also the spatio-temporal, coupling
coming into play as well. Still, the approach presented in this chapter may
serve as the convenient tool in treatment of various aspects of optical beam or
pulse shaping, superluminal propagation and photonic tunnelling [37-41].

Appendix: Geometrical effects of nonspecular reflection

Let us start from the definitions of the p and s Fresnel  coefficients  rp  and
rs of plane wave reflection at the interface:

( ) ( )r Z Z Z Zp
i t i t= − +( ) ( ) ( ) ( )η η ,

( ) ( )r Y Y Y Ys
i t i t= − +( ) ( ) ( ) ( )η η ,    (A.3.1)

and the p and s Fresnel coefficients t p  and ts  of plane wave transmission:
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( )t Z Z Zp
t i t= +2 ( ) ( ) ( )η ,

( )t Y Y Ys
i i t= +2 ( ) ( ) ( )η ,    (A.3.2)

where )()()()( i
Z

tt
Z

i knkn=η  or η ϑ ϑ= cos cos( ) ( )t i . The interface is
understood as the flat boundary between two homogeneous, isotropic and
linear media. The coefficients (A.3.1)-(A.3.2) are assumed in their general
form, where )()()( bbbZ εµ=  and Y Zb b( ) ( )= 1  are the characteristic
impedance and admittance of the the “upper” (b=i or b=r) and “lower” (b=t)
media, respectively. The permittivity ε ( )b  and permeability µ ( )b , together

with the refractive index )()()( bbbn µε= , are considered uniform (constant)
in both media. The beam phase in the definitions (A.3.1)-(A.3.2) is taken
such that the reflection coefficients rp  and rs  equal one at the critical

incidence of total internal reflection.
Note that the Fresnel coefficients (A.3.1)-(A.3.2) are defined in the local

incidence plane zx −  of the plane wave and thus they do not depend on the
azimuthal orientation of this plane; that is they do not depend on 2α . For 3D-
beam reflection and transmission at the interface, however, all plane waves
contributing into the beam field should be described in one plane - the
principal plane-of-incidence of the beam. Therefore, to account the third
dimension of the problem, the Fresnel coefficients need generalisation of
their standard form (A.3.1)-(A.3.2). That was accomplished in this chapter by
the replacement of the Fresnel coefficients (A.3.1) by the reflection matrix
(3.4), or, adequately, by the generalised Fresnel coefficients of reflection
(3.5). Per analogy, the same can be done for beam transmission, as will be
explicitly shown in Chapters 5-7.

Therefore, in this appendix, the definitions of the first-order and the
second-order beam shifts will be derived from these generalised coefficients
along the lines reported in Ref. [2]. We will restrict the analysis only to beam
reflection at the interface. The case of beam transmission can be treated in the
same manner. The same concerns the beam reflection and transmission at any
planar multilayer, provided that the Fresnel coefficients (A.3.1)-(A.3.2) of
plane wave reflection and refraction are replaced by their respective
counterparts specified to the multilayer.
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Let us decompose the p and s Fresnel reflection coefficients pr  and sr  into
their magnitudes and phases )exp( ccc ir υρ= , psc ,=  and denote their ratio
by )](exp[)( ppsp ir υυρρ −= . They represent the coefficients of plane wave

reflection at the interface or at any planar multilayered structure and are
evaluated at the reflected beam axis or at the beam spectrum centre at

21 0 αα == . The form of the representation (3.13) of the reflection
coefficients br :

)]}(2[exp{ 2
22||

2
11||

1
22||11||0|| αααα FFLLikrr p +−+−≅ − ,

)]}(2[exp{ 2
22

2
11

1
22110 αααα ⊥⊥

−
⊥⊥⊥ +−+−≅ FFLLikrr s ,    (A.3.3)

b=|| for TM polarization and b=^ for TE polarization, has been postulated as
equivalent to the four-term expansion of these coefficients, separately for the
TM and TE components of the incident beam:

)}(2exp{}exp{ln 2
222||

2
111||

1
22||11||0|||| αααα rrrrrrr p +++≅= − ,

)}(2exp{}exp{ln 2
222

2
111

1
22110 αααα ⊥⊥

−
⊥⊥⊥⊥ +++≅= rrrrrrr s ,    (A.3.4)

where all derivatives are evaluated at 21 0 αα ==  and the notation is used:

11 kk =α , 22 kk =α , bkbbj rkrr
jj
lnln ∂=∂≡ α , bkkbbij rkrr

jiji
lnln 2∂=∂≡ αα ,

with b=|| ,⊥ . The subscripts 1, =ji  and 2, =ji  indi-cate the longitudinal
effects (along the 1x -axis) and the transverse effects (along the 2x -axis),
respectively. Note that in the next chapters the notation xx ≡1 , yx ≡2 ,

zx ≡3  and xkk ≡1 , ykk ≡2 , zkk ≡3  is also alternatively used.

Comparison of the two equations in (A.3.3) with the two equations in
(A.3.4) yields the first-order longitudinal complex shifts 1bL ,

)( ''
11

'
1

1
1

1
1|| cppp ikrikL ρρυ −−=+= −− ,

)( ''
11

'
1

1
1

1
1 scsss ikrikL ρρυ −−=+= −−

⊥ ,    (A.3.5)

the second-order longitudinal complex shifts 1bF ,

[ ]))(( 2'
1

''
11

''
11

1
11

1
1|| pppppp ikrikF ρρρρυ −−+=−= −− ,



Beam reflection at dielectric interfaces      115

[ ]))(( 2'
1

''
11

''
11

1
11

1
1 ssssss ikrikF ρρρρυ −−+=−= −−

⊥ ,    (A.3.6)

the first-order transverse complex shifts 2bL ,

1
01

111
2||

1
2|| )(sin~)1( −−−−− +−=+= ϑχ irikrikL ,

1
01

111
2

1
2 )(sin~)1( −++−

⊥
−

⊥ ++=+= ϑχ irikrikL ,    (A.3.7)

and the second-order transverse complex shifts 2bF ,

[ ] 2
01

22111
22||

1
2|| )(sin~)1()1(2 −−−−−− ++++=−= ϑχ irrikrikF ,

[ ] 2
01

22111
22

1
2 )(sin~)1()1(2 −+++−

⊥
−

⊥ ++++=−= ϑχ irrikrikF .     (A.3.8)

 In the equations above the primes indicate derivatives with respect to 1α  or

2α  evaluated at the reflected beam axis. Thus ssj ρρ α1

' ∂≡ , ssij ji
ρρ αα ∂∂≡''  at

21 0 αα == , and so on.

In more accurate calculations, by applying the rotation through the angle
bε  (3.18) around the Y -axis to the second-order terms in the fifth-order

expansion of r :

)()( 2
22

2
11212112

2
222

2
111 αααααα bbbbbb FFikrrrr

��

+=+++ ,     (A.3.9)

one obtains new, more accurate definitions bjF
�

 (3.17) of the second-order

complex shifts. Note that signs in the expressions of effects of nsp
deformations depend on the vector and angular change senses of the
coordinate frame chosen in the calculations. The coordinate orientations
depend also on 01ϑ ; cf. Fig. 3.1 in this chapter and Fig. 4.45b of Ref. [42]
with e.g. Fig. 4.45a of Ref. [42] or Fig. 6 of Ref. [5].

Basic characteristics of the beam shifts derived above have been analysed
in this chapter. All of them are rotted in the form of definitions (A.3.5)-
(A.3.8). Let us only mention about general features of the first-order shifts
(A.3.5) and (A.3.7). The longitudinal first-order beam shifts (A.3.5), contrary
to the transverse beam shifts (A.3.7), do not depend on the state of the
incident beam polarization. For the linear, TM or TE, polarization ( 01 =−

iχ
or 0=iχ ) of the incident beam, the transverse shifts disappear. For the
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circular, right-handed or left-handed, polarization ( ii �=χ ) of the incident
beam, the transverse shifts are of finite magnitudes and opposite directions
for the opposite circular polarization states ii �=χ  of the incident beam.

With the complex nsp shifts known, one can describe the reflected beam
field as the field ),,( 321

)( xxxE g  obtained from the g-o estimation (3.16)

),(),()exp(),,( 3223113
)(

0321
)( xxExxEikxsrxxxE gg

ig = ,

[ ]Tii
is 1,)1( 212)( χχ −+= ,  (A.3.10)

and next, nonspecularly modified by the complex shifts independently for the
TM and TE beam components (3.16):

,),(),(
)exp()||1(),,(

2||32||221||31||11

3
212

0||321
)(

||

FxLxEFxLxE
ikxrxxxE

gg

ii
r

−−−−×

+= −χχ

.),(),(
)exp()||1(),,(

2322213111

3
212

0321
)(

⊥⊥⊥⊥

−
⊥⊥

−−−−×
+=

FxLxEFxLxE
ikxrxxxE

gg

i
r χ

 (A.3.11)

In Eq. (A.3.10) )(is  is the Jones vector of the incident beam polarization (cf.
Eqs. (3.2)) written in the coordinate frame ),,( 321 xxx  of the g-o reflected
beam and 

0
r  is the g-o reflection matrix 

g
r  evaluated for the plane wave

incidence along the incident beam axis.
Let us now return to the spectral representation of the reflected beam field

(3.12), given here in the incidence ),( 31 xx  and transverse ),( 32 xx  principal
planes, respectively, for both, TM (b=||) and TE (b=^), field components:

[ ] ,)2(exp),(~
)2(),(

13
2
1

1
11311

1
0

1
311

αααα

π

dkxxikxEr

rxxE

ibb

brb

−

−−

−−×

=

∫

[ ] .)2(exp),(~
)2(),(

23
2
2

1
22322

1
0

1
322

αααα

π

dkxxikxEr

rxxE

ibb

brb

−

−−

−+×

=

∫
  (A.3.12)

Note that the paraxial beams, like the HG or LG beams of arbitrary order,
show, at least approximately, Gaussian damping of their field amplitudes in
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planes transverse to their propagation direction. It was indicated by
Deschamps [43] that such beam fields can be obtained from exact solutions
of the Helmhotz equation through their displacements by the imaginary shifts
along the beam axis. Their magnitudes are equal to the diffraction lengths of
the beams. In the case considered here these shifts are equal to 1Diz  in the
main incidence plane and 2Diz  in the main transverse plane, respectively.

Therefore, the spectral amplitudes of the reflected beam in Eqs. (A.3.11)
are proportional to the exponential terms expressed by 1Dz  and 2Dz :

)2exp(~~
1

2
1

1
11 Dbiib zkeE α−−= ,

)2exp(~~
2

2
2

1
22 Dbiib zkeE α−−= ,       (A.3.13)

After taking into account Eqs. (A.3.3)-(A.3.4) and (A.3.13), the beam field
representations (A.3.12) can now be put into the following form:

{ } ,)](2)([exp),(~
)2(),(

1113
2
1

1
111311

1
311

αααα

π

dkizFxLxikxe

xxE

Dbbib

rb

−−−−−×

=
−

−

∫

{ } .)](2)([exp),(~
)2(),(

2223
2
2

1
222322

1
322

αααα

π

dkizFxLxikxe

xxE

Dbbib

rb

−−−−+

=
−

−

∫
   (A.3.14)

It has been proved in Refs. [44] and [45] that the Gaussian beams
(A.3.14), displaced by the complex shifts (A.3.5)-(A.3.8), can be interpreted
also in terms of real shifts. These real shifts are the lateral bxjδ  and
longitudinal bzjδ  shifts of the beam coordinate frame centre, augmented by
this frame rotation through the angles equal to angular shifts jbϑδ . Real

displacements and rotations are given here separately for the TM (b=||) and
TE (b=^) components of the reflected beam, and also separately in the
principal incidence (j=1) and transverse (j=2) planes (cf. Refs. [2], [44] and
[45]):

jbbzjjbbxjjbrj xxx ϑϑ δδδδ sin)(cos)( 3 −−−= ,
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jbbzjjbbxjjbrj xxx ϑϑ δδδδ cos)(sin)( 33 −+−= .   (A.3.15)

They should be accompanied by the same rotation of the coordinate frame in
the spectral domain [2]:

jbjbjbrj ϑϑ δαδαα sincos 3−= ,

jbjbjbrj ϑϑ δαδαα cossin 33 += .        (A.3.16)

Besides the beam frame shifts and rotations, the reflected beams suffer also
from changes of the beam waist radii, expressed by the factors bjµ  and in

addition, by changes of their on-axis complex amplitude, as described in
Refs. [2], [44] and [45].

By applying the transformations (A.3.13)-(A.3.14) to the beam field
representation (A.3.10), its beam field factors, defined in the incidence and
transverse planes, respectively, take the form equivalent to the expressions
(A.3.14):

{ } ,)](2)([exp),(~
)2(),(
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113

2
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1
111311

1
311
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dkzixxikxe
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Drbbrbxrbrbib

rb

−−−−×
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∫
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dkzixxikxe
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Drbbrbxrbrbib
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−−−+×

=
−

−

∫
    (A.3.17)

Direct comparison of the beam field representations (A.3.14) and (A.3.17)
yields the definitions of the real geometrical effects of nsp reflection [2]. One
obtais, for the TM (b=||) and TE (b=^) polarization of the reflected beam, in
the incidence (j=1) and transverse (j=2) planes, the longitudinal and
transverse lateral first-order shifts 1bxδ  and 2bxδ ,

)Re( bjbxj L=δ ,   (A.3.18)

the longitudinal and transverse second-order focal shifts 1bzδ  and 2bzδ ,

)Re( bjbzj F=δ ,   (A.3.19)

the longitudinal and transverse first-order angular shifts 1ϑδ b  and 2ϑδb ,
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)Im()( 12
bjjDjb Lz

j

−≅ µδ ϑ ,   (A.3.20)

and the longitudinal and transverse waist radius squared  second-order
modifications 1bwδ  and 2bwδ ,

)Im()( 12
bjjDbwj Fz

j

−≅ µδ ,   (A.3.21)

The waist modification factors jµ  are given by:

bwjbj δµ −=− 12 .   (A.3.22)

These real shifts are directly expressed by real and imaginary parts of the
complex shifts (3.13) or (A.3.5)-(A.3.8). The definitions (A.3.20)-(A.3.21)
are approximate. More accurate definitions of 

jϑδ  and 
jwδ  may be given with

the help of Eqs. (3.14). On the other hand, as usually 1≅jµ , the definitions

(A.3.20)-(A.3.21) can be further approximated by:

)Im(1
bjjDjb Lz−≅ϑδ ,   (A.3.23)

)Im(1
bjjDbwj Fz −≅δ .   (A.3.24)

The definitions of the beam nsp shifts have been given for beams of
arbitrary incidence angle, polarization and amplitude spatial distribution,
provided that the transverse amplitudes of them can be factorised in the two
transverse coordinates 1x  and 2x , according to Eq. (A.3.10). These
definitions are valid, for example, for the three-dimensional Hermite-
Gaussian (HG) paraxial beams of arbitrary order nm + , defined as a product
of the two-dimensional HG beams in these coordinates 1x , 3x  and 2x , 3x ,
and of the orders m  and n , respectively. They are valid for both cases of the
internal and external reflection. Per analogy, their derivation can be also
directly repeated for beam transmission.

For a beam which does not obey the factorisation condition (A.3.10) one
has first to decompose it into series of the beam fields, which obey this
condition and belong to the set of functions complete in the space of beam
functions of finite power (cf. footnote 1 in Opt. Commun. 197, 217 (2001)).
Such functions are still the HG beam fields. They comply with with the
mirror symmetry condition (A.3.10), with respect to planes 31 xx −  and
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32 xx −  (cf. Fig. 3.1). For incidence, for example, of the standard higher-order
Laguerre-Gaussian (LG) beams SL

lpG , , this decomposition, given in terms of

the standard HG beams SH
klG ,  of the same order lpnmN +=+= 2 , leads to

the following expressions for the incident beam (see Ref. [46] and Section 8
of Chapter 2):
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  (A.3.25)

with the coefficients explicitly given from the diagonal relations between LG
and HG beams [46]. Then, in each term of this expansion, the complex nsp
shits can be applied separately for the TM and TE component of the reflected
beam:
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            (A.3.26)

In this way, for any incident paraxial beam of arbitrary shape, polarization
and incidence angle, the beam reflected at the interface or, in general, at any
multilayered dieletric structure, can be rigorously described up to the second-
order approximation. The beam is considered as the replica of the incident
beam with its amplitude, polarization and spatial position of its waist being
modified by the Fresnel reflection coefficients and the nsp effects defined
above.

The same procedure can be applied in description of beams transmitted at
any planar multilayered dielectric structure, including this composed of
weakly nonlinear or inhomogeneous stratified media. In the next chapter, the
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problem of beam reflection at a plane boundary of a weekly nonlinear me-
dium of Kerr type will be analysed in detail in the manner following the
analysis given above.

Main content of this chapter has been published in Optics Communications 197,
217-233 (2001).
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CHAPTER  4

Beam reflection at a nonlinear-linear interfaces

An analytic model of beam reflection at a nonlinear-linear
interface is presented. An incident field approaches a nonlinear
side of the interface at an angle close to a critical angle of total
internal reflection. A nonlinearity of the plain Kerr focusing type
is considered. A beam field at the interface is described by
changes of the beam parameters during propagation and
reflection, that is, by aberrationless effects of nonlinear propa-
gation and longtudinal nonspecular effects of reflection.
Numerical iterations of the analytical solution indicate that, for
certain sets of incident beam and interface parameters, a bistable
switch of the reflected beam can be obtained. Characteristic
features of this switch appear different from those of a plane wave
reflection.

4.1  Introduction

Plane wave reflection of light at the interface between two dielectrics, at
least one of which is nonlinear, has been intensively investigated for more
than two decades [1-10]. The main interest in the light-beam reflection at the
interface stems from its potential application in all-optical switching and
com-puting. In contrast to electro-optic devices in which the external
feedback is necessary for bistable operation, the switching devices based on
nonlinear in-terfaces relay on an intrinsic nonlinear feedback mechanism.
Since nonlinear interfaces are not resonant structures, they offer the
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possibility of ultrafast switching and can operate with light of a broad
spectrum.

The beam or pulse reflection at linear interfaces has also recently attracted
great attention [11-16] and potential applications in optical switching, optical
imaging and beam or pulse shaping were indicated [17-19]. However, the
fundamental question of a possible bistable beam and/or pulse switch at the
linear-nonlinear interface has still not received conclusive explanation [8-9].
Recently, however, a problem of plane wave reflection at a nonlinear-linear
dielectric interface was discussed [20]. It was indicated that this type of
structure exhibits strong nonlinear behaviour due to cross-phase modulation
(XPM) between the incident and reflected waves. Optical bistability was
shown by numerical iterations of the analytic solution derived.

A motivation of the work is to extend the plane wave analysis to a finite-
width-beam reflection at the nonlinear-linear interface and to find suitable
description of a beam field near interfaces of this type. The case of narrow
beam incident upon a nonlinear-linear interface at an angle close to the
critical angle of total internal reflection (TIR) is considered. Formulation of
the problem is based on the analytic techniques previously developed by the
author in treatment of the nonlinear propagation and nonspecular (nsp) reflec-
tion phenomena [21-23]. This leads to a solution which, although to some
extent approximate, is of analytic form and enables direct interpretation of the
results obtained. Numerical iterations of this solution aim mainly at the
possibility of achieving a bistable switch of the reflected beam.

The content of this chapter is organised as follows. In Section 2 the
reflection problem is formulated. The reduced variational technique, well
known from analyses of a single beam nonlinear propagation [24-25] and
optical soliton collisions [26-28], is adapted to the beam reflection at the non-
linear interface. The incident and reflected beam envelopes are modelled by
envelopes of the Gaussian shape, with beam parameters defined by aber-
rationless effects of nonlinear propagation [21]. In Section 3 the spectral rep-
resentation of the beam field at the interface, that also yields the integral
equation for the beam reflection coefficient, is derived. Section 4 is devoted
to the solution of this equation with increasing level of accuracy, i.e., from
the geometric optics (g-o) approximation to the exact beam field evaluation at
the interface [22-23]. The reflected beam deformations are described by the
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lon-gitudinal effects of nsp reflection [11-12] and the nonlinear feedback
between beam powers is simulated by the numerical monotonic iteration of
the solution [23]. The transverse effects of nsp reflection will be neglected as
small in relation to the longitudinal effects. In Section 5 results of numerical
simulations are discussed. The optical bistable switch in all the beam parame-
ters is obtained and it is shown that the origin of this phenomenon is different
from that of the plane wave reflection. In Appendix the parabolic approxima-
tion to the nonlinear Schrödinger equation (NLSE) for a single beam is
discussed and definitions of the aberrationless effects of nonlinear propaga-
tion are given.

Note that all equations in this chapter are written in scaled coordinates, as
described in Appendix and by Eqs. (2.24)-(2.29) in Chapter 2. Therefore, the
relations given here do not depend on magnitudes of the field wave number
and radius of a beam transverse cross-section.

4.2  Formulation of the problem

The problem of interest involves the reflection of a narrow beam of light at
the boundary between the nonlinear and linear media. The nonlinear medium
is of a Kerr focusing type, i.e., with the linear dependence of its refractive
index 2

22
1 || Ennn L +=  on the total field intensity |E|2, where n2>0. The low-

power refractive index nL and the nonlinear index of refraction n2 are given in
relation to the index of refraction of the linear medium. It is assumed that
nL>1 and that dielectric contrast of the interface is small, i.e. nL≅1. In
numerical simulations the case of incidence close to the critical angle of total
internal reflection (TIR) is analysed.

The basic geometry of the problem is shown in Fig. 4.4.1, in which
coordinate frames of the nonlinear-linear interface (X,Y,Z), the incident beam
Ei(xi,yi,zi), the g-o reflected beam Eg(xg,yg,zg) and the actual reflected beam
Er(xr,yr,zr) are sketched in the incidence plane Y=yi=yr=yg=0. The transverse
electric (TE) case is considered with the electric field perpendicular to the
incidence plane. All the beams, their parameters and frames are denoted by
subscripts ‘i’, ‘r’ and ‘g’, respectively. The g-o reflected beam Eg serves as
the reference beam in analysis of the actual  reflected beam  field  distribution
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Figure 4.1.  Schematic of the beam-coordinate system at the nonlinear-
linear interface.

Er, that is Er is interpreted as the beam Eg deformed during the nsp reflection.
The four effects of these deformations: the lateral or Goos-Hänchen (G-H)

shift δx, the focal shift δz and the composite shift δs of the g-o beam waist
position, and the angular shift δθ of the g-o beam axis direction, are indicated
in Fig. 4.1. Note that, in general, the angles of reflection θg and  θr=θg +δθ are
different from the incidence angle θi.

The total field E  near the interface is decomposed into a sum of the
incident iE  and reflected rE  beam fields and expressed by their slowly
varying beam envelopes iU  and rU :

( )
( ) ( ) ,exp),,(exp),,(

),,(),,(,,

rDLrrrriDLiiii

rrrriiii

zzikzyxUzzikzyxU
zyxEzyxEZYXE

+=
+=

        (4.1)

where kL is the linear (low-power) wave number of both beams and the beam
field is written in the scaled coordinate system (see Appendix for the
definitions of the scaling). The evolution of the beam envelopes is governed
by two NLSEs. Far from the interface, the incident and reflected beams
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propagate independently according to the standard uncoupled NLSEs with the
self-phase-modulation (SPM) terms equal ii UU 2||  and rr UU 2|| ,
respectively – see Appendix for details of analysis in this case. Near the
interface, these equations are coupled through the incoherent XPM
interaction and the uncoupled NLSEs are augmented by the XPM terms

ir UU 2||  and ri UU 2||  for the incident and reflected beam, respectively.

The beam reflection is determined by the reflection coefficient r to be
found. Therefore, in normalised units (see Appendix) the NLSEs  are written
as:

( ){ } 0),,(2 2222
2
1 =++++ iiiiriyxz zyxUUUi

iii
∂∂∂ ,

( ){ } 0),,(2 2222
2
1 =++++ rrrriryxz zyxUUUi

rrr
∂∂∂ .   (4.2)

With the appropriate Lagrangian density L:
222),(),(),,,( rirrNLSiiNLSrrii UUUULUULUUUUL −+= ,

( )( )4222
2
1),( UUUUUiUUUL yxzNLS −++= ∂∂∂ ,   (4.3)

the system of equations (4.2) can be recast as a variational problem and
derived from standard Euler-Lagrange equations [24].

The purpose of this work is to derive an analytic solution to this problem,
suitable for numerical simulations and for the description of basic
characteristics of the beam reflection. It is well known that the set of the
NLSEs (4.2) is not analytically tractable. Therefore, like in the reduced
variational analysis, some averaging procedure should be applied first to
reduce the number of independent spatial coordinates and to convert the
system of partial differential equations (4.2) into a simpler system of ordinary
differential equations (ODEs). A key point in this approach is to determine
the form of the beam envelopes Ua, a=i,r, adequate for the problem analysed.

To this end, let us introduce the new Lagrangian density <L> averaged in
planes parallel to the interface (X=const):

∫ ∫>=< dZdYUUUULL rrii ),,,( ,   (4.4)
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and observe that exactly the same reduced Lagrangian <L> is attributed to the

system of the standard NLSEs with their (SPM) terms |Ua|2Ua appropriately
modified by the averaged XPM factors γa:

 ( )( ){ }i U U x y zz x y a a a a a aa ai a
∂ ∂ ∂ γ+ + + =1 2 02 2 2 ( , , ) ,

∫∫∫∫+=≡ dYdZUdYdZUUX ariaa
42221)(γγ ,   (4.5)

a=i,r, Therefore, the systems (4.2) and (4.5) are equivalent on the level of the
reduced variational equations, as both systems lead to the same Euler-
Lagrange equations based on the same reduced Lagrangian density (4.4). The
system (4.5), however, has solutions in the form of beam envelopes Ψa

specific to the standard uncoupled NSLEs, i.e. to the system (4.5) with the
substitution γa=1. In this case, the reduced Lagrangians of these NLSEs

∫ ∫ ΨΨ>=< aaaaNLS
a

NLS dydxLL ),()(   (4.6)

provide the variational solutions Ψa with the beam power density averaged in
space and time:

p dx dya a a a= ∫∫( )1 2
2

Ψ ,   (4.7)

and this quantity will be used below as the solution parameter.
The averaged perturbation aγ  to these solutions modifies, through the

XPM factors γa, the parameters of the (single) beam envelopes Ψa; meanwhile
the beam amplitudes should remain unchanged. This leads to the following
form of the beam fields:

( ) ( ) ( )aDLaaaaaaaa zzikzyxUzyxE exp,,,, = ,

( ) ( )aaaaaaaaaaa pzyxBzyxU I;,,,, 21 Ψ= −γ ,   (4.8)

with the new beam power parameters

aaa pp γ=I    (4.9)

defined as the beam power densities pa modified by the factors γa. Equations
(4.8)-(4.9) state that, in the mutual beam interaction, the averaged incoherent
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XPM coupling modifies only the shapes, not the amplitudes, of the beam
envelopes Ua. Note that in Eq. (4.8) the parameter apI  is explicitly indicated
in the notation of the beam envelopes Ψa.

The reduced variational analysis of a single NLSE is well known [24-25].
Its solution:

( ) ( ) ( )aDaawaaaaaaaaaaa zzkiipzyxpzyx ∆+Φ=Ψ σµ exp,;,,;,, III ,

( ) ( )222
2
1221 )(exp)2(,;,, −− +−=Φ aaaaaawaaaaaa vyxvppzyx µµ III  (4.10)

is exactly governed by the parabolic approximation to the NSLE (see
Appendix and Refs. [21,32]). Apart from the last, nonlinear phase-correction
factor in Eq. (4.10), Ψa is given by the fundamental Gaussian envelopes Φa

known from the beam linear propagation, but with new definitions of the
propagation distance azI  and new beam wave numbers ka=kL+∆ka. Note that
the wave numbers ka determine also the angle of reflection θr through the
Snell law:

k kr r i isin sinθ θ= . (4.11)

In Eq. (4.10) the parameter waµ  stands for the beam waist radius aµ  at the
new waist position 0=azI . The relations between the beam complex width va,
the beam (real) radius wa, the beam phase-front curvature ρa and the distance

azI  remain exactly the same as in the case of linear propagation:

122 −−− −= aaa iwv ρ , (4.12)

122 −= aaaa wz ρµI . (4.13)

All the beam parameters, including the waist radius aµ , are defined in a
new scaled space (xa, azI ). They depend on the propagation distance azI  and on
the distance X between the observation point and the interface. Due to the
self-similar shape of the beam envelopes they were previously introduced as
the aberrationless effects of nonlinear propagation [21]. It is pertinent to
observe that these definitions are valid for arbitrary beam power densities pa,
including those much above the self-trapping level pa=1. They are even valid
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at beam collapse points. This makes it possible to apply them in numerical
simulations carried out in this work.

Changes of the waist radius and on-axis phase of the beam propagation in
the bulk nonlinear Kerr medium, for the propagation range up to one
diffraction length za=zD, including also a collapse point (µa=0), are shown in
Fig. 4.2. Plots are given for three representative power levels: pa=0 (linear
propagation), pa=2 (nonlinear propagation with a moderate beam power) and
pa=8 (nonlinear propagation with a high beam power). The last power level is
really high, however, values of pa in Fig. 4.2 correspond to the effective
parameters apI  that modify only the envelope shapes of the solution (4.8)-
(4.10); the beam amplitudes are proportional to a much smaller quantity

aap γI .

Moreover, the propagation ranges za considered here are short enough to
obey limitations characteristic to a thin nonlinear refractor [29]. Therefore,
the self-similar Gaussian shape of the reduced variational solution (4.8)-
(4.10) still remains accurate in numerical simulations presented here. In spite
of this, the changes of the beam parameters, even within these short
propagation ranges, will appear large enough to influence substantially the
beam reflection. The waist radius changes modify the beam on-axis phase,
the slope of which equals the nonlinear increment ∆ka of the beam wave
numbers (cf. Eqs. (A.4.13)-(A.4.18) in Appendix).

The definitions of the beam envelopes (4.8)-(4.10) entail also, through the
beam amplitudes Ba(2pa)1/2, the definition of the reflection coefficient r:

21)()( irir ppBBr = . (4.14)

The coefficient r describes the beam reflection but, unlike the plane wave
analysis, depends decisively on the beam representation. Moreover, the
incidence θi and reflection θr angles are in general not equal and the ratio of
the beam power densities

riir rpp θθ coscos2= (4.15)

differs from the beam reflectance 2|| r , as can be directly derived from the
reduced variational equations. Therefore, in the nonlinear medium,  a  normal
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Figure 4.2. Waist radius µa and on-axis phase ∆ϕa versus
propagation distance za for different effective power parameters
pa. The propagation distance is scaled by the diffraction length.

to the interface component of the total field power flux remains constant
during the beam reflection, in contrast to its tangential component. This is
consistent with the beam penetration of the linear medium at the TIR
incidence and results in the G-H shift of the reflected beam. Outside the beam
interaction region, the tangential component of the power flux remains also
conserved in the TIR case, what leads to other nsp deformations of the waist
radius, waist position, propagation direction and complex amplitude of the
reflected beam.

Certainly, the fundamental Gaussian beam envelope ansatz (4.8)-(4.10)
does not describe all possible phenomena resulting from the nonlinear
propagation of the beam, such as, for example, the beam splitting or beam
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shadowing [28]. Such phenomena, however, do not seem representative in
the description of basic properties of the beam reflection. Within this
limitations the beam representation defined above is quite general and allows
all the beam parameters: central position, width, spatial chirp, amplitude,
phase and spatial frequency, to vary down the propagation direction za and
with the distance X from the interface. Their dependence on za is explicitly
given in Appendix, their relation to X can be obtained by substitution of the
ansatz (4.8)-(4.10) in the system (4.5) of NSLEs.

In this chapter, the beam reflection problem will be solved, that is, the
reflection coefficient r and the beam-field distribution at the interface will be
found. The solution to the full propagation-reflection-propagation problem,
that is, to the sequence of the incident beam propagation from some input
plane to the interface, the beam reflection at the interface and the reflected
beam propagation to some output plane, is also possible to obtain within the
presented formalism. However, it is outside the scope of this chapter. Note
only that to solve this general problem, the beam reflection coefficient r
should be known first. Inclusion of all possible propagation phenomena in the
presented solution implies a relation, through the beam power parameters pa,
between the incidence angle θi at the interface and the incidence angle θi0 at
some input plane zi=zi0. Here θi is included in the final solution as a certain
constant quantity, but it can be treated as an independent parameter in a more
general case as well, to account fully for the nonlinear beam propagation
between the input/output planes and the interface.

In order to find r, it is sufficient to know only the beam fields and their
first derivatives at the interface. Moreover, for θi≅θr, the XPM factors are
given by

)sin2exp(21)( 2222
aaa wXrX θγ −+≅ ± , (4.16)

for a=i, r, respectively, the beam interaction depth decays exponentially with
the distance X from the interface and the first derivatives of γa with respect to
X are nil for X=0. Therefore the reflection coefficient r depends only on

221)0( ±+=≡ raa γγ  evaluated at the interface (X=0). Thus, at the interface,

all the beam parameters are explicitly specified by the effective power
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parameter apI  (4.8) with the XPM factors aγ  and the only parameter in the
field representation (4.7)-(4.10) to be found is just the reflection coefficient r.

4.3  Derivation of the reflection coefficient

Let us concentrate on the field distribution in the incidence plane Y=0 and
express the incident and reflected beam fields in terms of their spectral
representations in this plane:

( ) ( ) .)21(expexp

),0,(
22

12121

∫ +−+×

= −−

dsisxvszziki

vpBzxE

aaaDaa

aaaaaaa

σ

µπ
 (4.17)

From the field continuity relations at the interface X=0 and the dispersion
relations

2
2
12 szkc aaDaa −= κµ , (4.18)

each spectral component of the incident and reflected beams related by the
spectral  reflection coefficient r , and the spectral representation of the
reflected beam can be restated as

( ) .()(exp)(

),0,(
22

2
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121121
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rrrrrrr
IIIµ
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(4.19)

The shifts azI∆  of the beam waist positions down the nonlinear propagation
directions are defined by Eqs. (A.4.9) in Appendix.

By definition, r  differs from the standard Fresnel reflection coefficient Fr .
The Fresnel reflection coefficient relates the incident and reflected plane
waves with the same amplitudes

( ) ( ))(exp)()(exp~
rrrrFiiii zzicisxsrzzicisxE ���� ∆++−+∆++∝ (4.20)

meanwhile the beam reflection coefficient r  relates the plane waves with
different amplitudes determined by the spectral representations (4.17). That
leads to the explicit expression for r :

( )( ) ( ) )2exp(exp)( 21
abriirriF Fisiivrsr σσµνµ −= − , (4.21)
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( )22
ririab izzF µµ −+∆−∆= CC (4.22)

with its amplitude and phase nonlinearly modified by all the parameters of the
incident and reflected beams. Note that Fresnel reflection coefficient Fr  also
differs from its linear counterpart owing to the nonlinear modifications of the
beam wave numbers ak∆ .

4.4  Evaluation of the beam field at the interface

Evaluation of the integral (4.19) describes the reflected field distribution at
the interface and yields values of the reflection coefficient r . Note that,
because the incident beam distribution is known, the solution of the reflected
field (4.19) at the interface yields not only the distribution of the total beam
field above the interface but the transmitted beam field distribution below the
interface as well. In the following section, subsequent approaches to
evaluation of the integral (4.19) with increasing accuracy will be outlined.

4.4.1  G-o approximation to the reflected field

In the g-o approximation, the spectral reflection coefficient )(sr  is
replaced by its value at the centre of the beam spectrum:

)0(rrg = . (4.23)

That value of r  is used in evaluation of all the reflected beam parameters.
This will be indicated by replacing of the subscript r by g in all field
expressions. Among other parameters, the XPM factors γ a  and the beam
wave numbers aLa kkk ∆+=  are found from Eqs. (4.16) and (A.4.18),
respectively. The direction angle θ θg g i ik k= −arcsin( sin )1  of the reflected

beam axis was specified by the Snell law (4.11). Therefore, the expression of
the g-o reflected beam

( ) ( )gDggwgggggirrr zzikipzxpzxE +Φ σµ exp,;,0,pr=),0,( 2-1
g

21
g

II (4.24)

can be derived without any integration of the representation (4.19).
The  g-o  beam  serves  as  the  reference  frame  in  interpretation  of  the

deformations of the actual reflected beam [11-12]. The g-o reflection
coefficient gr  follows, in spite of its modifications given by Eq. (4.21),
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characteristic features of the Fresnel coefficient Fr . It depends, instead of the
actual reflection angle rθ , on the g-o reflection angle gθ . Amplitude and

phase of the g-o beam represent, loosely speaking, predictions of the plane
wave analysis adapted to the description of the beam reflection.

4.4.2  Parabolic approximation to the reflected field

The accuracy of the reflected beam evaluation can be much improved by
using the parabolic approximation of the spectral reflection coefficient )(sr
evaluated at the centre of the beam spectrum 0=s :

FsiisLrsr g
2)2()ln()(ln +−≅ . (4.25)

Note that, because the transverse modifications of r  (in a plane )0=Z  are
much smaller than its longitudinal modifications (in the incidence plane

0=Y ), only the latter ones will be accounted for in this analysis. The two
longitudinal complex beam shifts:

0
1 | =
− ∂∂= ssrirL , (4.26)

( ) 0
2222 |)( =

− ∂∂−∂∂−= ssrsrrirF (4.27)

are immediately incorporated in the paraxial description of the reflected beam
(4.19) and describe the beam field distribution quite accurately far from the
singularities of the beam spectrum:

( ) ( ).exp;;,0,
pr=),0,( 2-1

g
21
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(4.28)

The field is evaluated only in the principal incidence plane, that is for 0=gy ,

and the transverse modifications of the beam, being small in relation to the
modifications in the incidence plane, are neglected what yields also 0=ry .

The complex shifts L and F give rise to the deformation of the g-o
reflected beam [11-12]. Note that the aberrationless effects, defined in
Appendix, that is the waist radius modifications, the waist displacements and
the self-shortening of the propagation distance, contribute to the beam
deformation during reflection through the shift abF  defined in Eq. (4.22). Due

author 
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to this let us coin abF  as the aberrationless complex focal shift of the beam
reflection.

4.4.3  Effects of nonspecular reflection

The reflected beam parameters, for example the actual angle rθ  of the
beam propagation, are still unknown because the beam shifts L and F are
defined as complex quantities. Therefore, the next step of this analysis
provides direct interpretation of the complex shifts in terms of the g-o beam
modifications given as real quantities.  According to the well known
definitions of the longitudinal effects of the nsp reflection [11-12]:

( )δ x L= Re , 

( )δ z F= Re , 

( ) ( )δ µθ ≅ Im L zD ns
2 ,

( )µ ns F2 1≅ + Im , (4.29)

here given in their normalised version (see Appendix), the g-o reflected beam
is modified by the transverse xδ  and focal zδ  shifts of its waist centre, its
waist radius expansion or reduction by the factor nsµ , and rotation of its
scaled axis gzI  by an angular shift θδ :

θθ δδδδµ sin)()(cos)( zgwDxgnsr zwzxx −−−= I ,

θθ δδδδµ cos)(sin)()(2
zgxgDwnsr zxzwz −+−= II .      (4.30)

Therefore, the actual reflected beam axis direction is given by the (actual)
reflection angle:

θ θ δ θr g= + (4.31)

and the total composite beam shift Sδ  of the beam axis is given by xδ , zδ ,

θδ  (cf. Ref. [22] and  [23]):

θδδδδ tan)()( wDzgxs wzz −+= . (4.32)
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Note that values of xδ , zδ , θδ  are usually large enough to make the
composite shift Sδ  substantially different from the G-H shift xδ . A factor

wD wz  appears in Eqs. (4.30) and (4.32) due to different normalisation
scales, ww  and Dz , in the transverse and longitudinal beam axes directions.
Eqs. (4.30) correspond to Eqs. (A.3.12) in Chapter 3 written in the
unnormalised spatial coordinates ), gg zx  in the linear medium.

It can be proved [12] that the geometrical beam deformations defined
above should be augmented by the modification of the reflected coefficient

gr :

( )zrnsg ikrr δµ exp21−= , (4.33)

in order to obtain the reflected beam distribution:

( ) ( )rDrrnswrrrrr
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equivalent to that given by the complex longitudinal shifts L  and F  by Eq.
(4.28).

4.4.4  Exact evaluation of the reflected field

The beam representations (4.28) and (4.34) seem very appealing due to the
straightforward interpretation of the solution derived. However, great care
must be taken in using this representations in cases where the beam spectrum
possesses some singularity in the vicinity of the g-o reflection angle gθ .

Exactly such a case is considered in this chapter. The spectral coefficient r
exhibits a branch point singularity at the critical incidence cg θθ ≅ :

( )[ ]θ c L r Lk k n= arcsin (4.35)

and the incident beam excites a lateral wave guided by the interface. The
interaction between the lateral wave and the beam field is the main source of
the reflected beam deformations. That results, however, in divergence of the
expansion (4.25) of r  near its branch point singularity. Therefore, in
numerical simulations presented here, a different, exact this time, analysis is
used [22].
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The expansion (4.25) is replaced by the double and infinite Taylor
expansion of r  at angles θ θ ε± ≡ ±c '  placed on both sides of cθ :

( ) ( )∑
∞

= ±±
− −=

0
1 ))((!)(

m
mmm uuudurdmsr , (4.36)

where the new variable with the same branch point singularity as in r~   is
used:

( )u u k kg c g≡ = − − −± ± ±( , ) sin( ) sin( )θ θ θ θ θ θ
1 2

, (4.37)

u u± ± ±≡ ( , )θ θ . In opposition to the representation (4.25), the expansion
(4.36) provides an exact representation of the spectral reflection coefficient
r . Moreover, after substitution (4.36) into the beam representation (4.19), the
integral can be evaluated exactly, term by term [22], by using the definition of
the parabolic cylinder functions [30, 31]:

( ) ∫
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Finally, the reflected field distribution can be given in terms of appropriate
modification of the g-o reflected field gE :

( )[ ] ,),0,()()(1

=),0,(

0 21
)(

21
)(

gggm mmmm

rrr

zxEiDciDc

zxE

∑
∞

= −−
−

−−
+ −++ ββ

(4.39)

with the expansion coefficients )(±
mc  and the arguments β  dependent on the

spatial coordinates ),( gg zx  [22]. Note that the complex shifts (4.26)-(4.27)

and the effects of nsp reflection (4.29)-(4.32) are only implicit in the exact
field representation (4.39).

The field representation (4.39) yields the exact solution to the reflection
problem for the assumed form of the beam envelopes (4.8)-(4.10). Four terms
in the expansion (4.39) appear sufficient to evaluate the field near the branch
point singularity with a high accuracy [22]. The representation (4.39) yields
also the complex shifts L and F, as well as all the nsp effects xδ , zδ , θδ , nsµ
and grr , evaluated exactly this time. However, the approximate (up to the

second-order) representations (4.28) and (4.34) still remain valid. Details of



142      CHAPTER  4

this analysis, specified to the linear case, can be found in Ref. [22]. In the
nonlinear case the linear analysis has to be augmented by monotonic iteration
of the nonlinear feedback between the reflection coefficient r and the ratio of
the beam power densities ir pp , what was explicitly given in Eqs. (4.8),
(4.14)-(4.16). A description of such an iteration, specified to the case of the
electro-optic or nonlocal linear-nonlinear interfaces, can be found in Ref.
[23].

The incident and reflected field amplitude distribution at the nonlinear
interface is shown in Fig. 4.3 for the incidence at the critical angle of TIR and
the small dielectric contrast nL=1.0005. The reflected beam is assumed to be
narrow, i.e. the ratio between the longitudinal and transverse scales Dz  and

ww  is small: 50=wD wz . The reflected beam is represented alternatively by
the g-o reflected beam according to Eq. (4.24), the g-o beam modified by nsp
effects according to Eq. (4.34), and the actual nonspecularly reflected beam
described by the exact representation (4.39). Evidently, the g-o approximation
overestimates the beam amplitude in this case and does not provide adequate
description of the reflected beam. On the other hand, the parabolic
approximation to the reflection coefficient (4.25) and the “nsp” representation
(4.34) appear quite accurate.

There are a few reasons for the apparent difference between the amplitudes
of the g-o reflected beam and the actual reflected beam at the interface. For a
wide spectrum of the narrow incident beam - here of the order of

02.0)( 1 =−
wD wz  - a substantial part of the reflected beam spectrum is

placed in the partial reflection range, i.e., below the critical angle of TIR
(4.35). That should lower the effective amplitude of the reflected beam. The
opposite effect - the spectral shift of the beam spectrum towards larger angles
of reflection, i.e., into the TIR range - results from relative changes of the
critical angle cθ  and the angle gθ  of g-o reflection with the incident beam

power.
These two effects approximately compensate each other in the case shown

in Fig. 4.3. However, the other effect pertinent here is the nsp focal shift zδ
of the waist plane along the g-o beam axis. This effect finally reduces the
reflected beam amplitude as  shown  in  Fig. 4.3.  In  general,  all  these  three
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Figure 4.3.  Amplitudes of the incident, g-o reflected, nonspecularly
reflected and exactly reflected beam field distributions at the nonlinear
focusing interface. Amplitudes are given with respect to the maximum
value of the amplitude of the incident beam; the distance along the
interface is scaled by the incident beam half-width.

effects may contribute substantially to the net change of the reflected field
amplitude at the interface.

4.5  Bistability of nonspecular reflection

The effects of nsp reflection: the G-H shift xδ , the composite shift Sδ , the
waist modification nsµ , and the focal shift zδ , are depicted in Fig. 4.4 for
consecutive increasing and decreasing of the incident beam power parameter
pi. All these effects are large, much larger than their counterparts in the beam
reflection at a linear interface [22], and noticeably modify the reflected beam
according to the beam representation (34). For example, the lateral composite
shift is of the order  of  the  beam -waist  radius  ww ,  the  waist  modification
factor varies from 1.4 to 0.8 and  the  angular  shift  θδ  approaches  even  1.5
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Figure 4.4.  Nsp effects of reflection: the composite shift Sδ , the

Goos-Hanchen (G-H) xδ  shift, the waist modification squared 2
nsµ  and

the focal shift zδ  versus the incident power parameter ip . The  shifts

Sδ  and xδ  are scaled by the beam half-width, the focal shift is scaled

the diffraction length of the incident beam.

degrees. Note also large difference between the G-H shift xδ  and the
composite shift Sδ  (32) at low power levels, that is in the partial reflection
state of the interface. Due to large values of the focal and angular shifts, the
lateral composite shift is substantial in both cases of beam reflection: partial
transmission and TIR. However, the most interesting feature of the nsp
effects is their apparent bistable change, as indicated in Fig. 4.4 by their clear
hysteresis loops. A similar effect is expected in the reflected beam amplitude
and, consequently, in the reflection coefficient as well.

Magnitudes of the reflection coefficients of the g-o beam gr  and the actual

(nonspecularly reflected) beam r  are shown in Fig. 4.5 in relation to the
increasing and decreasing incident power parameter pi. The two cases: (a)
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9.1=q , 13.0=iz  and (b) 2.2=q , 10.0=iz  are distinguished by the
different angular detuning q and the (normalised by zD) propagation distance
zi between the incident beam waist and the interface. The angular detuning

)2()2( cLiq θπθπ −−=  is introduced as a measure of the difference
between the incidence angle iθ  and the low-power critical angle cLθ . Large
differences between r and rg, represented by the nsp modification of the beam
complex amplitude r/rg, indicate that the behaviour of the beam reflection
clearly deviates from the plane wave predictions. Bistability loops are
obtained in both reflection coefficients: r  and gr . Their range and switching

contrast (height) increase with the increase of angular detuning, at the
expense of the increase of the incident beam power. Note that basic
characteristics of gr  follow closely those of the Fresnel coefficient Fr .

Some pecularities in the bistability loops, not encountered in, for example,
bistable switching of the electro-optic or nonlocal interfaces [23], can be
observed. The shape of the g-o reflection coefficient gr  appears irregular in

case (b) and the bistability loop of the beam reflection coefficient r  is shifted
towards higher values than those of gr  in case (a). Moreover, it is clearly seen

in case (a) that the switching thresholds are displaced from the branch point
singularity of gr  towards lower power values. It seems that these pecularities

are caused by the displacement of the beam spectrum into the TIR range, as
given by changes of the angles gθ  and rθ  of reflection with respect to the
critical angle cθ . This conjecture is confirmed by Fig. 4.6, where changes of
the critical θc angle, angle of g-o reflection gθ  and the actual reflection angle

θδθθ += gr  are drawn versus the incident beam power. The actual angle θr of
reflection appears larger than its g-o counterpart gθ  and remains close to cθ
in the whole bistability range. Both switching thresholds (switch-up and
switch-down) coincide with the common points of the curves rθ  and cθ  in
both cases (a) and (b).

On the contrary, the g-o reflection angle gθ  is smaller than cθ  in the
bistability range and crosses the  branch  point  of  gR  (crossing  point  of  the
curves gθ  and cθ ) outside this range. Moreover, it  happens  that  this  branch
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Figure 4.5. Magnitudes of the nsp beam reflection coefficient r and the
g-o reflection coefficient rg vs. the incident power parameter ip : (a) -

9.1=q , 13.0=iz , (b) - 2.2=q , 10.0=iz .

Point singularity does not even coincide with the higher threshold of the
beam switching. This is precisely the case of Fig. 4.6 (a). Note that the
difference gr θθ −  is just the nsp angular shift θδ  of the g-o beam. Therefore

this nsp shift displaces the spectrum of reflected beam into its higher values
and determines the beam switch.

The examples discussed above indicate that the role of the nsp effects is
decisive in the bistable beam reflection. Large nsp distortions of the reflected
beam spectrum and shape modify the wave numbers of both beams according
to Eq. (A.4.18) and the reflection angle according to the Snell law (4.11).
This, in turn, modifies the beam reflection coefficient and the beam
amplitude to such the extent that the bistable switch can be achieved for some
values of the angular detuning. Evidently, characteristic features of this
switch appear different from those predicted by the plane wave analysis.
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Figure 4.6.  Critical angle cθ , g-o reflection angle gθ  and nsp

reflection angle rθ  (in degrees) vs. the incident power parameter ip :
(a) - 9.1=q , 13.0=iz , (b) - 2.2=q , 10.0=iz .

4.6  Comments and conclusions

The beam reflection at the nonlinear-linear interface is analysed for
incidence near the critical angle of TIR. The solution obtained is derived in
terms of aberrationless effects of nonlinear propagation and nsp effects of
reflection. Results of the analysis indicate that the nonlinear-linear interface
may exhibit bistable switching behaviour of the beam reflection/transmission,
for some particular sets of beam and interface parameters. All nsp effects of
reflection show similar bistable behaviour with the large contrast of
switching.

The nature of the bistable switch of reflection at the nonlinear-linear
interface appears different from that predicted by the plane-wave analysis.
For example, the shift of the bistability loop from a branch point singularity
of TIR can be observed for certain sets of the beam and interface parameters.
Contrary to the plane wave predictions, where the switching is exclusively
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related to the singularity of the Fresnel reflection coefficient at the critical
angle of TIR, the switching of narrow beams is also determined by large nsp
deformations of the reflected beam. In addition, these effects of nsp reflection
are substantially enhanced by self-focusing and by mutual interaction of the
incident and reflected beams.

The presented treatment of the beam reflection problem bases on the
iterated exact evaluation of the beam field at the interface. However, the
incident and reflected beam envelopes can be also modelled on the grounds
of the reduced variational formulation of the auxiliary nonlinear propagation
problem. The accuracy of this approximation is of the same order as that
encountered in the variational analysis of coupled solitons dynamics.
Therefore, the solution indicates rather qualitative characteristics of
reflection, useful in the author’s opinion, however, in possible further
numerical and experimental studies of this problem. This work is, to the best
of the author’s knowledge and together with his other recent communication
[32], the first report on the bistable switch of the finite-width beam at the
nonlinear-linear interface. The analysis presented confirms, contrary to
common opinions on this problem, that bistable switching of the nonlinear
interface could, at least in principle, be obtained by a single beam incidence.

The analysis is not restricted only to beams and to nonlinear media with
the plain refractive Kerr-type nonlinearity. Finite-width pulse and/or beam
reflection/transmission at interfaces between nonlinear media of other types
of nonlinearity may be treated in a similar manner. In the context of possible
direct applications it must be stressed that the parameters of the beam-
interface system necessary to obtain the bistable switch are rather demanding
–first of all, the beam power should be very high. However, this analysis
concerning the refractive nonlinearity of the local Kerr type may serve as the
first step in modelling interfaces consisting of other nonlinear media, like
these of nonlocal saturated nonlinearities [9, 33-34], semiconductors
operating near the exciton-polariton resonance [35] or electro-optic structures
guiding surface plasmon resonance modes [36]. In these cases it is expected
that significant improvement of the switching conditions may be obtained.



Beam reflection at a nonlinear-linear interface      149

Appendix:  Aberrationless effects of nolinear propagation

Let us consider a single fundamental Gaussian beam of TE polarization
( yEE ≡ ) propagating in a nonlinear Kerr medium with the refractive index

2
22

1 || Ennn L += , where Ln  and 2n  are the linear (low-power) and nonlinear
(high-power) indices of refraction, respectively. In the parabolic
approximation, that is up to second-order terms in transverse coordinates x
and y , the propagation of the Gaussian beam in this nonlinear medium can
be described in a way reminiscent of the well-known formulae describing the
Gaussian beam propagation in a linear medium. Within this approach the
beam remains Gaussian in each transverse cross-section. However, the
longitudinal coordinate (propagation distance) along the beam axis, as well as
the beam parameters, like the beam radius or phase-front curvature, should be
appropriately rescaled or normalised. The rescaling depends on the power of
the beam and on the (propagation) distance of the cross-section plane from an
actual beam waist plane. The method, known as the scaled complex ray
tracing (SCRT) [21], allows to trace the nonlinear propagation of beams with
the help of well-known results of tracing the linear propagation of beams.

Define the envelope or SVA ),,( zyxΨ  of the beam by extraction of the
plane wave phase factor ( )zzik DLexp  from the beam field ( )zyxE ,, :

( ) ( )zzikzyxzyxE DLexp),,(,, Ψ= .    (A.4.1)

In Eq. (A.4.1) kL  and Dz  are the low-power (linear) wave number and
diffraction length of the beam field, respectively. It is postulated that
z k wD L w= 2 , where ww  stands for a low-power radius (half-width) of a beam
transverse cross-section at its waist. The beam propagates in direction of the
z-axis and its field distribution ( )0,, zyxE  is assumed to be known in the
input plane at 0zz = .

The high-power (nonlinear) longitudinal coordinate z�  and the low-power
(linear) longitudinal coordinate z  are assumed to be in general different from
each other besides the input plane 0zz = , where zzzz === 00

�� . It is
stipulated that the transverse coordinates x and y of the beam are scaled to

ww , the longitudinal coordinates z  and z�  are scaled to Dz , and the field
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amplitude ( )zyxE ,, , together with its SVA ( )zyx ,,Ψ , are normalised or

scaled to ( )( ) ( )[ ] 21

2
221

−

LwL nnwk :

yxwywx ww ,, → ,

zzzzzz DD
CC ,, → ,

( ) ( ) 222
2

2
2
1 |),,(||),,(||),,(| zyxEzyxzyxnnwk LwL =Ψ→Ψ .    (A.4.2)

For more details of the beam scaling procedure see also the discussion in
Section 1 of Chapter 2.

Evolution of the SVA ( )zyx ,,Ψ  of the beam is then governed by the
standard normalised NLSE:

{ } 0),,(),,()( 222
2
1 =ΨΨ+++ zyxzyxi yxz ∂∂∂ .    (A.4.3)

A solution of (A.4.4) is postulated here in the form of fundamental Gaussian
beam [21]:

( ) [ ])()(exp)(,, 222
2
1 ςς vyxAzyx +−=Ψ ,

[ ] [ ] )()()(exp)(exp)()( 2
0 ςςµςϕςϕςς −∆== viAiaA ,    (A.4.4)

known from the case of its linear propagation, in which case ς=z , 1=µ  and
0=∆ϕ . Contrary to the linear case, however, the spatial chirp parameter ς  is

not equal to the propagation distance z� , but is equal to z�  scaled by the factor
)(2 ςµ  that is also dependent on ς :

)(2 ςµς −= zC .    (A.4.5)

The real )(ςa , )(ςϕ , )(ςµ  and complex )(ςν  beam parameters are to be
found by solution to the NLSE (A.4.3).

The beam complex amplitude A is related, through the factor pA 20 = ,
to the power parameter p , which stands, up to the admittance factor, the
averaged (in space and time) power density of the beam:

dxdyzyxp
2

2
1 ),,(∫∫ Ψ= .    (A.4.6)
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The power parameter p  is normalised in the way that makes it equal to one
at the self-trapping power level, where beam intensity 2|),,(| zyxE  does not
change from one transverse plane to another one. It is stipulated that

00 z== ςς , 00 =∆=∆ ϕϕ  and 10 == µµ  in the input plane 00 zzz == DD  and
that the beam waist plane is placed at 0=z� . The ansatz (A.4.4) becomes an
exact solution to the NLSE (A.4.3) in the low-power limit 0≅p , where

zz =� , 1=µ  and 0=∆ϕ  for all values of z . In the high-power limit, that is
for finite values of p , the Gaussian beam, in the form (A.4.4) known from
linear propagation, is nonlinearly modified by the nonlinear SPM effect. This
means that the beam Gaussian shape propagating in the nonlinear medium
depends on zI  (or ς ) instead of z  and is nonlinearly modified through the
quantities µ  and ϕ∆ . Definitions of these quantities follow directly from the
solution to the NLSE (A.4.3) in its parabolic approximation and this will be
outlined by Eqs. (A.4.19)-(A.4.27) below. Let us describe the solution
obtained by this method first [32].

The nonlinear modifications of the beam can be described by two factors:
the self-shortening factor κ ς( )  of the linear propagation distance z  and the
nonlinear on-axis phase modification ∆ϕ ς( ) , both expressed, besides the
power parameter p , by the spatial chirp parameter ς  [21]:

The self-shortening factor
122 )1)(1()( −++−±= ςςςκ p     (A.4.7)

scales the distance z  to its nonlinear counterpart zI ,

 zzz ∆−= )(ςκI ,    (A.4.8)

and displaces, by the nonlinear focal shift z∆ , the beam waist from its
position at the low-power waist plane 0=z  to its new position at the high-
power waist plane 0=zI :

( ))(1)( 0
1

0 ςκςκ −=∆ �zz .    (A.4.9)

The signs �  in Eqs. (A.4.7) and (A.4.9) are chosen such that the condition
1)( 0

2 =ςµ  is fulfilled in the input plane z z= = =0 0ς ς . Now the beam
complex ν ς( )  and real w( )ς  radii (half-widths) of the beam and the beam
phase front curvature ρ :
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( ) )()(1)()( 12122 ςρςςςµς −−−−− −=+= iwiv ,  (A.4.10)

are given in a form known from linear propagation of the Gaussian beam,
with the parameter µ   expressed by the self-shortening factor (A.4.7):

)()()( 0
2 ςκςκςµ = .  (A.4.11)

Therefore, the parameter µ  represents the beam waist radius )0(w  at the new
waist position 0=ς  and the relation between 2w , ρ  and ς  is:

( ) ςςρςςµς )(1)()( 222 =+=w ,  (A.4.12)

Eq. (A.4.12) follows the relation zw ρ=2  known from the linear propagation
of the Gaussian beam. However, the new propagation distance ςµ 2=z�

(A.4.5) equals the chirp parameter ς  scaled by 2−µ , meanwhile both these
quantities equal each other in the linear case, where ς=z  and 1=µ . Note
also that the normalised power parameter 2

0
2
02

1 wap =  is expressed by the real
amplitude 0aa =  and the real beam radius 0ww =  known in the input plane
[21].

Besides the nonlinear effect of self-shortening decribed by the factor
κ ς( ) , SPM of the beam induces also the nonlinear increment ∆ϕ ς( )  of the
beam on-axis phaseϕ ς( )  [21],

ϕ ς ϕ ς ϕ ς( ) ( ) ( )= +L ∆ ,

∆ϕ ς δϕ ς δϕ ς( ) ( ) ( )= − 0 ,  (A.4.13)

)())1(()1)(1()( 2121
2
3 ςϕςϕςδϕ LL ppp −−−−= −− ,

)arctan()( ςςϕ −=L ,  (A.4.14)

where these phase quantities are assumed to be known in the input plane
0ςς = , that is )()( 00 ςϕςϕ L= . Note that in the low-power limit the phase

term ϕ ς( )  resolves into the low-power on-axis phase )(zLϕ  of the beam, that
is )()( zLϕςϕ =  for 0=p .

The nonlinear phase increment ∆ϕ ς( )  depends on ς  and changes during
the beam nonlinear propagation. Therefore it modifies also the wave number
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)(ςkk ≡  of the beam field. As the derivatives of ∆ϕ ς( )  and ϕ ς( )  are known
from (A.4.13)-(A.4.14) [21], [32]:

( ) )()1()( 2
2
3 ςςϕ −−−= wpdzd ,

( ) 1222
2
1 )1)(31)(()( −− ++=∆ ςςςςϕ pwdzd ,  (A.4.15)

then, to evaluate k  explicitly, it is sufficient to approximate the on-axis beam
phase ϕ ς( )  by the first two terms in its Taylor expansion. At some transverse
interface defined here, say, at 'ςς = , this approximation yields:

( ) )'()()'()( ςϕςσςϕ dzdz ∆+≅∆ ,

( ) )'()(')'()'( ςϕςϕςσ dzdz ∆−∆= ,  (A.4.16)

and the reformulation of the exponent terms in the definition (A.4.1) of SVA
of the beam:

[ ] ( ) [ ] [ ]zzikizziki DDL )(exp)(expexp)(exp ςςσςϕ ≅∆ ,  (A.4.17)

leads to the expression for the (nonlinear) effective wave number of the beam
field:

[ ]12222
2
1 )1)(31)(()(1)()( −−− +++== ςςςςβς wwkpkkk wLLL .  (A.4.18)

Therefore, the linear wave number Lk  is increased or decreased to its
nonlinear value k  by the wave number modification factor β . Note that β  is
not linear in p ; both quantities w  and ς  depend on p  as well.

It can be shown by inspection that the ansatz (A.4.4), together with the
definitions (A.4.5)-(A.4.18), satisfies the NLSE (A.4.3) in the parabolic
approximation of the beam intensity [21]:

[ ])()(3)(),,( 2222
2
12 ςς −− +−≅ wyxpwzyxE   (A.4.19)

for arbitrary values of beam powers, that is below or above the self-trapping
level 1=p , provided that the propagation distance z is small enough to
ensure that the assumed Gaussian beam shape approximation still remains
valid. The form of approximation (A.4.19) has not been postulated a priori –
it can be rigorously derived, together with other beam parameters, by the
SCRT method [21] in parabolic approximation to the NLSE:
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))(()(|),,(| 222 yxbczyxE +−≅ ςς  [21]. Note that the parabolic form of the
nonlinear term in the NLSE (A.4.19) has been obtained first within the
reduced variational approach to the problem [24], [25]. It differs substantially
from the first order approximation to the ansatz (A.4.4) conventionally
assumed in the past, that is from:

|)()(1|)(),,( 22222 ςς −+−≠ vyxazyxE .  (A.4.20)

The form (A.4.19) of the nonlinear term in the NLSE is a fundamental result
of the method. Only then the analysis presented accounts in the self-
consistent manner for the nonlinear modifications of the Gaussian beam
transverse and longitudinal spatial distribution in its amplitude and phase,
within the solution (A.4.4)-(A.4.19) of the  parabolic approximation (A.4.19)
to the NLSE (A.4.3).

Let us summarise the derivation of the solution obtained above for
parabolic approximation of the NLSE:

( ) ( )( ){ } 0),,(3 2222
2
122

2
1 =Ψ+−+++ −− zyxwyxpwi yxz ∂∂∂ ,  (A.4.21)

as given in Refs. [21] and [32]. The (exact) solution to the NLSE (A.4.21)
can be found in the form ])(exp[ 222

2
1 −+−=Ψ vyxA  of the SVA of the

Gaussian beam (A.4.4) with its complex radius ν  and its complex amplitude
A . Indeed, inserting Ψ  in the NLSE (A.4.21) and grouping terms of the zero
and second order in x  and y , we obtain the nonlinear complex ray and
amplitude ordinary differential equations [21], [32]:

( )442 1 −−= wpvidzdv ,  (A.4.22)

( )22
2
32 1 −− −−= wpvviAdzdA ,  (A.4.23)

with the solution postulated in the form:

[ ]LivAA ϕϕµ −= − (exp2
0 ,  (A.4.24)

1122 )( −−− −= ρiwv  ,  (A.4.25)

formally equivalent to that of linear propagation but with beam parameters
dependent now on ς  (A.4.5) instead of z  (cf. Eqs. (A.4.4), (A.4.10),
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(A.4.13) and (A.4.14)). The SCRT method [21] yields explicitly this relation
for all the beam parameters in (A.4.24) and (A.4.25), that is for the real beam
radius w  (A.4.12) (at arbitrary zI ), the beam radiusµ  (A.4.11) at the beam
waist (at 0=zI ), the beam phase front curvature ρ  (A.4.12) and the
nonlinear phase-correction Lϕϕϕ −=∆  (A.4.13)-(A.4.14). These parameters
are dependent on the spatial chirp parameter ς  (A.4.5) interrelated with the
nonlinearly modified propagation distance zI  (A.4.8) by the waist radius µ .

The solution implies that the new distance zI  of the Gaussian beam
propagation is shortened with respect to its linear couterpart z  by the factor
κ  (A.4.7) and the beam waist position is displaced along the beam axis by

z∆  (A.4.9). Moreover, as z∆  depends of zI , the waist position 0=zI  is
changing during propagation with respect to its linear counterpart at 0=z . In
addition, the nonlinear correction of the on-axis phase ϕ∆   (A.4.13)-(A.4.14)
yields the additional on-axis phase σ  (A.4.16) of the beam and the new
nonlinearly modified wave number k  (A.4.18) of the beam field. Finally, the
beam field representation is given by:

( )
[ ] ,)exp()(exp2

)exp(),,(,,
222

2
12 zikzivyxvp

zzikzyxzyxE

D

DL

++−=

Ψ=
−− σµ

 (A.4.26)

where the beam parameters µ , v , σ  and k  vary, through the nonlinear chirp
parameter ς , with the new propagation distance zI . Details of the above
analysis, based on the complex ray tracing of beam propagation in nonlinear
media of the Kerr type (SCRT method), can be found in [21] and [32]. In
these articles, complete results of numerical simulation of all aberrationless
effects of nonlinear propagation, especially in the context of the Z-scan
measurements, and derivation of the nonlinear ABCD matrix for the Gaussian
beam nonlinear propagation, have been presented.

Note that exactly the same ODEs (A.4.22)-(A.4.23) can be derived directly
within the reduced variational analysis of the NLSE (A.4.3) [24], [25]. After
performing, in any plane ),( yx  - transverse to the beam propagation
direction, the integration of the Lagrangian density ),;,,( ΨΨzyxLNLS

specific to the NLSE (A.4.3):

∫ ∫ ΨΨ=ΨΨ dxdyzyxLzL NLSNLS ),;,,(),;(
I

,  (A.4.27)



156      CHAPTER  4

( ) ( ){ }422221),;,,( Ψ−Ψ+Ψ+ΨΨΨ=ΨΨ yxzNLS izyxL ∂∂∂ ,(A.4.28)

the reduced variational principle implies the Euler-Lagrange equations for the
beam real parameters wu = , ρ=u , au =  and ϕ=u  :

( )( ) .0)( =∂∂−∂∂∂∂∂∂ uLzuLz NLSNLS

II

 (A.4.29)

In this way, the infinite-dimensional variational problem, defined by the
Lagrangian density ),;,,( ΨΨzyxLNLS , is projected onto the finite-
dimensional problem defined by the averaged (reduced) Lagrangian

),;( ΨΨzLNLS

I

. The Euler-Lagrange equations (A.4.29) yield four real ODEs
for w , ρ , a  and ϕ   equivalent to the two complex ODEs (A.4.22)-(A.4.23)
with the solution given in Eqs. (A.4.4)-(A.4.14). Details of the reduced
variational analysis can be found in [24] and [25] and their relation with the
SCRT method in [21] and [32].

Summing up, it was shown how propagation of the Gaussian beam in the
nonlinear medium of the Kerr type could be described within the parabolic
approximation (A.4.19) to the NLSE (A.4.3) by the beam parameters (or
variables). The beam parameters under consideration are: the beam waist
position z∆  and radius µ , the beam radius w  and the phase front curvature
ρ , together with the beam chirp ς , the beam on-axis field magnitude a  and
phase ϕ , and the nonlinearly modified wave number k  of the beam field. All
these parameters are dependent on the propagation distance z�  nonlinearly
modified with respect to its counterpart z  in the linear case.

The analysis described above remains valid not only for the one-, two- or
three-dimensional monochromatic beams but also for (four-dimensional)
polychromatic wave packets [21]. Moreover, in the two-dimensional case,
with the longitudinal variable ( z ) and one transverse variable ( x ), the beam
propagation in free space corresponds to the case of nonlinear pulse
propagation in fibres, provided that the spatial transverse variable ( x ) is
replaced by time ( t ) and the diffraction term in the NLSE is replaced by the
group-velocity dispersion term. This case has been recently investigated by
the method called the collective variable approach [37]. In this case, the
collective variables correspond to the beam parameters, evolution of which
has been described here and in [21], and the parabolic approximation to the
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NLSE (A.4.21) corresponds to the bare approximation applied to the NLSE in
the collective variable treatment.

Main content of this chapter has been published in Journal of Optics A: Pure
and Applied Optics 2, 433-441 (2000).
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CHAPTER  5

Amplitude-polarization representation of
beams at a dielectric interface

Three-dimensional optical beams incident on a dielectric interface
undergo deformations upon reflection and refraction. Within first-
order optics, and as far as only first-order beam deformations are
considered, these deformations may be interpreted as longitudinal
and transverse displacements and deflections of beam axes. In
general, they are different for TE and TM components of the
beam field. The problem of beam reflection and refraction at the
interface is reformulated and solved in such a manner that the
beams are obtained with new, uniquely defined uniform displace-
ments of their axes in a spatial domain and their spectrum centres
in a spectral domain. Additional modifications of the beam po-
larization state remain generally small and non-uniform through-
out the entire beam spectrum. In this context, a special role of
diagonal, linear and circular, polarization states in the interface
plane is indicated.

5.1  Introduction

The prediction of an optical beam spatial displacement upon reflection
from a dielectric interface was first reported by Picht (1929) [1], although the
notion of such a displacement has been known even in Newton’s time. While
a number of papers have been published on this problem  in  two-dimensional



162      Chapter  5

Figure 5.1.  The interface reference frame ),,( ZYX  and the reference
frames ),,( zyx  for the incident, reflected and transmitted beams in the

case of internal reflection and partial transmission at a dielectric
interface.

(2D) configurations, less attention has been paid to the problem of three-
dimensional (3D) beams at the interface [2-7]. This chapter concerns main
aspects of 3D beam reflection and transmission at the dielectric interface,
especially these exclusively inherent in 3D geometries. Discussions related to
2D problems can be found, for instatnce, in reports referred to in [5].

From differences between characteristics of these two configurations,
those pertaining to the beam polarization and their interrelations with the
beam amplitude spatial distribution are among the most important. Selection
of the two, mutually independent, linear TM and TE polarization states of the
beams seem to be proper in analysing 2D configurations, as they distinguish
two separate, orthogonal planes, the incidence plane ),( zx  and the transverse
plane ),( zy , respectively, in which the 2D distribution of beam-field ampli-
tudes can be independently defined. Arbitrary elliptic beam polarization
should be considered instead in the general 3D case, as it corresponds, in
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general, to the 3D beam-field-amplitude distribution in the 3D space ),,( zyx .
Even for a special case of circular polarization of an incident beam, different
approximate methods, based on analysis of internal spin effect [8], stationary-
phase method [9] or energy-flux conservation treatment [10-11], have been
developed. However, results of one method applied to this problem have
appeared at variance with the findings of another method, with complete
explanation of these facts apparently still not available [8-12].

The reports [2-7] treat beams, in principle, in a similar rigorous manner,
essentially related to the stationary-phase method, although other techniques
of the methods of moments [2] or nonlinear self-focusing [7] were also ap-
plied. Beams with two mutually perpendicular meridional planes of symmetry
are considered. The electric field vectors of the incident, reflected and/or
refracted beams are decomposed into orthogonal, linearly or circularly
polarised states. The solution is obtained in a form of angular spectral
decomposition into plane waves and further interpreted in terms of effects of
nonspecular (nsp) reflection and refraction of the first and, as in Refs. [5] and
[7], second order.

In general, however, beam modifications upon reflection/transmission are
of astigmatic nature; they are different for TM and TE beam field com-
ponents. The questions hence arise: what actually are the total beam defor-
mations, that is for example spatial shifts of the beam axis or spectral shifts of
the beam spectrum, and, certainly, what are actual polarization states of 3D
beams reflected and transmitted at the interface? Answers to these are essen-
tial not only for beams but also for pulses and wave packets upon reflection
or transmission [13].

This chapter presents an attempt to answer these questions. The idea of
this novel approach is to replace TM and TE polarization vectors in beam
field decomposition by another basis formed directly by the Jones vectors
specific to the incident, reflected and transmitted beams. An exact solution to
the problem is given, that follows the results obtained previously for the 3D
beam reflection [5, 7], and further interpreted in terms of first-order optics
[14-15] of 3D beams. This solution obtained in the TM-TE representation can
be then reformulated in the interface plane in a form independent of the beam
field redistribution between its TM and TE components.
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The conventional solution to beam reflection and transmission is presented
in Section 2 and the first order beam deformations are discussed in Section 3.
That provides all details necessary to introduce the amplitude-polarization
representation of 3D beams. Results are given in Section 4 and summarised
in Section 5, where quantitative discrepancies between earlier predictions of
transverse spatial shifts of beams are also briefly commented on.

5.2  Beam fields at a dielectric interface - an exact solution

The solution presented in this chapter for the problem of 3D beam reflec-
tion was devised in Ref. [5] and discussed in Ref. [7], where examples of
numerical simulations were also given. That was presented in Chapter 3. In
this section those results are summarised to establish the notation, point out
their main characteristics and explicitly show that the solution obtained
previously for beam reflection [5,7] yields also the entire solution for beam
refraction. Both solutions are interrelated through the beam field continuity
relations in the interface plane, in which all the derivations of this work will
be made.

Let us consider monochromatic optical 3D beam fields near the plane
boundary 0=X , i.e. the interface between two dielectric homogeneous and
isotropic media with different refractive indices ni and nt, respectively (cf.
Fig. 5.1). The 2D vectors ),,()()( ZYXEE bb ≡ , composed of the incident

(b=i), reflected (b=r) or transmitted (b=t) electric field parallel to the interface
],[ )()()( b

Y
b

Z
b EEE ±=  (see their definitions in Eqs. (5.3)), are expressed in terms

of the angular plane-wave (spatial) spectra:

,)](exp[),(~)2(

),,(
)()(2

)(

YZZY
b

XYZ
b

b

dkdkZkYkXkikkE

ZYXE

∫∫ ++±= −π
   (5.1)

with exp( )−i tω  time-dependence assumed and suppressed. In Eq. (5.1) the
upper (lower) sign in the exponent is attributed to the reflected (incident and
refracted) beam. The integration is performed along the wave-vector
components Zk  and Yk  parallel to the interface. By the dispersion relation

2)(222)( b
ZY

b
X kkkk =++ , the representation (5.1) is equivalent to that used in

Ref. [7], with the integration given in the ( Y
b

X kk ,)( ) plane. The representation
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(5.1) seems more suitable for treatment of the details of the beam
transmission close to the normal incidence, whereas its counterpart in Ref. [7]
is more appropriate in analysing the beam deflection and refraction near the
grazing incidence. Nevertheless, the reflection and transmission coefficients
should take the same form in both cases.

The wave vector components:
)()()( b

X
bb

X ckk = ,

YXY sksk = ,

YXZ cksk = ,   (5.2)
2122)( )1( cX

t
X ssc −= , are further expressed by sines Xs  and Ys  and cosines Xc

and Yc  of the polar )(i
XX ϑϑ ≡  and azimuthal )(i

YY ϑϑ ≡  incidence angles of the
incident beam axis direction, measured in the incidence (X, Z) and interface
(Y, Z) planes, respectively. The direction of the incident beam axis is
specified in the incidence plane 0=Yϑ  by 0XX ϑϑ =  or 0XX ss =  and

0XX cc = . The upper (incidence or ambient) medium is presumed to be
homogeneous and linear, what ensures equality of wave numbers
k k kr i( ) ( )= ≡ . Hence X

r
X ϑϑ =)( , Y

r
Y ϑϑ =)(  and X

i
X

r
X ccc ≡= )()( . For the

critical incidence of total internal reflection (TIR) cX ϑϑ =  and
kkss t

cX
)(== .

Let us decompose the field vectors ),(~~ )()(
YZ

bb
kkEE ≡  into orthogonal

linearly polarised parts,

Y
i

YZ
i

Z
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eEeEE )()()( ~~~ ++= ,
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),(~~ )()(
YZ

b
Z

b
Z kkEE ≡  and ),(~~ )()(

YZ
b

Y
b

Y kkEE ≡ , where ]0,1[=Ze  and ]1,0[=Ye
are polarization vectors in the direction of the Z -axis and the X -axis in the
interface plane, respectively. Then, through rotation of the local coordinate
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frame between the planes sY = constant and sY = 0 [5], we are able to relate
the reflected and incident beam field components by the following matrix of
3D beam reflection [5, 7]:
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~
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i
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i
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E
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E
E .   (5.4)

In Eq. (5.4) the TM and TE beam reflection coefficients ||r  and ⊥r  are the
common (p) and (s) Fresnel coefficients pr  and sr , augmented by the

additional transverse, i.e. proportional to Ys  and/or 2
Ys , components [5,7]:

r r rp|| ||= + ∆ ,

r r rs⊥ ⊥= + ∆ ,   (5.5)

)~)(( )(
||

i
YYspY csrrsr χ++−=∆ ,

)~)(( )(i
YYspY csrrsr χ−+−=∆ ⊥ .   (5.6)

The coupling between )(~ b
ZE  and )(~ b

YE  is introduced in Equation (5.6) by the
spectral polarization parameters:

)()()( ~~~ i
Y

i
Z

i EE−=χ ,

)()()( ~~~ r
Y

r
Z

r EE+=χ ,

)()()( ~~~ t
Y

t
Z

t EE−=χ ,   (5.7)

defined in the interface plane 0=X , contrary to the conventional definition
of the complex  polarization parameters given in planes 0=z  transverse to
the beam axes [16]. The detailed derivation of Eqs. (5.4)-(5.7) is given in
Chapter 7.

Since the incident beam is considered as given, Eqs. (5.1)-(5.7) determine
completely and exactly not only the reflected field but also the total field and
hence the transmitted beam field at the interface as well. Indeed, the
continuity relations of the electric field components )(~ b

ZE  and )(~ b
YE  at the

inter-face together with Eqs. (5.1)-(5.7), readily lead to the following
transmission matrix:
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)()(
||||1 i

X
t

XZ cctrt =−= ,

t r⊥ ⊥= +1 .   (5.9)

The transmission coefficients Zt  and ⊥t  are evaluated for field components
parallel to the interface plane and the coefficient ||t  is determined by the field

scaling [5,7], as shown below by Equations (5.12) and (5.13).
The reflection and transmission matrices (5.4) and (5.8) are given in the

diagonal form. The coupling between field components is introduced into the
reflection and transmission coefficients ||r , ⊥r , Zt  and ⊥t  by the polarization

parameters )(~ bχ . In the incidence plane (here at 0=Y ) these coefficients
resolve into pr , sr , )()(

0 1 i
X

t
XppZ cctrt =−=  and t rs s= +1 , the field coupling

disappears and the reflection/transmission 3D problem can be then treated as
a pair of 2D scalar problems for two independent TM and TE polarization
states. However, for the incidence oblique to the incidence plane, both
problems of plane wave reflection and refraction are inherently of 3D nature.
In effect, for beams of finite spatial spectrum upon reflection and trans-
mission, the first-order and the second-order, transverse and longitudinal
effects of beam deformations, in general exist even in the incidence plane (cf.
the next Section).

The normal mode solutions, that is solutions to the equation
)()(

||
)( ~~~ iir

ErErE ⊥== , (5.10)

for which the state of polarization of the incident beam is unchanged on re-
flection, have especially interesting characteristics. They exist at the critical
incidence of TIR, i.e. for r rp s= , and for the beam polarization states

ii
�=)(~χ  circular in the interface plane - not for the circular polarization

states ic i
X

i
�=)()(~χ , commonly defined in the plane transverse to the beam

propagation direction. Per analogy to Eq. (5.10) written for reflection, we can
also write for transmission:
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)()( ~~ it
EtE ⊥= ,

0~ )(
=

i
Z Et . (5.11)

Since the a Z -component of the total field equals zero at the critical inciden-
ce, a normal mode solution for transmission still exists but trivially, only in
the TE polarization state. We will refer to special features of these polariza-
tion states in the next sections of this chapter.

The exact solution to the beam reflection/transmission problem is
described by Eqs. (5.1)-(5.9). Some link, however, to notions of paraxial
optics would be useful. To this end we scale the beam field vectors:

)()()(
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i cEE −= ,
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~~ r
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r
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r cEE += ,
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~~ t
X

t
Z

t cEE −= , (5.12)

and polarization parameters:
)()()( ~ b

X
bb cχχ = , (5.13)

where )()()( ~~~ b
y

b
Y

b EEE ≡≡⊥ . The relation between the coefficients tZ  and t||  was

already given in Eqs. (5.9). Next, let us substitute Eqs. (5.12)-(5.13) to Eqs.
(5.4) and (5.8). The scaling (5.12)-(5.13) does not change the reflection
coefficients in the scaled reflection matrix equation [5,7]:
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whereas, in the scaled transmission matrix equation
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the coefficient Zt  is rescaled to ||t  according to the relations (5.9).
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Equations (5.14)-(5.15) still remain exact. The electric field in these equa-
tions, as well as in Eqs. (5.4) and (5.8), complies with a complete set of the
source-free Maxwell’s equations, where the Gauss’s law yields the remaining
field components )(~ b

XE . The field continuity relations (5.9), together with the
spectral representation (5.1) of the beam fields, make the beam refraction, as
given by Eqs. (5.8) or (5.15), consistent with the beam reflection, determined
by Eqs. (5.4) or (5.14). In other words, the relations (5.9) are fulfilled
simultaneously and exactly by all the spectral components of the beam fields
in the interface plane. Note that in our notation )(

||
~ bE  is still only the )(~ b

ZE
component of a single plane wave scaled by )(b

Xc  in its local incidence plane
(cf. [5]). The TM field component of the total beam is obtained by scaling the
Z -component of the total beam by )(

0
b

Xc , that is by )(b
Xc  evaluated at the

principal incidence plane at the beam axis.
Certainly, in planes ),( yx  transverse to the beam axes directions (cf. Fig.

5.1), Eqs. (5.14)-(5.15) also preserve their form in the paraxial approxima-
tion, with the transverse field decomposition into TM and TE components

)(
||

~ bE  and )(~ bE⊥ , respectively:

⊥⊥+= eEeEE bbb
T

)(
||

)(
||

)( ~~~ , (5.16)

where ]0,1[|| =e  and ]1,0[=⊥e  are polarization vectors defined in planes

.constz =  of transverse cross-sections of the beams. Now, in the beam
frames ),,( zyx , the beam spectral representation takes the form [5,7]:
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−π
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(5.17)

adequate for both, exact and approximate (paraxial), modes of the analysis. In
Eq. (5.17), as well as in Fig. 5.1, x -axes and y -axes point in the directions
of the respective TM and TE beam field components for the incidence angles
within the range between the Brewster angle and the critical angle. Note
different meanings of the scaled ||, ⊥ and transversal TM, TE indicators in the
notation assumed in this chapter; ||≡TM and ⊥≡TE only in the paraxial
approximation. Still, for simplicity, we shall use these names interchangeably
even for exact beam fields.
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The factor exp( )( )ik zb  in Eq. (5.17) and its projection )exp( 0ZiksX  on the
interface plane represent a contribution of a central ray of the beam to an on-
axis phase of this beam. These factors will be irrelevant in further analysis,
that is, each beam profile will be evaluated in the plane 0=Z transverse to
the Z-axis. Therefore, the beam fields )(bE  and the wave vector component

YXZ cksk =  in the representation (5.1)-(5.2) will be hereinafter replaced by
)exp( 0

)( ZiksE X
b −  and 0XYXZ kscksk −= , respectively.

The analysis of the 3D beam reflection and transmission problem was
recently reported in the interesting contribution [6]. For the beam reflection,
those results (Eqs. (13) in [6]) agree with the results given previously by Eqs.
(17) in [5] or more recently by Eqs. (3)-(5) in [7] and Eqs. (5.4)-(5.7) in this
chapter. For beam transmission, however, Eqs. (12) in [6] differ from Eqs.
(5.8)-(5.9), together with (5.5)-(5.7) in this chapter. The method of analysis
applied in this work is different from the method presented in Ref. [6].

5.3  First-order optics of beam reflection and refraction

The transformations (5.14) and (5.15) provide a convenient basis for direct
interpretation of the beam distortions in terms of the effects of nsp
reflection/transmission [5,7]. The reflection ||r , ⊥r  and transmission ||t , ⊥t
coefficients depend on the polar )(i

Xϑ  and azimuthal )(i
Yϑ  incidence angles. An

antisymmetric part of this dependence contributes to the first-order effects of
nsp reflection/transmission, whereas a symmetric part, besides the geometric
optic (g-o) predictions for beams, results in the second-order effects of nsp
reflection/transmission. Both types of these effects exist in the incidence
plane 0=Y  (longitudinal effects) and in the transverse plane 0=Z
(transverse effects) for beams of a finite spatial spectrum [5, 7]. Whereas the
longitudinal effects are well known in 2D problems (see e.g. a list of
references in [5]), the transverse effects are not. They are inherent only in 3D
beams and disappear in 2D geometries.

A complete discussion of the first-order and the second-order effects of the
3D beam nsp reflection was given in Ref. [7], as well as in Chapter 3 of this
book. For the purpose of further analysis, we will give below only basic
relations of the first-order nsp effects, including also the case of refraction.
These effects are derived in this chapter in the interface plane 0=X  (cf.
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[16]), instead of the usual procedures applied in planes 0=z  transverse to the
beam axis direction [1-5].

The beam distortions upon reflection can be found by approximation of
the reflection ar  (a=||, ⊥) and transmission coefficients Zt  and ⊥t , around a
beam axis direction. Their values 0ar , 0Zt  and 0⊥t  are predicted by
geometrical optics at the beam axis, that is they resolve into the Fresnel
coefficients evaluated for )(

0
)( i

X
i

X ϑϑ =  and 0)( =i
Yϑ . Introduction of the

complex displacements )(
0

)( r
X

r
ax cL , )(

0
)( t

X
t

ax cL , )(r
aYL  and )(t

aYL ; a=||, ⊥, along the
interface as eigenvalues of the differential equations

( ) )(
0

)(ln r
X

r
axaZ cLrki =∂∂ ,

( ) )(
0

)(
||)ln( t

X
t
xZZ cLtki =−∂∂ ,

( ) )(
0

)(ln t
X

t
xZ cLtki ⊥⊥ =∂∂ , (5.18)

specific to the beam longitudinal deformations (in the plane 0=Y ), and the
equations

( ) )(ln r
ayaY Lrki =∂∂ ,

( ) )(
||)ln( t
yZY Ltki =−∂∂ ,

( ) )(ln t
yY Ltki ⊥⊥ =∂∂ , (5.19)

specific to the beam transverse deformations (in the plane 0=Z ), yields the
first-order approximation of the beam reflection coefficients:

[ ])(exp )()(
0

)(
0

r
ayY

r
X

r
axZaa LkcLkirr +−≅ ,

[ ])(exp )(
||

)(
0

)(
||0

t
yY

t
X

t
xZZZ LkcLkitt +−≅ ,

[ ])(exp )()(
0

)(
0

t
yY

t
X

t
xZ LkcLkitt ⊥⊥⊥⊥ +−≅ . (5.20)

From the definition all derivatives, and thus the complex shifts, are
evaluated at the beam axes. The subscripts (small) x  and y  in Eqs. (5.18)-
(5.20) indicate that the beam shifts are directed along x - and y -axes of the
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beams (cf. Fig. 5.1). For beam transmission, the shifts are determined entirely
by their counterparts for reflection and the continuity relations (5.9) in the
interface plane. The generators of the beam complex displacements in Eqs.
(5.18) and (5.19), as well as the coefficients ar , Zt  and ⊥t , depend explicitly
on the wave vector components Zk  and Yk  parallel to the interface plane.
Hence, besides their evaluation at the beam axes, no further approximation is
needed in evaluating these displacements from Eqs. (5.18)-(5.19); cf. also the
Appendix in [7] and in Chapter 3.

The definitions (5.18)-(5.20) lead to the interpretation of the beam
distortions in terms of the beam axis and spectrum displacements from their
g-o predictions. The beams are displaced: by real spatial )(r

axδ , )(t
axδ  and

spectral )(r
axkε , )(t

axkε  shifts in the phase space ),( xkx , that is by longitudinal
shifts in the plane of incidence 0=y , and by real spatial δ ay

r( ) , δ ay
t( )  and

spectral k ay
rε ( ) , k ay

tε ( )  shifts in the phase space ),( yky , that is by transverse

shifts in the plane 0=x  transverse to the incidence plane. That means, for
example, for the TM component of the reflected beam:

),(),( )(
||

)(
||

r
xx

r
xx kkxkx εδ −−→  for the longitudinal shifts and, by analogy,

),(),( )(
||

)(
||

r
yy

r
yy kkyky εδ −−→  for the transverse shifts. The shifts are in the

position and direction (momentum) coordinate frame ( ),,, yx kkyx .

For fundamental Gaussian beams, i.e. for beams with minimal quality
factors [15], and for a propagation distance z normalised to diffraction
lengths zDx

and zDy
in planes 0=y  and 0=x , respectively, real and

imaginary parts of the complex shifts define real, spatial and spectral, shifts
of the 3D beams for reflection [5,7] and refraction. They read in the incidence
plane 0=y :

L izax
r

ax
r

D ax
r

x

( ) ( ) ( )= +δ ε ,

L izax
t

ax
t

D ax
t

x

( ) ( ) ( )= +δ ε , (5.21)

and in the transverse plane 0=x :

L izay
r

ay
r

D ay
r

y

( ) ( ) ( )= +δ ε ,
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L izay
t

ay
t

D ay
t

y

( ) ( ) ( )= +δ ε , (5.22)

where ε ax
r( ) , )(r

ayε  and )(t
axε , ε ay

t( )  are referred to as the angular shifts of beam

axes and a=||, ^.
Explicit expressions for all complex shifts, in the incidence and transverse

planes, are given for the beam reflection in the Appendix of Ref. [7] and of
Chapter 3. A form of those expressions, by substitution of the reflection
coefficients by their counterparts for transmission, is valid for beam
transmission as well. These expressions remain valid for beams with arbitrary
quality factors in their paraxial approximation. One can also directly observe
from Eqs. (5.5)-(5.6) that, in contrast to the first-order transverse TE and TM
shifts of the reflected/transmitted beam, the second-order transverse TE and
TM shifts and all the longitudinal TE and TM shifts do not depend on the
incident beam polarization parameter )(~ iχ . In the dimensionless version of the
phase space, the shifts are normalised [7] to characteristic beam diameters

0xw  and 0yw , e.g. in the phase space ( 0xwx , 0xx wk ) the spatial and spectral

shifts take the form δ ax
t

xw( )
0  and kwx ax

r
0ε

( ) , kwx ax
t

0ε
( ) , respectively, where

00 xDxx wzkw = . The same applies to the transverse shifts with the subscript
x  replaced by y . For the 2D Gaussian beam )exp( 2

0
2

2
1

xwx− at its waist, the
beam half-width xw0  means the beam half-width at 1/e-maximum of beam
power.

Let us briefly refer to the case of the normal mode solutions (5.10) to the
beam reflection of the in-plane-of-interface circular polarization states

ii
�=)(~χ . Such modes suffer from spatial and spectral shifts of equal

magnitude in both the left-handed and right-handed circular polarization
states, in contrast to the linear in-plane-of-interface diagonal polarization
states 1~ )( ±=iχ , for which these first-order shifts are of opposite signs.
Certainly, no such symmetry is observed for the common diagonal, linear

1~ )(
0

)( ±=i
X

i cχ  or circular ic i
X

i
�=)(

0
)(~χ , polarization states, defined in

transverse planes of the beams.
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5.4  Amplitude-polarization decomposition of beam fields

The solution of the reflection/transmission problem presented in Sections
2 and 3 is unique. Its form, however, depends on a polarization basis chosen
for the beam field decomposition. The field decompositions (5.3) and (5.16)
in a 2D vector (complex) space spanned by base vectors of TM and TE
polarization, follow the intuition borrowed from the 2D analysis and in the
3D case is by no means unique. What we actually need in the 3D case,
besides geometrical characteristics of the 3D beam like a beam waist position
and its axis direction, is to know the (complex) amplitude and polarization of
the beam, the latter being described by the (complex) polarization parameters

)(~ bχ  or )(
0

)(~ b
X

b cχ .

It seems suitable to describe the incident (b=i), reflected (b=r) and
transmitted (b=t) beams in vector spaces spanned by two base orthonornal
vectors, in which one of them is directly the Jones polarization vector )(bs
specific to the respective beam [5,7], that is:

)()()()(
||~~ bbbb
seEE = , (5.23)

||)~( )()()()()( bbbbb eess =≡ χ , (5.24)









=≡ −

+

21)(
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)~( b

b
bb ee

χ
χχ , (5.25)

where )(be  is an unnormalised Jones vector and )(~ bE  stands for the
unnormalised amplitude of the beam:

( ) 21)()()( ~~~ +
= b

Y
b

Z
b EEE . (5.26)

The normalisation factor 211)()()( )|~||~(||| +−+= bbbe χχ  does not contain
more information about the beam polarization than the vector )(be . Thus, in
what follows we use, instead of Eq. (5.23), the more suitable beam
representation

( ) 
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, (5.27)
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with unnormalised polarization vector )(be  defined in the interface plane. In
the presented formalism the beam field is determined exactly but its
factorisation into the amplitude and polarization factors depends on our
choice. Note that the reflection and transmission matrices [7] are also
dependent on this factorisation.  Here, from all possible beam field represen-
tations, the representation (5.27) implies the following diagonal and uni-
modular form of two matrices of beam reflection and transmission:
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respectively, where ⊥= rrr || , ⊥= ttt Z  and, in addition, the matrix of

reflection becomes unitary for TIR. The same matrices are given, by
substituting )(~ bχ  by )(

0
)(~ i

X
b cχ  and Zt  by ||t  in Eqs. (5.30)-(5.31), for the

conventional definitions of the beam polarization (5.13) and the definition of
the beam complex amplitude 21)()(

||
)( )~~(~ bbb EEE ⊥= , adequate to this case. The

matrices in Eqs. (5.28)-(5.29) seem particularly suitable for description of the
reflection/transmission problem in terms of the scattering matrix of the
interface.

The relations (5.25)-(5.29) reduce the beam reflection/transmission
problem to the following scalar relations for beam amplitude and polarization
parameters of the beams:

( ) )(21
||

)( ~~ ir ErrE ⊥= ,

( ) )(21)( ~~ i
Z

t EttE ⊥= , (5.30)

)(
||

)( ~)(~ ir rr χχ ⊥= ,

)()( ~)(~ i
Z

t tt χχ ⊥= . (5.31)

The beam amplitude modifications (5.30) are now determined by a geometri-
cal mean of the TM and TE reflection/transmission coefficients, while the
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beam polarization changes are specified by the quotient of these coefficients.
This changes the common meaning of the effects of nsp reflection and
transmission of the 3D beams. They are now directly specified by the beam
field factorisation (5.25)-(5.27), instead of the conventional beam field de-
composition (5.16). The derivation of definitions of these effects, as given in
the next section, is a main result of this chapter.

5.5  New definitions of the nonspecular effects

The first-order effects of the beam complex amplitude modifications, that
is the shifts of the beam axis and the spectrum centre upon reflection (b=r)
and transmission (b=t), are now given by new complex shifts )(b

cL , c=x,y,
expressed by the sum of the conventional TM and TE complex shifts (5.21)
and (5.22):

)()()()(
||2

1)( )( b
cD

b
c

b
c

b
c

b
c c

izLLL εδ +=+= ⊥ .  (5.32)

The shifts (5.32) modify the beam complex amplitudes )(~ bE  with respect to
their g-o values )(

0
~ bE :
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t EttE = . (5.34)

Therefore, in the phase space ),,,( yx kkyx , the beam axis upon reflection or

transmission is displaced by the spatial shifts )(b
cδ  and the spectrum centre of

the beam is shifted by the spectral shifts )(b
ckε . We obtain analogous

expressions for the first-order effects of the beam polarization modifications:

[ ])(2exp~~ )()(
0

)()(
0

)( b
yY

b
X

b
xZ

bb KkcKki +−≅ χχ , (5.35)
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izLLK σκ +=−= ⊥ , (5.36)
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Figure 5.2.  First-order longitudinal )(r
xL  and transverse )(r

yL  spatial

shifts of the beam axis (a) and the longitudinal )(r
xK  and transverse

)(r
yK  spatial shifts of the beam polarization (b) for reflection versus

incidence angles cX ϑϑ −0  around the critical angle o
c 75=ϑ . The

case of circular polarization of  the  incident beam ic i
X

ii == )(
0

)()( ~χχ ,
)(

00
)(

0
~)(~ i

sp
r rr χχ =  and the normalised wave number 802 21

0 =−kw .

The shifts are normalised to the beam half-width.
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)(
00

)(
0

~)(~ i
sZ

t tt χχ = , (5.37)

with the new polarization complex shifts )(b
cK , expressed by the difference

between the conventional TM and TE complex shifts (5.21)-(5.22). Both the
spatial )(b

cκ  and spectral )(b
ckσ  shifts contribute to the final polarization states

and make them, in general, non- uniform through the beam spectrum. Note
that both, the complex amplitudes and the complex polarization parameters of
the reflected and transmitted beams, were evaluated in Eqs. (5.32)-(5.37)
through the reflection and transmission coefficients evaluated at the beam
axes, as indicated by the subscript “0” in Eqs. (5.34) and (5.37).

The definitions (5.18)-(5.19) of the effects of nsp reflection and
transmission imply that magnitudes of these effects are independent of the
shape and phase profile of beams. Note however that the approximations
(5.20) remain accurate for paraxial beams, provided that the beams with
profiles separable in x and y are considered and that the beam incidence is far
from any discontinuity of the reflection/transmission coefficients [7].
Otherwise the beam field expansion should be used instead (see footnote 1 in
[7] and the Appendix in Chapter 3) or, in the singular case of reflection at the
critical incidence, the rigorous integration procedure that still yields
convergent results should be applied (see [17] or Chapter 4). Moreover, the
definitions (5.18)-(5.19) are only valid for non-vanishing values of the
reflection/transmission coefficients. In the opposite case, like this of the beam
of the TM polarization state impinging onto the interface at the Brewster
angle, the beams attain profiles of higher-order modes and the analysis
outlined in Section 5 of Ref. [7] or Chapter 3 becomes more appropriate.

An example of spatial shifts of the reflected beam axis position and the
beam polarization state is given in Fig. 5.2, for the case of at and around the
critical incidence of the fundamental Gaussian beam. A method of analytical
and numerical evaluation of the shifted beam field from its integral
representations (5.1) or (5.17), as described in Ref. [17] or Chapter 4, is used.
That yields finite shifts of the reflected beam, even close to the critical angle
of incidence. The beam shifts for the (conventional) circular polarization
( ic i

X
ii == )(

0
)()( ~χχ ) of the incident fundamental Gaussian beam of cylindri-

cal symmetry, incidence, the polarization effects are about one by order of
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magnitude smaller than the amplitude effects and the transverse effects are
about one order of magnitude less than longitudinal effects. All these effects
are nonzero and finite both below and above the critical angle of incidence.

A polarization state of the beam can be also described, instead of the
complex polarization parameter )(

0
)()( ~ i

X
bb cχχ = , by the inclination ϕ ( )b  and

elipticity θ ( )b  angles of the polarization ellipse with the ellipticity
)()( tan bbe θ=  [16]:

)1(]Re[22tan
2)()()( −= bbb χχϕ , (5.38)

)1(]Im[22sin
2)()()( += bbb χχθ . (5.39)

Modifications of the beam polarization are then expressed by changes of
these angles with respect to their g-o predictions defined by Eq. (5.37), that is
by real and imaginary parts of the complex polarization shifts )(b

cK  or by the
real shifts )(b

cκ  and )(b
ckσ ; c=x, y, b=r, t.  Both angles of a beam polarization

ellipse projected onto the incidence plane are shown in Fig. 5.3 for the
(conventional) circular ii =)(χ  and diagonal-linear 1)( =iχ  polarization
states of the incident beam.

For moderate values of the incidence angle, the modifications of a beam
polarization state are not substantial. Influence of transverse shifts on the
beam polarization state is even much smaller and it seems that besides,
perhaps, in some extreme cases, they can be considered as negligible. Note
also that, for incidence angles less than the critical angle, the real parts of the
polarization parameters are always zero. The azimuth angle of beam polariza-
tion equals π/4 and a phase shift difference between the TE and TM field
components equals π/2 for the circular polarization of the incident beam.
Only at the critical incidence the reflected beams remain exactly in the
diagonal-circular or linear - polarization states.

It is gratifying to refer once more to the polarization states of the incident
beam that are diagonal in the interface plane 0=X . In Eqs. (5.5)-(5.6) the
first-order terms in Yk  are of opposite signs for TM and TE components of
the incident beam field.  Therefore,  from  the  definitions  (5.19),  (5.32)  and
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Figure 5.3.  Inclination )(rϕ  and ellipticity )(rθ  angles (in degrees) of

the reflected beam elliptic polarization state for the circular
ic i

X
ii == )(

0
)()( ~χχ  (a) and the diagonal-linear 1~ )(

0
)()( == i

X
ii cχχ

(b) polarization states of the incident beam, versus incidence angles

cX ϑϑ −0  around the critical angle o
c 75=ϑ ; other beam and interface

parameters are the same as in Fig. 5.2.
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(5.36), it is evident that while the first-order transverse shifts δ y
r( )  and k y

rε ( )

of the beam axis and the beam spectrum disappear for the incident diagonal-
linear polarization states 1)( ±=iχ� , meanwhile the first-order transverse shifts
κ y

r( )  and k y
rσ ( )  of the beam polarization disappear for the incident diagonal-

circular polarization states ii
�=)(~χ . Therefore, there are only transverse

changes of the beam polarization in the linear diagonal polarization states
1~ )( ±=iχ  of the incident beams, as well as there are only transverse shifts of

the beam axis and the beam spectrum in the circular diagonal polarization
states.

Note that the above statements are valid for the definitions of beam
amplitude and beam polarization specified by the beam field factorisation
(5.27), with the polarization vector defined in the interface plane. Within
these definitions, the deformations of amplitudes of the reflected and
transmitted beams can be measured for the incident beams of diagonal-
circular polarization ii

�=)(~χ  independently of the beam polarization defor-
mations, which are nil in these cases. Similarly, the deformations of polariza-
tion of the reflected and transmitted beams can be measured for the incident
beams of diagonal-linear polarization 1~ )( ±=iχ  independently of the beam
shape deformations, which are nil in these cases.

The diagonal, circular, ii
�=)(~χ  and linear, 1~ )( ±=iχ , polarization states

defined in the interface plane seem to be fundamental polarization states for
the reflection/transmission problem of 3D beams at the interface. In analysing
this problem, these diagonal polarization states are more suitable than the
linear TM, ±∞=)(~ iχ  and TE, ±∞=−1)( )~( iχ  polarization states. Certainly,
they are also more suitable than the TM, ±∞=)(iχ  and TE, ±∞=−1)( )( iχ
linear polarization states, conventionally defined in planes transverse to the
beam propagation direction and commonly employed in the cases of 2D
beams.

5.6  Comments and conclusions

Let us comment on a single but important case of TIR of circularly
polarised beam at critical incidence. This case has been extensively investi-
gated in the past. Different expressions for the transverse shifts of a beam
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have been derived by several authors [8-12], using essentially two
approaches: the first approach based on the energy-flux conservation
arguments, the second one based on the stationary-phase or phase-shift
arguments. Different results presented have been the subjects of many
discussions and even a source of persistent controversies (see, for example,
[3,11,18,19] and references herein). It seems nothing appears entirely
definitive within the problems of this sort. As one of the authors: ‘Despite the
considerable volume of theoretical work on transverse shifts, and the
considerations of this paper, the situation remains confused and the
experimental background remains meagre’ [18].

Observe that, for the case of the conventional circular polarization state
ic i

X
ii

�== )(
0

)()( ~χχ  and at the critical incidence, Eqs. (5.19) and (5.22) of
this section yield the following spatial displacements for TM and TE beam
field components (cf. also Eq. (A.3a) in Ref. [7] or Eqs. (A.3.4) in Chapter
3):

00
1)(

|| 2 XX
r
y sck −±=δ , (5.40)

00
1)( 2 XX

r
y sck −

⊥ ±=δ . (5.41)

It appears that the expressions suggested by Ricard [10] and Imbert [11] by
the energy-flux conservation considerations agree with Eq. (5.40), whereas
the formulae obtained by Schilling [9] by the stationary-phase analysis agrees
with Eq. (5.41). The result given by Schilling seems consistent with our
outcome since, at the interface, for the critical incidence of TIR and for wide
beams, the Z -component of the total electric field essentially equals zero.

It is not the purpose of these considerations to dwell on the problem of
differences between these two methods. This issue has been addressed e.g. in
[18, 19]. It should be noted, however, that the energy-flux conservation
method was devised, as many other methods, under a number of
simplifications and approximations that may substantially deform a modelled
physical picture of the reflection/transmission problem. In contrast to the
above, the method presented here is exact, complete and self-contained.
Besides the full set of Maxwell’s equations and continuity relations at the
interface, the method is determined only by the definition (5.27) of the beam
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amplitude and polarization. The description of beams in terms of first-order
shifts is also uniquely defined by generators of the spatial beam
displacements (5.18) and (5.19). The method does not need to resort to the
paraxial approximation and hence allows non-zero longitudinal beam field
components as well. Therefore it is also suitable in treatments of very
narrow/short (of the order of wavelength or/and period) beams, pulses and
wave packets.

Moreover, results presented in this chapter yield only one transverse dis-
placement )(r

yδ  of the beam axis, independent of the TM-TE field redistribu-

tion. For the conventional circular polarization, that is for ii
�=)(χ , of the

beam incident at TIR, the transverse shift has a form of the average of
displacements of TM and TE field components:

000
1)( )1( XXX

r
y scck +±= −δ . (5.42)

At the same time, the beam polarization suffers from the additional real
spatial modification )(r

yκ , expressed by the difference of these displacements:

000
1)( )1( XXX

r
y scck −±= −κ . (5.43)

Eq. (5.42) determines the shift of the reflected beam axis and Eq. (5.43)
determines the additional correction to the ellipticity of the beam polarization,
both of them specified with respect to the predictions of g-o optics. Note that
these displacements, as well as all other first-order nsp effects, can be
evaluated directly from their definitions (5.18)-(5.19) or from those given in
[5,7], without any approximation, simultaneously for reflection and trans-
mission.

It is also interesting to observe that all versions of the transverse shifts of
the beam axis, as presented in (5.40)-(5.42) for the beam of conventional
circular polarization ii

�=)(χ  incident at the critical angle of TIR, are exactly
equal to each other for the circular polarization ii

�=)(~χ . However, they are
defined here in the interface plane. For this type of incidence and incident
beam (circular) polarization

0
1)()()(

|| 2 X
r

y
r
y

r
y sk −

⊥ ±=== δδδ (5.44)
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and all different approaches mentioned above yield  exactly  the  same  result.
Evidently, defining the beam polarization at the interface plane instead of the
transverse plane of the beam, greatly simplifies the analysis of the problem
and shows some more physics hidden behind just only formal definitions. We
shall return to this observation in the last chapter of this book.

The above mentioned features of the presented solution distinguish this
treatment from other, approximate approaches applied to such problems in
the past (cf. [20] for refraction). It should be also emphasised here that the
nonzero magnitudes of the transverse shifts in reflection and transmission,
result directly from the asymmetry of the reflection (5.5) and transmission
(5.9) coefficients with respect to their azimuthal variation (5.6) of the beam
incidence [5,7]. It seems that this fact has been finally appreciated in the
recent, still very approximate however, analysis of 3D beams at periodic
structures (cf. [21] for reflection).

It is worthwhile to observe as well that an attempt to consider only a beam
field magnitude, instead of its magnitude and phase or its Poynting vector,
would make a quite fair range of the calculated first-order transverse shifts
simply equal zero. In this case, the first-order shifts calculated for the critical
incidence ( | | | |r rp s= ) and arbitrary polarization or for the elliptic polarization

( 0)~Re( )( =iχ ) and arbitrary incidence disappear. That follows directly from
the explicit form of the first-order transverse (proportional to Ys ) terms in
Eqs. (5.6), accounted for in the evaluation of the reflected beam field
magnitude. For example, Eqs. (5.41)-(5.43) would yield in this case

)()(
|| 0 r

y
r
y ⊥== δδ  and )()( 0 r

y
r

y κδ == , respectively. In real physical situations

most of these shifts are not zero and the considerations based only on the
field magnitude are of limited use.

Several aspects of the solution presented were not discussed, mainly
because of lack of space. The simplicity of the problem of the 3D beam
interaction with the dielectric planar structures seems to be rather apparent.
Relations to foundations of first-order optics [14,15,22,23] and analogies
with elements of special relativity and quantum mechanics [23-25] can be
found. Exactness and completeness of the solution presented may appear
helpful in searching these relations.
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Several aspects of the solution presented have not been discussed in this
chapter. Relations to foundations of first-order optics [14,15,22,23] and
analogies with elements of special relativity and quantum mechanics [23-25]
can be found. To be more definite, the transformations (5.28)-(5.37), of the
beam amplitude and polarization, are enumerated below in relation to the
two-by-two spinor representation of the six-parameter Lorentz group
described, for example, in [24].

The transformations (5.28) and (5.29) are the two-by-two unimodular
matrix transformations of the (unnormalised) Jones polarization vectors
(5.25). In general, for arbitrary complex values of the matrix elements r  and
t , these transformations are the 2D representations of the six-parameter
Lorentz group. If r  and t  are real, partial transmission occurs and the
transformations (5.28) and (5.29) become, in the terminology used in [24],
the attenuator or squeeze transformations. For r  being a complex quantity of
unit amplitude, that is in the TIR case, the transformation (5.28) is analogous
to the phase-shift transformation [24]. Furthermore, the transformations
(5.28) and (5.29) are equivalent to the bilinear transformations also
mentioned in [24], in the same manner as they are equivalent to the scalar
transformations (5.31) and (5.37) of the polarization parameters )(~ bχ
introduced here. All these transformations yield the first-order shifts (5.36)
for the polarization states (5.35) of the reflected/transmitted beams.

The remaining elements of the beam representation given in Section 4, that
is the beam complex amplitudes (5.27), are referred to in [24] as the overall
multiplication factors of the beam transformation matrices. These factors, or
simply the beam complex amplitudes, are transformed according to Eqs.
(5.30) and (5.34). That yields the first-order shifts (5.32) for the complex
amplitudes (5.33) of the reflected/transmitted beams. Note that the same
relations between the beam amplitude-polarization transformations (5.28)-
(5.37) and the Lorentz group can be also obtained for the beam polarization
(5.13) conventionally defined in planes transverse to beam axes. Still, there
are other benefits of the presented formalism left to be indicated.

A similar list of transformations of beam profile parameters, like a beam
width and its phase-front curvature [15] and on-axis complex amplitude
parameters, like beam on-axis intensity and on-axis Gouy phase, can be
spelled further in the context of the second-order beam shifts [5,7]. In analy-
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sis of these second-order shifts, the lens-magnifier-rotation Iwasawa decom-
position [14] of a ray-transfer matrix specified to the dielectric interface may
appear particularly suitable.

Let us finally conclude that we have presented the new amplitude-
polarization frame suitable for analysis of the 3D beam reflection and
transmission. The solution to the reflection and transmission problem is given
for beams at a dielectric interface, although the formalism can be extended to
accommodate the cases of wavepackets [25], beams at dielectric stratified
[23] and/or nonlinear [17] planar structures. Similar beams of other problems,
like reflection/transmission of vortex, Laguerre-Gaussian or Bessel beams or,
in general, beams with non-meridional symmetry [26], are also possible.

Explicit expressions for the first-order beam deformations are given in a
form valid for the total beam field, not separately for the beam TM and TE
field components. The amplitude effects, that is the beam axis and spectrum
centre displacements, appear substantial and, in paraxial approximation,
uniform in the beam spatial and spectral cross-sections. On the contrary, the
polarization effects are much smaller, although generally non-uniform
through the entire beam spectrum. In the latter context, a special role of the
beam modes of diagonal polarization in the interface plane was indicated.

Main content of this chapter has been published in Journal of Optics A: Pure and
Applied Optics 5, 128-136 (2003).
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CHAPTER  6

Beams at multilayers
- formulation of the problem

A problem of three-dimensional optical beam scattering at a
dielectric multilayer is analysed. Scattering and transfer matrices
of the layered structure are derived for incidence of beams of
arbitrary polarization. Transmission and reflection matrices are
given in a diagonal form dependent on polarization of an incident
beam. Factorisation of these matrices results in scalar complex
transformations separately for beam polarization and for beam
amplitudes. While the polarization transformations describe the
multilayer action in terms of Lorentz transformations, the am-
plitude transformations yield spatial beam shaping. The scattering
vector problem resolves into two independent scalar transforma-
tions.

6.1  Introduction

The problem of scattering of two-dimensional (2D or 1+1 dimensional)
beams at a 2D planar, isotropic and lossless structure can be described by a
scattering matrix defined in a spectral domain of these beams [1]. Owing to
the well-known symmetry of the Maxwell’s equations, such a scattering
problem can be decomposed into two independent 2D scattering problems for
TM and TE polarizations. Each one of these problems possesses a solution in
a form of two independent second-order scattering matrices, one for the TM
polarization and other for the TE polarization.  The  form  of  these  scattering
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Figure 6.1.  Multilayer and beam reference frames for transmission
and reflection viewed in the main plane-of-incidence; jn , jY , j=1,2 are

refractive indices and characteristic admittances of the superstrate (j=1)
and substrate (j=2) media.

matrices is restricted by the principle of reciprocity and the Stokes relations,
which hold for any isotropic structure.

However, for three-dimensional (3D or 2+1-dimesional) beams the TM
and TE field components are coupled at planar discontinuities of the
multilayer. The scattering problem is then understood as the collection of the
partial plane-wave scattering-problems, defined first in different (local)
incident planes and specified by their separate azimuthal angles-of-incidence.
Then the global scattering problem becomes inherently of the vectorial nature
[2-4], with a solution in a form of a four-by-four scattering and transfer
matrices for the scattering structure.

In this chapter, the scattering and transfer matrices of the optical
multilayer, composed of isotropic, homogeneous and dispersionless layers of
different medium parameters, are derived for a general case of incidence of a
3D beam of arbitrary polarization. The layered structure may be periodic or
aperiodic. The analysis differs from the common approaches to such
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problems in several aspects. For all spectral constituents of beam fields, the
reflection and transmission coefficients are derived in the one reference frame
assigned to the main plane-of-incidence [2], [4]. The reflection and
transmission matrices are made diagonal by relating their elements to a
polarization parameter of the incident beam. A spectral representation of the
beam fields is defined in new polarization frames composed of two mutually
orthogonal Jones vectors, where different frames are assigned separately to
the incident, transmitted and reflected beams [2]. The Stokes time-reversal
relations are given in the most general 3D form. Then the four-by-four
scattering and transfer matrices can be readily defined as double-dimensional
counterparts of the respective two-by-two matrices, known from the 2D
problem for the TM and TE polarizations.

Layered media play an important role in many applications in modern
optics. Several features of the multilayer action on a plane wave impinging
upon the structure have been recently reported in the formulation equivalent
to the case of 2D beams [5-8]. It is the intention of this chapter to provide a
convenient framework to discuss such problems in the more general case of
3D beams. To this end the transverse field of beams is factorised into its
amplitude and polarization components [2]. The solution resolves into two
sets of scalar relations independently for polarization and amplitude of
beams. Then, in the spectral (momentum) domain, the transmission and
reflection matrices for beam polarization appear to be unimodular and, as
such, can be interpreted in terms of transformations of the six-parameter
restricted Lorentz group [3]. The solution can be further restated in a spatial
(configuration) domain of beams, as it has been shown in Ref. [4]. Then, the
remaining amplitude transformations yield description of beam shaping in the
course of beam interaction with the multilayered structure.

Our presentation will be somewhat pedantic to make the analysis as clear
and self-contained as possible. In Section 2 a formulation of the problem is
given and derivation of the transmission and reflection matrices for oblique
incidence of a single beam is outlined. Equivalence of these matrices with
scalar relations for beam amplitude and polarization parameters is shown in
Section 3 in a form already known for the case of a single interface [2]. In
Section 4 polarization spinors of two types are defined and used to express a
general form of a spectral representation of beam fields. The formalism is
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referred to polarization matrices and Stokes vectors in Section 5. The
scattering and transfer matrices of the multilayer are derived and their
characteristics are briefly discussed in Section 6. In Section 7, the method is
applied, as an example, to the problem of scattering at an anti-reflection
multilayer.  Conclusions close this chapter in Section 8. The author hopes that
the presented formulation of the scattering problem provides a proper
framework to treat optical 3D beams - of arbitrary shape, polarization and
incidence direction - scattered at multilayered optical or photonic structures.

6.2 Transmission and reflection matrices

Consider 3D monochromatic optical (incident, reflected and transmitted)
beams with their reference coordinate frames ),,( zyx  different, in general,
from a coordinate frame ),,( ZYX  of an optical system, which is assumed to
be a planar dielectric structure in ),( YX  planes (cf. Fig. 6.1). Beam axes
coincide with z -axes of beam frames, a Z -axis of the optical system frame
is normal to the planar structure. The coordinates Y  and y  of all frames
coincide as being transverse to the main (principal) incidence plane
Y y= =0 , also referred to as the incidence plane. Note that the Z -axis is
assumed normal to the optical structure, meanwhile in Ref. [2] and Ref. [4]
the Z -axis indicates the grazing incidence along a surface of the structure.
The present choice reflects the main interest of this analysis in beam
transmission through the planar structure rather than generation of waves
progressed in planes parallel to this structure.

The structure is two-dimensional and consists of a stack of planar
homogeneous layers. A third dimension is introduced to the problem by a 2D
spatial distribution of the beam field in the transverse planes ),( YX . The
polar and azimuthal rotation angles of the beam frames ( , , )x y z  with respect
to the system frame ( , , )X Y Z  are denoted by )(bϑ  and ϕ , respectively, where

b=i means incidence and b=t (or b=r) means transmission (or reflection).
The incident beam is partially transmitted and partially reflected at the

multilayer (Fig. 6.1). The action of the multilayer is described by a set of
linear relations between amplitudes of these beams for the 2D problem and,
in addition, between beam amplitude and beam polarization parameters for
the 3D problem analysed here. Only the beam fields outside the structure, in a
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superstrate (or ambient; for 1nn =  and 1YY = ) and in a substrate (for 2nn =
and 2YY = ), are considered. The symbols an , aY , aa YZ 1= , a=1,2, denote
refractive indices, characteristic admittances and characteristic impedances of
both media, respectively [1]. In this section, the transmission and reflection of
a single beam incidence is discussed, assuming that, say, the Fresnel
coefficients for a single plane wave incidence at the multilayer are known.
These coefficients can be easily evaluated by a simple composition law [5],
from the Fresnel coefficients for a single interface.

The beam has, by definition, narrow angular spectrum concentrated about
the beam axis and propagates through an optical system from some input
plane at z z i= ( )  (or at Z Z i= ( ) ) to the output planes at z z t= ( )  (or at
Z Z t= ( ) ) and z z r= ( )  (or at Z Z r= ( ) ). In the angular spectrum representation

∫∫ ++= −
y

b
xy

b
xy

b
x

bb dkdkykxkikkEyxE )()()()(2 )](exp[),(~)2(),( π)( ,   (6.1)

the beam electric field ),( yxEE bb )()( ≡  is composed of the superposition of

plane waves with vector amplitudes ),(~~ )()()(
y

b
x

bb
kkEE ≡ , defined here at the

input and output planes of the system. A wave number in the substrate (b=t)
or superstrate (b=i or b=r) is denoted by )(bk , the transverse to the Z -axis
components Xk  and Yk  of the wave vector )(bk  remain constant through the

structure and are interrelated by the dispersion relation 2)(2)(22 bb
ZYX kkkk =++ .

Exponential dependence )exp( tiω−  on time is assumed and suppressed
henceforth.

We consider only transverse (to the propagation direction) spatial )(b
xE  and

)(b
yE  and spectral )(~ b

xE  and )(~ b
yE  components of the electric beam fields
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transpose of a column vector. Remaining field components )(b
zE  and )(~ b

yE  are

determined by the Gauss law:
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b
x EkEkEk .   (6.2)

The propagation direction of the central plane wave ( )(
0

)( bb ϑϑ = , 0=ϕ ) is

placed in the main plane-of-incidence. Other spectral components propagate
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either in the main plane-of-incidence for )(
0

)( bb ϑϑ ≠  or in the local planes-of-
incidence, that is in the planes inclined, by the azimuthal angle 0≠ϕ , to the
main plane-of-incidence. Still, however, polarization characteristics of all
beam spectral components, as well as characteristics of the total beam, will be
described in relation to the main plane-of-incidence 0=ϕ .

The components )(~ b
xE  and )(~ b

yE  are not, in general, independent quantities;

they are interrelated through a spatial structure of the beam, medium
inhomogeneities and anisotropic properties of the optical system. In the 2D
planar isotropic configuration, however, the separate p ( )()( ~~ b

p
b

x EE = , 0~ )( =b
yE )

and s ( 0~ )( =b
xE , )()( ~~ b

p
b

y EE = ) spectral components of a plane wave propagate

independently through the optical system. Their transmission through the
multilayered structure is described by the Fresnel or plane wave diagonal
transmission matrix 
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The diagonal matrix elements pt  and st  of p  type and s  type, respectively,
denote the p  and s  transmission coefficients of the planar, in general
multilayered, structure. We shall call them the Fresnel (geometric-optical (g-
o) or plane wave) coefficients even for the structure built from several layers
and interfaces.

In the system frame ( ZYX ,, ), the transfer matrix possesses the diagonal

form (6.3) only for the field spectral components 
)(~ b

E  with propagation
directions in the main plane-of-incidence. The transfer matrix for other field
components is obtained by the azimuthal rotation by ϕ  of the projection
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where ϕcos=yc ,  ϕsin=ys ,  )()( cos bb
zc ϑ=  and )()( sin bb

zs ϑ= , with the

subscripts y and z indicating y-axes and z -axes being rotated in planes
),( YX  and ),( ZX  by the rotation angles ϕ  and )(bϑ , respectively. In the

expression )()(~ b
z

b
x cE±  the upper sign (+) is assigned to b=i, t and the lower

sign (-) to b=r, respectively; cf. Fig. 6.1. The vectors Tb
Y

b
X EE )~,~( )()(  rotate

around the Z  axis, through the angle ϕ , from the local incidence plane 0≠ϕ
to the main incidence plane 0=ϕ , and that, in turn, yields for the transverse
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The convention of a positive sign of ϕ  for the clockwise rotation is used. For
different superstrate (b=i) and substrate (b=t) media )(i

zc  is different from )(t
zc .

Then, the rotation matrices ),( )()()( ϕϑ bbb RR ≡  differs for the beam incidence

(b=i) and transmission (b=t).
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with nonzero off-diagonal elements for 0≠ϕ . Still, however, even for 0≠ϕ ,
the matrix t  can also be made diagonal by imposing on its components

explicit dependence on the incident beam polarization [2]:



196      CHAPTER  6













+
+=








=

−

⊥ yy
i

yx

i
xyxx

tt
tt

t
t

t
)(

1)(
||

0
0

0
0

χ
χ ,   (6.7)

)()()( 121)()(1
||

−−− −−−−= ηχη spy
i

z
i

yspyp ttsccttstt ,

)()( 2)()(
spy

i
z

i
yspys ttsccttstt −+−−=⊥ ηχη ,   (6.8)

)()()( ~~ b
y

b
x

b EE=χ ,   (6.9)

where )()( i
z

t
z cc=η  and the TM ( ||t ) and TE ( ⊥t ) transmission coefficients are

evaluated in the main incidence plane. They depend, besides the Fresnel
coefficients pt  and st , on two parameters: a polarization parameter )(bχ , b=i,

being the quotient between transverse components of the incident beam, and
on a scaling parameter η  being the quotient between the transmission )(t

zc
and reflection )(i

zc  cosines.

The role of the polarization parameter )(bχ  is evident from its definition
(6.9); e.g. it resolves into the helicity of the beam for ib ±=)(χ  and indicates
the diagonal linear polarization for 1)( ±=bχ . The parameter η  relates the
coefficient ||t  for the p field components )(~ b

xE  with the coefficient t X  for the

field components )(~ b
XE  parallel to the planar structure:

)()( ~~ i
XX

t
X EtE = , η||ttX = (6.10)

and, in fact, precisely yields the relations between these field components
which determine the beam transmission and reflection [2].

The expressions for ||t  and t⊥  are exact. Nevertheless, in the right-hand-

sides of (6.8), they contain consecutively the zero-order, first-order and
second-order terms with respect to the azimuthal angle ϕ  (or its sine ys ).

Ap-proximations to these orders at the beam axis can be applied to describe
the total beam in a spatial domain in terms of zero-order, first-order and
second-order changes of parameters describing a spatial structure of the beam
field [4]. The polarization parameter )(iχ  affects ||t  and ⊥t  only through the

first-order terms in such a manner that these terms become substantial for
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highly elliptic beams in the opposite polarization field components, that is in
the TM transmitted field component for the TE incident field component, and
vice versa [4]. Moreover, these terms are asymmetric with respect to the main
plane-of-incidence and as such they induce finite first-order effects of trans-
verse deformations - first-order complex shifts - of the transmitted (and
reflec-ted) beam. That happens even for the incident beam being symmetric
with respect to the main plane-of-incidence [2], [4].

In the following, ||t  and t⊥  will be understood as polarization-dependent

when sy ≠ 0 and χ ( ) ,i ≠ ± ∞0 . Otherwise t t p|| =  and t⊥ = 0  for the pure TM

(p) polarization ( ∞±=)(iχ ) or t ts⊥ =  and t|| = 0  for the pure TE (s)

polarization ( ±∞=−1)( )( iχ ). Note also that, in order to determine the field
amplitudes )(~ b

xE  and )(~ b
yE , besides χ( )b  the second parameter )()()( ~~ b

y
b

x
b EE=κ ,

coined further as the amplitude parameter, should also be introduced. Both
parameters χ( )b  and κ ( )b  depend, in general, on the wave vector components
kx

b( )  and k y .

Similar considerations hold also for the beam reflection with pertinent
replacements of the transmission matrices 

F
t , t  by the reflection matrices

F
r , r , and the transmission coefficients t p , ts , ||t  and t⊥  by the reflection

coefficients rp , rs , ||r  and r⊥ , respectively:
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The transmitted and reflected wave amplitudes are not independent. They are
interrelated by the field continuity relations at interfaces of the planar
structure. The transmission and reflection coefficients of the overall system
can be built in a standard manner from coefficients specific to separate
interfaces of medium discontinuities and the matrices of propagation in the
homogeneous dielectric slabs. As the propagation matrices are trivial and
obviously known, only the coefficients at interfaces need to be specified.
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Then, the action of the whole optical system can be determined by
modification of these coefficients and this can be carried out, e.g., by a
straightforward composition law [5].

For a single interface, the field continuity relations yield:

ηpp tr =−1 , ss tr =+1 ,

η||||1 tr =− , ⊥⊥ =+ tr1 , (6.13)

where r||  and r⊥  are the actual TM and TE reflection coefficients of the

spectral component of the beam, specified by )(iϑ  and ϕ  [2]:

)()()( 21)()(1)(
|| spy

i
z

i
yspyp

i
xyxx rrsccrrsrrrr +−+−=+= −− χχ ,

)()( 2)()()(
spy

i
z

i
yspysyy

i
yx rrsccrrsrrrr +−++=+=⊥ χχ . (6.14)

The signs of the Fresnel coefficients are imposed such that r rp s= =1  in the

case of critical incidence of total internal reflection (TIR), that is for
2)()( πϑϑ =< ti . The expressions (6.14) of the coefficients ||r  and r⊥  for

reflection are of similar characteristics as those (6.8) for transmission. They
can be also directly derived by the rotation (6.5) of the matrices (6.11)-(6.12)
for beam reflection. That yields 

1)()()( ),(
−

=≡ i
F

ri RrRrr ϕϑ  evaluated in the

main plane-of incidence 0=Y .  In this way the continuity relations (6.13)
make the analysis for beam reflection consistent with the analysis for beam
transmission, as that certainly should be expected.

To summarise this section, the action of the optical system on the incident
beam is generally described in the spectral domain by the diagonal
transmission t  and reflection r  matrix transformations. Both matrices are

polarization-dependent, that is they are dependent not only on the p and s
Fresnel coefficients t p , ts , pr , sr  but also on the polarization parameter χ ( )i

of the incident (input) beam. The system action is described by changes in the
beam polarization parameters χ ( )b  and by changes in the beam amplitude
parameters κ ( )b . Both these parameters are scalars. Therefore, it seems that
the action of the optical system can be described in pure algebraic scalar
manner.
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6.3  Amplitude-polarization spectral decomposition

The transverse field vector 
)(~ b

E  contains the information not only on the
polarization but also on the amplitude of each spectral component of the
beam. The beam polarization depends, by definition, only on the polarization
parameter χ ( )b . Therefore, we have to decompose the transverse field vector

)(~ b
E  into its amplitude ),(~~ )()()(

y
b

x
bb kkEE ≡ , which is expressed by the

product ),( )()()(
y

b
x

bb kkκκ =  of these field components and its (unnormalised)

Jones polarization base vector ),( )()()(
y

b
x

bb kkee ≡ . The Jones vectors depend

only on the quotient ),( )()()(
y

b
x

bb kkχχ ≡  between the transverse field

components [2]:
)()()( ~~ bbb

eEE = , (6.15)

( ) 21)(21)()()( ~~~ bb
y

b
x

b EEE κ== , (6.16)
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The function ),(~ )()(
y

b
x

b kkE  evidently plays the role of the complex amplitude

of each beam spectral component. Its phase is an arithmetic mean of phases
of the TM and TE transverse field components:

[ ] )(
2
1)()(

2
1)( ln~ln~ln~ln bb

y
b

x
b EEE κ=+= , (6.18)

and its magnitude )(~ bE , multiplied by a norm )(bN  of the Jones vector,

yields the intensity )(
0

bI  of the spectral component 
)(~ b

E  of the beam:

( )2)(2)(2)(2)()(
0

~~~ bbb
y

b
x

b NEEEI =+= ,

( ) ( ) 1)()()()(2)( −+
+== bbbbb eeN χχ , (6.19)

where the dagger “+” stands for the complex conjugate transpose. The
extraction of the norm )(bN  from the beam amplitude )(~ bE  is not accidental
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and results in invariance of the polarisation vectors )(be  under the action of
the six-parameter restricted Lorentz group transformations [3]. Note that this
feature has been recently assigned to a transfer matrix of systems of first-
order optics [5-8].

The factorisation (6.15)-(6.17) of the transverse field vector implies that
the transmission and reflection matrices of the optical system should also be
factorised:

)()t( ~~ i
EtE = , (6.20)

where 
PAttt = ,

)()( ~~ ir
ErE = , (6.21)

where 
PArrr = , into the complex, in general, scalar transmission coefficients

t A  and rA  of beam amplitudes:

)(21)()( ~~~ ii
A

t EtEtE κ== , (6.22)

where ⊥= ttt ||κ ,

)(21)()( ~~~ ii
A

r ErErE κ== , (6.23)

where ⊥= rrr ||κ ,

and the diagonal transmission 
P

t  and reflection 
P

r  matrices of beam

polarization:

)()( i
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t ete = ,
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, (6.24)

where ⊥= ttt ||λ ,

)()( i
P

r ere = ,
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r
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r
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, (6.25)

where ⊥= rrr ||χ .

Note that, due to the appropriate definitions of the transmission and
reflection coefficients, the matrices 

P
t  and 

P
r  are diagonal and, due to the

appropriate definitions of the beam amplitudes, they are also unimodular [2].
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The amplitude coefficients κt  and rκ  are expressed by a product of the TM
and TE transmission coefficients ||t , ||r , ⊥t , and ⊥r . At the same time the

polarization coefficients χt  and χr  are expressed by the ratio of the
coefficients ||t , ||r , ⊥t , and ⊥r . Thus the polarisation and the amplitudes of

beams are described by simple scalar transformations of the beam
polarization χ ( )b  and amplitude )(~ bE  parameters:

)()( it t χχ χ= , )()( ir r χχ χ= ,

)()( it t κκ κ= , )()( ir r κκ κ= , (6.26)

and the coupling between the TM and TE field components yields the
dependence of the scalar transformation coefficients χt , χr , tκ , and rκ  on the

polarization parameter χ ( )i  of the incident beam.

In Ref. [2] it has been explicitly shown how to translate the scalar
transformations (6.26) in the spectral domain into the polarization and shape
changes of the total beam in the spatial domain. It appears that different
changes are induced by different coefficients dependent on t||  and t⊥ .  While
the polarization coefficients χt  and χr  lead to the beam polarization
modifications, the amplitude coefficients κt  and κr  entail changes in the
beam complex amplitude, in the position of the beam waist and in the
direction of the beam axis. The analysis has pertained so far to the case of
only one incident beam. To account for incidence of two beams, in
independent (in general) polarization states, a second type of Jones vector is
necessary to introduce. The whole construction of the field representation
relies on the symmetry of Maxwell’s equations with respect to time reversal,
what leads to Stokes relations at the multilayer and, in turn, to its scattering
matrix. It is assumed, in the following, that the optical system under
consideration is sourceless, lossless and reciprocal.

6.4  Spinor representation of beam polarization

The polarization space for the beam fields is spanned by two independent
solutions of Maxwell’s equations, known as undotted and dotted spinors [3],
or in the optical terminology, as mutually orthogonal Jones vectors. Suppose
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that the spinors are to be obtained from the spinors by replacement of the
electric and magnetic spectral field components with their counterparts also
being solutions of complex conjugates of Maxwell’s equations:

HE ~,~
⇒ YEYH ~,~ (6.27)

where Y  is a (a real) characteristic admittance of a lossless medium and the
complex conjugate, indicated by the overbar “-”, implies also the reversal of
the beam propagation direction. The replacement (6.27) is equivalent to the
exchange of the (undotted by dotted) transverse field components, beam
amplitudes and Jones’ polarization spinors:
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( ) 21)()(~ bbE κ= ⇒ ( ) 21)()(~ bbE κ=� , (6.29)
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in the spectral representation of the new (dotted) field. Note that the time-
reversal invariance of Maxwell’s equations leads also to another replacement
[1]:

HE ~,~
⇒ HE ~,~ −  (6.31)

that yields just the complex conjugate of the dotted and undotted field
quantities defined in Eqs. (6.28)-(6.30), together with the additional propaga-
tion direction reversal. In a general case of a lossy structure a conjugate
medium is specified by n  and Y  in both replacements above.

The spectral amplitudes )(~ bE  and )(~ bEC  are of equal magnitudes and
opposite phases. The polarization spinors )(be  and )(be>  are mutually ortho-
gonal,

( ) 0)()( =
+ bb eeD ,    (6.32a)
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possess the same norm )(bN ,

( ) 2)()()( )( bbb Nee =
+
>>    (6.32b)

and are mutually interrelated by a metric spinor c  ( 2211 0 cc ==  and

2112 1 cc =−=  ) [3]:

)(1)( bb ece −=D , )()( bb ece D= .    (6.32c)

For any dotted beam field the amplitude-polarization decomposition (6.15)
can be also directly applied. In general, the beam amplitude and the beam
polarization are expressed in the input (b=i) and output (b=t or b=r) planes by
a superposition of independent spinor fields of two types )(be  and )(beD , with

different amplitudes )(~ bE  and )(~ bED , respectively. For some preferred, say
forward, propagation direction (along the z -axis) the beam field is expressed
by:
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(6.33)

where, in general, the spinors )(be  and )(be�  may also depend on )(b
xk  and yk .

In the opposite, backward direction, the beam field (b)
-E  is expressed by the

complex conjugate of (b)
+E .

The normalisation of the beam amplitudes 21)(
2
1)(

)(
)(

)( )( += b
old

b
new

b YEE ,

the polarization parameters 2)(
)(

)(
)(

)( b
zold

b
new

b cχχ = , )()( cos b
z

b
zc ϑ≡ , and the

amplitude parameters )( )(
2
1)(

)(
)(

)( b
old

b
new

b Yκκ = , is applied in Eqs. (6.33) to
make the time-averaged power flow density zHE ]Re[2

1 ×  in the direction
normal to the (planar) optical structure, independent of the characteristic
medium admittances 21)()()( )( bbbY µε=  and impedances )()( 1 bb YZ =  of
both media [1]. Note that, in our notation, 1

)( YY b =  for b=i,r and 2
)( YY b =  for

b=t. The components xE~  and yE~  of the Jones vectors (6.28) are normalised
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in (6.33) by the wave admittances )()()(
||

b
z

bb cYY =  and )()()( b
z

bb cYY =⊥ ,

respectively. Thus 21)(
||2

1
)()( )(~~ b

oldxnewx YEE =  and  21)(
2
1

)()( )(~~ b
oldynewy YEE ⊥= .

It is already taken into account in Eqs. (6.33) that the vectors )(
+E b  and )(

-E b

are complex conjugate of each other. For the undotted part of the beam field,
the complex conjugation )(

-
)(

+ EE bb =  replaces the forward waves in )(
+E b , that

is that part of )(
+E b  with the spectral amplitudes )(~ bE  propagating in the z -

direction, by the backward waves in )(
-E b , that is by that part of )(

-E b  with the

spectral amplitudes )(~ bE  propagating in the reverse z -direction. The dotted

parts of the beam field, with the spectral amplitudes )(~ bE  and )(~ bE� , propagate
in reverse directions with respect to the undotted parts.

In an inhomogeneous medium both types (undotted and dotted) of the field
are coupled by the wave impedance of the medium [9]. On the other hand, in
a homogeneous isotropic medium these parts of the field are decoupled and
the polarization and spatial structure of the propagating beam are mutually
independent. The beam propagation does not influence the beam polarization
and the state of beam polarization does not change the beam spatial structure
during the propagation. Therefore only one type of the polarization spinors is
necessary to describe the polarization of the beam propagating inside the
layers of such media.

On the other hand, the beam transmission and refraction at dielectric
interfaces obviously are polarization-dependent, because the transmission and
reflection coefficients are such. However, this dependence has been already
accounted for by the definitions of the different reference frames (6.15)-
(6.17) and (6.28)-(6.30) of the beam polarization, assigned to the incident,
trans-mitted and reflected beams by the scalar equations (6.26) for the beam
polar-ization and amplitude parameters. Therefore, for the multilayered
structure composed of isotropic and homogeneous dielectric layers, the
incidence with one type of (undotted or dotted) polarization vectors does not
excite the beams with the second type of polarization. For this reason, in the
following, only the undotted spinors (6.17), together with the associated with
them amplitudes (6.16) and their transformations (6.20)-(6.25), will be used.
Still, however, the beam reference polarization frames can be built only by
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use of both types of these spinors. That will be shown in the example given in
Section 7.

6.5  Polarization matrices and Stokes vectors

Some reference to the polarization matrices, Stokes vectors, as well as to
their transformations, should also be made. Their definitions are well known
[10-12]. However, for the amplitude-polarization field decomposition (6.15)-
(6.26) they attain a form specific only for the approach presented in this book.

We refer to Hermitian matrices 
++

== )()()()( bbbb CeeC , defined by their

eigenvectors )(be  and )(beD  and eigenvalues 2)(bN and 0 , respectively:









=












=

−−

++

21)()(21)()(

21)()(21)()(

)()(

)()(
)(

)()(
)()(

bbbb

bbbb

b
yy

b
yx

b
xy

b
xxb

CC
CC

C
χχχχ
χχχχ

,

)(2)()()( bbbb eNeC = , 0)()( =bb eC D , (6.34)

as to the spectral polarization matrices, rather than to the spectral coherence
matrices [10-11], because only completely polarized beams are considered in

this book. These matrices are normalised here by 
2)(~ bE , in order to make

them dependent only on the polarization parameters χ ( )b .

As usual, )(bC  can be written as linear combinations of the Pauli and
identity matrices [3]:

∑
=
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bC σ ,
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σ , 
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=

10
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σ , 








=

10
01

4
σ ,  (6.35)

where c−=3σ  for direct correspondence with notions of special relativity

[3], a convention different from the usual available in optical textbooks [10-
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11] is given. Coefficients )(b
jΣ  of these expansions yield the Stokes four-

component real vectors )(bΣ  for coherent beams:

[ ])()()()()()()()(
2
1)( ,),(, b

yy
b

xx
b

yy
b

xx
b

yx
b

xy
b

yx
b

xy

Tb i Τ+ΣΣ−ΣΣ−ΣΣ+Σ=Σ . (6.36)

The first two components of )(bΣ  depend on the phase 21)()( )( +bb χχ  and the
last two components depend on the amplitude 21)()( )( +bb χχ  of the
polarization parameter )(bχ . The determinant of )(bC  is equal to the Stokes
interval )(b∆Σ  squared:

0det 2)(2)(
4

2)(
3

2)(
2

2)(
1

)( =∆Σ=Σ−Σ+Σ+Σ= bbbbbbC (6.37)

and both of them equal zero for completely polarized beams.
Any complex two-by-two matrix A , representing action of the non-image-

forming optical element [12] on the beam polarization, transforms the
polarization spinors and polarization matrices according to the relations:

)()(' bb eAe = ,

+= ACAC bb )()(' , (6.38)

where the matrix A  induces also transformations of the Stokes vectors )(bΣ

corresponding to the polarization matrices )(bC . In the general case of
polarized, partially polarized or unpolarized beams, if A  is unimodular, then

A  leaves a norm of the Stokes interval )(bC∆  invariant, per analogy to

Lorentz transformations of a Minkowskian space-time four-vector
[ ]Tctzyx ,,, .

The transformations A  constitute the group SL(2,C) of the complex

unimodular two-by-two transformations and as such, they form a two-
dimensional representation (by a two-to-one homomorphism) of the restricted
Lorentz group [3], which is usually denoted by SO(3,1).  It is well known
[12] that the action of the non-image-forming polarization devices on optical
field is represented by elements of this Lorentz group. Therefore the
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transformations A  represent also the action of multilayers on the polarization

of optical beams.

6.6  Scattering and transfer matrices

With the definitions of the polarization reference frames (6.17) the
derivation of the scattering matrix of the multilayered structure is
straightforward. For the 2D case the time reversibility [1] yields the Stokes
relations which specify the complex reflection and transmission TM/TE
coefficients for incidence from the substrate. These coefficients are indicated
here by primes, contrary to the “unprimed” coefficients for the incidence from
the superstrate (cf. Fig. 6.2). For the incidence from the superstrate (substrate)
the beam fields are represented by )(

+
bE  ( )(

-
bE ) in the field representation

(6.33).
For the 2D case the most general Stokes relations can be derived from the

time-reversal and power conservation requirements applied to the
multilayered structure [1]. Details of this issue are well understood. They can
be found e.g. in Ref. [14] and in references therein. Here, let us only state that
for the 2D case, the Stokes and power conservation relations read in the
region outside the multilayer:

aaaa ttrr −=' , aaaa trrt )1(' −= ,

aa tt =' , 1|||| 22 =+ aa tr , (6.39)

a=||, ⊥, and the “primed’ coefficients are completely determined by the
“unprimed” coefficients. Note that in the four equations (6.39) only three of
them are independent.

Next, let us return to the 3D case of beam scattering. In the language of the
amplitude-polarization field decomposition, the above relations yield
analogous conditions for the beam amplitude and polarization coefficients:

κκκκ ttrr =' , χχχχ ttrr =' ,

κκ tt =' , χχ tt =' . (6.40)
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Figure 6.2. Schematic diagram with notation for reflection, transmis-
sion, scattering and transfer matrices. Incidence need not be normal.

Moreover, as a result of the diagonal form of the matrices for reflection
(6.7) and transmission (6.12), and thanks to the normalisation of the field
amplitudes applied in (6.33), the 3D version of the Stokes and power
conservation relations (6.39) read:

1' −−= ttrr , 1)1(' −−= trrt ,

tt =' , 1=+ ttrr ,  (6.41)

where 1 stands for the two-by-two identity matrix. In spite of their two-by-

two matrix form, the Stokes relations (6.41) for 3D case are identical to those
(6.39) of the 2D case. The third equation in (6.41) directly displays the
reciprocity feature of the optical system under consideration. Thanks to the
diagonal form of all the reflection and transmission matrices, the last equation
in (6.41) (for power conservation) can be derived from the first three
equations, similarly to the 2D case. The ‘unprimed’ and ‘primed’ scattering
matrices are equal for transmission and their matrix elements are of equal
magnitudes for reflection. For a symmetric structure rr =' , that is trtr −=
and a phase of the field for transmission is shifted by 2π±  from a phase for
reflection.
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The transmission (6.7) and reflection (6.12) matrices are diagonal, with
their elements (6.8) and (6.14) known and the Stokes relations (6.41)
explicitly given. Therefore the scattering matrix for the 3D problem is also
completely determined. Denote the field vectors of the beam field incident
from the superstrate by )i(

1
)i(

1
)i(

1
~~ eEE = , that one incident from the substrate by

)i(
2

)i(
2

)i(
2

~~ eEE =  and the outgoing beam fields by )(
1

)(
1

)(
1

~~ ooo eEE =  and )(
2

)(
2

)(
2

~~ ooo eEE = ,
respectively (cf. Fig. 6.2). The relation between the outgoing (output) beams
and the incident (input) beams is then given by the four-by-four scattering
matrix S :












=












)(

2

)(
1

)(
2

)(
1

~
~

~
~

i

i

o

o

E
ES

E
E , 








=

'
'

rt
tr

S ,  (6.42)

where the lower bar indicates matrices and vectors in four-dimensional vector
space. The matrix S  is symmetric, i.e. tt ='  and its two-by-two matrix
elements r , t , 'r  and 't  are given by Eqs. (6.7), (6.8), (6.12), (6.14) and

(6.41). The scattering matrix (6.42) for the 3D problem follows directly the
relations known from the 2D problems. For the isotropic lossless structure,
the scattering matrix satisfies the reciprocity and time reversibility relations:

TSS= , SS =−1 . (6.43)

Therefore the scattering matrix is unitary; 1=+SS , according to the power

conservation requirements. Moreover, in the partial transmission case, i.e.
when rr =  and tt = , the matrix S  is unimodular; 1det −=S , and in

addition, the fundamental invariance of multilayers [5]:

)~~(~~ 2(i)
2

2(o)
2

2(o)
1

2(i)
1 EEEE −−=− , (6.44)

or equivalently 33 σσ =TT T , also holds in this case. A definition of the
four-by-four transfer matrix T  is given below. The four-by-four matrix 

3
σ  is

obtained from the two-by-two matrix 
3

σ  (6.35) by replacing in the matrix
components the unit scalars 1±  by the two-by-two unit matrices 1± .
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Let us define the "upper" ]~,~[~ )(
1

)(
11

oiT
EEE =  and "lower" ]~,~[~ )(

2
)(

22
oiT

EEE =
field-vectors above and below the multilayer, respectively, (cf. Fig. 6.2) in a

four-dimensional vector space with a field norm jjj EEE ~~~
3

2
σ

+
= ; j=1,2. In

this space, the scattering matrix S  and its inverse 1−S  are equivalent to the
four-by-four matrices T  and 'T  of the 3D beam transfer through the

multilayer. Action of these matrices reads, for incidence from the top of the
structure:
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and for incidence from the bottom of the structure:
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For the multilayer taken in reverse order the transfer matrix reads 1' −= TT .
Both matrices T  and 'T  are unimodular; 'det1det TT == , with the property

33
σ̂=+ TT σ .  This means that the norm jE~  and the field power density are

preserved by action of T  on the field-vector 1
~E :

 )|~||~(||~||~| 2)(
1

2)(
1

2)(
2

2)(
2

ioio
EEEE −−=− . (6.46)

For the symmetric case TT ='  and the off-diagonal elements of T  and 'T  are

purely imaginary, that is 11 −− −= trtr . The matrices T  and 'T  are given in

Eqs. (6.45) in the most general form, valid for multilayers in which total
internal reflection (TIR) or frustrated total internal reflection (FTIR) may
occur.

The scattering matrices S  (6.42) and the transfer matrices T  (6.45) are

semi-diagonal, i.e. their matrix elements are diagonal. Therefore, all features
of the geometrical interpretation of the plane wave or 2D beam propagation in
multilayers, that have been described for example in Refs. [5-8] and [12-13],
can be directly translated into the 3D beam case. Only for this reason, the
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formalism presented should be regarded as a convenient tool for treatment of
the propagation and scattering problems of 3D beams of arbitrary polarization
at multilayered structures composed, in general, of linear [2], [4] as well as
nonlinear [4], [15] interfaces and isotropic layers.

In addition, however, the transmission 
p

t  (6.24) and reflection 
p

r  (6.25)

polarization matrices, from which the scattering and transfer matrices have
been built, are also unimodular; 

pp
tr det1det == . Thus, the transformations

p
t  and 

p
r  are also examples of the unimodular two-by-two complex matrix

transformations A  (6.36) of the beam polarization spinors )(be  (6.17) and

polarization matrices )(bC  (6.38). These transformations also correspond to
the six-parameter restricted Lorentz transformations of the Stokes vectors

)(bΣ  and provide one more explicit connection with the relativistic-like
treatment of multilayer optics elements.

6.7 Anti-reflection multilayer

Still, the amplitude-polarization decomposition (6.15)-(6.17) and the
definitions of the polarization frames (6.32)-(6.33) have not been explicitly
applied yet. To demonstrate the strength of the approach let us consider, as an
example, the anti-reflection multilayer.

In this case | | | |||r r= =⊥ 0  and | | | |||t t= =⊥ 1. The transmission coefficients

(6.8) are defined by:

)exp( |||| tit φ= , )exp( ⊥⊥ = tit φ , (6.47)

and polarization χ ( )t  and amplitude κ ( )t  parameters for transmitted beam are
related to those of the incident beam χ ( )i  and κ ( )i , respectively, by the
polarization χt  and amplitude tκ  coefficients for transmission (6.26):

)()( it t χχ χ= , )2exp( −= tit φχ , (6.48)

)()( it t κκ κ= , )2exp( += tit φκ , (6.49)

where
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)( ||2
1

⊥− −= ttt φφφ ,

)( ||2
1

⊥+ += ttt φφφ (6.50)

are phase increments attributed to the transmitted beam polarization and
complex amplitude, respectively.

Using of the unitary (up to a norm) transformation:










−
= +−

−+
−

21)(21)(

21)(21)(
2)()(

)()(
)()(

)( bb

bb
bb NU

χχ
χχ

,

1)()(2)( )(
−+

= bbb UUN , (6.51)

the old polarization reference frame ),( yx ee  is replaced by the new

polarization reference frames ),( )()( bb ee � , attributed separately to the incident
(b=i) and transmitted (b=t) beams. That yields the base spinors,









=→

0
1)()()( bbb eUe ,









=→

1
0)()()( bbb eUe DD , (6.52)

polarization matrices









=→

+

00
01)()()()( bbbb UCUC ,  (6.53)

and Stokes vectors in a form common, this time, for both beams:

[ ]2
1

2
1)( ,,0,0→Σ b , (6.54)

where new notation in new reference frames has been replaced by arrows.
Now, the transmission matrix resolves into a product 121

κt  of the

amplitude coefficient and the identity matrix, that is:

)exp(1)()(
+

+
=→ t

it iUtUt φ , (6.55)
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and constitutes anti-diagonal and diagonal elements of the scattering and
transfer matrices, respectively:









→

+

+

0)exp(1
)exp(10

t

t

i
i

S
φ

φ
, (6.56)










−
→

+

+

)exp(10
0)exp(1

t

t

i
i

T
φ

φ
, (6.57)

determined by only one parameter +tϕ , that is by changes of the complex
amplitude of the transmitted beam. Therefore, the anti-reflection multilayer is
equivalent to the free-propagation with the phase increment equal to +tϕ .

In fact, the matrices (6.55)-(6.57) are dependent on both the scalar
coefficients (6.48)-(6.49) for the beam transmission: the polarization
coefficient χt  and the amplitude coefficient tκ . In the amplitude-polarization
field decomposition (6.15), the coefficient χt  determines the beam Jones

vector )(te  together with the polarization reference frame ),( )()( tt ee �  (6.50)
and thus the transmitted beam polarization. On the other hand, the coefficient
tκ  yields the beam field spectral amplitude )(~ tE  (6.22), and thus the

transmitted beam field 
)()t( ~~ i

EtE =  (6.20) in this frame, that is tκ  describes

the transmitted beam amplitude, phase and shape changes. In this way, the
vector problem of scattering of 3D beams with arbitrary polarization is
reduced to two scalar problems: the first for the beam polarization and the
second one for the beam complex amplitude or the beam shape.

The diagonal form of the transfer matrix (6.57) clearly demonstrates how
the field amplitude-polarization decomposition may simplify the 3D problem
of beam scattering. Further, numerical analysis of the problem can be
accomplished on the way already presented for the Gaussian incidence at a
single dielectric interface: for the beam polarization - in Ref. [2] and for the
beam amplitude, phase and shape - in Ref. [4].

6.8  Comments and conclusions

Explicit expressions for the transmission, reflection, scattering and transfer
matrices are given for 3D beams of arbitrary polarization, incident upon the
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dielectric multilayered structure. Some of these expressions concerning a
single interface have been presented by the author in Ref. [2]. They are
collected together here for the sake of clarity and attempts to make the whole
text more transparent to the reader. The very idea to generalise the scattering
matrix for 2D beams into the 3D beam case should not be new. However, as
far as it is known to the author, the explicit expressions for this matrix
elements presented here are new, at least their diagonal, attractive for further
analysis, form. This diagonal form of the matrices derived results from the
polarization dependence imposed on the spectral transmission and reflection
coefficients of beams. That, in turn, leads to the so direct correspondence
between 2D and 3D problems of the beam scattering at multilayers. In short,
if the Fresnel transmission t p , st  and reflection pr , rs  coefficients for the

multilayered structure in the 2D problem are known, then the solution to the
3D problem can readily be explicitly given.

The expressions presented are valid in the general case, including TIR and
FTIR, that is now the most interesting cases of beam scattering with presence
of evanescent waves. The approach bases on the replacement of the TM and
TE reference frames by the beam polarization frames, separately specified for
each beam under consideration, as well as on the amplitude-polarization
decomposition of the 3D beam fields. Such a formulation of the beam
scattering problem is, to the best of the author’s knowledge, also new.

The approach leads, in essence, to simpler, although still rigorous,
scattering problem of seeking for the scalar field amplitudes in the spectral
decomposition of the beam, with the polarization reference frames
determined also by scalar relations. The solution of the 3D beam scattering
problem in the spatial domain can be readily obtained by next steps of this
analysis and that has been presented and numerically verified in Ref. [4].
Then the difference between the 2D and 3D cases becomes vivid, the most in
the presence of transverse changes of the beam polarization, amplitude and
spatial structure [2], as it was shown for a single interface some time ago
[16].

Transverse effects of beam deformations have been also discussed in the
case of anisotropic uniaxial interfaces, e.g., in Refs. [17-19]. A method
applied in these analyses followed closely the aberrationless approach devised
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previously for 3D beams at an isotropic interface [16]. In a recent paper [19]
some comments have been also given pertaining to the rather old issue (cf.
Ref. [16]) of non-existence/existence of transverse deformations of beams
which possess linear TM or TE polarization. To make this issue clear let us
recall that, even in the case of an isotropic planar scattering structure, linear
TM or TE polarization of the incident beam and symmetry of this beam field
intensity distribution with respect to the main plane-of-incidence, the beam-
structure configuration generally remains asymmetric with respect to this
incidence plane. That is due to the specified direction of the incident beam-
field polarization [16].

As a result of this asymmetry, the transverse deformations of the reflected
and/or transmitted beam generally exist, although only in the opposite
orthogonal polarization beam component, that is in the TE reflected or
transmitted field component for the incident TM polarization or vice versa
[16]. They contribute to the overall beam complex amplitude and polarization
[2]. Note that, even for the pure TM or TE linear polarization of the 3D
incident beam at 2D isotropic planar structures, the other, orthogonal beam
field components still are, in general, excited during beam transmission and
beam reflection [16].

Certainly, the TM or TE transmitted/reflected field components also exist
and may be stronger for the elliptic polarization (including a circular one) of
the incident beam, as in this case the incident beam field consists of both the
linear TM and TE polarization components of finite magnitudes. The
problem becomes even more involved for beams of complex spatial structure,
like, for example, the Bessel-Gauss beams of zero order [20] or higher order
[21]. In general, the transverse effects - in a form of beam deformations,
shifts or orthogonal field component excitations - are always present for 3D
beam scattering at isotropic structures [2], [4], [16].

The characteristic feature of the transverse electromagnetic waves or 2D
beams propagating in an isotropic layered medium is the possible split of
their two, TM and TE, independent normal modes. That is not so for the case
of 3D beams. Therefore, the formalism presented in this chapter may appear
suitable in solving problems concerning polarization of 3D beams and wave
packets at isotropic and anisotropic, periodic and aperiodic, linear and
nonlinear multilayers, as encountered, for example, in ellipsometry [22],
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near-field microscopy [23], or in microwave [24] and optical [25] tunnelling.
A similar treatment can be also applied to scattering problems in acoustics,
mechanics and quantum electronics [26-28]. In general, the method seems to
be useful in any analysis of 3D beams and wave packets of arbitrary
polarization and complex shape, under their interaction with multilayers.

Main content of this chapter has been published in Journal of Technical Physics
45, 121-139 (2004).
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CHAPTER  7

Spatial distribution versus polarization of
beam fields at a planar isotropic interface

Three-dimensional monochromatic optical beams of uniform
polarization interacting with a planar boundary between two
homogeneous, isotropic and lossless media are analyzed.
Generalized Fresnel transmission and reflection coefficients for
beam spectra are given. Interrelations induced by cross-
polarization coupling between the beam profile and phase and
beam polarization, or between spin and orbital angular momen-
tum of beams are derived. Beam transmission for normal inci-
dence is discussed in detail. It is shown that elegant Hermite-
Gaussian beams of linear polarization and Laguerre-Gaussian
beams of circular polarization, all projected on the interface, are
normal modes at this interface. Creation and annihilation of these
modes at the interface are shown with total angular momentum
being conserved on a single photon level. In addition, basic
relations concerning effects of nonspecular refraction and reflec-
tion are collected.

7.1 Introduction

There are two basic families of three-dimensional (3D) solutions of the
paraxial wave equation - Hermite-Gaussian (HG) beams of rectangular sym-
metry and Laguerre-Gaussian (LG) beams of cylindrical symmetry. Both of
them form two separate, complete, orthogonal, infinite-dimensional bases for
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any paraxial beam field with its transverse distribution represented by a
square integrated function. In particular, any HG beam can be expressed by a
linear combination of LG beams and vice versa [1]. There are also two basic
two-dimensional (2D) bases for beam polarization - linear, with transverse
magnetic (TM) and transverse electric (TE) states, and circular, with right-
handed (CR) and left-handed (CL) states. Any linear state of beam polariza-
tion can be represented by a linear combination of circular states and vice
versa [2].

Transformations of beam spatial structure and beam polarization are
usually implemented optically by astigmatic mode converters and
birefringent plates, respectively [3]. Equivalence of their action is similar to
the same extent as analogies between orbital angular momentum (OAM),
associated with helical phase fronts of beams, and spin angular momentum
(SAM), associated with circular polarization of beams [4]. This chapter deals
with such transformations produced by interaction of 3D beams with planar
discontinuity (interface) between two optically transparent semi-infinite
media, and with interrelations between OAM and SAM that appear as a
result of this process.

Spatial profile of the beam intensity and phase of a 3D paraxial beam is
independent of beam polarization during propagation in homogeneous,
isotropic and lossless medium. However, when the beam is incident on a
planar discontinuity of medium parameters, its spatial structure and
polarization become interrelated. These interrelations result from the action
of cross-polarization coupling (XPC) that occurs for incidence of beams of
finite cross-sections [5]. They cannot be explained only with the help of the
standard Fresnel transmission and reflection coefficients, well known for 2D
plane wave incidence. Their generalization to the 3D case appears necessary
to deal properly with the beam-interface interactions.

Behavior of beams at medium planar interfaces has been under intense
studies for many decades [2,6], recently also in the context of several aspects
of singular optics [7]. Spatial shifts and deformations of a 3D beam spatial
structure have attracted attention as well [8–10]. This issue, however,
remains outside the scope of this contribution. The analysis, although being
valid for general incidence of arbitrary beams, will be concentrated mainly
on the case of normal incidence of the symmetric HG and LG beams. Such a
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case can be treated exactly, without the need of invoking the approximate
notions of beam shifts and deformations.

The beams will be considered narrow, with a beam radius of the order of
one wavelength at a beam waist. Beam polarization and shape coupling will
be defined in a spectral or momentum domain, for arbitrary distribution of
beam field magnitude, phase and polarization. In a spatial or direct domain,
specific cases of the higher-order HG beams of linear TM/TE uniform polar-
ization and LG beams of circular CR/CL uniform polarization will be
analyzed in detail. These sets of HG and LG beams will be considered in
their biorthogonal versions of complex arguments, known as complex–
valued or “elegant” (EHG) and (ELG) beams, respectively [11–13].
Moreover, their commonly known definitions will be further modified by
their projection at the interface plane. It appears that such an elegant form of
the projected HG and LG transmitted and reflected beam modes is naturally
enforced by the interface being illuminated by an arbitrary incident 3D beam.
The same process specifies uniquely the coupling between SAM and OAM
of circularly polarized ELG beams. These phenomena will be traced here
step by step by exact derivation of analytical expressions for the beam field
spectral com-ponents.

Characteristic features of OAM of LG beams are well known [14]. Let
me only mention that, due to the beam symmetry, an average of their
transverse momentum is zero and their (mean) OAM, averaged over the total
beam field, is intrinsic with respect to their beam axes [15]. On the other
hand, the projected ELG beams introduced in this chapter are defined with
respect to a normal to the interface, not with respect to their beam axes.
Therefore OAM of the projected ELG beams is extrinsic for oblique
incidence of beams and intrinsic for their normal incidence. Mainly the latter,
intrinsic case of beam incidence is discussed in this chapter. Note however
that, contrary to the averaged OAM of LG beams, densities of their OAM
depend on position of the axis about which they are measured. This means
that OAM density of a LG beam reveals a quasi-intrinsic character of
averaged OAM of this beam [16] and that the "intrinsic" and "extrinsic"
cases of the beam incidence are interrelated.

Both the spin and orbital parts of beam total angular momentum (TAM)
attract considerable attention recently due to their possible applications as
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carriers of information on classical and quantum levels [17–20]. The spin or
polarization part can be described in the 2D basis of circular polarization and
provides a physical realization of a qubit. The orbital part, usually associated
with beam helical wavefronts, has an infinite number of eigenstates and thus
may serve as a suitable mean for encoding information in qunits in an N-
dimensional space, with N restricted only by a finite aperture of an optical
system. Both HG and LG beams may be used in these processes as they are
interrelated uniquely by HG-LG mode converters [1,3].

Optical coding of information needs sorting beam modes or single
photons on the basis on SAM, OAM and/or TAM. It can be accomplished by
interferometric methods capable of measuring angular momentum by
rotating devices build from prisms, cylindrical lenses, half-wave plates or
other types of phase shifters [21]. It would be interesting to see also
application of layered optical structures, composed only of several layers and
interfaces, in these processes. This contribution may be regarded as a
preliminary step towards such applications. A solution to the problem at
hand may appear also useful in analyzing phenomena of transfer of the
angular and linear momentum of light beams to a dielectric material [22,23].
Nevertheless, discussion on other, more direct applications, for example
within the range of optical visualization or near-field optics, is out of the
scope of this work.

In Section 7.2 theoretical analysis of 3D beams in a spectral domain leads
to generalization of the standard, p and s, Fresnel coefficients. That sum-
marizes the results derived by the author in the past in another context
[5,9,24,25], still given for arbitrary beam profile, phase and polarization. In
Section 7.3 decomposition of beam transmission and reflection into parts
characteristic to normal and critical incidence of total internal reflection
(TIR) will be presented, together with distinct properties of their
transmission and reflection partial coefficients. Beam field redistribution
between opposite orthogonal polarization TM and TE or CR and CL
components will be exactly derived in a spectral domain.

Transmission of the projected elegant higher-order HG and LG beams of
uniform polarization, incident at normal incidence upon the interface, will be
analyzed in a spatial domain in Section 7.4. Theoretical results will be
illumi-nated by numerical simulations. The beam mode conversion through
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the XPC effect at the interface will be described in detail. Definitions of
beam normal modes at the interface will be given. Coupling between OAM
and SAM of beams at the interface will be explained in Section 7.5 in terms
of a conser-vation principle of their TAM. It will be shown that the analysis
accounts this principle on both - macroscopic and single photon - levels.
Conclusions close this chapter in Section 7.6.

7.2 Action of the interface in a spectral domain

Spectral components of 3D beams at the interface are defined in three
local reference frames Ox y zp s k ,each one for the incident (b=i), reflected

(b=r) and transmitted (b=t) beams [5]. These three frames are defined for
separate spectral (plane wave) components of the beams. The total field of
the beams is defined in frames Oxyz , one frame for each beam. There is also
an interface frame OXYZ , for the total field of all three beams at the
interface, here placed at the plane Z = 0. The kz -axes indicate propagation
directions of the plane waves, the z -axes coincide with the propagation
directions of the beams, and the Z –axis is normal to the interface. Geometry
of the problem is outlined in Figure 1.

The plane x zp k−  is the local incidence plane and the planes x z−  or

X Z−  define the beam or main incidence plane [5]. There are also three
transverse planes: the local transverse plane x yp s−  - for one spectral beam
field component, the beam transverse plane x y−  - for the total beam field,
and the interface plane YX −  - transverse to the normal Ze  to the interface.
For normal incidence the beam transverse plane x y−  coincides with the
interface plane YX − . For oblique incidence the z -axis makes with the Z -
axis an incidence angle θ ( )i  of the beam.

In the local reference frames Ox y zp s k , one transverse spectral

component 
)(~ b

E  of the beam field is given by the scalar multiplication
)(

),(),(
~ b

spsp Ee  of beam polarization ],[),( spsp eee =  and field amplitude
Tb

s
b

p
b

sp EEE ]~,~[~ )()()(
),( =  vectors; “T” means transpose. The amplitude vector is

composed of p and s field components ,~ )(b
pE  and )(~ b

sE  in the local transverse
plane sp yx − . A pair of the unit vectors  - pe  placed in this plane and se  or-
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Figure 7.1. Interface OXYZ  and beam Oxyz  reference frames for
transmission and reflection viewed in a beam plane of incidence
X Z− ; local frames Ox y zp s k  are given by rotation of the plane
X Z−  by an azimuthal angle ϕ  around the axis Z . Beam waists are

placed in centres of beam frames, incidence of internal reflection is
assumed.

thogonal  to  this  plane  - spans the local 2D polarization space transverse to
the wave vector ],[ )()( b

Z
b kkk ⊥=  of one spectral field component [5].

The Fresnel transmission and reflection coefficients, generalised to the
case of beams with finite cross-sections, have been exactly derived in the
beam frames Oxyz  [25]. However, the beam-interface interactions are more
conveniently described in the interface reference frame OXYZ  [24]. In this
frame, the transverse k⊥ ; k k kX Y⊥ = +2 2 2 , and longitudinal kZ

b( ) ;
22)(2)( )()( ⊥−= kkk bb

Z , components of k b( )  determine, through
k k b b

⊥ = ( ) ( )sin ϑ , )()()( cos bbb
Z kk ϑ= , k kX = ⊥ cosϕ  and ϕsin⊥= kkY , the

polar ϑ ( )b  and azimuthal ϕ  incidence angles in the local cylindrical
coordinate frame )(b

ZkOk ϕ⊥ .
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In the direct reference frame ZOr ψ⊥  the polar )(bθ  and azimuthal ψ
angles are defined in the same manner. Orientations of both frames

)(b
ZkOk ϕ⊥  and ZOr ψ⊥  are taken also the same, with the same incidence

polar angles )(
0

)(
0

ii θϑ =  in the same main incidence plane ψϕ == 0 . In this
plane the local plane kp zx −  coincides with the beam incidence plane x z− .

For brevity, the dependence of field vectors ~ ( )
E

b
 and ~

( , )
( )

E p s
b

 on kX , kY  and

Z  are taken through this chapter as implicit.

7.2.1  Beam transmission

For each spectral transverse components ~( )
E

b
 of the incident (b=i) and

transmitted (b=t) beam fields,

s
b

sp
b

p
b

eEeEE )()()( ~~~ += ,  (7.1)

~ ~
( , )
( )

( , ) ( , )
( )

E t Ep s
t

p s p s
i

= ,  (7.2)

the field vector amplitudes ~
( , )
( )

E p s
b

 are composed of the transverse field

components ~( )E p
b  and ~( )Es

b . The elements of the diagonal transmission

matrix t
p s( , )

 are the well-known Fresnel coefficients t tp p
i≡ ( )( )ϑ  and

t ts s
i≡ ( )( )ϑ  that already account for the Snell law. The total field of the

beam is composed of continuum of plane waves defined in different local
incidence planes x zp k− . However, all spectral components of the beam

field need to be presented in one reference frame, usually taken as the beam
frame Oxyz  [26]. Here the interface frame OXYZ  is chosen instead. In this
frame the definitions (7.1) and (7.2) should read

Y
b

YX
b

X
b

eEeEE )()()( ~~~ += ,   (7.3)

~ ~
( , )
( )

( , ) ( , )
( )

E t EX Y
t

X Y X Y
i

= ,   (7.4)

with new polarization ],[),( YXYX eee =  and amplitude ~ [ ~ , ~ ]( , )
( ) ( )E E EX Y X
b

Y
b T=

vectors, and transmission matrix t
X Y( , )

.
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Further analysis aims to find field amplitudes and transmission
coefficients for each spectral field component in the frame OXYZ  by
conversion of the expressions (7.1) and (7.2), given in any local incidence
plane ϕ ≠ 0  to their counterparts (7.3) and (7.4) in the global incidence plane
ϕ = 0 . It can be accomplished by two 3D rotations: R

Y
 about the Y -axis by

ϑ ( )b  and R
Z

 about the Z -axis by ϕ  or by projection of 
)(

),(
~ b

spE  on the plane

ZX −  [5, 24]. However, after taking into account the divergence equation
~ ~( ) ( )

( , )
( )

E k E kZ
b

Z
b

X Y
b

= − ⊥� , only the 2D rotation matrices,
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may be used instead in evaluation of the field components and transmission
matrix elements,

~ ( ) ( ) ~
( , )
( ) ( )
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( )

E R R EX Y
b

Z Y
b

p s
b

= ϕ ϑ ,   (7.7)
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where η ϑ ϑ= cos cos( ) ( )t i . Still, by introduction of the linear polarization
parameter in the spectral domain of the incident beam

~ ~ ~
( , )
( ) ( ) ( )χ X Y
b

X
b

Y
bE E= , (7.11)
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b=i, the transmission matrix t
X Y( , )

 can be rewritten in the diagonal form

[24]:

t
t

t
t

tX Y
TM

TE

p TM

s TE
( , )

=








 =

+
+











η η0
0

0
0

∆
∆

, (7.12)

)])~[()(),( 1)(
),(

2)(
YX

i
YXYsp

i
aa kkkktt �

�χηϕϑ −
⊥−=∆≡∆ , (7.13)

where TMa =  ( TEa = ) for the upper (lower) signs in (7.13). In the
following, the parameter ~

( , )
( )χ X Y
i  will be assumed as independent of k X  and

kY . It remains common for all points of the interface plane. That means that
the incident beam is considered in an arbitrary uniform polarization state.

The coefficients )~;,( )(
),(

)( i
YX

i
TMTM tt χϕϑ≡  and )~;,( )(

),(
)( i

YX
i

TETE tt χϕϑ≡  of
transmission should be understood as the Fresnel coefficients ηt p  and ts

modified, due to the 3D character of the beams, by the modification terms
∆TM  and ∆TE , respectively. They are caused by the XPC effect, are

proportional to the difference tt p −η  of these coefficients and consist of the
first-order and second order ingredients with respect to kY . They disappear at
the beam incidence plane, i.e. for kY = 0 . For pure TM and TE incident
polarization 0)~( 1)(

),( =−i
YXχ  and ~

( , )
( )χ X Y
i = 0 , respectively, and then ηt p  and ts

are modified only by the second-order terms 22)( −
⊥− kktt Yspη�  [24].

7.2.2  Beam reflection

Similar considerations to those given in Section 7.2 can be repeated for
the reflected beam (cf. Figure 7.1). The transverse field spectral components

s
r

sp
r

p
r eEeEE )()()( += (7.14)

are defined in the local frame Ox y zp s k  by the field amplitude
~ [ ~ , ~ ]( , )

( ) ( ) ( )E E Ep s
r

p
r

s
r T=  and polarization ),( spe  vectors. The new amplitude

~ [ ~ , ~ ]( , )
( ) ( ) ( )E E EX Y
r

X
r

Y
r T

− = −  and polarization ),( YXe  vectors, defined in the

interface frame OXYZ , can be obtained by the rotation (7.5)-(7.6) and
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inversion R
I
; − = =R R

I XX I YY, ,
1 , transformations applied in the appropriate

order, or equivalently, by projection of ~
( , )
( )

E p s
r

 on the plane X Z−  [5,24],

~ ( ) ( ) ~
( , )
( ) ( )

( , )
( )

E R R R R EX Y
r

I Z Y
r

I p s
r

− = ϕ ϑ , (7.15)
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The reflection matrix r
X Y( , )−

 can be then evaluated from the local or Fresnel

(diagonal) reflection matrix r
p s( , )

, with its diagonal elements )( )(i
pp rr ϑ≡

and )( )(i
ss rr ϑ≡ , by the application of the inversion and rotation matrices in

appropriate order. This transformation yields the definition of the reflection
matrix in the frame ),( YXe  [5],

r R R R R r R R
X Y I Z Y

r
I p s Y

i
Z( , )

( )
( , )

( )( ) ( ) ( ) ( )
−

− −= ϕ ϑ ϑ ϕ1 1 , (7.17)

r k
r k r k r r k k
r r k k r k r kX Y
p X s Y p s X Y

p s X Y p Y s X
( , )

( )
( )− ⊥

−=
− +

− + − +












2
2 2

2 2 , (7.18)

where ~ ~
( , )
( )

( , ) ( , )
( )

E r EX Y
r

X Y X Y
i

− −
= .

Next, introduction of the polarization parameter ~
( , )
( )χ X Y
i  makes the matrix

r
X Y( , )−

 diagonal [24]

r
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r
r

rX Y
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TE

p TM

s TE
( , )−
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 =
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+











0
0

0
0
∆

∆
, (7.19)

where )~,,( )(
),(

)( i
YX

i
TMTM rr χϕϑ≡  and )~,,( )(

),(
)( i

YX
i

TETE rr χϕϑ≡  mean the coeffi-
cients rp  and rs  modified by the terms ∆TM  and ∆TE  (7.12)-(7.13). Eqs.

(7.12) for transmission and (7.19) for reflection, together with definition
(7.13) of the beam spectra modifications, explicitly show differences
between 3D beam and 2D beam cases. The terms ∆ TM  and ∆TE  disappear
for plane waves and 2D beams. Such effects as XPC, interrelations between



Spatial distribution versus polarization of beam fields      229

beam spin and orbital angular momenta, transverse modifications of the
beam profile, phase and polarization are specific only to the 3D case.

Note that the transmission (7.11) and reflection (7.19) matrices are exact
for any plane wave of which the incident beam is composed. They are
dependent on each other and interrelated through the continuity of the field
components tangent to the interface [24]:

1− =r tp pη , 1+ =r ts s , (7.20)

1− =r tTM TMη , 1+ =r tTE TE . (7.21)

Eq. (7.21) is given in the main plane of incidence, for ϕ=0, and Eq. (7.21) is
given in the local plane of incidence, in general for ϕ ≠ 0 .

7.3  Normal versus critical incidence of beams

The Fresnel coefficients defined for plane-waves are interrelated through
the field continuity relations (7.20) at the interface or equivalently by

1
2

1
21( ) ( )ηt t r rp s p s+ = − − , (7.22)

1
2

1
2( ) ( )ηt t r rp s p s− = − + . (7.23)

For normal incidence Eqs. (7.22) and (7.23) read ηt t r rp s p s= = − = +1 1

and 0 0= , respectively. Moreover, they read 1 1=  for critical incidence of
TIR. That suggests that Eq. (7.22) can be associated with normal incidence
and Eq. (7.23) with critical incidence of one separate spectral component of
the beams. This form of the field continuity relations leads to a special type
of beam field decomposition, particularly suitable in treatment of beams at
the interface.

7.3.1  Field decomposition in the linear polarization basis

The transmission (7.12) and reflection (7.19) matrices can be decomposed
in such a way that the separate terms of the relations (7.22) and (7.23) stand
for the amplitudes of separate parts of the decomposition of these matrices.
In the TM/TE polarization basis ),( YXe , this decomposition takes the

following form:
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(7.25)
now explicitly dependent on the azimuthal angle ϕ  through the relations
k k kX Y

2 2 2 2− = ⊥ cos ϕ  and 2 22k k kX Y = ⊥ sin ϕ . The matrix decomposition
(7.24) and (7.25), together with a Z -component of the field

)()()()( )~~(~ b
ZY

b
YX

b
X

b
Z kkEkEE +−= (7.26)

describe explicitly characteristic properties of beam transmission and
reflection. They depend on the beam incidence angle, polarization and
transverse field structure, and on the type of media of which the interface is
composed.

The diagonal part of the transmission (7.24) matrix is proportional to the
identity matrix. Therefore it does not change the polarization state of the
beam and remains common for any polarization base used in the beam field
representation. The same concerns, up to the sign changes, the reflection
matrix (7.25). For critical incidence of TIR the amplitudes of the diagonal
ingredients amount 1

2 1( )ηt tp s+ =  and 1
2 0( )r rp s− = , respectively. They

correspond to the total transmission of the beams. On the contrary, the
amplitudes of the second, XPC parts of the matrices (7.24) and (7.25) yield
1
2 1( )ηt tp s− = −  and 1

2 1( )r rp s+ =  for critical incidence of TIR. For normal

incidence both of them equal zero. Therefore, the first part in Eqs. (7.24) and
(7.25) can be associated with normal incidence and the second - with critical
incidence of TIR. For incidence other than normal and critical, all amplitudes
in the decompositions in (7.24) and (7.25) take non-zero values.

7.3.2  Field decomposition in the circular polarization basis

In the circular polarization frame ],[),( LRLR eee = , composed of CR and
CL polarization vectors Re  and Le , respectively, defined here in the
interface plane YX − , not in the transverse planes yx −  of the beams.  The
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basis ),( LRe  and the field amplitudes ~ [ ~ , ~ ]( , )
( ) ( ) ( )E E ER L
b

R
b

L
b T=  in this basis are

obtained from the linear basis ),( YXe  and the field amplitudes E X Y
b

( , )
( )
±  by the

unitary transformation U : U URX LX= =−2 1 2  and − = =−U i URY LY2 1 2 ;
+= Uee YXLR ),(),( , )(

),(
)(

),(
~ t

YX
t

LR EUE =  and )(
),(

)(
),(

~ b
YX

b
LR EUE −=  (the superscripted

plus sign means Hermitian conjugate). This yields (b=t,r):

L
b

LR
b

R
b

eEeEE )()()( ~~~ += , (7.27)

[ ]YXYXLR eieeiee −+= − ,2 21
),( , (7.28)

with transverse and longitudinal field components expressed by:

[ ]~ ~ ~ ~ ~
( , )
( ) ( ) ( ) ( ) ( )E E i E E i ER L
t

X
t

Y
t

X
t

Y
t T

= − +−2 1 2 , (7.29)

[ ]~ ~ ~ ~ ~
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( ) ( ) ( ) ( ) ( )E E i E E i ER L
r

X
r

Y
r

X
r

Y
r T

= − − − +−2 1 2 , (7.30)

[ ]~ ~ exp( ) ~ exp( ) tan( ) ( ) ( ) ( )E E i E iZ
b

R
b

L
b b= ± +−

� �2 1 2 ϕ ϕ ϑ . (7.31)

The upper (lower) signs in (7.31) pertain the transmitted (b=t) (reflected;
b=r) beam. Note that exp( ) ( )± = ± ⊥

−i k ik kX Yϕ 1  and 1)()( )(tan −
⊥= b

Z
b kkϑ . The

winding number of the Z -components of all beams - incident, transmitted
and reflected - is larger (lower) by one than that of the transverse field
component of the CR (CL) polarization. 

The transmission t U t U
R L X Y( , ) ( , )

= +  and reflection r U r U
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(7.33)
can be then decomposed into two parts - diagonal and antidiagonal, with
distinct polarization properties.
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The diagonal part of the transmission matrix t
R L( , )

 does not change the

beam polarization. It modifies only the amplitudes of beam spectral com-
ponents by the factor 1

2 ( )ηt tp s+ . The antidiagonal part of t
R L( , )

, with its

amplitude 1
2 ( )ηt tp s− , represents the pure XPC effect of the beam-interface

interaction; the CR polarization of the incident beam is replaced by the CL
polarization under beam transmission and vice versa. Moreover, this part of
the transmission matrix changes, in the beam centre, a topological charge of
the beam by two. For the incident CR (CL) polarization, the topological
charge is increased (decreased) by two in the CL (CR) polarization of the
transmitted beam.

For the beam reflection, due to the inversion R
I
, the diagonal and

antidiagonal components of the reflection matrix are replaced with respect to
their roles in the beam transmission. The first part of r

R L( , )
, this with the

amplitude 1
2 ( )r rp s− , changes the beam polarization state to the opposite

one, but without changes in the beam topological charge. On the contrary,
the second part of r

R L( , )
, this with the amplitude 1

2 ( )r rp s+ , does not change

the beam polarization. Instead, due to the XPC effect at the interface, it
increases (decreases) the topological charge of the reflected beam by two for
the CR (CL) polarization of the incident beam.

The transmission t
R L( , )

 (7.32) and reflection r
R L( , )

 (7.33) matrices in the

circular CR/CL basis are equivalent to their counterparts t
X Y( , )

 (7.24) and

r
X Y( , )−

 (7.25) in the linear TM/TE basis. All of them describe completely, in

the spectral domain, the transmission and reflection phenomena of 3D beams
of arbitrary shape and polarization, incident upon the interface at an arbitrary
incidence angle.

7.4  Action of the interface in a spatial domain

Consider now characteristic features of the beam-interface interactions in
the spatial domain. With where harmonic dependence on time exp( )−i tω
assumed and suppressed, 3D beams of finite cross-sections are usually
expressed by their spectral representation, what in the reference frame
OXYZ  yields
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,)](exp[),,(~
)exp()2(),,(

)(

)(2)(

YkXkiZkkEdkdk

zikwZYXE

YXYX
b

YX

b
w

b

+×

±=

∫∫

π
(7.34)

Note that, although the representation (7.34) is exact, for clarity of further
considerations the beam vector amplitudes ~ ( )

E
b

 are now defined as depen-
dent on Z , the convention typical for paraxial beams [27]. In this way the
rep-resentation (7.34) is valid for paraxial and non-paraxial beams, provided
that in the second choice the paraxial beam profile and phase distribution are
im-posed only in one transverse plane, for instance, as taken below, in the
inter-face plane Z = 0.

The representation (7.34) translates characteristic features of beams from
the spectral domain to the spatial domain. In general, the integration can be
accomplished only numerically. Sometimes however, for some specific
incident beam distributions, it can be obtained also directly by analytical
evaluation of the beam fields in some specific polarization basis. For HG or
LG beams of arbitrary order, this evaluation is possible under fulfilment of
some additional conditions, as it will be evident from further considerations.

The analysis will be restricted only to a single interface. However, due to
the diagonal form of matrices (7.12) and (7.19), the results can be directly
generalised to the case of beams at isotropic layered structures [25]. The
derivations are exact in the spectral domain and approximate in the spatial
domain, with really high accuracy obtained for paraxial beams. Direct
integration of Maxwell equations [28] serves as a numerical illustration of
the analytical expressions derived. In numerical simulations, a dielectric
constant equal two is assumed at the interface for the case of internal
reflection. Only beam transmission of normal incidence will be analysed (cf.
also [29]); beam reflection and arbitrary incidence can be treated on the same
footing [28].

7.4.1  The fundamental Gaussian beam

Let us start from the incident beam with its transverse field distribution
GeE yx

i
yx ),(

)(
),( =  and GeE yx

i
yx

~~
),(

)(
),( =  at the plane z const= . in a form of the

fundamental Gaussian function:
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[ ]G x y z w v z x y v zw( , , ) ( ) ( )exp ( )( ) ( )= − + −2 2 2 21 2 , (7.35)

[ ])())(21(exp2),,(~ 222 zvkkzkkG yxyx +−= π , (7.36)

with the complex beam half-width (radius)

v z w iz zw D
2 2 11( ) ( )= + − . (7.37)

The beam is specified by a position of the waist centre, here at ( , ) ( , )x y = 0 0 ,
a beam complex half-width (radius) v  and a diffraction length of the beam
z k wD

i
w= ( ) 2 , ww  being a beam (real) half-width at the waist. The complex

half-width v , v w iR− − −= −2 2 1 , defines two real quantities: the beam half-
width (radius) squared w w z zw D

2 2 2 21= + −( )  and the radius of the phase-front
curvature R w z z zzw D D= +− −2 1 1( ) . Unit amplitude of the beam field at the
beam centre is assumed as a normalisation condition for the fundamental, as
well as for all higher-order, HG and LG beams. Note also that in all field
expressions in (7.35)-(7.37), the longitudinal z -coordinate can be
normalised to zD  and the two, x  and y , transverse coordinates can be
normalised to ww , respectively.

Higher-order HG and LG beams are considered here in their elegant
version [11] and thus are hereafter referred to as the EHG and ELG beams.
The beams are defined in the spatial domain by appropriate differentiation of
the fundamental Gaussian field distribution (7.35)-(7.37). For the discussion
of such definitions of the EHG and ELG beams the reader is referred to a
recent report [30], where definitions of the, standard and elegant, HG and LG
beams were rederived and compared. However, meanwhile the fundamental
mode may be here conventionally defined in its transverse plane ( )x y− , the
higher order modes, together with the fundamental, are defined here in the
interface plane X Y− . In other words, the projected definitions of the
elegant beams will be used. For this reason we also hereafter use the
replacements G x y z G X Y Z( , , ) ( , , )→  and 

~
( , , )

~
( , , )G k k z G k k Zx y X Y→  in

the notation in (7.34). All expressions for these beam modes are explicitly
derived below.
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7.4.2  Elegant Hermite-Gaussian modes at the interface

Define the EHG mode Gm n
EH
,

( )  of the order nm +  by the partial X  and Y

derivatives of the order m  and n , respectively, applied to the fundamental
Gaussian [30]:

),,(~)(),,(~ )(
, ZkkGkkiwZkkG YX

n
Y

m
X

nm
wYX

EH
nm

+= , (7.38)

),,()(),,()(
, ZYXGwZYXG n

Y
m
X

nm
w

EH
nm ∂∂+= . (7.39)

The definitions (7.38) and (7.39) are given here up to arbitrary normalization
constant factor and imply a unit amplitude of the fundamental Gaussian
beam at its waist centre (cf. Eqs. (7.35)-(7.37)). Hence, the partial derivatives
∂ X  and ∂Y  increase the EHG mode indices m  and n  along the X  and Y
directions, respectively,

),,(),,( )(
,1

)(
, ZYXGZYXGw EH

nm
H
nmXw +=∂ , (7.40)

),,(),,( )(
1,

)(
, ZYXGZYXGw EH

nm
H
nmYw +=∂ , (7.41)

and the transmission matrix (7.24) can be directly applied.
For the incident EHG beam of the TM polarization X

i
X

i eEE )()( ~= , with its
spectral amplitude ~ ~( )

,
( )E GX

i
m n

EH= , or for the incident EHG beam of the TE

polarization Y
i

Y
i eEE )()( ~= , with its spectral amplitude ~ ~( )

,
( )E GY

i
m n

EH= , the

transmitted beams become:
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(7.43)

respectively. In Eqs. (7.42) and (7.43) the labels TM  and TE  indicate the
type of polarization of the incident beam and the last, correction terms read:
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As for the normal, or close to normal, incidence the term ηt tp s−  is much

less than ηt tp s+ , the contributions 
~
δ TM  and 

~
δ TE  in Eqs. (7.42) and (7.43),

will be further neglected. This approximation is quite reasonable under
paraxial approximation assumption, that is roughly for k wi

w
( ) > 2π . Eqs.

(7.44) and (7.45) indicate that the transmitted beams attain finite values also
in the polarization components opposite to those of the incident beam. They
are approximately EHG beams with their indices being increased, with
respect to the incident beam, by one along both, X  and Y , transverse
directions.

On the grounds of the divergence Eq. (7.26), one index (in X  or Y
direction) is further increased by one in the longitudinal field component

[ ])(
2,1

2)(
,1

1)()( ~))((2~)()2(|~ EH
nmwsp

EH
nmsp

t
ZwTM

t
Z GwkttGttkwiE ++

−
⊥+

− −−+≅ ηη ,

(7.46)
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− −−+≅ ηη .

(7.47)

For normal or close to normal incidence in the paraxial range, the
longitudinal field components in Eqs. (7.46) and (7.47) are approximately
proportional to the term ηt tp s+ . Therefore, the spatial shape of the Z -

component of the transmitted beam follows the spatial shape of the Z -
component of the incident beam. Moreover ~ | ~ |( ) ( ) ( )E t EZ

t
TM Z

EH
Z

i
TM≅  and

~ | ~ |( ) ( ) ( )E t EZ
t

TE Z
EH

Z
i

TE≅ , where t t t k kZ
EH

p s Z
i

Z
t( ) ( ) ( )( )= +1

2 η  may be regarded as

the transmission coefficient of the Z  component of the EHG beam.
Beam field distribution in the spatial domain can be now obtained by

analytical evaluation, after substitution of Eqs. (7.42) and (7.43) to the repre-
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(a)

(b)

Figure 7.2.  Beam intensity transverse distribution of the EHG beam
at the interface; the incident beam of the EHG1,1 pattern and of TM
polarization (a), the transmitted beam TE component of the EHG2,2

pattern (b); X andY coordinates normalized to ww , normal incidence.
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(a)

(b)

Figure 7.3.  Beam intensity transverse distribution of the EHG beam
at the interface; the Z -component of the transmitted beam of the
EHG2,1 pattern for the incident EHG1,1 beam of TM polarization (a)
and the Z -component of the transmitted beam of the EHG1,2 pattern
for the incident EHG1,1 beam of TE polarization (b); normal incidence.
The central position of the beam is shown by the grid.
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sentation (7.34), or simply by direct numerical  integration  of  Maxwell e-
quations. The numerical approach was described and demonstrated in [28]
for critical incidence of TIR. In analytic evaluation of (7.34), for normal
incidence of paraxial beams, the Fresnel coefficients can be evaluated at
ϑ ( )i = 0 . Field intensity plots are presented in Figs. 7.2 and 7.3 for two
wavelengths in the beam diameter at its waist, that is for k wi

w
( ) = 2π . The

case of normal incidence of the EHG1,1 beam, with the indices in the X  and
Y  directions equal one, is considered.

The incident beam of the EHG1,1 spatial pattern and of TM polarization is
shown in Fig. 7.2(a), the pattern of the transmitted beam component of the
opposite, TE polatization is shown in Fig. 7.2(b).  The plots clearly confirm
predictions of Eq. (7.42); the pattern of the TE transmitted field component
is of the EHG2,2 spatial shape. For normal incidence of the beam the problem
is symmetric in X  and Y  coordinates. For the TE polarization of the
incident beam, the TM component of the transmitted beam possesses the
same EHG2,2 pattern as that of the TE component of the transmitted beam for
the TM polarization of the incident beam.

The interface, however, still differentiates these two cases in the
longitudinal, Z -components of the transmitted beams as it is shown in Fig.
7.3. The Z -component of the transmitted beam exhibits the EHG2,1 pattern
for  incident  TM  polarization, as shown in Fig. 7.3(a), and the EHG1,2

pattern for incident TE polarization, as shown in Fig. 7.3(b). Figure 3
entirely confirms theoretical predictions of Eqs. (7.46) and (7.47).

7.4.3  Elegant Laguerre-Gaussian modes at the interface

Let us turn now to the case of beams of a cylindrical symmetry and
describe them in the cylindrical reference frames Or Z⊥ ψ  and Ok kZ

b
⊥ϕ ( )  in

the spatial and spectral domains, respectively, where X r= ⊥ cos ψ ,
Y r= ⊥ sin ψ , k kX = ⊥ cosϕ  and k kY = ⊥ sin ϕ . Action of the interface on the
incident beams can be then described more compactly in new frames O Zςς
and O Zκκ  of complex coordinates and their complex conjugates (denoted
by the overbear). These coordinates are defined in the spatial domain:

ς = +−2 1 2 ( )X iY ,
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∂ ∂ ∂ς = −−2 1 2 ( )X Yi ,      (7.48)

where ςς = −
⊥2 1 2r  and ∂ ∂ ∂ ∂ς ς = +−2 1 2 2( )X Y , and in the spectral domain:

κ = +−2 1 2 ( )k ikX Y ,

∂ ∂ ∂κ = −−2 1 2 ( )k kX Y
i , (7.49)

where κκ = −
⊥2 1 2k  and )(2 221

YX kk ∂∂∂∂ κκ += − . Note that in cylindrical

coordinates ς ψ= −
⊥2 1 2 r iexp( ) , κ ϕ= −

⊥2 1 2 k iexp( ) . The fundamental
Gaussian (7.35) and (7.36) now reads )exp()(),,( 22 −−= vvwZG w ςςςς  and

)exp(2),,( 2vZG κκπκκ −=  and the beam representation (7.34), with new
dependence on the new complex coordinates, yields

,)](exp[),,(~
)exp()2(),,(

)(

)(2)(

κςκςκκϕ

πςς

+×

±=

⊥⊥ ∫∫ iZEkddk

zikwZE
b

b
w

b

(7.50)

where ςκ ςκ ψ ϕ+ = −⊥ ⊥k r cos( ) .

Next, define, at the interface plane X Y−  and in the spectral domain, the
ELG beam of the order lp +2  in the similar manner as it has been done for
the EHG beams of the order :nm +

),,(~)(),,(~ 2)(
, ZGiwZG plplp

w
EL
lp κκκκκκ ++= , (7.51)

where integers p and l are the radial and azimuthal nonnegative indices of the
ELG beam [30]. In the spatial domain, the definition (7.51) yields

),,(),,( 2)(
, ZGwZG lpplp

w
EL
lp ςς∂∂ςς ςς

++= . (7.52)

For negative values of l  Eqs. (7.51) and (7.52) can be obtained by
appropriate change of the coordinate system; ),,(~),,(~ )(

,
)(

, ZGZG EL
lp

EL
lp κκκκ −=

and ),,(),,( )(
,

)(
, ZGZG EL

lp
EL
lp ςςςς −= . Note also that, because

)exp()2( 221 ϕκκ ilk lpplp +
⊥

−+ = , the definition (7.51) directly implies
changes in the indices of the ELG beams under transmission:

~ ( , , )exp( ) ~ ( , , ),
( )

,
( )G Z i G Zp l

EL
p l
ELκ κ ϕ κ κ± = ±2 1 2�

, (7.53)
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~ ( , , )exp( ) ~ ( , , ),
( )

,
( )G Z i G Zp l

EL
p l
ELκ κ ϕ κ κ± = ±�1 2 1 , (7.54)

including also fractional values admitted in the radial indices of the ELG
beams. Eqs. (7.53) and (7.54) are central results of this section. They lead to
exact description of the LG beams of circular polarization interacting with
the interface, as will be shown below.

Let the incident beam be  of  the  ELG  shape  with  its  spectral
amplitude ~ ~( )

,
( )E GR

i
p l
EL=  for the CR polarization, i.e. for E E ei

R
i

R
( ) ( )~

�= , or with

its spectral amplitude ~ ~( )
,

( )E GL
i

p l
EL=  for the CL polarization, i.e. for

E E ei
L

i
L

( ) ( )~
�= , respectively. Then the rules (7.53) and (7.54), together with

the definition of the transmission matrix (7.32), lead in the spectral domain
to exact evaluation of the transmitted ELG beams at the interface, with the
following outcome:
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for the CR and CL polarization of the incident beam, respectively.
Similarly, the longitudinal components of the incident beams are of the

form )()(
1,21

21)( tan~2~ iEL
lp

i
Z GE ϑ+−

−−=  for the CR polarization and
)()(

1,21
21)( tan~2~ iEL

lp
i

Z GE ϑ−+
−−=  for the CL polarization and this yields for the

transmitted beam, respectively:
~ | tan ~( ) ( )

,
( )E t GZ

t
CR p

t
p l
EL= − −
− +2 1 2

1 2 1η ϑ , (7.57)

~ | tan ~( ) ( )
,

( )E t GZ
t

CL p
t

p l
EL= − −
+ −2 1 2

1 2 1η ϑ . (7.58)

Therefore, the Z -components of the transmitted beams, i.e., )()()( ~~ i
Z

EL
Z

t
Z EtE = ,

with the transmission coefficient )()()( tantan it
p

EL
Z tt ϑϑη= , possesses the

same topological charge l ±1 as the incident beam (cf. also Eq. (7.31)). Note
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(a)

(b)

Figure 7.4.  Beam intensity transverse distribution of the ELG beam at
the interface; the incident beam of the ELG1,3 pattern and of CR
polarization (a) and the transmitted beam CL component of the ELG0,5

pattern (b); normal incidence.
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(a)

(b)

Figure 7.5.  Beam intensity transverse distribution of the ELG beam at
the interface; the incident beam of the ELG1,3 pattern and of CL
polarization (a) and the transmitted beam CR component of the ELG2,1

pattern (b); normal incidence.
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that, contrary to the EHG beam case, all expressions derived above in the
spectral domain for ELG beams are exact and the  longitudinal  field  compo-
nent resolves into one ELG beam function with fractional value p = 1 2  of
the radial index.

The interface changes indices of the incident ELG beam in the opposite
transverse field component. For the incident CR (CL) polarization the radial
index of the beam mode decreases (increases) by one and the azimuthal
index increases (decreases) by two in the CL (CR) polarization component of
the transmitted beam. In (7.55)-(7.56) the radial index of the longitudinal
field component decreases (increases) by half and  the  azimuthal  index
increases (decreases) by one with respect to the indices of the transverse
component of the incident ELG beam of the CR (CL) polarization. Examples
of the ELG beam transverse field distribution at the interface is presented in
Figs. 7.4-7.8 for narrow beams of k wi

w
( ) = 2π . Incidence always is normal

and the incident beam always has a pattern of the ELG1,3 function.
Figures 7.4 and 7.5 display intensity profiles of the ELG beams. The

profile of the incident beam of the ELG1,3 pattern and of CR polarization is
displayed in Fig. 7.4(a) and that of the CL component of the ELG0,5 pattern
of the transmitted beam is shown in Fig. 7.4(b). The profile of the incident
beam of the ELG1,3 pattern and of CL polarization is displayed in Fig. 7.5(a)
and that of the CR component of the ELG2,1 pattern of the transmitted beam
is shown in Fig. 7.5(b). Dependence of a number and radii of the beam
annular rings on the incident beam polarization and azimuthal index l  is
clearly vivid. However a value of the radial index remains uncertain due to a
limited accuracy of the numerical integration for points of diminishing
intensity of the beams. Also, nothing specific can be inferred from Figs. 7.4
and 7.5 about the azimuthal indices of the beams. The intensity profiles are
not sufficient to describe beams of complex structure, especially the beams
with singularities in their phase fronts.

In order to complete these figures, phase patterns of the incident and
transmitted beams are drawn in Figs. 7.6, 7.7 and 7.8. Values of the
azimuthal index are counted as the number of 2π cycles in phase around the
beam axis. This number distinguishes the ELG phase patterns of the beams
shown in these figures. The phase transverse distribution of the incident
ELG1,3 beam of CR polarization is shown in Fig. 7.6(a), the phase of the
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transmitted beam component of the opposite, CL polatization is shown in
Fig. 6(b) - its pattern is of the ELG0,5 function. On the other hand, even for
normal incidence this case is not symmetric with respect to the replacement
of CR polarization by CL polarization in the incident beam - values of the
SAM about the Z -axis have opposite signs in these two cases. Therefore, the
beam incidence of CL polarization is also described in Fig. 7.7. The phase of
the incident ELG1,3 beam is shown in Fig. 7.7(a) and the phase of the CR
component of the transmitted beam of the ELG2,1 shape is shown in Fig.
7.7(b).

Figures 7.6 and 7.7 confirm predictions of Eqs. (7.55) and (7.56)
concerning the phase distribution of the beams. However, Figs. 7.6(b) and
7.7(b) display additional ring of zero field amplitude far away from the beam
axes. This discrepancy between numerical results and theoretical predictions
might be originated by the approximation assumed in evaluation of the
Fresnel coefficients (at the beam mean direction) in the field representation
(7.34). This may also be caused by limited accuracy of the numerical
evaluation of this equation for points of diminishing intensity of the beams.
However, the beam phase or the azimuthal index l , not the beam magnitude
or radial index p , is used in sorting the beam modes [21].

Figure 7.8 shows the phase distribution of the longitudinal field
components predicted by Eqs. (7.57) and (7.58). For  the CR  polarization  of
the incident beam of the ELG1,3 shape, Fig. 7.8(a) displays the phase
distribution for the longitudinal field component of the transmitted beam -
this of the pattern of the ELG1/2,4 function. For CL polarization of the
incident beam of the same shape ELG1,3 the phase of the transmitted beam
changes to the ELG3/2,2 function as shown in Fig. 7.8(b). For both these
polarization states of the incident ELG beam the phase structure of the Z -
components of the transmitted, and the reflected as well, beams appears the
same as that of the incident beams.

The numerical simulations applied in this section are based on direct
integration of Maxwell equations [28]. The examples of beam intensity and
phase distribution at the interface shown in Figs. 7.2-7.8 evidently confirm
theoretical predictions given by analytical expressions (7.42)-(7.47) for EHG
beams and (7.55)-(7.58) for ELG beams, evaluated in the interface plane.
The XPC effect is fundamental in generation  of  higher-order  modes  at  the
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(a)

(b)

Figure 7.6.  Phase transverse distribution of the ELG beam at the
interface; the incident ELG1,3 beam of CR polarization (a) and the
transmitted beam CL component of the ELG0,5 pattern (b); normal
incidence.
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(a)

(b)

Figure 7.7.  Phase transverse distribution of the ELG beam at the
interface; the incident ELG1,3 beam of CL polarization (a) and the
transmitted beam CR component of the ELG2,1 pattern (b); normal
incidence.
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(a)

(b)

Figure 7.8.  Phase transverse distribution of the ELG beam at the interface;
the transmitted beam Z -component of the ELG1/2,4 pattern for the incidence
of the ELG1,3 beam of CR polarization (a), the transmitted beam Z -
component of the ELG3/2,2 pattern for the incidence of the ELG1,3 beam of CL
polarization (b); normal incidence.
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dielectric interface. Its efficiency  can  be  estimated  from  the  expressions
(7.24)-(7.25) and (7.32)-(7.33) for the beam field  and its  amplitudes (7.22)-
(7.23) in the spectral domain. In these expressions, the standard (2D) Fresnel
coefficients are replaced by their 3D counterparts:

)(2
1)(

),( sp
DP

sp ttt += η ,    (7.59)

)(2
1)(

),( sp
DP

sp rrr −= ,    (7.60)

for the case of the direct polarization (DP), the same as of the incident beam,
and

)(2
1)(

),( sp
XP

sp ttt −= η ,    (7.61)

)(2
1)(

),( sp
XP

sp rrr += ,    (7.62)

for the case of the opposite (cross) polarization (XP), produced by the XPC
effect. The DP and XP coefficients do not depend on the incident beam
polarization. They are interrelated by the continuity relations at the interface:
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)(
),( 1 DP

sp
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sp rt −= ,  (7.63)
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sp
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sp rt −= ,     (7.64)

separately for the beam components of opposite polarization of the
transmitted beams - TM or TE for EHG beams and CR or CL for ELG
beams.

The efficiency of the XPC effect is determined by the ratio )(
),(

)(
),(

DP
sp

XP
sp tt ,

here given for beam transmission. For normal incidence this ratio is small -
of the order 10-2. On the other hand, for beam reflection at critical incidence,
magnitude of the ratio )(

),(
)(
),(

DP
sp

XP
sp tt  is about two orders greater, as expected.

However, the case of critical incidence does not seem satisfactory for the
ELG beam incidence, as the cylindrical symmetry of the beam-interface
configuration becomes then broken and the beams become deformed.
Therefore the problem of efficiency of the XPC effect for beam normal
incidence still remains to be solved. It seems that a planar boundary between
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artificial materials of some sort [31-33] might appear to be a proper solution
to this problem.

7.4.4  Beam normal modes at the interface

Within the paraxial approximation  the  scalar  HG  and  LG  functions
are solutions of the scalar wave equation. The vector HG and LG beams are
paraxial solutions of the Maxwell equations and build two orthogonal basis
sets for any paraxial beam mode of free propagation. In the analysis
presented in this section these sets comply with four additional conditions.
The vector (HG and LG) Gaussian beam should be

(i) considered in their elegant version
and defined:

(ii) in the linear (TE/TM) basis for the EHG beams,
(iii) in the circular (CR/CL) basis for the ELG beams,
(iv) with respect to the interface plane.

The condition (iv) means that, at least for beams other than the fundamental
Gaussian, the beam field spatial and polarization structures should be defined
in the interface plane YX −  and not, as usual, in the beam transverse plane

yx − .

The HG and LG beams which obey the conditions (i)-(iv) are named here
as the projected EHG and ELG beams. They may be regarded as normal
modes of vector beams at the interface. For any member of one from these
two sets incident upon the interface, the reflected and transmitted beams also
belong to this set. The beams are defined by one pair of their spatial indices -
m  and n  for the EHG beam or p  and l  for the ELG beam, in each of the
two opposite beam polarizations - TM and TE or CR and CL for the EHG or
ELG beam, respectively. The interface acts almost exactly in this manner.
For ELG beams only oneapproximation necessary in the derivations above
was assumed in the spatial domain, concerning mean values of the Fresnel
coefficients. Still even this assumption can be neglected if nonuniform
polarization of the beams is admitted.

The interface redistributes the incident energy, momentum and angular
momentum into a pair of beams of two orthogonal polarization states, one
pair for each of the transmitted and reflected beams. One element of this pair
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possesses the same polarization and spatial structure as those of the incident
beam. The spatial structure of the second element, that of the opposite
polarization, appears alsospatially biorthogonal to the first element. This
process may be understood as creation and annihilation of beam modes at the
planar interface. For ELG beams it also means creation and annihilation of
optical vortices placed on axes of these beams.

Having defined the biorthogonal sets of normal modes defined above, any
field with arbitrary complex amplitude and polarization distribution can be
readily expanded in a standard manner in terms of these modes. Till now
EHG and ELG beams have been used mainly in the context of propagation in
the free-space, infinite bulk material or non-self-adjoint optical systems
[34,35]. This contribution provides, to the best of my knowledge, the first
analytical and exact derivation of the decomposition of an arbitrary 3D beam
field at the planar interface in terms of the (projected) elegant HG and LG
normal beam modes.

7.5 Angular momentum of beams at the interface

Let us now look into the beam transmission from a slightly different point
of view. It is well known that beams carry the TAM composed, in general, of
SAM and OAM components [1]. The spin component is associated with
beam polarization and the orbital component results from azimuthal
transverse distribution of the beam phase. For the circularly polarized beams
the SAM component is equal to σ�  per photon, where σ = ±1 for the CR
and CL polarization, respectively. Since the LG beams are angular
momentum eigenstates, their OAM component, associated with the beam
phase dependence of the form exp( )ilψ  is equal to l�  per photon. Both the
SAM and OAM contribute to the Z -component of TAM per photon:

j lZ
b( ) ( )= +σ � , (7.65)

separately for the incident (b=i), transmitted (b=t) and reflected (b=r) beam,
where for any beam the angular momentum is measured with respect to the
normal to the interface (the Z -axis). Eqs. (7.55)-(7.56) show that TAM per
photon is conserved for ELG beam transmission at the interface, and
similarly also for ELG beam reflection. For any photon, transmitted or
reflected at the interface, its TAM is conserved:
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j jZ
i

Z
t( ) ( )= or j jZ

i
Z

r( ) ( )= , (7.66)

respectively. Therefore the SAM and OAM components of TAM per photon
depend of the polarization of the transmitted beam.

For example, for a single photon of the incident beam ~ ~
�

( )

,
( )E G eR

i
p l

EL
R= , of

the topological charge l  and of the CR polarization ( σ = 1), its TAM
amounts to j lZ

i( ) = +1 (cf. eq. (7.55)). The transmitted (or the reflected)
photon possess the same TAM j lZ

t( ) = +1 independently of its polarization.
For the transmitted photon of the CR polarization its spin and orbital
components are the same as those of the incident photon. However, for the
opposite, CL polarization of the transmitted beam, the OAM of the photon is
increased by two (from l  to l + 2 ) as its SAM is decreased at the same time
by two (from  σ = 1  to σ = −1).

Similar rules are also valid for the incident ELG beams ~ ~
�

( )

,
( )E G eL

i
p l

EL
L=  of

the CL polarization ( σ = −1). The TAM j lZ
t( ) = −1 per photon, as well the

SAM σ = −1 and OAM l  per photon, of the transmitted beam of the same,
CL polarization appears the same as the TAM, SAM and OAM of the
incident photon. For the transmitted photon of the opposite, CR polarization
its OAM is decreased by two (from l  to l − 2 ) as its SAM is increased at the
same time also by two (from σ = −1 to σ = 1). Therefore its TAM per
photon j lZ

i( ) = −1 remains equal to that of the photon of  the incident ELG
beam.

Equations (7.55)-(7.56), together with their counterparts for beam
reflection, may be regarded as equivalent to the conservation principle of
TAM for a single photon at the flat interface. With the continuity relations
(7.22)-(7.23) they correspond also to the conservation of integrated TAM
J j NZ

b
Z

b b( ) ( ) ( )=  of any set of the (incident, refracted and reflected) projected
ELG beams at the interface:

J J JZ
i

Z
t

Z
r( ) ( ) ( )= + , (7.67)

where N Ub b( ) ( )= {ω  stands for a number of photons in a monochromatic
beam of time averaged energy U  per unit length of the beam [14].
Moreover, for the ELG beam incidence, the conservation of TAM of these
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beams follows directly from the conservation of TAM of each photon of
which these beams are composed.

The above considerations pertain to the LG beams in their projected
elegant version and of the circular polarization. In this case the interface is
acting, through the transmission matrices (7.32) within the complete set of
such beams and produces pure eigenmodes with specified indices ( p  and l )
of the beam spatial structure in each one of the two (CR and CL) states of
circular polarization. For beams of other spatial distribution of its complex
amplitude and/or polarization - like the standard LG beams of arbitrary
polarization - the action of the interface may be understood as creating an
appropriate superposition of pure projected ELG beams of circular
polarization. In such cases one has to consider mean values of TAM and
OAM of these beams [19]. Still the conservation principles of TAM for a
single photon (7.66) and for the total beam (7.67) remain valid.

The derivation of the conservation principle (7.55)-(7.56) for TAM of
beams at the interface was possible due to the exact form of the transmission
and reflection coefficients (7.32)-(7.33) or (7.12), (7.13) and (7.19). Both,
the first-order and the second-order transverse corrections (in Yk ; see Eq.
(13)) to the standard Fresnel coefficients ptη , st , pr  and sr  are necessary to

obtain this result. The first-order corrections to the Fresnel coefficients, as
well as these coefficients by themselves, are not sufficient to guarantee
exactly the TAM conservation. Still, the TAM conservation (7.66) for a
single photon was also approximately applied, instead of the field continuity
relations, in the treatment of beams at a dielectric interface within a
geometrical optics approach [36].

Note also that the ELG beams considered here possess cylindrical
symmetry in the interface frame OXYZ . For incidence angles θ( )i  different
from zero, such beams are elliptic and astigmatic in their intensity and phase
distribution in their beam frames Oxyz . Moreover, the polarization
parameters of the beams λ ( , )

( )
X Y

b i= ±  in the frame OXYZ  read

λ θ θ( , )
( ) ( ) ( )cos cosX Y
b b bi= ±  for the same beams in their beam frames Oxyz

[5]. However, when the orientation of the beam astigmatism and ellipticity
are the same, the OAM of the beams is originated only in the helical
singularities of beam phase [37].
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This is not so for beams of different orientation of their intensity and
phase astigmatism. More general astigmatic beam modes may carry OAM
not originated exclusively in the beam phase singularities [37]. Such beams
also form complete sets of Gaussian solutions of the paraxial wave equation
and may serve as another basis for treatment the problem of 3D beams
impinging at the interface.

7.6  Comments and conclusions

Beam-interface interactions have been described within a frame of the
complete, biorthogonal sets of the projected EHG beams of linear TM/TE
uniform polarization and the projected ELG beams of circular CR/CL
uniform polarization. It was shown that such beams are normal modes at the
interface and thus, in general, at any planar layered structure. The beam
transverse spatial profile, phase and polarization are interrelated through the
XPC effect present at the interface. These relations differentiate normal and
critical incidence of the beams and can be described by generalized Fresnel
coefficients of transmission and reflection, specific to the incidence of beams
of 3D structure and arbitrary polarization.

Rigorous analytical description of beam fields at the isotropic interface in
terms of the projected EHG and ELG vector beam modes has been given.
The interface redistributes incident beam energy between beam components
of opposite polarization and modifies spatial distribution of their intensity
and phase. This process is quantitatively described through changes of indi-
ces of transverse spatial distribution of complex beam fields or, for ELG
beams of circular polarization, in terms of conservation of their TAM. In the
latter case changes of SAM are compensated by changes of OAM, or vice
versa. For incidence of beams of general phase and intensity distribution and
general polarization, the interface discriminates the beam field in favor of
EHG beam modes of linear polarization and of ELG beam modes of circular
polarization. The process has been described by derivation of exact analytical
expressions for spectral components of the beam field at the interface plane.

Results of this chapter indicate that the dielectric interface, or, in general,
any planar multilayered structure, can be used as a mean of control the
interplay between the beam field distribution, in its magnitude and phase,
and the beam field polarization. The control process is based on the XPC
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effect acting at the interface and depends on the incident beam parameters
like the beam polarization, shape and angle of incidence [5,28,29]. The
ability to control the beam shape and polarization may appear useful in many
applications in contemporary optics, provided that the efficiency of the XPC
effect can be sufficiently strong. It seems that application of the presented
approach to the cases of beams at layered structures, composed of aniso-
tropic, photonic or meta-materials, may reveal such a possibility.

Note that for normal incidence the first-order shifts of the beams
disappear and due to this fact they have not been discussed in this chapter.
However, the expressions of the transmission and reflection matrices derived
in this chapter are also valid in the case of arbitrary beam incidence and the
whole formalism presented above can be directly extended into this case.
Then, for the oblique incidence of beams, these transmission and reflection
matrices can serve as a starting point in the discussion of the beam shifts
[28]. Although these shifts have been already defined in Chapter 3, their
main characteristics will be discussed, from a slightly different point of view,
in Appendix being a final part of this chapter and this book.

Appendix: One more note on the beam shifts

In this appendix, basic relations describing the shifts of the transmitted
and reflected beams will be put together, with a few additional comments
and final conclusions enclosed. These relations will be given, contrary to the
analysis of Chapter 3, with respect to the interface coordinate frame OXYZ .
It should be noted that the case of oblique beam incidence has been
examined in Ref. [28] by the method described in this chapter. This method
employs the XPC effect in evaluation of the two opposite, TM and TE or CR
and CL, components of the reflected and transmitted fields. As both these
field components are evaluated at the same time, they suffer only from the
longitudinal shift independent of the incident beam polarization. The
transverse shifts are replaced by a superposition of the beam field,
represented by the two transverse beam components (see Figure 9). In spite
of the presence of the longitudinal shift, the beam field reshaping relations
(42)-(43) and (55)-(56) remain valid.

Still, these shifts remain different for each one of the two beam com-
ponents and, in addition, these components  show  different  transverse  field
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Figure 7.9. Reflection of the EHG beam at the critical incidence of
TIR with the incidence angle o

c 45=θ . Incidence of a )(
10

EHG  beam is

presented in (a)-(c), incidence of a )(
01

EHG  beam is presented in (d)-(f).

Intensity distributions of the incident beam of TE polarization (a) and
(d), reflected beam TE component (b) and (e) and reflected beam TM
component (c) and (f) are shown in the interface plane. The first-order
longitudinal beam shifts (along X -direction) are clearly visible in (b)-
(c) and (e)-(f) (after [28]).

distributions. However, one might expect to have in the analysis of the beam-
interface interactions a more convenient, although less accurate, approach,
within which the beam components are assumed to be at least of the same
field distribution. The approach of this sort was proposed in Chapter 3. In
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order to specify more closely this approach, its main relations will be also
collected in this Appendix.

The relations describing beam transmission and reflection given in this
chapter remain valid for oblique incidence as well, after taking into account
the nonzero beam incidence by an angle )(

0
iθ . In this case the principal beam

frame Oxyz  does not coincide with the interface frame OXYZ  (cf. Fig. 1).
Both frames are related by the rotation )( )(

0
i

Y
R θ  through the incidence angle

)(
0

iθ  of the incidence plane ZX −  about the Y -axis, given here in the 3D
version in the direct domain:
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and in the spectral domain:
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respectively, with upper (lower) signs corresponding to the frames of the
incident and transmitted (reflected) beams. In (A.7.2), the same value

)(
0

)(
0

ii θϑ =  of the incidence angle is taken in both the direct and spectral
domains, thus )()( )(

0
)(

0
i

Y
i

Y
RR θϑ = . Then, the spectral representation of the

beam field can be expressed alternatively in the two frames, in the frame
Oxyz :
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or, alternatively, in the frame OXYZ :
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where the upprer (lower) signs correspond to the incident (b=i) or
transmitted
(b=t) (reflected; t=r) beams. As both field representations are related by the
rotation )( )(

0
i

Y
R θ :

),,(),,( )(
),(

)(
),( zyxEZYXE b

yx
b

YX =± ,    (A.7.5)

the initial condition for the incident beam evolution (with respect to z ) can
be postulated in any beam transverse plane yx − , alternatively in one of the
two frames OXYZ  or Oxyz . It can be accomplished, for example, by
postulating the beam field distribution ),,()(

),( ZYXE b
YX±  at )(

0sin ixZ θ−=  or,

alterna-tively, by )0,,()(
),( yxE b

yx  at 0=z , that is in the beam waist plane. Note

that for oblique incidence, any circular cross-section of the beam in the plane
yx −  corresponds to an elliptic cross-section of the beam in the interface

plane YX − .

The beam fields 
)(

),(
~ i

YXE , 
)(

),(
~ t

YXE  and 
)(

),(
~ r

YXE −  have been defined in Section
2 in the linear polarization basis ],[),( YXYX eee =  with respect to the interface

plane YX −  and interrelated:
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~~ i
YXYX

t
YX EtE = ,   (A.7.6)
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by the transmission and reflection diagonal matrices:
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with  their  elements  in  the  form  of  the  transmission  and  reflection
coefficients:

]~[)( 1)(
),(

2
YX

i
YXYsppTMpTM kkkkttttt −−+=∆+= −−

⊥ χηηηη ,
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]~[)( 1)(
),(

2
YX

i
YXYspsTEsTE kkkkttttt +−+=∆+= +−

⊥ χη , (A.7.10)
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⊥ χ ,

]~[)( 1)(
),(

2
YX

i
YXYspsTEsTE kkkkrrrrr +−−=∆+= +−

⊥ χ , (A.7.11)

where T
YX kkk ],[=⊥  and )()()()( i

Z
tt

Z
i knkn=η . Note that )( spsp rrtt −−=−η

at the interface.
The coefficients are given in (A.7.10)-(A.7.11) by means of the linear

polarization parameter )()()(
),(

~~~ i
Y

i
X

i
YX EE=χ , where 0~ 1)(

),( =−i
YXχ  and

iii
YX ,,0~ )(

),( −=χ  for TM, TE, CR and CL polarization states of the incident

beam, respectively. The subsequent components in the definitions (A.7.10)-
(A.7.11) correspond to the zero-order (Fresnel), first-order and second-order
(with respect to Yk ) effects of nsp transmission and reflection. Only the first-
order effects are created by the XPC effect at the interface and only these
effects are dependent on the polarization state of the incident beam field
through the polarization parameter )(

),(
~ i

YXχ , as shown in Eqs. (A.7.10)-
(A.7.11). Note that minus sign in the subscript ),( YX−  indicates that the
sense of the TM polarization of the beam field, defined in the interface frame
OXYZ , corresponds to the sense of the actual beam polarization defined in
the beam frame Oxyz  (cf. Fig. 7.1).

The expressions (A.7.6)-(A.7.11) for the transmission ),( YXt  and reflection

),( YXr −  matrices are given in the spectral domain. Their elements are

changing, in general, from one local incidence plane
.)arctan( constkk XY ==ϕ  to another local incidence plane. However, the

geometrical first- and second-order effects of the nonspecular (nsp) beam
transmission and reflection are expected to be known in the direct domain.
To define these effects in this domain, the matrices (A.7.8)-(A.7.9) are first
approximately evaluated in one plane – the incidence plane 0== yY kk  for

0θϑ = , that is for T
Xkkk ]0,[

00 == ⊥⊥ , where )(
0sin

0

i
X kk θ= . After that they

can be treated approximately as the shifts of the beams in the direct domain
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or can be transferred to this domain by more accurate methods as, for
example, the MIG method described in Chapter 4.

Let us first concentrate first on the first-order effects. In this case, the
complex in general TM and TE elements of the diagonal matrices for beam
transmission (b=t) and reflection (b=r) are expressed by a scalar product of
the complex shift vectors )(b

TML , )(b
TEL  and transverse wave vectors ⊥k  [28].

They can be alternatively defined in the interface plane YX −  or in the plane
transverse to the beam axis yx −  plane, respectively:
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where
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Next, the complex first-order shifts can be evaluated approximately in the
spectral domain by first two (zero-order and fist-order) terms in Taylor
expansions of TMtηln , TEtln , TMrln  and TEtln . For beam transmission, the
longitudinal first-order complex shifts (along the X -axis) of the TM and TE
components of the transmitted beam are:

0,0,
)(

00
|)ln(|)ln( ==== ∂=∂=

yxxXyxxX kkkpkkkkTMk
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0,0,
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yxxXyxxX kkkskkkkTEk
t

TEX titiL , (A.7.16)

and the transverse first-order complex shifts (along the Y -axis) of the TM
and TE components of the transmitted beam are:
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where 00 sinθkkX = . Similarly, for beam reflection one gets:
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and the transverse first-order complex shifts of the TM and TE components
of the reflected beam are:
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Until now all the entities discussed were complex. However, on the
grounds on simple geometrical considerations (see Chapter 3), all these
complex entities can be interpreted in terms of real geometrical shifts )(b

TMXδ ,
)(b

TMYδ , )(b
TEXδ , )(b

TEYδ  and angular deviations )(b
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and TE components,
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of beams, respectively. where Dxz  and Dyz  are diffraction lengths of the
incident beam in the 0=y  and 0=x  planes, respectively. The subscripts X
and x indicate the longitudinal nsp shifts present in the incidence plane

ZX −  or zx −  in the directions of the X -axis and x -axis, respectively (cf.
Fig. 7. 1). The subscripts Y and y indicate the transverse nsp shifts present in
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the plane transverse to the incidence plane zx −  in the (same) directions of
the Y - and y - axes (cf. Fig. 7.1). The subscripts TM and TE indicate the
TM or TE component of the transmitted (b=t) or reflected (b=r) beam
suffered from the shifts in the directions specified by the X, x, Y or y
subscripts.

Now the complex and real first-order beam shifts are specified by
(A.7.16)-(A.7.21) and can be applied to the beam field description. For the
incident beam expressed in its plane-wave decomposition (A.7.3), the beams
acquires, on the grounds of the relations (A.7.6)-(A.7.15), the complex
shifted representation in the following form for the transmitted beam:
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and for the reflected beam:
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The definitions (A.7.16)-(A.7.21) of the first-order shifts applied in the
beam representations (A.7.22)-(A.7.25) are completely equivalent to the
definitions (A.7.5), (A.7.7) and (3.13) given in Chapter 3 and in previous
publications [9] and [5]. Moreover, by complete analogy to the definitions
(A.7.6), (A.7.8), (A.7.19), (A.7.21) and (3.13) in Chapter 3, one can also
define in this way the entire set of the second-order complex and real beam
shifts. The second-order complex shift vectors )(b

TMF  and )(b
TEF  and their real

counterparts – longitudinal and transverse focal shifts )(b
TMzx

δ , )(b
TEzX

δ , )(b
TMzx

δ ,
)(b

TEzy
δ  and waist radius modifications )(b

Twzx
δ , )(b

TEwx
δ , )(b

TMwx
δ , )(b

TEwy
δ  - are then

evaluated in the beam frame Oxyz  from the second-order terms in Taylor
expansions of TMtηln , TEtln , TMrln  and TEtln  (cf. Eqs. (A.3.3), (A.3.4),
(A.3.6) and (A.3.8) in Chapter 3). In effect, the second-order complex shifts

)(b
TMxF , )(b

TMyF , )(b
TExF  and )(b

TMyF , b=t,r, appear in the form of the second order
derivatives with respect to x  and y  of  TMtηln , TEtln , TMrln  and TEtln , in
addition multiplied by a factor )(bik− . That was explicitly given for the
reflected beam in (A.3.6) and (A.3.8) in Chapter 3.

The beam-field representation (A.7.22)-(A.7.25) seems rather accurate, as
it has been derived under only a few clearly defined approximations. One of
them concerns the beam polarization, two other concern the beam field
distribution. The beam polarization is assumed to be uniform in each
transverse cross-section of the beam. That corresponds to most experimental
data, as the uniform polarization is enforced by polarizator elements usually
included into an optical system. Still this assumption can, if necessary, be
removed from the presented formalism.

The second assumption concerns evaluation of the transmissions and
reflection coefficients. They are evaluated up to the first-order in (A.7.22)-
(A.7.25) or even up to the second-order, if the second-order shifts are
included in the analysis [5, 9]. The third assumption is inhibited in the choice
of only one plane, where this evaluation is applied. Usually the incidence
plane is preferred. It is assumed that the incident 3D beam field can be
factorised in this plane into two 2D factors. They are defined in the two
mutually orthogonal planes - the incidence plane ZX −  and the transverse
plane ZY −  [5, 9]. Such cases were considered in Chapter 3 and in this
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chapter, by considering incidence of the fundamental and higher-order HG
beams.

In the general case, however, the incident beam-field distribution
),,()( ZYXE i  cannot be represented by such a factorised form and should be

expanded first into the 2D beam modes ),()(
,1 ZXE i
j  and ),()(

,2 ZYE i
j , usually in

a form of 2D HG beams [5] (cf. (A.3.10) from Chapter 3):
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Then the transmitted (b=t) and reflected (b=r) beams can be also
expressed by the beam mode expansion, shifted this time by the (here)
first-order complex shifts (cf. (A.3.11) from Chapter 3):
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with the polarization vectors )(bs  determined by predictions of
geometrical optics:
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Certainly, for beams factorised in ZX −  and ZY −  planes, the expansion
(A.7.27)-(A.7.28) reduces into only one term with 1=j .

The second-order complex shifts )(b
TMxF , )(b

TMyF , )(b
TExF  and )(b

TEyF , b=t,r, can

also be directly included in (A.7.27)-(A.7.28), as well as in (A.7.22)-
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(A.7.25). For example, for transmitted beams, it can be accomplished by the
substitution in (A.7.27), as well as in (A.7.22)-(A.7.23) (cf. (A.7.1)):

)(
0

)()(
0 sin)(cos it

TMx
i FzxX θθ −+= ,

)(
0

)()(
0 cos)(sin it

TMx
i FzxZ θθ −+−= , (A.7.31)

in the factors ),( )()(
,1 ZLXE t

TMX
t
j − , and
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0

)()(
0 sin)(cos it

TMy
i FzxX θθ −+= ,

)(
0

)()(
0 cos)(sin it

TMy
i FzxZ θθ −+−= , (A.7.32)

in the factors ),( )()(
,2 ZLYE t

TMY
t
j − . Per analogy, similar substitutions can be

accomplished in (A.7.28), as well as in (A.7.24)-(A.7.25), with the subscripts
TM replaced by TE in (A.7.31)-(A.7.32). The same sequence of substitutions
can be also repeated for reflected beams, provided that x  and z  are replaced
by x−  and z−  in (A.7.31)-(A.7.32) (cf. (A.7.1)).

Note that the first-order and the second-order shifts are expressed by the
logarithmic derivatives of the transmission and reflection coefficients and as
such, their definitions can be divergent at same points corresponding, for
example, to the critical or Brewster angles of incidence. Therefore, in
accomplishment of the integration in (A.7.22)-(A.7.25), more refined
methods of integration, like those described in Chapter 4 or just direct
numerical procedures of integration, should be applied. In this way the
method described appears quite accurate up to the lower limit of the paraxial
approximation and covers general cases of incident beams of arbitrary
polarization and with arbitrary field distribution.

Basic characteristics of the first-order shifts defined by (A.7.16)-(A.7.28)
have been discussed in Chapter 3. Contrary to the transverse first-order
complex beam shifts, the longitudinal first-order complex beam shifts )(b

TMXL
and )(b

TEXL , as well as their real counterparts )(b
TMXδ , )(b

TM Xϑδ , )(b
TEXδ  and )(b

TE Xϑδ , do

not depend on the state of the incident beam polarization. This means that
they do not depend on the polarization parameter )(

),(
i

YXχ  in both, TM and TE,

components of the beam fields. Their magnitudes are proportional to the
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logarithmic derivatives of the Fresnel transmission and reflection coefficients
evaluated in the incidence plane at the incidence angles of the beam axes.
Usually, magnitudes of the TM shifts are larger than their TE counterparts.

Magnitudes of the transverse shifts are proportional to the difference
between Fresnel coefficients of transmission or, equivalently, to the sum of
the Fresnel coefficients of reflection. Therefore, they are the strongest at the
critical incidence of TIR. Contrary to the longitudinal first-order shifts, the
transverse shifts depend on beam polarization. For the circular, right-handed
or left-handed, polarization of the incident beam, the transverse shifts )(b

TMYL
and )(b

TEYL  are of finite magnitude. Their real counterparts )(b
TMYδ , )(b

TM Yϑδ  and
)(b

TEYδ , )(b
TE Yϑδ  are of different directions for the opposite circular polarization

states of the incident beam.
The beam shifts for TM and TE beam components are different, in

general. Therefore the beams, as composed of the TM and TE components,
are not uniformly shifted. That means that, in addition to the geometrical
shifts, the beams are, in general, also deformed. Moreover, for the linear, TM
or TE, polarization of the incident beam, the transverse shifts (A.7.16)-
(A.7.19) of the reflected and transmitted beams - with the same polarization
as that for the incident beam and of a finite field magnitude - disappear
altogether. In addition, the transverse shifts of the components of the
opposite polarization and with zero amplitude are divergent. This is the
consequence of the implicit assumption, translated into the diagonal form of
(A.7.8)-(A.7.9), that for the pure TM or TE polarization of the incident
beam, the transmitted (reflected) beam possesses the same, pure TM or TE,
polariza-tion.

All of that confirms the fact that the transmitted and reflected beams do
not exactly follow the polarization and shape of the incident beam. This also
indicates that the method of the beam description in terms of the
(longitudinal and transverse) beams shifts is approximate. However, the
alternative analyti-cal method described in this chapter, in Sections 2-5, does
not need any assumption on the polarization state of the transmitted and
reflected beams, with respect to the polarization state of the incident beam.
In other words, the method is independent of the polarization state of the
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incident beam as both polarization components of the beam field are treated
simultaneously. Therefore, the method remains exact in the spectral domain.

On the other hand, in the direct domain and for oblique incidence of
beams, the method needs in addition only the definitions of the longitudinal
beam shifts. Introduction of the approximate definitions of the transverse
shifts is necessary in this approach. This opens a new path of further research
on the beam interactions with the interface or, more generally, with
multilayers, supported by more accurate analytical considerations and more
precise theoretical predictions.

Main content of this chapter has been published in the Physical Review E 74, 056613; 1-
16, 2006.
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