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Introductory examples

Uncoupled equations
a<0

i=ax

Se L

@ a < 0then (0,0) is stable;
@ a > 0then (0,0) is unstable;
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Introductory examples

Uncoupled equations

a<0

i=ax

Se L

@ a < 0then (0,0) is stable; /7 l

@ a > 0then (0,0) is unstable;

Coupled equations
i =ax® +x%y
y=-y+yY +ay-x
@ a < 0then (0,0) is stable?

@ a > 0then (0,0) is unstable?
@ But how to prove?

M. Bodnar (University of Warsaw) Centre Manifold Theorem Warsaw 2026 1/40



The invariant manifold

The analysis is local, we always assume we are close to the
equilibrium (usually 0).

@ We want to separate equation into two, uncoupled systems;

@ We have to abstract the idea of uncoupled equations;

@ Interesting case: real part of some eigenvalues are 0.
Definition

A curve (or surface, or ...) y = h(x) defined for small |x] is called an
invariant manifold for a system

x=f(xy),
v =gx,y)

iff solution (x(z), y(¢)) that goes through (xo, A(xp)) stay on the
manifold for small z, that is y(#) = h(x(r)).
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i=ax +x2y

y=-y+y +xy-x

We develop a theory that tells us
@ there is an invariant
manifold y = h(x)

; — (2

@ so for stability of 0 solution © with h(x) = O(x") as x — 0.
only the equation i = ax? is @ The stability can be proved
important. studying equation

@ a < 0then (0,0) is stable;
@ a > 0then (0,0) is unstable;

@ The invariant manifold is
y=0,

& = ax® +X2h(x) = ax + 00,

@ The conclusion is the same.
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Existence of the Centre Manifold

We consider a system

X=Ax+f(x,y)
y =By +gxy)
@ x € R", y e R"; A and B— matrices;
@ all eigenvalues of A have zero real parts;
@ all eigenvalues of B have negative real parts;
@ f, g are C? and contains only non-linear parts, i.e.

f0,0)=0, g0,00=0, Df(0,0)=0, Dg(0,0)=0.

(Local) Centre Manifold

An invariant manifold {y = h(x)} of (x) is called (local) centre
manifold if 4 is smooth, 2(0) = 0 and DA(0) = 0.
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Theorem (Existence)

There exists a centre manifold for (x) {y = h(x)}, |x| < 6, for § small
enough, where h is C>.

Sketch of the proof:

@ Limiting equations to a ball of radius &.
Let¥: R" — [0, 1] be a smooth function such that P(x) = 1
for |x] < 1 and ¥(x) = O for |x] > 2. Define

vy y
F(x,y) =f(xg,y), G(x,y) = g( gy)

and we consider the system

X =Ax+F(x,y)
y =By +G(x,y)
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@ Construction of contraction.
Let fix p > 0 and p; > 0. Define X a space of Lipschitz function
h: R" — R™ with Lipschitz constant p; and bounded by p
(Ih(x)] < p).
For h € X, xo € R" we consider x(t, xo, ) a solution of

X =Ax+ F(x, h(x)), x(0,xg,h) = xo.

Solution exists and is unique. Define now

0
(Th)(xp) = f e_BSG(x(s,xo,h),h(x(s,xo,h)))ds

(o)

@ T is contraction on X — some calculations and proper choice
of p, p1 and e

@ his C' — we justify that T is contraction on a subset of X
consisting of Lipschitz differentiable functions

@ We need to estimate second derivatives of 4 and show they
are continuous.
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Reduction principle

On the centre manifold the flow is governed by

it = Au+ f(u, (u)), u(t) e R" (%)

Theorem (Reduction Principle)

@ Suppose that the zero solution of (x%) is stable
(asymptotically stable)(unstable). Then the zero solution
of (%) is stable (asymptotically stable) (unstable).

©Q Suppose that the zero solution of (xx) is stable. Let (x(t), y(t))
be a solution of (x) with (x(0), y(0)) sufficiently small. Then
there exists a solution u(t) of (x%) such that ast — +oo

() = u(t) + O™
() = h(u(®)) + O™)

for somey > 0.

A
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Sketch of the proof, part |

Then there exist positive constants C; and u such that

(@) = h(x(2)| < Cre™[y(0) — h(x(0))|

where (x(1), y(¢)) is solution of (¢).

We set z = y(¢) — h(x(?)), and calculate that
Z=Bz+N(x,2).

We estimate |[N(x, z)| < 6(¢)|z| and use Gronwall Lemma.

We change basis so we have A = A} + A;, with A being nilpotent,
le*17x] = |x| and |Aax| < E|x|.

0 is unstable for (x %) than it is also unstable for (x).
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Sketch of the proof, part Il

We assume that 0 is stable, we are close enough to 0 so
systems (x) and (¢) are identical.

@ Using Banach Fix Point Theorem we prove that for any
ug € R", zo € R™ there exists solution (x(¢), y(¢)) with
¥(0) = zo + h(x(0)) and |x(r) — u(r)|, ly(t) — h(u(t))| exponentially
small.

@ We define a mapping S(uo, zo) = (xo, 20), With xo = x(0). By
continuous dependence of solution of ODE on initial
conditions, S is continuous. We prove it is one to on, so by
Invariance of Domain Theorem it is an open map so it maps a
neighbourhood od (0, 0) on a (different) neighbourhood
of (0, 0).
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Approximation of the Centre Manifold

On the centre manifold we have y(r) = h(x(t)). We introduce it to
the second equation and we get

Dh(x)(Ax + f(x, h(x))) = Bh(x) + g(x, h(x))

and a(0) = 0, Dh(0) = 0.

Solving this is as difficult as solving original system. But the
approximation works well.

For ¢: R" — R” of C! class, define

(Mp)(x) = Dp(0)(Ax + f(x, 9())) = Bp(x) - g(x, (1))

Theorem (Approximation)

Letp: R" — R™ be C' in the neighbourhood of 0 with ¢(0) = 0 and
Dy(0) = 0. Suppose that as x — 0 (My)(x) = O(|x|7) for some
g > 1. Then |h(x) — ¢(x)| = O(]x|?) as x — O.

M. Bodnar (University of Warsaw) Centre Manifold Theorem Warsaw 2026 10/ 40



Example 1

We consider a system

X =xy+ax’ +by’x

y=—y+cx? +dxly
The system has a centre manifold y = h(x). To approximate h we
take

Mop)(x) = go’(x)(xgo(x) +ax + bxcpz(x)) + @(x) — cx* — dxch(x).

If o(x) = O(x%) then (Me)(x) = o(x) — cx* + O(x™).
Therefore (by Approximation Theorem), A(x) = cx* + O(x*) and the
dynamics on the centre manifolds reads

i = uh(u) + au’ + buhz(u) =(a+ c)u3 + 0(u5).
By reduction Principle we have
@ a + ¢ < 0 then steady state is stable
@ a + ¢ > 0 then steady state is unstable
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Example 1,the casea+c =0

Let
e(x) = ox® +Y(x), Y(x) = O(x*h).

We have thus,

(Mo)(x) = go’(x)(x(p(x) +ax + bx(,oz(x)) + o(x) — cx? — dngo(x).
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Example 1,the casea+c =0

Let
e(x) = ox® +Y(x), Y(x) = O(x*h).

We have thus,
Me)(x) = (p'(x)(xgo(x) +ax + bx<p2(x)) +y(x) — cdx* + 0(x6).

Thus, we have ¢(x) = cx? + cdx* + O(x®) and the stability of the
zero solution is determined by

it = uh(u) + au® + buh*(u) = (cd + b’ + Ow’).

Ifa+c=0and
@ cd + bc? < 0 then steady state is stable
@ cd + bc? > 0 then steady state is unstable
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Example 2 — a model of CAR-T therapy

T =(prf(T) — arC)T
, _( aT bT

1+7 1+C

—1)C+k

@ T — tumour cells;

@ C — CAR-T cells, that is chimeric antigen receptor T cells
modified in laboratory to recognise tumour cells.

@ f — growth function (constant for Mathusian growth and
1 — T/K for the logistic one).

@ k — parameter responsible for external influx of CAR-T cells
(treatment).
M. Bodnar, et al., On the analysis of a mathematical model of CAR—T cell therapy for

glioblastoma, International Journal of Applied Mathematics and Computer Science, 33,
379-394 (2023).
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Example 2

T =(prf (T) - arC)T
o aT bT
€= (1 +T 1+C
with £(0) = 1. The Jacobi Matrix for the steady state (0, k) reads

(pT—aTk 0) kar=pr ( 0 0)
(a—ﬁ)k -1 (a—%{)k -1

In order to eliminate the linar term connected to the first variable
from the second equation we use

(%)

—1)C+k

b
T =x, C—k+y+/3x, ﬂ—(d-m)k

and the system becomes

i = (prf () = ar(k +y + Bx)x

ax bx
y = - - 1)k k X
Y (1+x 1+k+p6x+y )( Thr+y) kB
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Stability of the steady state

Letf(x) = 1 —y1x + O(x?), y1 = —f’(0) > 0. By F, and F, we denote
right-hand sides of the first and the second equation. Assume also
that ¢ = O(x?) then we have

Fu(r,0) = (pr(1 = y1x + 06D) = ar(k + 9(x) + )
= —(pry1 + arB)x* + O().

Moreover (M)(x) = ¢’ ()F(x, p(x)) = Fy(x, p(x)) = O().
Thus, by reduction principle stability of the steady state is
determined by stability of zero solution of

= —(pTyl +a/T(a— L)k)uz + O(u3)

1+k
=—pr|n+a- W + 0’
1+k
@ Conclusion: If pr = kar then the steady state is stable if
b

k> ————1
VO]
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Lack of uniqueness

Consider the system y

Any curve of the form

C] exp(—é), x>0

h(x,c1,¢2) =10 x=0
2 exp (_é) x<0 We can combine any left
branch with any right
is centre manifold. branch.

If h; and hy are centre manifold, than by Approximation Theorem,
hi(x) — ha(x) = O(x%) asx — O forall g > 1.
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Some properties of centre manifold

@ If the function f and g (of the right-hand side) are C* class,
then centre manifold is of the same class, but it is not analytic
in general even if f and g are. Example:

i =X, y:—y+x2

@ Centre manifold need not be unique, but if an equilibrium point
or periodic orbit lies on one centre manifold, it has to lie on
every centre manifold.

@ If the dynamics (x) is defined on some subspace S c R"*",
then Redaction Principle is also valid on S.

@ Analogous theorems are valid for difference equations

Xns1 = Axp + f(Xn, Yn)
Yn+1 = Byn + 8(xn, yn)
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Rate of Decay Estimates

Consider
F+i+f(r)=0

where f is a smooth function such that
fy=r+ar’+00¢") as r—0.

It is possible to construct Liapunov function. However, the rate of
decay cannot be determined by linearization. We show how centre
manifolds can be used to estimate the decay rate.

Letx = r+#,and y = . Then we have

I==f(x-y)
y==-y—flx-y.
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Rate of Decay Estimates — continuation

I=—f(x-y)

. (DE)
y=-y-—fx—-y).

@ (DE) has a centre manifold y = h(x)
@ The Reduction Principle says equation

it = —f(u — h(u))
determines the asymptotic behaviour of small solutions
of (DE).
@ Using definition of f and & = O(u?) we get
i=—u + 0(u4).
@ Assume that u(r) > 0 for all r. Using d’Hdspital rule we have
' 10
1= lim % = lim —f —ds
1

t—+o00 1y t—+oc0 [
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Rate of Decay Estimates — continuation

Let w be a solution of

1 C
w=-w, w0 =1, = wt)=—=+—+00""?.

V2r i

Then u(t) = w(t + o(t)). Thus, we get

u(t) = %4_0(%{1).

To get further terms in the asymptotic expansion of u, we need an
approximation to h(u).
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Introductory example

Consider

x=8x—x3+xy

y=—y+y —x

We want to study dynamics of this system near the origin for small
le] (later we will apply this for the bifurcation theory).

We cannot apply developed theory directly, as eigenvalues of the
system are —1 and . But we may write

)'c=8x—x3+xy

y=—y+y-x (©)
£=0.

This system has eigenvalues 0, 0, and —1 (the term &x is now
non-linear).
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Centre manifold for the system ()

The system has centre manifold of the form

F=ex—x+ Xy
vy = h(x, &) for small |x| and |g|.

y=-y+y %

We are looking for an approximation ¢ of £=0.
the manifold 4. We have

Mo)(x, &) = 0,p(x, )X + 0:€ + p(x, &) — goz(x, &)+ x>

= Ou(ex — X + xp(x, 8)) + (x, &) — 2 (x, &) + x>

If o(x, &) = —x* then (M@)(x, &) = O(C(x, )), where C'is
homogeneous cubic in x and .

Thus, the Approximation Theorem implies that
h(x,g) = —x*> + O(C(x, €)) and the Reduction Principle we can
consider only a system
it = eu — 2u® + O(|ulC(u, €)) @ £ <0, small = stable
=0 @ £ > 0, small = unstable
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A little closer look to the dynamics on the centre manifold

it = us — 2u* + O(C(u, )))

e<0 e>0

N A
= TR

@ For £ < 0 the zero solution is locally asymptotically stable;

@ For & > 0 the solutions of the equation for u consist of two
orbits connecting 0 and + \/§ Hence, the stable manifold of

the original system forms a separatrix, while the unstable one
consists of the orbit connecting (0, 0) with two other equilibria.
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Quasi-stationary approximation

The model arise from a model of the kinetics of enzyme reactions.

y=-y+(+oz

e=y-(+1)z
where £ > 0 is small, 0 < ¢ < 1. Quasi-stationary approximation
gives
y o~y
=— —= y=——, A=1-c.
. y+1 Y 1+y ¢

Using perturbation techniques it can be shown that for small ¢
solutions of both systems are close to each other.

We get similar result using centre manifold.

F.G. Heinenken, H.M. Tsuchiya and R. Aris, On the mathematical status of the
pseudo-steady state hypothesis of biochemical kinetics, Math. Biosci, 1, 95-113, (1967).
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Quasi-stationary approximation

Approximation of the centre manifold

Let t=¢t, fO,w)=—-y+O+c)y—w), w=y—z
fO.w)=-Ay—cw+y(y—w)

. Y =&f(y,w),
y==y+O+ox , )
) = w=-w+y —yw+ef(Qy,w)
e=y—-@+1) '~ 0
g =

By the Existence Theorem, there exists centre manifold w = h(y, &)

We are looking for approximation of the manifold.
M)y, €) = 0y (v, £ (0, ¢) + 9. 8) = * + y¢ (v, €) — &/ (3 )
If ¢ = y* = dey then (My)(y, &) = O(DI +lel’) so

h(y, &) = y* = dey + Oyl +lel’)
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Quasi-stationary approximation

Dynamic on the centre manifold

By reduction principle the dynamics is governed by
u' = ef (u, h(u, €)),
reverting to the original time scale
it = f(u, h(u, €)) = —Au — u®) + O(leu| + ul®)

and for sufficiently small y(0) and z(0) there exists a solution u and
parameter y > 0 such that

(1) = u(t) + 0(e7"#)
2(1) = y(1) = h(y(t), &) + O(e7""%)
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Making the result great again

Our result is local. But we can

" Y =&(.w),
extend it. W= —w+y2 —yw+8f(y, W)
Assume that y # —1. Then g =0

)
(y, % 0) is a curve of the equilibrium points.
y

We expect that there is an invariant manifold w = h(y, £) defined for
small e and 0 < y < m = O(1) with & close to the curve

y2

W:1+y.

For initial data close to that curve, the stability properties of the

oryginal system are the same as the stability properties of the
reduced equation.
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Global Invariant Manifolds

X =Ax + ¢&f(x,y,€)

y' = By + &g(x,y,€)
g=0

@ Eigenvalues of A have zero real parts
@ eigenvalues of B have negative real parts
o xe R, ye R", e €R,
@ f,g are C* with£(0,0,0) = g(0,0,0) = 0
Leta > 0. Then,
@ there is 6 > 0 such that
@ the system has invariant manifold y = h(x, €) for |x| < a, |e| < ¢,
@ |h(x,e)| < Clel.
@ The constant C depends ona, A, B, f and g.

.
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Sketch of the proof

@ Define smooth cut-off function W(x) = 1 for |x] < a and
Y(x)=0forlal >a+1.

o Take F(x,y,e) = ef(x¥P(x),y,¢) and G(x,y, &) = eg(x¥(x), y, ).

@ Like in the proof of existence of the centre manifold we prove
the existence of the manifold for

X =Ax+ F(x,y,¢&)
v = Ay + G(x,y, )

for |e| small enough.
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Stability and approximation of the manifold

@ The flow on he invariant manifold is given by the equation

u' = Au+ &f (u, h(u, €), €)

@ The Approximation Theorem:
> o: R™! = R™, ¢(0,0) = 0.
> |(Mp)(x,e)| < ClelP, p > 1 for |x| < a and
(M) = Dup(Ax — &f (x, 9, 8)) — By - £g(x, ¢, &)

Then
> |n(x, &) - o(x, &)| < Cilel
for |x| < a and some constant Cj.
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Immune response to a replicating antigen

@ The model originates from the work of: S.J. Merrill, A model of
the stimulation of B-cells by replicating antigen |,
Mathematical Biosciences, 41(1-2), 125-141 (1978).

@ Describes the interaction between:
e replicating antigen,
o antigen-specific B-cells,
e antibodies.

@ Explains immune activation and high-zone tolerance via
nonlinear feedback mechanisms.

The model description was prepared by ChatGPT as | could not get the digital version of
the Merrill’'s paper.
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Reduced dynamical system

The model description was prepared by ChatGPT as | could not get the digital version of

the Merrill’'s paper.
1 1
: 3
=—|x+|la-=|x+b- —),
EX ( (d 2)x 3

1 IM
azié(l—x)—a—ylab, (IM)

b = —y1ab + yb.

@ x —immune activation variable representing the effective level
of immune stimulation
o it does not correspond to a single biological population;

@ encodes the global state of the immune response;

o x| <1;
@ a > 0 — effective population of antigen-specific B-cells.

@ b > 0— antibody (or antigen—antibody complexes)
concentration.
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Existence of periodic solution

Sketch of the method used by Merrill

@ It was used a quasi-stationary approximation getting
x = F(a,b)

@ In the system

1
a= 56(1 — F(a,b)) —a - vyab,

b = —yiab + yb.

the existence of the Hopf bifurcation was proved using ¢ as a
parameter.

@ By appealing to a result in singular perturbation theory, it was
concluded that for ¢ sufficiently small, (IM) also has a periodic
solution.
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Existence of periodic solution

Centre manifold approach
Let (%, a, b) be an equilibrium point of (IM). From the last
equation(assuming b > 0):

ylc_zl;:)/zl_a = leﬁ.
1
Thus,
1 |
v (E—E)J_C'l‘b—izo
| Y1 (a)
Y2 =

We assume that |x| < 1,b>0and a = % and define

y=a-a, z=b-b, w=-yYFRax-%-Iy-z

with y(x,a) = 3% +a — 1.
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A system after change of variables

Assuming ¢ # 0 we get

ew =gw,y,z,8),
y=5HrWw,y,ze8),
z=fz3(w,y,z,€),

where

gw,y,z,8) = fiw,y,z,8) — exo(w,y,z,€) — e3(w,y,2, &)
fl(W,y,Z,s) = _WW"‘N(W +)_Cy +Z’y)

5% 5
HLw,y,z,8) = (—x -1- 71b)y + (21# yz)z + T//W —Y1)2

24
f3(w,y,2,8) = =y1by — yiyz
0> 30%x
N(@.y) = e + e -0
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Getting periodic solution

@ We change time scale t = s and get the system

w =gw,y,ze), Y =¢ehw,y,ze), 7 =¢efs(w,y,ze), & =0.

@ The system has a centre manifold w = A(y, z, ) and the local
behavior of solutions is determined by the equation (in terms
of the original time scale)

V= fa(h(y,z,8),y,28)
= f3(h(y’ 2,8),Y, ZS)

@ Now we show that this system has periodic solution
bifurcating from the origin for certain values of the parameters
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Getting periodic solution
Linearization

The linearization near y = 0, z = 0 gives

Ox 7 0
J(a):[Z_x_ RANEE

b o |ro@

For the Hopf bifurcation we need trJ(g) = 0 and % — vy > 0.
Clearly, x and b must be solution of (#) with |x| < 1 and b > 0

Lety; < 2y,. Then for each & > 0 there exist 5(¢), X(¢), b(g) such
that

0 0<2x(e)<1, be)>0, ¥>0
@ 6(e) > 2y, tl(e)=0
o (s) is satisfied.
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Getting periodic solution

@ Denoting by X(&, 6), b(e, 5) solution of (a) with ¢ close to 5(g)
we calculate
<0
0=06(¢)

o With £() = \y1b + O(s), m(s) = ,/ﬁ — ¥ + O(¢), setting
y1 = €(&)z, z1 = m(e)y we transform the system into

%tr](s, 0)

L 71
Y1 = —woZ1 — —Y121
mi

21 = woy1 + h(y 2,€) — —y1Z1
with 5
) _
wy = Vlb(ﬁ - 72) +0(e).
@ Changing into polar coordinates we get expression for the

limit cycle. The stability of the periodic solution can be also
calculated.
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Getting periodic solution
Approximation of centre manifold

After some calculations we get

— 3 -y
h(y,2) = @2 = (xyl;f) + 6X(xz,2+ D, - itpz + 00"+

where
3%y +2° Y& +2)

y? ¥

©(,2) =
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