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Peridynamics
o Unifies the mechanics of continuous and discontinuous media.
o Continuum approach without spatial derivatives.

o Removes mathematical singularities.

o Restores nonlocal interactions.
o Introduces an internal length parameter.
o Links different length scales.
o Enables autonomous damage initiation and growth.

o Damage nucleation in unspecified locations

o Damage propagation along unguided paths

o Emergence of multiple damage sites and their complex interactions
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Silling S. A., 2000, “Reformulation of elasticity theory for discontinuities and long-range forces,” JMPS, 48:175-209.
Silling et al. , 2007, “Peridynamics states and constitutive modeling,” J. Elasticity, 88:151-184.
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Peridynamic differential operator
o Enables differentiation through integration.

o M variables and Nth order

o Mathematically it never blows up – always valid. 

o PDDO provides nonlocal form of local differential equations in 
space and time.
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Peridynamic functions
o Orthogonal to each term in Taylor Series Expansion except for 

the term involving the desired derivative. 

o Although arbitrary in form, complete polynomials lead to 
analytical expressions. 

Madenci et al. , 2016, Peridynamic differential operator and its applications, CMAME, 304:408–451
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PDDO for 2D analysis

Madenci et al. , 2016, Peridynamic differential operator and its applications, CMAME, 304:408–451
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PD functions

Madenci et al. , 2016, Peridynamic differential operator and its applications, CMAME, 304:408–451
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PD discretization

PD discretization in 1D

PD discretization of domain PD discretization of space-time domain

The family is always 
nonsymmetric

The family is nonsymmetric
near the boundaries

The family is nonsymmetric
near the boundaries
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Numerical implementation
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Convergence 

 convergence (local) −

Bobaru etal., 2009, Convergence, adaptive refinement, and scaling in 1D peridynamics. IJNME, 77, 852–877.

 convergence (nonlocal)m −
 convergence (local)m −
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Numerical error

▪ N is dictated by the highest order of differentiation                
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▪ Weight function,

▪ Integration error, Q

▪ Remainder error, R
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Differentiation of discrete data
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Madenci et al., 2016, Peridynamic differential operator and its applications, CMAME, 304 : 408–451
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When the elastic bond stretch reaches its critical 
value, bond breakage occurs

Local damage is the ratio of number of 
broken bonds to total number of bonds

PD Failure/damage

Silling, S.  and Askari, E.,2005, A Meshfree Method Based on the Peridynamic Model of Solid Mechanics,” Computers and Struct., 83, 1526-1535.
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Multi-physics modeling
o Cracking in charring materials during ablation
o Corrosion
o Electrodeposition
o Electromigration
o Fuel pellet cracking



Charring Process

o Heat conduction in TPS

▪ Internal decomposition of material

▪ Decomposition of material to char

▪ Formation of pyrolysis gas 

▪ Gases in the boundary react with char 

▪ Surface recession- chemical reactions, erosion and combustion

Amar, A., Calvert, N., & Kirk, B. (2011, January). Development and verification of the charring ablating thermal protection implicit system solver. In 49th 
AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (p. 144).

Virgin material decomposes to char. 
Char at surface has better insulation 
properties than virgin material.

17



Governing equations for ablation
▪ Conservation of mass

▪ Equation for decomposition
▪ Conservation of energy

▪ PD form of nonlinear heat equation with surface 
recession 

▪ Conservation of linear momentum
▪ Peridynamic equilibrium equation with shrinkage 

and expansion

18



Decomposition of material
▪ Virgin material decomposes to char and releases pyrolysis gas upon combustion 

due to heating

Virgin material                           Char + pyrolysis gas

▪ Density of decomposed components governed through Arrhenius law

A: pre- exponential factor
r: order of reaction
R: universal gas constant
E: activation energy

Material decomposition leads to loss of mass; thus, shrinkage and 
degradation of material properties
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PD form of nonlinear heat conduction
▪ Classical equation

▪ PD heat equation

The heat equation considers energy convection due pyrolysis gases and 
energy consumption for decomposition
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Nonlinear boundary conditions 
▪ Classical equation

▪ Rate of mass combusted at the surface comes from rate of surface recession

▪ PD form of BC through PD differential operator

Balance of energy entering and leaving on material boundary

Heat flux Ext. heat flux Heat radiation Convection
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Peridynamic equilibrium equation
▪ Material response is isotropic and elastic

▪ Deformation due to thermal expansion
▪ Deformation due to shrinkage from mass loss

▪ Shrinkage from density change  

Thermal expansion Shrinkage stretch
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▪ Material degrades due to ablation
▪ Virgin and char material properties can be measured
▪ Intermediate state is approximated through linear 

interpolation based on density change

Degraded material property
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▪ 3D discretization of the geometry
▪ Explicit update of loss of mass equation

▪ Explicit update for heat equation

▪ Adaptive dynamic relaxation for EOM

Numerical Implementation

▪ Update surface recession
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Implicit-Explicit algorithm
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Inhomogeneity through Gaussian 
distribution with mean 1 and STD 0.1 
for material properties 

Crack propagation in 3D block

Property Unit Value 

Fiber Young’s modulus, fE  GPa  72.4  

Resin Young’s modulus, rE  GPa  6.0  

Energy release rate, ICG  2J/m  400  

Thermal expansion coefficient of fiber and resin, ,f r   1K−  58.59 10−  

Char thermal expansion coefficient c  1K−  
5

07.42 10 ,     / 0.492 −−    

 

0.01mL = 0.015mW = 0.004mH =

2

2279.7kW/m ,         /2
( , )

0,                  other surfaces

x L
q tx

 =
= 


41 10 m− = 
35 10 st − = 
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Cracking due to expansion and shrinkage

At 5s, formation of surface 
crack due to expansion

At 15 s, crack branching due to 
combined expansion and 
decomposition 

26



Crack propagation due to shrinkage

In-depth propagation of 
crack at 50s and 85 s

27
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Multi-scale modeling
o Homogenization
o Micro-architected materials
o Design of cement micro-structure 



Property Matrix Short-fiber

𝐸 (𝐺𝑃𝑎) 45 450

𝜈 0.18 0.17

𝛼 (𝜇/℃) 64.8 -0.4

Short-fiber ‘‘random’’ microstructure

Sertse et al., 2018, Challenge problems for the benchmarking of micromechanics analysis: Level I initial results, Journal 
of Composite Materials,  Vol. 52, pp. 61–80

Peridynamics for homogenization
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Effective elastic properties

Approach 𝐶11 𝐶12 𝐶13 𝐶14 𝐶15 𝐶16 𝐶22 𝐶23 𝐶24 𝐶25 𝐶26

GMC 52.83 11.53 11.53 0 0 0 53.08 11.53 0 0 0

DIGIMAT-MF/MT 57.15 12.82 12.83 0 0 0 57.15 12.83 0 0 0

DIGIMAT-MF/DI 57.35 12.86 12.88 0 0 0 57.35 12.88 0 0 0

Altair MDS 59.64 13.56 13.36 0.06 -0.58 0.54 61.67 13.37 0.53 -0.27 -0.14

ESI 61.65 14.03 13.85 0.08 -0.64 0.59 63.81 13.85 0.58 -0.30 -0.23

SwiftComp/3D FEA 59.60 13.66 13.47 0.05 -0.60 0.56 61.70 13.47 0.55 -0.27 -0.12

PDUC 54.83 12.38 12.43 0.02 0 0 54.83 12.38 0.57 0.02 0

Approach 𝐶33 𝐶34 𝐶35 𝐶36 𝐶44 𝐶45 𝐶46 𝐶55 𝐶56 𝐶66

GMC 52.86 0 0 0 20.53 0 0 20.53 0 20.53

DIGIMAT-MF/MT 57.26 0 0 0 22.18 0 0 22.18 0 21.16

DIGIMAT-MF/DI 57.46 0 0 0 22.26 0 0 22.26 0 22.24

Altair MDS 58.83 0.69 -0.09 -0.44 23.32 -0.44 -0.31 23.24 0.08 23.52

ESI 60.93 0.81 -0.06 -0.48 24.06 -0.50 -0.38 23.98 0.10 24.25

SwiftComp/ 3D FEA 58.75 0.70 -0.07 -0.45 23.24 -0.45 -0.32 23.16 0.08 23.45

PDUC 55.24 0.7 0 0 21.35 0 0 22.23 0.09 22.00

30



Octet Rhoctan Rhombic

(GPa)

Octet 7.68 7.69 7.71 3.87 3.86 3.86 0.28 0.28 0.28

Rhombic 7.50 7.48 7.48 3.13 3.15 3.14 0.25 0.25 0.25

Rhoctan 8.66 8.65 8.65 2.74 2.74 2.75 0.23 0.23 0.23

Micro-architected materials

11E 22E 33E
23G 31G 23v12G

31v 12v
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Final damage

Crack surface

Random cement micro-structures

Different material phases
Dynamic loading - 0.06m/s

Li et al.,  2022, “Effect of water-cement ratio and size on tensile damage in hardened cement paste: Insight from peridynamic simulations,” 
Construction and Building Materials, Vol. 356, 129256

32



0 500 1000 1500 2000 2500

0

10

20

30

40

50

60

70

s
tr

e
s
s
 (

M
P

a
)

strain (1E-6)

 cross section of 5¦Ìm

0 500 1000 1500 2000 2500

0

10

20

30

40

50

60

s
tr

e
s
s
 (

M
P

a
)

strain (1E-6)

 cross section of 5μm

 cross section of 15μm

 cross section of 25μm

0 500 1000 1500 2000 2500

0

10

20

30

40

50

60

70

s
tr

e
s
s
 (

M
P

a
)

strain (1E-6)

 cross section of 15μm

 cross section of 35μm

Peak stress 

(MPa)

Max. 

strain

Young’s 

modulus (Gpa)

Energy release 

rate (J/m2)

No failure 65.97 2.83E-3 39.78 5.67

Failure 58.04 2.57E-3 36.68 4.21

Stress-strain response

Li et al.,  2022, “Effect of water-cement ratio and size on tensile damage in hardened cement paste: Insight from peridynamic simulations,” 
Construction and Building Materials, Vol. 356, 129256
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Material failure
o High velocity impact/penetration
o Damage due to sand impact
o Frangibility of glass
o CAI damage in composites
o Fiber steered composites
o Failure in polymers
o Fatigue life

o Composites

o Metals



Damage due to sand particle impact

➢ Impactor kinetics

➢ Contact model

➢ Multiple damage sites

➢ Material removal

35



Single particle impact

Conical crack profiles

Material removal by lateral 

cracks on the surface

Anicode et al.2020, “Peridynamic Modeling of 
Damage due to Multiple Sand Particle Impacts in the 
Presence of Contact and Friction,” 61th SciTech 
Conference, Orlando, Florida, AIAA-2020-0968 36



Multiple sand particles

Coalescence of multiple cracks

Anicode et al.2020, “Peridynamic Modeling of Damage due to Multiple Sand Particle Impacts in the 
Presence of Contact and Friction,” 61th SciTech Conference, Orlando, Florida, AIAA-2020-0968
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Frangibility in glass

Tang, et al., Appl. Phys. A, 2014. DOI 
10.1007/s00339-014-8370-y

CT=69 MPa

compression

Tension

CT=72 MPa
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Crack initiation and growth in CMC 

• As ratio of coating-matrix failure stress  decreases, a secondary crack initiates in the coating earlier
• As coating thickness increases, a secondary crack initiates when the primary crack is closer to the coating 

Mitts et al., 2020, “Axisymmetric peridynamic analysis of crack deflection in a single strand ceramic matrix composite” 
Engineering Fracture Mechanics, 107074. 39
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Hocine NA, Abdelaziz MN and Mesmacque G. Experimental and numerical investigation on single specimen methods of determination of J in rubber 
materials. Int J Fract 1998; 94: 321–338.
B Talamini, Y Mao, L Anand Progressive damage and rupture in polymers Journal of the Mechanics and Physics of Solids 2018 111, 434-457

Calibrate critical stretch from 
load-displacement curve

Rubber sheet with double edge cracks 
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Damage initiation, growth and rupture

28mma =

Behera et al., 2020, “Peridynamic simulation of finite elastic deformation and rupture in polymers” Engineering Fracture Mechanics, 
236, 107226 41
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Zhang et al. 2017, Numerical Simulation and Experimental Study of Crack Propagation of Polydimethylsiloxane. Procedia engineering, 214, 59-68.
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Experimental observation

Zhang et al. 2017, Numerical Simulation and Experimental Study of Crack Propagation of Polydimethylsiloxane. Procedia engineering, 214, 59-68.

Damage prediction

Polymer sheet with an edge crack 

Behera et al., 2020, “Peridynamic simulation of finite elastic deformation and rupture in polymers” Engineering Fracture Mechanics, 236, 107226 43



Experimental observation

Polymer sheet with an internal crack

Damage prediction

Zhang et al. 2017, Numerical Simulation and Experimental Study of Crack Propagation of Polydimethylsiloxane. Procedia engineering, 214, 59-68.

Behera et al., 2020, “Peridynamic simulation of finite elastic deformation and rupture in polymers” Engineering Fracture Mechanics, 236, 107226 44
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Solution to hyperbolic PDEs
o Time dependent

o Sod’s shock tube

o Time independent
o Eikonel equation



Inherent challenges with hyperbolic equations 

Solution does not smooth out with time
Discontinuities persist and require  accurate approximation 
Knowledge of characteristic directions are essential 

Information travels along characteristics 
Solution should ideally preserve conservation of energy

Presence of numerical diffusion (or numerical viscosity) is unavoidable
Central difference schemes usually break down near discontinuities
Smooth initial conditions do not guarantee smooth solution of NL equations – shock

Determination of single valued solution requires numerical dissipation
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t x
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Many systems appear as conservation law
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1
( , ) with  , 0

( , )
s sT x y T x y

x y
 = = Steady-state high-frequency wave equation 
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Directional nonlocality
Modification of weight function 

o Upwinding direction

o Positive and negative advancing fluxes

o Gradient of traveltime
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Isotropic Eikonal equation – P waves
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Velocity field  - Marmousi

Bekar et al. ,2022, “Solving the Eikonal equation for compressional and shear waves in anisotropic media using peridynamic differential operator,” 
Geophysical Journal International, Vol. 229, pp. 1942–1963, 48



PD captures the sharp change in traveltimes around the region with the highest velocity gradient

Sethian, J. A. (1996). A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Sciences of the USA, 93(4), 1591–1595.

Reference: Fast Marching with fine mesh

Comparison of solutions

Bekar et al. ,2022, “Solving the Eikonal equation for compressional and shear waves in anisotropic media using peridynamic differential operator,” 
Geophysical Journal International, Vol. 229, pp. 1942–1963,

49



50

Fast marching method

Error measure against reference solution

Peridynamics

Bekar et al. ,2022, “Solving the Eikonal equation for compressional and shear waves in anisotropic media using peridynamic differential operator,” 
Geophysical Journal International, Vol. 229, pp. 1942–1963,
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PDDO for Euler equations 
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t=1.2s

PD solution of Euler equations

Density Pressure Velocity

Bekar et al., 2022, “On the solution of hyperbolic equations using the peridynamic differential operator,” Computer Methods in Applied Mechanics 
and Engineering, Vol. 391, 114574

53

Close agreement with analytical solution 
Captures the shock and rarefaction w/o special treatment 
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Remarks

o PDDO enables the solution of different types of Hyperbolic PDEs.
o Weight function enables upwinding in a natural way
o No special treatment is necessary in the solution process
o Same discretization applies regardless of the domain irregularity
o It captures the shocks

o Numerical stability is always ensured
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Discovery
o Learning PDEs
o Nonlocal PINN
o Unsupervised learning
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Learning partial differential equations 

H. Schaeffer, Learning partial differential equations via data discovery and sparse optimization, Proc. R. Soc. A. 473 (2017) 20160446

Discover the significant terms in PDEs that describe a particular phenomena based 
on the measured data 

➢ Determination of ( )u

Bekar, A.C. and Madenci, E., 2021, “Peridynamics enabled learning partial differential equations,” Journal of 
Computational Physics, Vol. 434, 110193
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Approach 

Construct a candidate space
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H. Schaeffer, Learning partial differential equations via data discovery and sparse optimization, Proc. R. Soc. A. 473 (2017) 20160446

Regression problem with over-fitting

Optimization with a sparse solution

Coefficient vector
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Training data set
Candidate space construction Testing data set

Learning algorithm

Determine 𝜶 for different regularization parameter 𝜆

Douglas–Rachford
optimization
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Coefficient  𝜶 corresponding to smallest acceptable 𝜆 identifies the PDE

Jump indicates a change 
from the correct form of 
PDEs to its reduced form 

H. Schaeffer, Learning partial differential equations via data discovery and sparse optimization, Proc. R. Soc. A. 473 (2017) 20160446 58



Cahn-Hilliard equation
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Training data set: 200
Testing data set: 200

Recovered coefficients – C-H equation

4 2 31
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2
tu u u u= −  + −
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Relative error – C-H equation

Relative errorGround truth coefficients Recovered coefficients
- % 50 noise 
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Data manipulation
o Data reduction/compression
o Data smoothing
o Data enhancing
o Interpolation
o Regression
o Digital image correlation

Madenci et al. , 2022, “Peridynamics for data estimation, image compression/recovery and model reduction,” 
Journal of Peridynamics and Nonlocal Modeling, Vol. 4, pp. 159-200
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572 pixels Recovered pixels

(error of 9.07%) 

262,144 pixels

118,518 pixels Recovered pixels

(error of 0.88%) 

Data reduction/compression
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Data smoothing
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Data enhancing

Original image @ t=0 Enhanced image @ 
t=100s

Enhanced image @ 
t=200s
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Image processing -DIC
• DIC Challenge – Sample 12

– Experimental Images
• Bottom constrained, top pulled.

– Contrast: Good
– Noise: Low
– Shift: N/A
– Time steps (Images): 12

• Tracked points were picked in the following 
ranges:

– X : (50, 350)
– Y : (75, 965)

• Also, a point at (190, 540) was picked to mask 
the hole.

• Total Points: 1481
• Minimum Inter-Point Spacing: 10 px
• The area outside of the tracked points was 

masked.

Original Images courtesy of The Society for Experimental Mechanics

Madenci et al., 2022, “Peridynamics Enabled Digital Image Correlation for 
Tracking Crack Paths,” Engineering with Computers, 
https://doi.org/10.1007/s00366-021-01592-4
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UyUx

(-1.38, 0.011) (0.0, 11.96)
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εyy

(-0.00763, 0.00151)
Normal strain – y-direction



Images of deforming specimen 

Track randomly picked points 

PDDO for displacement and strain fields

PDDO for strain compatibility parameter 

Calculate damage certainty using 
probability density function

Apply regression model, MARS to 
damage certainty to obtain crack path

PD-DIC for tracking discontinuous paths
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PD-DIC for crack detection

Detected Crack 
using PD-DIC
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Images from Nickel-based Superalloy 718

Frame 1

Frame 2

xu

yu

PD-DIC for slip band detection
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Frame 1

Frame 2

xu

yu

PD-DIC displacement construction from images



PD-DIC strain field evaluation 
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xx
yy

xy

Frame 1

Frame 2



Frame 1

Frame 2

Heaviside DIC

PD-DIC slip band detection 

Unlike Heaviside 
DIC, it provides the 
specific location of 
each slip band with 
beginning and end 
points.
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Final remarks

o The nonlocal Peridynamic Differential Operator (PDDO):
o allows for accurate solution of field equations in the presence of 

discontinuities
o enables upwinding in a natural way through a weight function 
o handles discontinuities without any special treatments in a 

natural manner
o enables the evaluation of derivatives of any order in a multi-

dimensional space
o captures cracking as part of the solution
o size effect in multi-scale material design
o provides a unified approach to transferring information within a 

set of discrete data and among data sets. 

75


