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Introductory examples

Uncoupled equations

ẋ = ax3

ẏ = −y + y2

a < 0 then (0, 0) is stable;

a > 0 then (0, 0) is unstable;

x

y

a < 0

Coupled equations

ẋ = ax3 + x2y

ẏ = −y + y2 + xy − x3

a < 0 then (0, 0) is stable?

a > 0 then (0, 0) is unstable?

But how to prove?

x

y

a < 0
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ẏ = −y + y2 + xy − x3

a < 0 then (0, 0) is stable?

a > 0 then (0, 0) is unstable?

But how to prove?

x

y

a < 0

M. Bodnar (University of Warsaw) Centre Manifold Theorem Warsaw 2026 1 / 40



The invariant manifold

Remark
The analysis is local, we always assume we are close to the
equilibrium (usually 0).

We want to separate equation into two, uncoupled systems;

We have to abstract the idea of uncoupled equations;

Interesting case: real part of some eigenvalues are 0.

Definition
A curve (or surface, or ...) y = h(x) defined for small |x| is called an
invariant manifold for a system

ẋ = f (x, y),

ẏ = g(x, y)

iff solution
(
x(t), y(t)

)
that goes through

(
x0, h(x0)

)
stay on the

manifold for small t, that is y(t) = h
(
x(t)

)
.
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The idea

ẋ = ax3

ẏ = −y + y2

The invariant manifold is
y = 0,

so for stability of 0 solution
only the equation ẋ = ax3 is
important.

a < 0 then (0, 0) is stable;

a > 0 then (0, 0) is unstable;

ẋ = ax3 + x2y

ẏ = −y + y2 + xy − x3

We develop a theory that tells us

there is an invariant
manifold y = h(x)

with h(x) = O(x2) as x→ 0.

The stability can be proved
studying equation

ẋ = ax3+x2h(x) = ax3+O(x4).

The conclusion is the same.
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Existence of the Centre Manifold

We consider a system

ẋ = Ax + f (x, y)

ẏ = By + g(x, y)
(⋆)

x ∈ �n, y ∈ �m; A and B — matrices;

all eigenvalues of A have zero real parts;

all eigenvalues of B have negative real parts;

f , g are C2 and contains only non-linear parts, i.e.

f (0, 0) = 0, g(0, 0) = 0, Df (0, 0) = 0, Dg(0, 0) = 0.

(Local) Centre Manifold

An invariant manifold
{
y = h(x)

}
of (⋆) is called (local) centre

manifold if h is smooth, h(0) = 0 and Dh(0) = 0.
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Theorem (Existence)

There exists a centre manifold for (⋆)
{
y = h(x)

}
, |x| < δ, for δ small

enough, where h is C2.

Sketch of the proof:
1 Limiting equations to a ball of radius ε.

Let Ψ : �n → [0, 1] be a smooth function such that Ψ(x) = 1
for |x| < 1 and Ψ(x) = 0 for |x| > 2. Define

F(x, y) = f
(
x
Ψ(x)
ε

, y
)
, G(x, y) = g

(
x
Ψ(x)
ε

, y
)

and we consider the system

ẋ = Ax + F(x, y)

ẏ = By + G(x, y)
(♢)
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2 Construction of contraction.
Let fix p > 0 and p1 > 0. Define X a space of Lipschitz function
h : �n → �m with Lipschitz constant p1 and bounded by p
(|h(x)| < p).
For h ∈ X, x0 ∈ �

n we consider x(t, x0, h) a solution of

ẋ = Ax + F(x, h(x)), x(0, x0, h) = x0.

Solution exists and is unique. Define now

(Th)(x0) =
∫ 0

−∞

e−BsG
(
x(s, x0, h), h

(
x(s, x0, h)

))
ds

3 T is contraction on X — some calculations and proper choice
of p, p1 and ε

4 h is C1 — we justify that T is contraction on a subset of X
consisting of Lipschitz differentiable functions

5 We need to estimate second derivatives of h and show they
are continuous.
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Reduction principle

On the centre manifold the flow is governed by

u̇ = Au + f
(
u, h(u)

)
, u(t) ∈ �n (⋆⋆)

Theorem (Reduction Principle)
1 Suppose that the zero solution of (⋆⋆) is stable

(asymptotically stable)(unstable). Then the zero solution
of (⋆) is stable (asymptotically stable) (unstable).

2 Suppose that the zero solution of (⋆⋆) is stable. Let
(
x(t), y(t)

)
be a solution of (⋆) with

(
x(0), y(0)

)
sufficiently small. Then

there exists a solution u(t) of (⋆⋆) such that as t → +∞

x(t) = u(t) + O(e−γt)

y(t) = h(u(t)) + O(e−γt)

for some γ > 0.
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Sketch of the proof, part I

Lemma
Then there exist positive constants C1 and µ such that∣∣∣y(t) − h(x(t))

∣∣∣ ≤ C1e−µt
∣∣∣y(0) − h

(
x(0)

)∣∣∣
where (x(t), y(t)) is solution of (♢).

We set z = y(t) − h(x(t)), and calculate that

ż = Bz + N(x, z).

We estimate |N(x, z)| < δ(ε)|z| and use Gronwall Lemma.

We change basis so we have A = A1 + A2, with A2 being nilpotent,
|eA1tx| = |x| and |A2x| ≤ β

4 |x|.

0 is unstable for (⋆⋆) than it is also unstable for (⋆).
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Sketch of the proof, part II

We assume that 0 is stable, we are close enough to 0 so
systems (⋆) and (♢) are identical.

1 Using Banach Fix Point Theorem we prove that for any
u0 ∈ �

n, z0 ∈ �
m there exists solution (x(t), y(t)) with

y(0) = z0 + h(x(0)) and |x(t) − u(t)|, |y(t) − h(u(t))| exponentially
small.

2 We define a mapping S(u0, z0) = (x0, z0), with x0 = x(0). By
continuous dependence of solution of ODE on initial
conditions, S is continuous. We prove it is one to on, so by
Invariance of Domain Theorem it is an open map so it maps a
neighbourhood od (0, 0) on a (different) neighbourhood
of (0, 0).
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Approximation of the Centre Manifold
On the centre manifold we have y(t) = h(x(t)). We introduce it to
the second equation and we get

Dh(x)
(
Ax + f

(
x, h(x)

))
= Bh(x) + g

(
x, h(x)

)
and h(0) = 0, Dh(0) = 0.

Solving this is as difficult as solving original system. But the
approximation works well.

For φ : �n → �m of C1 class, define

(Mφ)(x) = Dφ(x)
(
Ax + f

(
x, φ(x)

))
− Bφ(x) − g

(
x, φ(x)

)
Theorem (Approximation)

Let φ : �n → �m be C1 in the neighbourhood of 0 with φ(0) = 0 and
Dφ(0) = 0. Suppose that as x→ 0 (Mφ)(x) = O(|x|q) for some
q > 1. Then |h(x) − φ(x)| = O(|x|q) as x→ 0.
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Example 1
We consider a system

ẋ = xy + ax3 + by2x

ẏ = −y + cx2 + dx2y

The system has a centre manifold y = h(x). To approximate h we
take

(Mφ)(x) = φ′(x)
(
xφ(x) + ax3 + bxφ2(x)

)
+ φ(x) − cx2 − dx2φ(x).

If φ(x) = O(x2) then (Mφ)(x) = φ(x) − cx2 + O(x4).
Therefore (by Approximation Theorem), h(x) = cx2 + O(x4) and the
dynamics on the centre manifolds reads

u̇ = uh(u) + au3 + buh2(u) = (a + c)u3 + O(u5).

By reduction Principle we have
a + c < 0 then steady state is stable
a + c > 0 then steady state is unstable
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Example 1, the case a + c = 0

Let
φ(x) = cx2 + ψ(x), ψ(x) = O(x4).

We have thus,

(Mφ)(x) = φ′(x)
(
xφ(x) + ax3 + bxφ2(x)

)
+ φ(x) − cx2 − dx2φ(x).

Thus, we have φ(x) = cx2 + cdx4 + O(x6) and the stability of the
zero solution is determined by

u̇ = uh(u) + au3 + buh2(u) = (cd + bc2)u5 + O(u7).

If a + c = 0 and

cd + bc2 < 0 then steady state is stable

cd + bc2 > 0 then steady state is unstable
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Example 2 — a model of CAR-T therapy

Ṫ =
(
ρT f (T) − αTC

)
T

Ċ =
(

aT
1 + T

−
bT

1 + C
− 1

)
C + k

(♣)

T — tumour cells;

C — CAR-T cells, that is chimeric antigen receptor T cells
modified in laboratory to recognise tumour cells.

f — growth function (constant for Mathusian growth and
1 − T/K for the logistic one).

k — parameter responsible for external influx of CAR-T cells
(treatment).

M. Bodnar, et al., On the analysis of a mathematical model of CAR–T cell therapy for
glioblastoma, International Journal of Applied Mathematics and Computer Science, 33,
379–394 (2023).
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Example 2

Ṫ =
(
ρT f (T) − αTC

)
T

Ċ =
(

aT
1 + T

−
bT

1 + C
− 1

)
C + k

(♣)

with f (0) = 1. The Jacobi Matrix for the steady state (0, k) reads ρT − αTk 0(
a − b

1+k

)
k −1

 kαT=ρT
−−−−−−→

 0 0(
a − b

1+k

)
k −ηC


In order to eliminate the linar term connected to the first variable
from the second equation we use

T = x, C = k + y + βx, β =

(
a −

b
1 + k

)
k

and the system becomes

ẋ =
(
ρT f (x) − αT

(
k + y + βx

))
x

ẏ =
(

ax
1 + x

−
bx

1 + k + βx + y
− 1

)
(k + βx + y) + k + βẋ
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Stability of the steady state
Let f (x) = 1 − γ1x +O(x2), γ1 = −f ′(0) ≥ 0. By Fx and Fy we denote
right-hand sides of the first and the second equation. Assume also
that φ = O(x2) then we have

Fx(x, φ(x)) =
(
ρT

(
1 − γ1x + O(x2)

)
− αT

(
k + φ(x) + βx

))
x

= −
(
ρTγ1 + αTβ

)
x2 + O(x3).

Moreover (Mφ)(x) = φ′(x)Fx
(
x, φ(x)

)
− Fy

(
x, φ(x)

)
= O(x2).

Thus, by reduction principle stability of the steady state is
determined by stability of zero solution of

u̇ = −
(
ρTγ1 + αT

(
a −

b
1 + k

)
k
)

u2 + O(u3)

= −ρT

(
γ1 + a −

b
1 + k

)
u2 + O(u3)

Conclusion: If ρT = kαT then the steady state is stable if

k >
b

a + |f ′(0)|
− 1
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Lack of uniqueness

Consider the system

ẋ = −x3, ẏ = −y.

Any curve of the form

h(x, c1, c2) =


c1 exp

(
− 1

x2

)
, x > 0

0 x = 0
c2 exp

(
− 1

x2

)
, x < 0

is centre manifold.

x

y

We can combine any left
branch with any right
branch.

If h1 and h2 are centre manifold, than by Approximation Theorem,
h1(x) − h2(x) = O(xq) as x→ 0 for all q > 1.
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Some properties of centre manifold

If the function f and g (of the right-hand side) are Ck class,
then centre manifold is of the same class, but it is not analytic
in general even if f and g are. Example:

ẋ = −x3, ẏ = −y + x2

Centre manifold need not be unique, but if an equilibrium point
or periodic orbit lies on one centre manifold, it has to lie on
every centre manifold.

If the dynamics (⋆) is defined on some subspace S ⊂ �n+m,
then Redaction Principle is also valid on S.

Analogous theorems are valid for difference equations

xn+1 = Axn + f (xn, yn)

yn+1 = Byn + g(xn, yn)
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Rate of Decay Estimates

Consider
r̈ + ṙ + f (r) = 0

where f is a smooth function such that

f (r) = r3 + ar5 + O(r7) as r → 0.

It is possible to construct Liapunov function. However, the rate of
decay cannot be determined by linearization. We show how centre
manifolds can be used to estimate the decay rate.

Let x = r + ṙ, and y = ṙ. Then we have

ẋ = −f (x − y)

ẏ = −y − f (x − y).
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Rate of Decay Estimates — continuation

ẋ = −f (x − y)

ẏ = −y − f (x − y).
(DE)

(DE) has a centre manifold y = h(x)
The Reduction Principle says equation

u̇ = −f
(
u − h(u)

)
determines the asymptotic behaviour of small solutions
of (DE).
Using definition of f and h = O(u2) we get

u̇ = −u3 + O(u4).

Assume that u(t) > 0 for all t. Using d’Hôspital rule we have

−1 = lim
t→+∞

u̇
u3 = lim

t→+∞

1
t

∫ u(t)

1

1
s3 ds
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Rate of Decay Estimates — continuation

Let w be a solution of

ẇ = −w3, w(0) = 1, =⇒ w(t) =
1
√

2t
+

C

t
√

t
+ O(t−5/2).

Then u(t) = w
(
t + o(t)

)
. Thus, we get

u(t) =
1
√

2t
+ o

(
1
√

t

)
.

To get further terms in the asymptotic expansion of u, we need an
approximation to h(u).
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Introductory example

Consider

ẋ = εx − x3 + xy

ẏ = −y + y2 − x2.

We want to study dynamics of this system near the origin for small
|ε| (later we will apply this for the bifurcation theory).

We cannot apply developed theory directly, as eigenvalues of the
system are −1 and ε. But we may write

ẋ = εx − x3 + xy

ẏ = −y + y2 − x2

ε̇ = 0.

(♡)

This system has eigenvalues 0, 0, and −1 (the term εx is now
non-linear).
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Centre manifold for the system (♡)

The system has centre manifold of the form
y = h(x, ε) for small |x| and |ε|.

We are looking for an approximation φ of
the manifold h. We have

ẋ = εx − x3 + xy

ẏ = −y + y2 − x2

ε̇ = 0.

(Mφ)(x, ε) = ∂xφ(x, ε)ẋ + ∂εε̇ + φ(x, ε) − φ2(x, ε) + x2

= ∂x
(
εx − x3 + xφ(x, ε)

)
+ φ(x, ε) − φ2(x, ε) + x2

If φ(x, ε) = −x2 then (Mφ)(x, ε) = O
(
C(x, ε)

)
, where C is

homogeneous cubic in x and ε.

Thus, the Approximation Theorem implies that
h(x, ε) = −x2 + O

(
C(x, ε)

)
and the Reduction Principle we can

consider only a system

u̇ = εu − 2u3 + O
(
|u|C(u, ε)

)
ε̇ = 0

ε < 0, small =⇒ stable

ε > 0, small =⇒ unstable
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A little closer look to the dynamics on the centre manifold

u̇ = u
(
ε − 2u2 + O

(
C(u, ε)

))

u

u̇

ε < 0

−
√

ε
2

√
ε
2

u

u̇

ε > 0

For ε < 0 the zero solution is locally asymptotically stable;

For ε > 0 the solutions of the equation for u consist of two

orbits connecting 0 and ±
√

ε
2 . Hence, the stable manifold of

the original system forms a separatrix, while the unstable one
consists of the orbit connecting (0, 0) with two other equilibria.
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Quasi-stationary approximation

The model arise from a model of the kinetics of enzyme reactions.

ẏ = −y + (y + c)z

εż = y − (y + 1)z

where ε > 0 is small, 0 < c < 1. Quasi-stationary approximation
gives

z =
y

y + 1
=⇒ ẏ =

−λy
1 + y

, λ = 1 − c.

Using perturbation techniques it can be shown that for small ε
solutions of both systems are close to each other.

We get similar result using centre manifold.

F.G. Heinenken, H.M. Tsuchiya and R. Aris, On the mathematical status of the
pseudo-steady state hypothesis of biochemical kinetics, Math. Biosci, 1, 95–113, (1967).
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Quasi-stationary approximation
Approximation of the centre manifold

Let τ = εt, f (y,w) = −y + (y + c)(y − w), w = y − z

f (y,w) = −λy − cw + y(y − w)

ẏ = −y + (y + c)z

εż = y − (y + 1)z
=⇒

y′ = εf (y,w),

w′ = −w + y2 − yw + εf (y,w)

ε′ = 0

By the Existence Theorem, there exists centre manifold w = h(y, ε)

We are looking for approximation of the manifold.

(Mφ)(y, ε) = ε∂yφ(y, ε)f (y, φ) + φ(y, ε) − y2 + yφ(y, ε) − εf (y, φ)

If φ = y2 − λεy then (Mφ)(y, ε) = O
(
|y|3 + |ε|3

)
so

h(y, ε) = y2 − λεy + O
(
|y|3 + |ε|3

)
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Quasi-stationary approximation
Dynamic on the centre manifold

By reduction principle the dynamics is governed by

u′ = εf (u, h(u, ε)),

reverting to the original time scale

u̇ = f (u, h(u, ε)) = −λ(u − u2) + O
(
|εu| + |u|3

)
and for sufficiently small y(0) and z(0) there exists a solution u and
parameter γ > 0 such that

y(t) = u(t) + O
(
e−γt/ε)

z(t) = y(t) − h(y(t), ε) + O
(
e−γt/ε)
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Making the result great again

Our result is local. But we can
extend it.

Assume that ȳ , −1. Then

y′ = εf (y,w),

w′ = −w + y2 − yw + εf (y,w)
ε′ = 0(

ȳ,
ȳ2

1 + ȳ
, 0

)
is a curve of the equilibrium points.

We expect that there is an invariant manifold w = h(y, ε) defined for
small ε and 0 ≤ y ≤ m = O(1) with h close to the curve

w =
y2

1 + y
.

For initial data close to that curve, the stability properties of the
oryginal system are the same as the stability properties of the
reduced equation.
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Global Invariant Manifolds

x′ = Ax + εf (x, y, ε)

y′ = By + εg(x, y, ε)

ε′ = 0

Theorem
Eigenvalues of A have zero real parts

eigenvalues of B have negative real parts

x ∈ �n, y ∈ �m, ε ∈ �,

f , g are C2 with f (0, 0, 0) = g(0, 0, 0) = 0

Let a > 0. Then,

there is δ > 0 such that

the system has invariant manifold y = h(x, ε) for |x| < a, |ε| < δ,

|h(x, ε)| < C|ε|.

The constant C depends on a, A, B, f and g.
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Sketch of the proof

Define smooth cut-off function Ψ(x) = 1 for |x| < a and
Ψ(x) = 0 for |a| > a + 1.

Take F(x, y, ε) = εf (xΨ(x), y, ε) and G(x, y, ε) = εg(xΨ(x), y, ε).

Like in the proof of existence of the centre manifold we prove
the existence of the manifold for

x′ = Ax + F(x, y, ε)

y′ = Ay + G(x, y, ε)

for |ε| small enough.
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Stability and approximation of the manifold

The flow on he invariant manifold is given by the equation

u′ = Au + εf (u, h(u, ε), ε)

The Approximation Theorem:
▶ φ : �n+1 → �m, φ(0, 0) = 0.
▶ |(Mφ)(x, ε)| < C|ε|p, p > 1 for |x| < a and

(Mφ) = Dxφ
(
Ax − εf (x, φ, ε)

)
− Bφ − εg(x, φ, ε)

Then
▶

∣∣∣h(x, ε) − φ(x, ε)
∣∣∣ < C1|ε|

p

for |x| < a and some constant C1.
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Immune response to a replicating antigen

The model originates from the work of: S.J. Merrill, A model of
the stimulation of B-cells by replicating antigen I,
Mathematical Biosciences, 41(1–2), 125–141 (1978).

Describes the interaction between:
replicating antigen,
antigen-specific B-cells,
antibodies.

Explains immune activation and high-zone tolerance via
nonlinear feedback mechanisms.

The model description was prepared by ChatGPT as I could not get the digital version of
the Merrill’s paper.
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Reduced dynamical system
The model description was prepared by ChatGPT as I could not get the digital version of
the Merrill’s paper.

εẋ = −
(
x3 +

(
a −

1
2

)
x + b −

1
2

)
,

ȧ =
1
2
δ(1 − x) − a − γ1ab,

ḃ = −γ1ab + γ2b.

(IM)

x – immune activation variable representing the effective level
of immune stimulation

it does not correspond to a single biological population;

encodes the global state of the immune response;

|x| < 1;

a ≥ 0 – effective population of antigen-specific B-cells.

b ≥ 0 – antibody (or antigen–antibody complexes)
concentration.
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Existence of periodic solution
Sketch of the method used by Merrill

It was used a quasi-stationary approximation getting
x = F(a, b)

In the system

ȧ =
1
2
δ
(
1 − F(a, b)

)
− a − γ1ab,

ḃ = −γ1ab + γ2b.

the existence of the Hopf bifurcation was proved using δ as a
parameter.

By appealing to a result in singular perturbation theory, it was
concluded that for ε sufficiently small, (IM) also has a periodic
solution.
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Existence of periodic solution
Centre manifold approach

Let (x̄, ā, b̄) be an equilibrium point of (IM). From the last
equation(assuming b̄ > 0):

γ1āb̄ = γ2b̄ =⇒ ā =
γ2

γ1
.

Thus,

x̄3 +

(
γ2

γ1
−

1
2

)
x̄ + b̄ −

1
2
= 0

1
2
δ(1 − x̄) −

γ2

γ1
− γ2b̄ = 0

(♠)

We assume that |x̄| < 1, b̄ ≥ 0 and ā = γ2
γ1

and define

y = a − ā, z = b − b̄, w = −ψ(x̄, ā)(x − x̄) − x̄y − z,

with ψ(x̄, ā) = 3x̄2 + ā − 1
2 .
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A system after change of variables

Assuming ψ , 0 we get

εẇ = g(w, y, z, ε),

ẏ = f2(w, y, z, ε),

ż = f3(w, y, z, ε),

where

g(w, y, z, ε) = f1(w, y, z, ε) − εx̄ f2(w, y, z, ε) − εf3(w, y, z, ε)

f1(w, y, z, ε) = −ψw + N(w + x̄y + z, y)

f2(w, y, z, ε) =
(
δx̄
2ψ
− 1 − γ1b̄

)
y +

(
δ

2ψ
− γ2

)
z +

δ

2ψ
w − γ1yz

f3(w, y, z, ε) = −γ1b̄ y − γ1yz

N(θ, y) = −
θ3

ψ−2 +
3θ2x̄
ψ−1 − yθ
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Getting periodic solution

We change time scale t = εs and get the system

w′ = g(w, y, zε), y′ = εf2(w, y, zε), z′ = εf3(w, y, zε), ε′ = 0.

The system has a centre manifold w = h(y, z, ε) and the local
behavior of solutions is determined by the equation (in terms
of the original time scale)

ẏ = f2
(
h(y, z, ε), y, zε

)
ż = f3

(
h(y, z, ε), y, zε

)
Now we show that this system has periodic solution
bifurcating from the origin for certain values of the parameters
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Getting periodic solution
Linearization

The linearization near y = 0, z = 0 gives

J(ε) =
[ δx̄

2ψ − 1 − γ1b̄ δ
2ψ − γ2

−γ1b̄ 0

]
+ O(ε)

For the Hopf bifurcation we need trJ(ε) = 0 and δ
2ψ − γ2 > 0.

Clearly, x̄ and b̄ must be solution of (♠) with |x̄| < 1 and b̄ > 0

Lemma

Let γ1 < 2γ2. Then for each ε > 0 there exist δ(ε), x̄(ε), b̄(ε) such
that

0 < 2x̄(ε) < 1, b̄(ε) > 0, ψ > 0

δ(ε) > 2ψγ2, trJ(ε) = 0

(♠) is satisfied.
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Getting periodic solution
Denoting by x̄(ε, δ), b̄(ε, δ) solution of (♠) with δ close to δ(ε)
we calculate

∂

∂δ
trJ(ε, δ)

∣∣∣∣∣∣
δ=δ(ε)

< 0

With ℓ(ε) =
√
γ1b̄ + O(ε), m(ε) =

√
δ

2ψ − γ2 + O(ε), setting
y1 = ℓ(ε)z, z1 = m(ε)y we transform the system into

ẏ1 = −ω0z1 −
γ1

m1
y1z1

ż1 = ω0y1 +
mδ
2ψ

h(y, z, ε) −
γ1

ℓ
y1z1

with

ω2
0 = γ1b̄

(
δ

2ψ
− γ2

)
+ O(ε).

Changing into polar coordinates we get expression for the
limit cycle. The stability of the periodic solution can be also
calculated.

M. Bodnar (University of Warsaw) Centre Manifold Theorem Warsaw 2026 38 / 40



Getting periodic solution
Approximation of centre manifold

After some calculations we get

h(y, z) = φ2 −
(x̄y + z)3

ψ3 + 6
x̄(x̄y + z)
ψ2 φ2 −

y
ψ
φ2 + O(y4 + z4)

where

φ2(y, z) =
3x̄(x̄y + z)2

ψ2 −
y(x̄y + z)

ψ
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