

Centre Manifold Theorem

Marek Bodnar

Institute of Applied Mathematics and Mechanics,
Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw

INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH
POLISH ACADEMY OF SCIENCES

Warsaw, February 9th, 2026

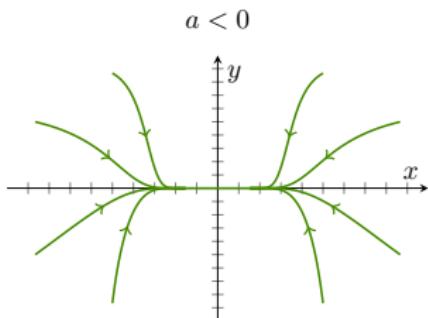
UNIVERSITY
OF WARSAW

Uncoupled equations

$$\dot{x} = ax^3$$

$$\dot{y} = -y + y^2$$

- $a < 0$ then $(0, 0)$ is **stable**;
- $a > 0$ then $(0, 0)$ is **unstable**;



Coupled equations

$$\dot{x} = ax^3 + x^2y$$

$$\dot{y} = -y + y^2 + xy - x^3$$

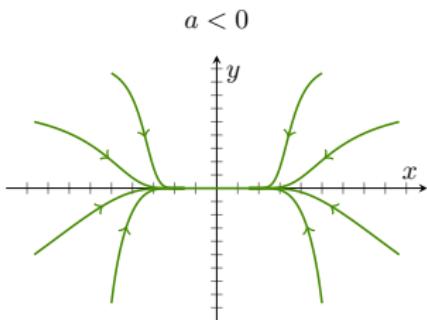
- $a < 0$ then $(0, 0)$ is **stable**?
- $a > 0$ then $(0, 0)$ is **unstable**?
- But how to prove?

Uncoupled equations

$$\dot{x} = ax^3$$

$$\dot{y} = -y + y^2$$

- $a < 0$ then $(0, 0)$ is **stable**;
- $a > 0$ then $(0, 0)$ is **unstable**;

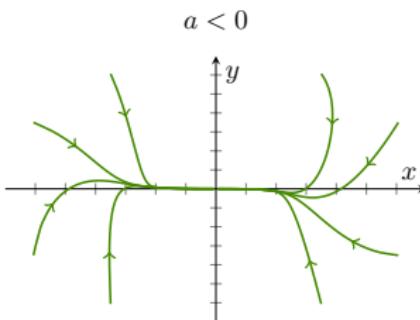


Coupled equations

$$\dot{x} = ax^3 + x^2y$$

$$\dot{y} = -y + y^2 + xy - x^3$$

- $a < 0$ then $(0, 0)$ is **stable**?
- $a > 0$ then $(0, 0)$ is **unstable**?
- But how to prove?



Remark

The analysis is local, we always assume we are close to the equilibrium (usually 0).

- We want to separate equation into two, uncoupled systems;
- We have to abstract the idea of uncoupled equations;
- Interesting case: real part of some eigenvalues are 0.

Definition

A curve (or surface, or ...) $y = h(x)$ defined for small $|x|$ is called an **invariant manifold** for a system

$$\dot{x} = f(x, y),$$

$$\dot{y} = g(x, y)$$

iff solution $(x(t), y(t))$ that goes through $(x_0, h(x_0))$ stay on the manifold for small t , that is $y(t) = h(x(t))$.

$$\dot{x} = ax^3$$

$$\dot{y} = -y + y^2$$

$$\dot{x} = ax^3 + x^2y$$

$$\dot{y} = -y + y^2 + xy - x^3$$

We develop a theory that tells us

- The invariant manifold is $y = 0$,
- so for stability of 0 solution only the equation $\dot{x} = ax^3$ is important.
- $a < 0$ then $(0, 0)$ is **stable**;
- $a > 0$ then $(0, 0)$ is **unstable**;

- there is an invariant manifold $y = h(x)$
- with $h(x) = O(x^2)$ as $x \rightarrow 0$.
- The stability can be proved studying equation

$$\dot{x} = ax^3 + x^2h(x) = ax^3 + O(x^4).$$

- The conclusion is the same.

We consider a system

$$\begin{aligned}\dot{x} &= Ax + f(x, y) \\ \dot{y} &= By + g(x, y)\end{aligned}\tag{★}$$

- $x \in \mathbb{R}^n, y \in \mathbb{R}^m$; A and B — matrices;
- all eigenvalues of A have **zero** real parts;
- all eigenvalues of B have **negative** real parts;
- f, g are C^2 and contains only non-linear parts, i.e.

$$f(0, 0) = 0, \quad g(0, 0) = 0, \quad Df(0, 0) = 0, \quad Dg(0, 0) = 0.$$

(Local) Centre Manifold

An invariant manifold $\{y = h(x)\}$ of (\star) is called (local) **centre manifold** if h is smooth, $h(0) = 0$ and $Dh(0) = 0$.

Theorem (Existence)

There exists a centre manifold for (\star) $\{y = h(x)\}$, $|x| < \delta$, for δ small enough, where h is C^2 .

Sketch of the proof:

- 1 Limiting equations to a ball of radius ε .

Let $\Psi: \mathbb{R}^n \rightarrow [0, 1]$ be a smooth function such that $\Psi(x) = 1$ for $|x| < 1$ and $\Psi(x) = 0$ for $|x| > 2$. Define

$$F(x, y) = f\left(x \frac{\Psi(x)}{\varepsilon}, y\right), \quad G(x, y) = g\left(x \frac{\Psi(x)}{\varepsilon}, y\right)$$

and we consider the system

$$\begin{aligned}\dot{x} &= Ax + F(x, y) \\ \dot{y} &= By + G(x, y)\end{aligned}\tag{\diamond}$$

2 Construction of contraction.

Let fix $p > 0$ and $p_1 > 0$. Define X a space of Lipschitz function $h: \mathbb{R}^n \rightarrow \mathbb{R}^m$ with Lipschitz constant p_1 and bounded by p ($|h(x)| < p$).

For $h \in X$, $x_0 \in \mathbb{R}^n$ we consider $x(t, x_0, h)$ a solution of

$$\dot{x} = Ax + F(x, h(x)), \quad x(0, x_0, h) = x_0.$$

Solution exists and is unique. Define now

$$(Th)(x_0) = \int_{-\infty}^0 e^{-Bs} G(x(s, x_0, h), h(x(s, x_0, h))) ds$$

- 3 T is contraction on X — some calculations and proper choice of p, p_1 and ε
- 4 h is C^1 — we justify that T is contraction on a subset of X consisting of Lipschitz differentiable functions
- 5 We need to estimate second derivatives of h and show they are continuous.

On the centre manifold the flow is governed by

$$\dot{u} = Au + f(u, h(u)), \quad u(t) \in \mathbb{R}^n \quad (\star\star)$$

Theorem (Reduction Principle)

- 1 Suppose that the zero solution of $(\star\star)$ is **stable** (**asymptotically stable**) (**unstable**). Then the zero solution of (\star) is **stable** (**asymptotically stable**) (**unstable**).
- 2 Suppose that the zero solution of $(\star\star)$ is **stable**. Let $(x(t), y(t))$ be a solution of (\star) with $(x(0), y(0))$ sufficiently small. Then there exists a solution $u(t)$ of $(\star\star)$ such that as $t \rightarrow +\infty$

$$x(t) = u(t) + O(e^{-\gamma t})$$

$$y(t) = h(u(t)) + O(e^{-\gamma t})$$

for some $\gamma > 0$.

Lemma

Then there exist positive constants C_1 and μ such that

$$|y(t) - h(x(t))| \leq C_1 e^{-\mu t} |y(0) - h(x(0))|$$

where $(x(t), y(t))$ is solution of (\diamond) .

We set $z = y(t) - h(x(t))$, and calculate that

$$\dot{z} = Bz + N(x, z).$$

We estimate $|N(x, z)| < \delta(\varepsilon)|z|$ and use Gronwall Lemma.

We change basis so we have $A = A_1 + A_2$, with A_2 being nilpotent, $|e^{A_1 t} x| = |x|$ and $|A_2 x| \leq \frac{\beta}{4} |x|$.

0 is unstable for $(\star\star)$ than it is also unstable for (\star) .

We assume that 0 is stable, we are close enough to 0 so systems (\star) and (\diamond) are identical.

- 1 Using Banach Fix Point Theorem we prove that for any $u_0 \in \mathbb{R}^n$, $z_0 \in \mathbb{R}^m$ there exists solution $(x(t), y(t))$ with $y(0) = z_0 + h(x(0))$ and $|x(t) - u(t)|$, $|y(t) - h(u(t))|$ exponentially small.
- 2 We define a mapping $S(u_0, z_0) = (x_0, z_0)$, with $x_0 = x(0)$. By continuous dependence of solution of ODE on initial conditions, S is continuous. We prove it is one to one, so by Invariance of Domain Theorem it is an open map so it maps a neighbourhood of $(0, 0)$ on a (different) neighbourhood of $(0, 0)$.

Approximation of the Centre Manifold

On the centre manifold we have $y(t) = h(x(t))$. We introduce it to the second equation and we get

$$Dh(x)(Ax + f(x, h(x))) = Bh(x) + g(x, h(x))$$

and $h(0) = 0$, $Dh(0) = 0$.

Solving this is as difficult as solving original system. But the approximation works well.

For $\varphi: \mathbb{R}^n \rightarrow \mathbb{R}^m$ of C^1 class, define

$$(M\varphi)(x) = D\varphi(x)(Ax + f(x, \varphi(x))) - B\varphi(x) - g(x, \varphi(x))$$

Theorem (Approximation)

Let $\varphi: \mathbb{R}^n \rightarrow \mathbb{R}^m$ be C^1 in the neighbourhood of 0 with $\varphi(0) = 0$ and $D\varphi(0) = 0$. Suppose that as $x \rightarrow 0$ $(M\varphi)(x) = O(|x|^q)$ for some $q > 1$. Then $|h(x) - \varphi(x)| = O(|x|^q)$ as $x \rightarrow 0$.

Example 1

We consider a system

$$\begin{aligned}\dot{x} &= xy + ax^3 + by^2x \\ \dot{y} &= -y + cx^2 + dx^2y\end{aligned}$$

The system has a centre manifold $y = h(x)$. To approximate h we take

$$(M\varphi)(x) = \varphi'(x) \left(x\varphi(x) + ax^3 + bx\varphi^2(x) \right) + \varphi(x) - cx^2 - dx^2\varphi(x).$$

If $\varphi(x) = O(x^2)$ then $(M\varphi)(x) = \varphi(x) - cx^2 + O(x^4)$.

Therefore (by Approximation Theorem), $h(x) = cx^2 + O(x^4)$ and the dynamics on the centre manifolds reads

$$\dot{u} = uh(u) + au^3 + buh^2(u) = (a + c)u^3 + O(u^5).$$

By reduction Principle we have

- $a + c < 0$ then steady state is **stable**
- $a + c > 0$ then steady state is **unstable**

Example 1, the case $a + c = 0$

Let

$$\varphi(x) = cx^2 + \psi(x), \quad \psi(x) = O(x^4).$$

We have thus,

$$(M\varphi)(x) = \varphi'(x)(x\varphi(x) + ax^3 + bx\varphi^2(x)) + \varphi(x) - cx^2 - dx^2\varphi(x).$$

Thus, we have $\varphi(x) = cx^2 + cdx^4 + O(x^6)$ and the stability of the zero solution is determined by

$$\dot{u} = uh(u) + au^3 + buh^2(u) = (cd + bc^2)u^5 + O(u^7).$$

If $a + c = 0$ and

- $cd + bc^2 < 0$ then steady state is **stable**
- $cd + bc^2 > 0$ then steady state is **unstable**

Example 1, the case $a + c = 0$

Let

$$\varphi(x) = cx^2 + \psi(x), \quad \psi(x) = O(x^4).$$

We have thus,

$$(M\varphi)(x) = \varphi'(x)(x\varphi(x) + ax^3 + bx\varphi^2(x)) + \psi(x) - cdx^4 + O(x^6).$$

Thus, we have $\varphi(x) = cx^2 + cdx^4 + O(x^6)$ and the stability of the zero solution is determined by

$$\dot{u} = uh(u) + au^3 + buh^2(u) = (cd + bc^2)u^5 + O(u^7).$$

If $a + c = 0$ and

- $cd + bc^2 < 0$ then steady state is **stable**
- $cd + bc^2 > 0$ then steady state is **unstable**

$$\begin{aligned}\dot{T} &= (\rho_T f(T) - \alpha_T C)T \\ \dot{C} &= \left(\frac{aT}{1+T} - \frac{bT}{1+C} - 1 \right) C + k\end{aligned}\quad (\clubsuit)$$

- T — tumour cells;
- C — CAR-T cells, that is chimeric antigen receptor T cells modified in laboratory to recognise tumour cells.
- f — growth function (constant for Mathusian growth and $1 - T/K$ for the logistic one).
- k — parameter responsible for external influx of CAR-T cells (treatment).

M. Bodnar, et al., *On the analysis of a mathematical model of CAR-T cell therapy for glioblastoma*, *International Journal of Applied Mathematics and Computer Science*, **33**, 379–394 (2023).

Example 2

$$\begin{aligned}\dot{T} &= (\rho_T f(T) - \alpha_T C)T \\ \dot{C} &= \left(\frac{aT}{1+T} - \frac{bT}{1+C} - 1 \right) C + k\end{aligned}\quad (\clubsuit)$$

with $f(0) = 1$. The Jacobi Matrix for the steady state $(0, k)$ reads

$$\begin{pmatrix} \rho_T - \alpha_T k & 0 \\ \left(a - \frac{b}{1+k}\right)k & -1 \end{pmatrix} \xrightarrow{k\alpha_T = \rho_T} \begin{pmatrix} 0 & 0 \\ \left(a - \frac{b}{1+k}\right)k & -\eta_C \end{pmatrix}$$

In order to eliminate the linear term connected to the first variable from the second equation we use

$$T = x, \quad C = k + y + \beta x, \quad \beta = \left(a - \frac{b}{1+k}\right)k$$

and the system becomes

$$\begin{aligned}\dot{x} &= (\rho_T f(x) - \alpha_T(k + y + \beta x))x \\ \dot{y} &= \left(\frac{ax}{1+x} - \frac{bx}{1+k+\beta x+y} - 1 \right) (k + \beta x + y) + k + \beta \dot{x}\end{aligned}$$

Stability of the steady state

Let $f(x) = 1 - \gamma_1 x + O(x^2)$, $\gamma_1 = -f'(0) \geq 0$. By F_x and F_y we denote right-hand sides of the first and the second equation. Assume also that $\varphi = O(x^2)$ then we have

$$\begin{aligned} F_x(x, \varphi(x)) &= \left(\rho_T(1 - \gamma_1 x + O(x^2)) - \alpha_T(k + \varphi(x) + \beta x) \right) x \\ &= -(\rho_T \gamma_1 + \alpha_T \beta) x^2 + O(x^3). \end{aligned}$$

Moreover $(M\varphi)(x) = \varphi'(x)F_x(x, \varphi(x)) - F_y(x, \varphi(x)) = O(x^2)$.

Thus, by reduction principle stability of the steady state is determined by stability of zero solution of

$$\begin{aligned} \dot{u} &= - \left(\rho_T \gamma_1 + \alpha_T \left(a - \frac{b}{1+k} \right) k \right) u^2 + O(u^3) \\ &= -\rho_T \left(\gamma_1 + a - \frac{b}{1+k} \right) u^2 + O(u^3) \end{aligned}$$

- **Conclusion:** If $\rho_T = k\alpha_T$ then the steady state is stable if

$$k > \frac{b}{a + |f'(0)|} - 1$$

Consider the system

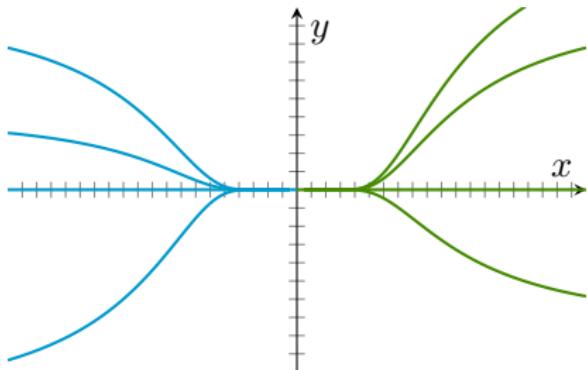
$$\dot{x} = -x^3, \quad \dot{y} = -y.$$

Any curve of the form

$$h(x, c_1, c_2) = \begin{cases} c_1 \exp\left(-\frac{1}{x^2}\right), & x > 0 \\ 0 & x = 0 \\ c_2 \exp\left(-\frac{1}{x^2}\right), & x < 0 \end{cases}$$

is centre manifold.

If h_1 and h_2 are centre manifold, than by Approximation Theorem,
 $h_1(x) - h_2(x) = O(x^q)$ as $x \rightarrow 0$ for all $q > 1$.



We can combine any left branch with any right branch.

- If the function f and g (of the right-hand side) are C^k class, then centre manifold is of the same class, but **it is not analytic** in general even if f and g are. Example:

$$\dot{x} = -x^3, \quad \dot{y} = -y + x^2$$

- Centre manifold need not be unique, but if an equilibrium point or periodic orbit lies on one centre manifold, it has to lie on every centre manifold.
- If the dynamics (\star) is defined on some subspace $S \subset \mathbb{R}^{n+m}$, then Redaction Principle is also valid on S .
- Analogous theorems are valid for difference equations

$$x_{n+1} = Ax_n + f(x_n, y_n)$$

$$y_{n+1} = By_n + g(x_n, y_n)$$

Consider

$$\ddot{r} + \dot{r} + f(r) = 0$$

where f is a smooth function such that

$$f(r) = r^3 + ar^5 + O(r^7) \quad \text{as} \quad r \rightarrow 0.$$

It is possible to construct Liapunov function. However, the rate of decay cannot be determined by linearization. We show how centre manifolds can be used to estimate the decay rate.

Let $x = r + \dot{r}$, and $y = \dot{r}$. Then we have

$$\dot{x} = -f(x - y)$$

$$\dot{y} = -y - f(x - y).$$

$$\begin{aligned}\dot{x} &= -f(x - y) \\ \dot{y} &= -y - f(x - y).\end{aligned}\tag{DE}$$

- (DE) has a centre manifold $y = h(x)$
- The Reduction Principle says equation

$$\dot{u} = -f(u - h(u))$$

determines the asymptotic behaviour of small solutions of (DE).

- Using definition of f and $h = O(u^2)$ we get

$$\dot{u} = -u^3 + O(u^4).$$

- Assume that $u(t) > 0$ for all t . Using d'Hôpital rule we have

$$-1 = \lim_{t \rightarrow +\infty} \frac{\dot{u}}{u^3} = \lim_{t \rightarrow +\infty} \frac{1}{t} \int_1^{u(t)} \frac{1}{s^3} ds$$

Let w be a solution of

$$\dot{w} = -w^3, \quad w(0) = 1, \quad \implies \quad w(t) = \frac{1}{\sqrt{2t}} + \frac{C}{t\sqrt{t}} + O(t^{-5/2}).$$

Then $u(t) = w(t + o(t))$. Thus, we get

$$u(t) = \frac{1}{\sqrt{2t}} + o\left(\frac{1}{\sqrt{t}}\right).$$

To get further terms in the asymptotic expansion of u , we need an approximation to $h(u)$.

Consider

$$\begin{aligned}\dot{x} &= \varepsilon x - x^3 + xy \\ \dot{y} &= -y + y^2 - x^2.\end{aligned}$$

We want to study dynamics of this system near the origin for small $|\varepsilon|$ (later we will apply this for the bifurcation theory).

We cannot apply developed theory directly, as eigenvalues of the system are -1 and ε . But we may write

$$\begin{aligned}\dot{x} &= \varepsilon x - x^3 + xy \\ \dot{y} &= -y + y^2 - x^2 \\ \dot{\varepsilon} &= 0.\end{aligned}\tag{♡}$$

This system has eigenvalues $0, 0$, and -1 (the term εx is now non-linear).

The system has centre manifold of the form $y = h(x, \varepsilon)$ for small $|x|$ and $|\varepsilon|$.

We are looking for an approximation φ of the manifold h . We have

$$\begin{aligned}\dot{x} &= \varepsilon x - x^3 + xy \\ \dot{y} &= -y + y^2 - x^2 \\ \dot{\varepsilon} &= 0.\end{aligned}$$

$$\begin{aligned}(M\varphi)(x, \varepsilon) &= \partial_x \varphi(x, \varepsilon) \dot{x} + \partial_\varepsilon \dot{\varphi} + \varphi(x, \varepsilon) - \varphi^2(x, \varepsilon) + x^2 \\ &= \partial_x (\varepsilon x - x^3 + x\varphi(x, \varepsilon)) + \varphi(x, \varepsilon) - \varphi^2(x, \varepsilon) + x^2\end{aligned}$$

If $\varphi(x, \varepsilon) = -x^2$ then $(M\varphi)(x, \varepsilon) = O(C(x, \varepsilon))$, where C is homogeneous cubic in x and ε .

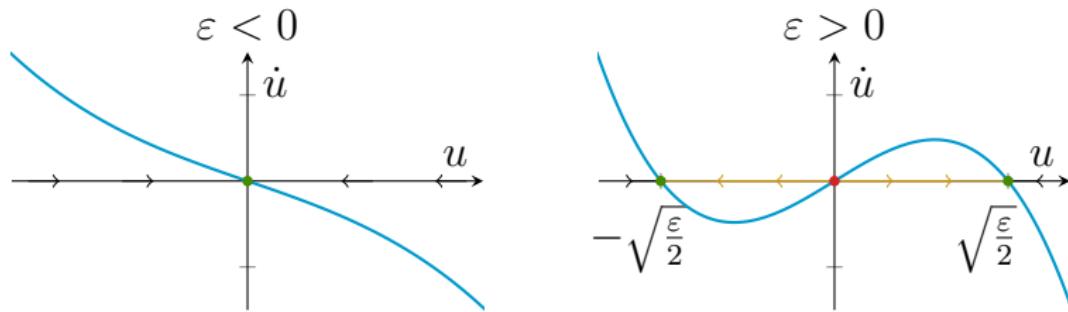
Thus, the Approximation Theorem implies that $h(x, \varepsilon) = -x^2 + O(C(x, \varepsilon))$ and the Reduction Principle we can consider only a system

$$\dot{u} = \varepsilon u - 2u^3 + O(|u|C(u, \varepsilon))$$

$$\dot{\varepsilon} = 0$$

- $\varepsilon < 0$, small \Rightarrow stable
- $\varepsilon > 0$, small \Rightarrow unstable

$$\dot{u} = u(\varepsilon - 2u^2 + O(C(u, \varepsilon)))$$



- For $\varepsilon < 0$ the zero solution is locally asymptotically stable;
- For $\varepsilon > 0$ the solutions of the equation for u consist of two orbits connecting 0 and $\pm \sqrt{\frac{\varepsilon}{2}}$. Hence, the stable manifold of the original system forms a separatrix, while the unstable one consists of the orbit connecting $(0, 0)$ with two other equilibria.

The model arise from a model of the kinetics of enzyme reactions.

$$\begin{aligned}\dot{y} &= -y + (y + c)z \\ \varepsilon \dot{z} &= y - (y + 1)z\end{aligned}$$

where $\varepsilon > 0$ is small, $0 < c < 1$. Quasi-stationary approximation gives

$$z = \frac{y}{y + 1} \implies \dot{y} = \frac{-\lambda y}{1 + y}, \quad \lambda = 1 - c.$$

Using perturbation techniques it can be shown that for small ε solutions of both systems are close to each other.

We get similar result using centre manifold.

F.G. Heinenken, H.M. Tsuchiya and R. Aris, On the mathematical status of the pseudo-steady state hypothesis of biochemical kinetics, *Math. Biosci.*, **1**, 95–113, (1967).

Quasi-stationary approximation

Approximation of the centre manifold

Let $\tau = \varepsilon t$, $f(y, w) = -y + (y + c)(y - w)$, $w = y - z$

$$f(y, w) = -\lambda y - cw + y(y - w)$$

$$\begin{aligned} \dot{y} &= -y + (y + c)z & y' &= \varepsilon f(y, w), \\ \varepsilon \dot{z} &= y - (y + 1)z & \implies w' &= -w + y^2 - yw + \varepsilon f(y, w) \\ & & \varepsilon' &= 0 \end{aligned}$$

By the Existence Theorem, there exists centre manifold $w = h(y, \varepsilon)$

We are looking for approximation of the manifold.

$$(M\varphi)(y, \varepsilon) = \varepsilon \partial_y \varphi(y, \varepsilon) f(y, \varphi) + \varphi(y, \varepsilon) - y^2 + y\varphi(y, \varepsilon) - \varepsilon f(y, \varphi)$$

If $\varphi = y^2 - \lambda \varepsilon y$ then $(M\varphi)(y, \varepsilon) = O(|y|^3 + |\varepsilon|^3)$ so

$$h(y, \varepsilon) = y^2 - \lambda \varepsilon y + O(|y|^3 + |\varepsilon|^3)$$

Quasi-stationary approximation

Dynamic on the centre manifold

By reduction principle the dynamics is governed by

$$u' = \varepsilon f(u, h(u, \varepsilon)),$$

reverting to the original time scale

$$\dot{u} = f(u, h(u, \varepsilon)) = -\lambda(u - u^2) + O(|\varepsilon u| + |u|^3)$$

and for sufficiently small $y(0)$ and $z(0)$ there exists a solution u and parameter $\gamma > 0$ such that

$$y(t) = u(t) + O(e^{-\gamma t/\varepsilon})$$

$$z(t) = y(t) - h(y(t), \varepsilon) + O(e^{-\gamma t/\varepsilon})$$

Our result is local. But we can extend it.

Assume that $\bar{y} \neq -1$. Then

$$\begin{aligned}y' &= \varepsilon f(y, w), \\w' &= -w + y^2 - yw + \varepsilon f(y, w) \\ \varepsilon' &= 0\end{aligned}$$

$\left(\bar{y}, \frac{\bar{y}^2}{1 + \bar{y}}, 0\right)$ is a curve of the equilibrium points.

We expect that there is an invariant manifold $w = h(y, \varepsilon)$ defined for small ε and $0 \leq y \leq m = O(1)$ with h close to the curve

$$w = \frac{y^2}{1 + y}.$$

For initial data close to that curve, the stability properties of the original system are the same as the stability properties of the reduced equation.

$$x' = Ax + \varepsilon f(x, y, \varepsilon)$$

$$y' = By + \varepsilon g(x, y, \varepsilon)$$

$$\varepsilon' = 0$$

Theorem

- *Eigenvalues of A have zero real parts*
- *eigenvalues of B have negative real parts*
- $x \in \mathbb{R}^n, y \in \mathbb{R}^m, \varepsilon \in \mathbb{R},$
- f, g are C^2 with $f(0, 0, 0) = g(0, 0, 0) = 0$

Let $a > 0$. Then,

- *there is $\delta > 0$ such that*
- *the system has invariant manifold $y = h(x, \varepsilon)$ for $|x| < a, |\varepsilon| < \delta$,*
- $|h(x, \varepsilon)| < C|\varepsilon|$.
- *The constant C depends on a, A, B, f and g .*

- Define smooth cut-off function $\Psi(x) = 1$ for $|x| < a$ and $\Psi(x) = 0$ for $|x| > a + 1$.
- Take $F(x, y, \varepsilon) = \varepsilon f(x\Psi(x), y, \varepsilon)$ and $G(x, y, \varepsilon) = \varepsilon g(x\Psi(x), y, \varepsilon)$.
- Like in the proof of existence of the centre manifold we prove the existence of the manifold for

$$\begin{aligned}x' &= Ax + F(x, y, \varepsilon) \\y' &= Ay + G(x, y, \varepsilon)\end{aligned}$$

for $|\varepsilon|$ small enough.

- The flow on the invariant manifold is given by the equation

$$u' = Au + \varepsilon f(u, h(u, \varepsilon), \varepsilon)$$

- The Approximation Theorem:

- ▶ $\varphi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^m$, $\varphi(0, 0) = 0$.
- ▶ $|(M\varphi)(x, \varepsilon)| < C|\varepsilon|^p$, $p > 1$ for $|x| < a$ and

$$(M\varphi) = D_x \varphi \left(Ax - \varepsilon f(x, \varphi, \varepsilon) \right) - B\varphi - \varepsilon g(x, \varphi, \varepsilon)$$

Then

- ▶ $|h(x, \varepsilon) - \varphi(x, \varepsilon)| < C_1|\varepsilon|^p$

for $|x| < a$ and some constant C_1 .

- The model originates from the work of: S.J. Merrill, A model of the stimulation of B-cells by replicating antigen I, *Mathematical Biosciences*, **41**(1–2), 125–141 (1978).
- Describes the interaction between:
 - replicating antigen,
 - antigen-specific B-cells,
 - antibodies.
- Explains immune activation and high-zone tolerance via nonlinear feedback mechanisms.

The model description was prepared by ChatGPT as I could not get the digital version of the Merrill's paper.

Reduced dynamical system

The model description was prepared by ChatGPT as I could not get the digital version of the Merrill's paper.

$$\begin{aligned}\varepsilon \dot{x} &= -\left(x^3 + \left(a - \frac{1}{2}\right)x + b - \frac{1}{2}\right), \\ \dot{a} &= \frac{1}{2} \delta(1 - x) - a - \gamma_1 ab, \\ \dot{b} &= -\gamma_1 ab + \gamma_2 b.\end{aligned}\tag{IM}$$

- x – immune activation variable representing the effective level of immune stimulation
 - it does not correspond to a single biological population;
 - encodes the global state of the immune response;
 - $|x| < 1$;
- $a \geq 0$ – effective population of antigen-specific B-cells.
- $b \geq 0$ – antibody (or antigen–antibody complexes) concentration.

Existence of periodic solution

Sketch of the method used by Merrill

- It was used a quasi-stationary approximation getting $x = F(a, b)$
- In the system

$$\begin{aligned}\dot{a} &= \frac{1}{2} \delta(1 - F(a, b)) - a - \gamma_1 ab, \\ \dot{b} &= -\gamma_1 ab + \gamma_2 b.\end{aligned}$$

the existence of the Hopf bifurcation was proved using δ as a parameter.

- By appealing to a result in singular perturbation theory, it was concluded that for ε sufficiently small, (IM) also has a periodic solution.

Existence of periodic solution

Centre manifold approach

Let $(\bar{x}, \bar{a}, \bar{b})$ be an equilibrium point of (IM). From the last equation (assuming $\bar{b} > 0$):

$$\gamma_1 \bar{a} \bar{b} = \gamma_2 \bar{b} \implies \bar{a} = \frac{\gamma_2}{\gamma_1}.$$

Thus,

$$\begin{aligned} \bar{x}^3 + \left(\frac{\gamma_2}{\gamma_1} - \frac{1}{2} \right) \bar{x} + \bar{b} - \frac{1}{2} &= 0 \\ \frac{1}{2} \delta(1 - \bar{x}) - \frac{\gamma_2}{\gamma_1} - \gamma_2 \bar{b} &= 0 \end{aligned} \tag{\spadesuit}$$

We assume that $|\bar{x}| < 1$, $\bar{b} \geq 0$ and $\bar{a} = \frac{\gamma_2}{\gamma_1}$ and define

$$y = a - \bar{a}, \quad z = b - \bar{b}, \quad w = -\psi(\bar{x}, \bar{a})(x - \bar{x}) - \bar{x}y - z,$$

$$\text{with } \psi(\bar{x}, \bar{a}) = 3\bar{x}^2 + \bar{a} - \frac{1}{2}.$$

A system after change of variables

Assuming $\psi \neq 0$ we get

$$\varepsilon \dot{w} = g(w, y, z, \varepsilon),$$

$$\dot{y} = f_2(w, y, z, \varepsilon),$$

$$\dot{z} = f_3(w, y, z, \varepsilon),$$

where

$$g(w, y, z, \varepsilon) = f_1(w, y, z, \varepsilon) - \varepsilon \bar{x} f_2(w, y, z, \varepsilon) - \varepsilon f_3(w, y, z, \varepsilon)$$

$$f_1(w, y, z, \varepsilon) = -\psi w + N(w + \bar{x}y + z, y)$$

$$f_2(w, y, z, \varepsilon) = \left(\frac{\delta \bar{x}}{2\psi} - 1 - \gamma_1 \bar{b} \right) y + \left(\frac{\delta}{2\psi} - \gamma_2 \right) z + \frac{\delta}{2\psi} w - \gamma_1 yz$$

$$f_3(w, y, z, \varepsilon) = -\gamma_1 \bar{b} y - \gamma_1 yz$$

$$N(\theta, y) = -\frac{\theta^3}{\psi^{-2}} + \frac{3\theta^2 \bar{x}}{\psi^{-1}} - y\theta$$

- We change time scale $t = \varepsilon s$ and get the system

$$w' = g(w, y, z\varepsilon), \quad y' = \varepsilon f_2(w, y, z\varepsilon), \quad z' = \varepsilon f_3(w, y, z\varepsilon), \quad \varepsilon' = 0.$$

- The system has a centre manifold $w = h(y, z, \varepsilon)$ and the local behavior of solutions is determined by the equation (in terms of the original time scale)

$$\begin{aligned}\dot{y} &= f_2(h(y, z, \varepsilon), y, z\varepsilon) \\ \dot{z} &= f_3(h(y, z, \varepsilon), y, z\varepsilon)\end{aligned}$$

- Now we show that this system has periodic solution bifurcating from the origin for certain values of the parameters

Getting periodic solution

Linearization

The linearization near $y = 0, z = 0$ gives

$$J(\varepsilon) = \begin{bmatrix} \frac{\delta \bar{x}}{2\psi} - 1 - \gamma_1 \bar{b} & \frac{\delta}{2\psi} - \gamma_2 \\ -\gamma_1 \bar{b} & 0 \end{bmatrix} + O(\varepsilon)$$

For the Hopf bifurcation we need $\text{tr}J(\varepsilon) = 0$ and $\frac{\delta}{2\psi} - \gamma_2 > 0$.

Clearly, \bar{x} and \bar{b} must be solution of (\spadesuit) with $|\bar{x}| < 1$ and $\bar{b} > 0$

Lemma

Let $\gamma_1 < 2\gamma_2$. Then for each $\varepsilon > 0$ there exist $\delta(\varepsilon), \bar{x}(\varepsilon), \bar{b}(\varepsilon)$ such that

- $0 < 2\bar{x}(\varepsilon) < 1, \quad \bar{b}(\varepsilon) > 0, \quad \psi > 0$
- $\delta(\varepsilon) > 2\psi\gamma_2, \quad \text{tr}J(\varepsilon) = 0$
- (\spadesuit) is satisfied.

Getting periodic solution

- Denoting by $\bar{x}(\varepsilon, \delta), \bar{b}(\varepsilon, \delta)$ solution of (♠) with δ close to $\delta(\varepsilon)$ we calculate

$$\frac{\partial}{\partial \delta} \text{tr} J(\varepsilon, \delta) \bigg|_{\delta=\delta(\varepsilon)} < 0$$

- With $\ell(\varepsilon) = \sqrt{\gamma_1 \bar{b}} + O(\varepsilon)$, $m(\varepsilon) = \sqrt{\frac{\delta}{2\psi} - \gamma_2} + O(\varepsilon)$, setting $y_1 = \ell(\varepsilon)z$, $z_1 = m(\varepsilon)y$ we transform the system into

$$\begin{aligned}\dot{y}_1 &= -\omega_0 z_1 - \frac{\gamma_1}{m_1} y_1 z_1 \\ \dot{z}_1 &= \omega_0 y_1 + \frac{m\delta}{2\psi} h(y, z, \varepsilon) - \frac{\gamma_1}{\ell} y_1 z_1\end{aligned}$$

with

$$\omega_0^2 = \gamma_1 \bar{b} \left(\frac{\delta}{2\psi} - \gamma_2 \right) + O(\varepsilon).$$

- Changing into polar coordinates we get expression for the limit cycle. The stability of the periodic solution can be also calculated.

Getting periodic solution

Approximation of centre manifold

After some calculations we get

$$h(y, z) = \varphi_2 - \frac{(\bar{x}y + z)^3}{\psi^3} + 6 \frac{\bar{x}(\bar{x}y + z)}{\psi^2} \varphi_2 - \frac{y}{\psi} \varphi_2 + O(y^4 + z^4)$$

where

$$\varphi_2(y, z) = \frac{3\bar{x}(\bar{x}y + z)^2}{\psi^2} - \frac{y(\bar{x}y + z)}{\psi}$$

Books:

- J. Carr, *Applications of Centre Manifold Theory*, Applied Mathematical Sciences, Vol. 35, Springer, New York (1982).
- L. Perko, *Differential Equations and Dynamical Systems*, 3rd ed., Texts in Applied Mathematics, Vol. 7, Springer, New York (2001).

Articles:

- M. Bodnar, et al., *On the analysis of a mathematical model of CAR-T cell therapy for glioblastoma*, *International Journal of Applied Mathematics and Computer Science*, **33**, 379–394 (2023).
- F.G. Heinenken, H.M. Tsuchiya and R. Aris, *On the mathematical status of the pseudo-steady state hypothesis of biochemical kinetics*, *Mathematical Biosciences*, **1**, 95–113 (1967).
- S.J. Merrill, *A model of the stimulation of B-cells by replicating antigen I*, *Mathematical Biosciences*, **41**(1–2), 125–141 (1978).

Thank you!!