Barenblatt profiles for a nonlocal porous medium equation

Piotr Biler
in collaboration with
Cyril Imbert (CNRS, Paris), Grzegorz Karch (Wrocław), Régis Monneau (ENPC, Paris-Est)

IPPT, Warsaw, March 13, 2023
fractal porous medium equation - fpme

$$
\partial_{t} u-\nabla \cdot\left(u \nabla^{\alpha-1}\left(|u|^{m-1}\right)\right)=0
$$

fractal porous medium equation - fpme

$$
\begin{gathered}
\partial_{t} u-\nabla \cdot\left(u \nabla^{\alpha-1}\left(|u|^{m-1}\right)\right)=0 \\
\alpha \in(0,2], \nabla^{\beta} u=\mathcal{F}^{-1}\left(i \xi|\xi|^{\beta-1} \mathcal{F} u\right), x \in \mathbb{R}^{d}, t>0, m>1
\end{gathered}
$$

fractal porous medium equation - fpme

$$
\begin{gathered}
\partial_{t} u-\nabla \cdot\left(u \nabla^{\alpha-1}\left(|u|^{m-1}\right)\right)=0 \\
\alpha \in(0,2], \nabla^{\beta} u=\mathcal{F}^{-1}\left(i \xi|\xi|^{\beta-1} \mathcal{F} u\right), x \in \mathbb{R}^{d}, t>0, m>1 \\
\nabla^{\beta} U(x)=C_{d, \beta} \int(U(x+z)-U(x)) \frac{z}{|z|^{d+\beta+1}} \mathrm{~d} z \\
C_{d, \beta}>0, U-\text { smooth }
\end{gathered}
$$

fractal porous medium equation - fpme

$$
\partial_{t} u-\nabla \cdot\left(u \nabla^{\alpha-1}\left(|u|^{m-1}\right)\right)=0
$$

$\alpha \in(0,2], \nabla^{\beta} u=\mathcal{F}^{-1}\left(i \xi|\xi|^{\beta-1} \mathcal{F} u\right), x \in \mathbb{R}^{d}, t>0, m>1$

$$
\nabla^{\beta} U(x)=C_{d, \beta} \int(U(x+z)-U(x)) \frac{z}{|z|^{d+\beta+1}} \mathrm{~d} z
$$

$C_{d, \beta}>0, U-$ smooth
general porous medium equation

$$
\partial_{t} u=\nabla \cdot(u \nabla p)
$$

$m=2, p=I_{2 s} u, I_{2 s}$ - the Riesz potential, $2 s=2-\alpha$
L. Caffarelli, J. L. Vázquez (2010)
$p=I_{2-\alpha}(f(u))$

Particular cases and related equations

the porous medium equation: $u \geq 0, \alpha=2, m>1$

$$
\partial_{t} u=\frac{1}{m-1} \nabla \cdot\left(u \nabla u^{m-1}\right)=\Delta\left(u^{m}\right), \quad t>0, x \in \mathbb{R}^{d}
$$

$m=2$ - the Boussinesq equation

Particular cases and related equations

the porous medium equation: $u \geq 0, \alpha=2, m>1$

$$
\partial_{t} u=\frac{1}{m-1} \nabla \cdot\left(u \nabla u^{m-1}\right)=\Delta\left(u^{m}\right), \quad t>0, x \in \mathbb{R}^{d}
$$

$m=2$ - the Boussinesq equation
the (inviscid) aggregation equation (or granular media equation)

$$
\partial_{t} u=\nabla \cdot(u(\nabla K * u)) .
$$

a fractal version of the classical thin film equation: $\alpha=m=3$

$$
\partial_{t} u=\nabla \cdot\left(u^{3} \nabla(-\Delta)^{1 / 2} u\right)
$$

C. Imbert, A. Mellet (2009)
a fractal version of the classical thin film equation: $\alpha=m=3$

$$
\partial_{t} u=\nabla \cdot\left(u^{3} \nabla(-\Delta)^{1 / 2} u\right)
$$

C. Imbert, A. Mellet (2009)
the evolution of the dislocation density in crystals $\left(u=w_{x}, x \in \mathbb{R}\right)$
$\alpha=1, \quad$ A. K. Head, N. Louat (1955)

$$
u_{t}=\nabla \cdot\left(|u| \nabla^{\alpha-1} u\right), \quad \alpha \in(0,2]
$$

P. Biler, G. Karch, R. Monneau (Comm. Math. Phys. 294, 145-168 (2010))

Equation for the primitive

$$
d=1, w_{x}=u, \alpha \in(0,2)
$$

$$
\begin{gathered}
w_{t}=-\left|w_{x}\right|\left(-\frac{\partial^{2}}{\partial x^{2}}\right)^{\alpha / 2} w \quad \mathbb{R} \times(0,+\infty) \\
w(x, 0)=w_{0}(x) \quad x \in \mathbb{R}
\end{gathered}
$$

Equation for the primitive

$$
\begin{aligned}
& d=1, w_{x}=u, \alpha \in(0,2) \\
& w_{t}=-\left|w_{x}\right|\left(-\frac{\partial^{2}}{\partial x^{2}}\right)^{\alpha / 2} w \quad \mathbb{R} \times(0,+\infty) \\
& w(x, 0)=w_{0}(x) \quad x \in \mathbb{R}
\end{aligned}
$$

Lévy-Khintchine formula

$$
\left(-\frac{\partial^{2}}{\partial x^{2}}\right)^{\alpha / 2} w(x)=C(\alpha) \int_{\mathbb{R}}\left(w(x+z)-w(x)-z w^{\prime}(x) \mathbf{1}_{\{|z| \leq 1\}}\right) \frac{\mathrm{d} z}{|z|^{1+\alpha}}
$$

invariant scaling

$w^{\lambda}(x, t)=w\left(\lambda x, \lambda^{\alpha+1} t\right)$
$w_{\alpha}(x, t)=\Psi_{\alpha}(y) \quad$ with $\quad y=\frac{x}{t^{1 /(\alpha+1)}}$
$-(\alpha+1)^{-1} y \Psi_{\alpha}^{\prime}(y)=-\left(\left(-\partial^{2} / \partial x^{2}\right)^{\alpha / 2} \Psi_{\alpha}(y)\right) \Psi_{\alpha}^{\prime}(y)$ for $y \in \mathbb{R}$

invariant scaling

$$
\begin{aligned}
& w^{\lambda}(x, t)=w\left(\lambda x, \lambda^{\alpha+1} t\right) \\
& w_{\alpha}(x, t)=\Psi_{\alpha}(y) \text { with } y=\frac{x}{t^{1 /(\alpha+1)}} \\
& -(\alpha+1)^{-1} y \Psi_{\alpha}^{\prime}(y)=-\left(\left(-\partial^{2} / \partial x^{2}\right)^{\alpha / 2} \Psi_{\alpha}(y)\right) \Psi_{\alpha}^{\prime}(y) \text { for } y \in \mathbb{R} \\
& \quad-(\alpha+1)^{-1} y=-\left(\left(-\partial^{2} / \partial x^{2}\right)^{\alpha / 2} \Psi_{\alpha}(y)\right) \text { for } y \in \mathbb{R}
\end{aligned}
$$

existence of self-similar solutions

For $\alpha \in(0,2)$ there exists a nondecreasing function $\Psi_{\alpha} \in C^{1+\alpha / 2}$, analytic in $\left(-y_{\alpha}, y_{\alpha}\right)$:

$$
\begin{gathered}
\Psi_{\alpha}=\left\{\begin{array}{lll}
0 & \text { on } & \left(-\infty,-y_{\alpha}\right), \\
1 & \text { on } & \left(y_{\alpha},+\infty\right),
\end{array}\right. \\
w_{0}(x)=H(x)=\left\{\begin{array}{lll}
0 & \text { if } & x<0 \\
1 & \text { if } & x>0
\end{array}\right.
\end{gathered}
$$

Stability of self-similar solutions

$\alpha \in(0,2), w_{0} \in B \cup C(\mathbb{R}):$

$$
\lim _{x \rightarrow-\infty} w_{0}(x)=0 \quad \lim _{x \rightarrow+\infty} w_{0}(x)=1
$$

viscosity solutions $w=w(x, t)$
$w^{\lambda}=w^{\lambda}(x, t) \equiv w\left(\lambda x, \lambda^{\alpha+1} t\right)$
$K \subset(\mathbb{R} \times[0,+\infty)) \backslash\{(0,0)\}$ - compact

$$
w^{\lambda}(x, t) \rightarrow \Psi_{\alpha}\left(\frac{x}{t^{1 /(\alpha+1)}}\right) \quad \text { in } \quad L^{\infty}(K) \quad \text { for } \quad \lambda \rightarrow+\infty
$$

March 2023, F. del Teso, E. Jakobsen: Finite differences approximations

An existence result for the Cauchy problem - fpme

$$
\partial_{t} u-\nabla \cdot\left(u \nabla^{\alpha-1}\left(|u|^{m-1}\right)\right)=0 .
$$

L. Caffarelli, J. L. Vázquez (2010)

$$
m=2, u_{0} \in L^{1}\left(\mathbb{R}^{d}\right) \cap L^{\infty}\left(\mathbb{R}^{d}\right):
$$

$$
0 \leq u_{0}(x) \leq A \mathrm{e}^{-a|x|} \quad \text { for some } A, a>0
$$

Then there exists a weak solution u satisfying $\int u(t, x) \mathrm{d} x=\int u_{0}(x) \mathrm{d} x$.

An existence result for the Cauchy problem - fpme

$$
\partial_{t} u-\nabla \cdot\left(u \nabla^{\alpha-1}\left(|u|^{m-1}\right)\right)=0 .
$$

L. Caffarelli, J. L. Vázquez (2010)

$$
m=2, u_{0} \in L^{1}\left(\mathbb{R}^{d}\right) \cap L^{\infty}\left(\mathbb{R}^{d}\right)
$$

$$
0 \leq u_{0}(x) \leq A \mathrm{e}^{-a|x|} \quad \text { for some } A, a>0
$$

Then there exists a weak solution u satisfying $\int u(t, x) \mathrm{d} x=\int u_{0}(x) \mathrm{d} x$.
$u:(0, T) \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a weak solution in $Q_{T}=(0, T) \times \mathbb{R}^{d}$, $u(0, x)=u_{0}(x)$ if $u \in L^{1}\left(Q_{T}\right), I_{2 s}(u) \in L^{1}\left(0, T ; W_{\text {loc }}^{1,1}\left(\mathbb{R}^{d}\right)\right)$, $u \nabla I_{2 s}(u) \in L^{1}\left(Q_{T}\right)$

$$
\iint u\left(\varphi_{t}-\nabla l_{2 s}(u) \cdot \nabla \varphi\right) d x d t+\int u_{0}(x) \varphi(x) d x=0
$$

for all continuous functions $\varphi: Q_{T} \rightarrow \mathbb{R}, \nabla_{x} \varphi$ continuous, φ has compact support in the space variable x, and vanishes near $t=T_{\overline{\underline{\beta}}}$.
approximations:
bounded domain, nondegenerate equation, regularized kernel
approximations:
bounded domain, nondegenerate equation, regularized kernel
Alternative approach: Construction of weak solutions approximations via parabolic regularization

$$
\partial_{t} u-\nabla \cdot\left(u \nabla^{\alpha-1}\left(|u|^{m-1}\right)\right)=\varepsilon \Delta u
$$

approximations:
bounded domain, nondegenerate equation, regularized kernel
Alternative approach: Construction of weak solutions approximations via parabolic regularization

$$
\partial_{t} u-\nabla \cdot\left(u \nabla^{\alpha-1}\left(|u|^{m-1}\right)\right)=\varepsilon \Delta u
$$

Duhamel formula in $W_{p}^{\min \{\alpha-1,0\}}, p \gg 1$, $u(t)=\mathrm{e}^{\delta t \Delta} u_{0}+\int_{0}^{t} \nabla \mathrm{e}^{\delta(t-s) \Delta} \cdot|u| \nabla^{\alpha-1} G(u) \mathrm{d} s$ in $\mathcal{C}\left([0, T], L^{1}\left(\mathbb{R}^{d}\right) \cap L^{\infty}\left(\mathbb{R}^{d}\right)\right)$
approximations:
bounded domain, nondegenerate equation, regularized kernel
Alternative approach: Construction of weak solutions approximations via parabolic regularization

$$
\partial_{t} u-\nabla \cdot\left(u \nabla^{\alpha-1}\left(|u|^{m-1}\right)\right)=\varepsilon \Delta u
$$

Duhamel formula in $W_{p}^{\min \{\alpha-1,0\}}, p \gg 1$, $u(t)=\mathrm{e}^{\delta t \Delta} u_{0}+\int_{0}^{t} \nabla \mathrm{e}^{\delta(t-s) \Delta} \cdot|u| \nabla^{\alpha-1} G(u) \mathrm{d} s$ in $\mathcal{C}\left([0, T], L^{1}\left(\mathbb{R}^{d}\right) \cap L^{\infty}\left(\mathbb{R}^{d}\right)\right)$

Intermediate asymptotics, entropy estimates mass conservation
approximations:
bounded domain, nondegenerate equation, regularized kernel
Alternative approach: Construction of weak solutions approximations via parabolic regularization

$$
\partial_{t} u-\nabla \cdot\left(u \nabla^{\alpha-1}\left(|u|^{m-1}\right)\right)=\varepsilon \Delta u
$$

Duhamel formula in $W_{p}^{\min \{\alpha-1,0\}}, p \gg 1$, $u(t)=\mathrm{e}^{\delta t \Delta} u_{0}+\int_{0}^{t} \nabla \mathrm{e}^{\delta(t-s) \Delta} \cdot|u| \nabla^{\alpha-1} G(u) \mathrm{d} s$ in $\mathcal{C}\left([0, T], L^{1}\left(\mathbb{R}^{d}\right) \cap L^{\infty}\left(\mathbb{R}^{d}\right)\right)$

Intermediate asymptotics, entropy estimates mass conservation positivity preserving property
the speed of propagation of solutions is proved to be finite using comparison with suitable supersolutions (C. Imbert)
approximations:
bounded domain, nondegenerate equation, regularized kernel
Alternative approach: Construction of weak solutions approximations via parabolic regularization

$$
\partial_{t} u-\nabla \cdot\left(u \nabla^{\alpha-1}\left(|u|^{m-1}\right)\right)=\varepsilon \Delta u
$$

Duhamel formula in $W_{p}^{\min \{\alpha-1,0\}}, p \gg 1$, $u(t)=\mathrm{e}^{\delta t \Delta} u_{0}+\int_{0}^{t} \nabla \mathrm{e}^{\delta(t-s) \Delta} \cdot|u| \nabla^{\alpha-1} G(u) \mathrm{d} s$ in $\mathcal{C}\left([0, T], L^{1}\left(\mathbb{R}^{d}\right) \cap L^{\infty}\left(\mathbb{R}^{d}\right)\right)$

Intermediate asymptotics, entropy estimates
mass conservation
positivity preserving property
the speed of propagation of solutions is proved to be finite using comparison with suitable supersolutions (C. Imbert)
comparison principle ? regularity of solutions (C. Imbert, R. Tarhini, F. Vigneron)

Decay of the L^{p} norms - hypercontractivity

$$
m>1,1 \leq p<\infty, \quad\|u(t)\|_{p} \leq C t^{-\beta}
$$

Decay of the L^{p} norms - hypercontractivity

$$
\begin{aligned}
& m>1,1 \leq p<\infty, \quad\|u(t)\|_{p} \leq C t^{-\beta} \\
& C=C(d, \alpha, m, p)\left\|u_{0}\right\|_{1}^{\frac{m-1}{m-1+\frac{\alpha}{d}}}, \beta=\frac{p-1}{p\left(m-1+\frac{\alpha}{d}\right)}
\end{aligned}
$$

Decay of the L^{p} norms - hypercontractivity

$$
\begin{aligned}
& m>1,1 \leq p<\infty, \quad\|u(t)\|_{p} \leq C t^{-\beta} \\
& C=C(d, \alpha, m, p)\left\|u_{0}\right\|_{1}^{\frac{m-1}{m-1+\frac{\alpha}{d}}}, \beta=\frac{p-1}{p\left(m-1+\frac{\alpha}{d}\right)}
\end{aligned}
$$

These estimates are sharp.

Kato and Stroock-Varopoulos inequalities

$$
\begin{gathered}
\int(-\Delta)^{\frac{\alpha}{2}} w \operatorname{sgn} w \mathrm{~d} x \geq 0, \\
\int(-\Delta)^{\frac{\alpha}{2}} w w^{+} \mathrm{d} x \geq 0, \quad \int(-\Delta)^{\frac{\alpha}{2}} w w^{-} \mathrm{d} x \leq 0 \\
w^{+}=\max \{0, w\}, w^{-}=\max \{0,-w\}
\end{gathered}
$$

Kato and Stroock-Varopoulos inequalities

$$
\begin{gathered}
\int(-\Delta)^{\frac{\alpha}{2}} w \operatorname{sgn} w \mathrm{~d} x \geq 0, \\
\int(-\Delta)^{\frac{\alpha}{2}} w w^{+} \mathrm{d} x \geq 0, \quad \int(-\Delta)^{\frac{\alpha}{2}} w w^{-} \mathrm{d} x \leq 0 \\
w^{+}=\max \{0, w\}, w^{-}=\max \{0,-w\} \\
\int(-\Delta)^{\frac{\alpha}{2}} w|w|^{p-2} w \mathrm{~d} x \geq\left.\left.\frac{4(p-1)}{p^{2}} \int\left|\nabla^{\frac{\alpha}{2}}\right| w\right|^{\frac{p}{2}}\right|^{2} \mathrm{~d} x \\
w \in L^{p}\left(\mathbb{R}^{d}\right):(-\Delta)^{\frac{\alpha}{2}} w \in L^{p}\left(\mathbb{R}^{d}\right)
\end{gathered}
$$

Proof of hypercontractivity estimates

u^{p-1}, integrate by parts

$$
\begin{aligned}
\frac{1}{p} \frac{\mathrm{~d}}{\mathrm{~d} t} \int|u|^{p} \mathrm{~d} x & =-(p-1) \int u u^{p-2} \nabla^{\alpha-1}\left(u^{m-1}\right) \cdot \nabla u \mathrm{~d} x \\
& =-\frac{p-1}{p} \int u^{p}(-\Delta)^{\frac{\alpha}{2}}\left(u^{m-1}\right) \mathrm{d} x \\
& \leq-\frac{4(p-1)(m-1)}{(p+m-1)^{2}}\left\|\nabla^{\frac{\alpha}{2}}\left(u^{\frac{p+m-1}{2}}\right)\right\|_{2}^{2}
\end{aligned}
$$

Proof of hypercontractivity estimates

u^{p-1}, integrate by parts

$$
\begin{aligned}
\frac{1}{p} \frac{\mathrm{~d}}{\mathrm{~d} t} \int|u|^{p} \mathrm{~d} x & =-(p-1) \int u u^{p-2} \nabla^{\alpha-1}\left(u^{m-1}\right) \cdot \nabla u \mathrm{~d} x \\
& =-\frac{p-1}{p} \int u^{p}(-\Delta)^{\frac{\alpha}{2}}\left(u^{m-1}\right) \mathrm{d} x \\
& \leq-\frac{4(p-1)(m-1)}{(p+m-1)^{2}}\left\|\nabla^{\frac{\alpha}{2}}\left(u^{\frac{p+m-1}{2}}\right)\right\|_{2}^{2}
\end{aligned}
$$

Nash inequality

$$
\|v\|_{2}^{2\left(1+\frac{\alpha}{d}\right)} \leq C_{N}\left\|\nabla^{\frac{\alpha}{2}} v\right\|_{2}^{2}\|v\|_{1}^{\frac{2 \alpha}{d}}
$$

v with $v \in L^{1}\left(\mathbb{R}^{d}\right), \nabla^{\frac{\alpha}{2}} v \in L^{2}\left(\mathbb{R}^{d}\right)$ with a constant $C_{N}=C(d, \alpha)$

Proof of hypercontractivity estimates

u^{p-1}, integrate by parts

$$
\begin{aligned}
\frac{1}{p} \frac{\mathrm{~d}}{\mathrm{~d} t} \int|u|^{p} \mathrm{~d} x & =-(p-1) \int u u^{p-2} \nabla^{\alpha-1}\left(u^{m-1}\right) \cdot \nabla u \mathrm{~d} x \\
& =-\frac{p-1}{p} \int u^{p}(-\Delta)^{\frac{\alpha}{2}}\left(u^{m-1}\right) \mathrm{d} x \\
& \leq-\frac{4(p-1)(m-1)}{(p+m-1)^{2}}\left\|\nabla^{\frac{\alpha}{2}}\left(u^{\frac{p+m-1}{2}}\right)\right\|_{2}^{2}
\end{aligned}
$$

Nash inequality

$$
\|v\|_{2}^{2\left(1+\frac{\alpha}{d}\right)} \leq C_{N}\left\|\nabla^{\frac{\alpha}{2}} v\right\|_{2}^{2}\|v\|_{1}^{\frac{2 \alpha}{d}}
$$

v with $v \in L^{1}\left(\mathbb{R}^{d}\right), \nabla^{\frac{\alpha}{2}} v \in L^{2}\left(\mathbb{R}^{d}\right)$ with a constant $C_{N}=C(d, \alpha)$ the Gagliardo-Nirenberg type inequality

$$
\begin{gathered}
\|u\|_{p}^{a} \leq C_{N}\left\|\nabla^{\frac{\alpha}{2}}|u|^{\frac{r}{2}}\right\|_{2}^{2}\|u\|_{1}^{b} \\
a=\frac{p}{p-1} \frac{d(r-1)+\alpha}{d}, b=\frac{p \alpha+d(r-p)}{d(p-1)}
\end{gathered}
$$

Interpolating

$$
\begin{aligned}
&\|u\|_{p} \leq\|u\|_{r}^{\gamma}\|u\|_{1}^{1-\gamma}, \quad\|u\|_{\frac{r}{2}} \leq\|u\|_{p}^{\delta}\|u\|_{1}^{1-\delta}, \\
& \gamma=\frac{p-1}{r-1} \frac{r}{p}, \delta=\frac{r-2}{p-1} \frac{p}{r}
\end{aligned}
$$

Interpolating

$$
\begin{gathered}
\|u\|_{p} \leq\|u\|_{r}^{\gamma}\|u\|_{1}^{1-\gamma}, \quad\|u\|_{\frac{r}{2}} \leq\|u\|_{p}^{\delta}\|u\|_{1}^{1-\delta}, \\
\gamma=\frac{p-1}{r-1} \frac{r}{p}, \delta=\frac{r-2}{p-1} \frac{p}{r} \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \int|u|^{p} \mathrm{~d} x \leq-K\|u\|_{p}^{a}\|u\|_{1}^{-b}
\end{gathered}
$$

some $K>0$

Interpolating

$$
\begin{gathered}
\|u\|_{p} \leq\|u\|_{r}^{\gamma}\|u\|_{1}^{1-\gamma}, \quad\|u\|_{\frac{r}{2}} \leq\|u\|_{p}^{\delta}\|u\|_{1}^{1-\delta}, \\
\gamma=\frac{p-1}{r-1} \frac{r}{p}, \delta=\frac{r-2}{p-1} \frac{p}{r} \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \int|u|^{p} \mathrm{~d} x \leq-K\|u\|_{p}^{a}\|u\|_{1}^{-b}
\end{gathered}
$$

some $K>0$

$$
\frac{\mathrm{d}}{\mathrm{~d} t} f(t) \leq-K M^{-b} f(t)^{\frac{a}{p}}
$$

$$
f(t)=\|u(t)\|_{p}^{p}, M=\left\|u_{0}\right\|_{1}, a / p>1
$$

$$
K=\frac{1}{C_{N}} \frac{4 p(p-1)(m-1)}{(p+m-1)^{2}}
$$

Interpolating

$$
\begin{gathered}
\|u\|_{p} \leq\|u\|_{r}^{\gamma}\|u\|_{1}^{1-\gamma}, \quad\|u\|_{\frac{r}{2}} \leq\|u\|_{p}^{\delta}\|u\|_{1}^{1-\delta}, \\
\gamma=\frac{p-1}{r-1} \frac{r}{p}, \delta=\frac{r-2}{p-1} \frac{p}{r} \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \int|u|^{p} \mathrm{~d} x \leq-K\|u\|_{p}^{a}\|u\|_{1}^{-b}
\end{gathered}
$$

some $K>0$

$$
\frac{\mathrm{d}}{\mathrm{~d} t} f(t) \leq-K M^{-b} f(t)^{\frac{a}{p}}
$$

$$
f(t)=\|u(t)\|_{p}^{p}, M=\left\|u_{0}\right\|_{1}, a / p>1
$$

$$
K=\frac{1}{C_{N}} \frac{4 p(p-1)(m-1)}{(p+m-1)^{2}}
$$

$f(t) \leq\left(K\left(\frac{a}{p}-1\right) M^{-b} t\right)^{-\frac{1}{p-1}}$
and one more iteration scheme

Self-similar solutions

$$
\begin{gathered}
u(t, x)=\frac{1}{(1+t)^{d \lambda}} U\left(\frac{x}{(1+t)^{\lambda}}\right) \\
\lambda=\frac{1}{(m-1) d+\alpha}, \quad y=\frac{x}{(1+t)^{\lambda}}
\end{gathered}
$$

Self-similar solutions

$$
\begin{aligned}
& \quad u(t, x)=\frac{1}{(1+t)^{d \lambda}} U\left(\frac{x}{(1+t)^{\lambda}}\right) \\
& \lambda=\frac{1}{(m-1) d+\alpha}, \quad y=\frac{x}{(1+t)^{\lambda}} \\
& -\lambda \nabla \cdot(y U)=\nabla \cdot\left(U \nabla^{\alpha-1}\left(U^{m-1}\right)\right) \\
& U: \mathbb{R}^{d} \rightarrow \mathbb{R}, m>1
\end{aligned}
$$

Self-similar solutions

$$
\begin{gathered}
u(t, x)=\frac{1}{(1+t)^{d \lambda}} U\left(\frac{x}{(1+t)^{\lambda}}\right) \\
\lambda=\frac{1}{(m-1) d+\alpha}, \quad y=\frac{x}{(1+t)^{\lambda}} \\
-\lambda \nabla \cdot(y U)=\nabla \cdot\left(U \nabla^{\alpha-1}\left(U^{m-1}\right)\right) \\
U: \mathbb{R}^{d} \rightarrow \mathbb{R}, m>1 \\
\Phi_{m, \alpha}(y)=k\left(1-|y|^{2}\right)_{+}^{\frac{\alpha}{2(m-1)}}
\end{gathered}
$$

then u defined with $U=\Phi_{m, \alpha}$ is a weak solution in $(a, T) \times \mathbb{R}^{d}$, $0<a<T, \quad \frac{\alpha}{2(m-1)}$-Hölder at the interface.

Self-similar solutions

$$
\begin{gathered}
u(t, x)=\frac{1}{(1+t)^{d \lambda}} U\left(\frac{x}{(1+t)^{\lambda}}\right) \\
\lambda=\frac{1}{(m-1) d+\alpha}, \quad y=\frac{x}{(1+t)^{\lambda}} \\
-\lambda \nabla \cdot(y U)=\nabla \cdot\left(U \nabla^{\alpha-1}\left(U^{m-1}\right)\right) \\
U: \mathbb{R}^{d} \rightarrow \mathbb{R}, m>1 \\
\Phi_{m, \alpha}(y)=k\left(1-|y|^{2}\right)_{+}^{\frac{\alpha}{2(m-1)}}
\end{gathered}
$$

then u defined with $U=\Phi_{m, \alpha}$ is a weak solution in $(a, T) \times \mathbb{R}^{d}$, $0<a<T, \frac{\alpha}{2(m-1)}$-Hölder at the interface.
Mass of $u(t,$.$) is conserved, and by suitable scaling of \Phi_{m, \alpha}, u$ its mass can be prescribed as any $M \in[0, \infty)$.

$$
\begin{aligned}
& \quad \Phi_{m, \alpha}(y)=\left(k_{\alpha, d}\left(1-|y|^{2}\right)^{\frac{\alpha}{2}}\right)^{\frac{1}{m-1}} \\
& k_{\alpha, d}=\frac{d \Gamma\left(\frac{d}{2}\right)}{(d+\alpha) 2^{\alpha} \Gamma\left(1+\frac{\alpha}{2}\right) \Gamma\left(\frac{d+\alpha}{2}\right)}
\end{aligned}
$$

$\alpha=2$: classical Kompaneets-Zeldovich-Barenblatt-Pattle solutions

$$
\begin{aligned}
& \quad \Phi_{m, \alpha}(y)=\left(k_{\alpha, d}\left(1-|y|^{2}\right)^{\frac{\alpha}{2}}\right)^{\frac{1}{m-1}} \\
& k_{\alpha, d}=\frac{d \Gamma\left(\frac{d}{2}\right)}{(d+\alpha) 2^{\alpha} \Gamma\left(1+\frac{\alpha}{2}\right) \Gamma\left(\frac{d+\alpha}{2}\right)}
\end{aligned}
$$

$\alpha=2$: classical Kompaneets-Zeldovich-Barenblatt-Pattle solutions

Self-similar solutions enjoy the optimal decay rates.

$$
-\lambda y \Phi=\Phi \nabla^{\alpha-1} \Phi^{m-1}
$$

Φ vanishing outside $B_{1}: \Phi \sim\left(1-|y|^{2}\right)^{\frac{\alpha}{2(m-1)}}$

$$
-\lambda y=\nabla^{\alpha-1} \Phi^{m-1} \quad \text { in } B_{1}
$$

the homogeneous Dirichlet condition should be understood under the form $\Phi \equiv 0$ outside B_{1}, and not only $\Phi=0$ on ∂B_{1}.

$$
-\lambda y \Phi=\Phi \nabla^{\alpha-1} \Phi^{m-1}
$$

Φ vanishing outside $B_{1}: \Phi \sim\left(1-|y|^{2}\right)^{\frac{\alpha}{2(m-1)}}$

$$
-\lambda y=\nabla^{\alpha-1} \Phi^{m-1} \quad \text { in } B_{1}
$$

the homogeneous Dirichlet condition should be understood under the form $\Phi \equiv 0$ outside B_{1}, and not only $\Phi=0$ on ∂B_{1}.

Getoor

$\alpha \in(0,2]$,

$$
K_{\alpha, d}(-\Delta)^{\frac{\alpha}{2}}\left(1-|y|^{2}\right)_{+}^{\frac{\alpha}{2}}=-1 \text { in } B_{1}
$$

$K_{\alpha, d}=\frac{\Gamma\left(\frac{d}{2}\right)}{2^{\alpha} \Gamma\left(1+\frac{\alpha}{2}\right) \Gamma\left(\frac{d+\alpha}{2}\right)}$
more generally:
the Weber-Schafheitlin integrals for $0<b \leq a$

$$
\begin{aligned}
\int_{0}^{+\infty} t^{-\lambda} & J_{\mu}(a t) J_{\nu}(b t) \mathrm{d} t=\frac{b^{\nu} 2^{-\lambda} a^{\lambda-\nu-1} \Gamma\left(\frac{\nu+\mu-\lambda+1}{2}\right)}{\Gamma\left(\frac{-\nu+\mu+\lambda+1}{2}\right) \Gamma(1+\nu)} \\
& \times{ }_{2} F_{1}\left(\frac{\nu+\mu-\lambda+1}{2}, \frac{\nu-\mu-\lambda+1}{2} ; \nu+1 ; \frac{b^{2}}{a^{2}}\right)
\end{aligned}
$$

for the hypergeometric function ${ }_{2} F_{1}(a, b ; c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n} n!} z^{n}$ complex numbers a, b, c and $|z|<1$, where
$(a)_{n} \equiv \frac{\Gamma(a+n)}{\Gamma(a)}=a(a+1) \ldots(a+n-1)\left(\right.$ and $\left.(a)_{0}=1\right)$

Boundary obstacle problem for the fractional Laplacian

$$
\begin{aligned}
P \geq \Phi, \quad V & =(-\Delta)^{\frac{\alpha}{2}} P \geq 0, \\
\text { either } P & =\Phi \text { or } V=0,
\end{aligned}
$$

with $\alpha \in(0,2)$ and $\Phi(y)=C-a|y|^{2}$

Boundary obstacle problem for the fractional Laplacian

$$
\begin{array}{r}
P \geq \Phi, \quad V=(-\Delta)^{\frac{\alpha}{2}} P \geq 0 \\
\text { either } P=\Phi \text { or } V=0
\end{array}
$$

with $\alpha \in(0,2)$ and $\Phi(y)=C-a|y|^{2}$
$P(y)=I_{\alpha}\left(\Phi_{\alpha, 2, R}\right)(y)$,
I_{α} is the Riesz potential,

Boundary obstacle problem for the fractional Laplacian

$$
\begin{array}{r}
P \geq \Phi, \quad V=(-\Delta)^{\frac{\alpha}{2}} P \geq 0 \\
\text { either } P=\Phi \quad \text { or } \quad V=0
\end{array}
$$

with $\alpha \in(0,2)$ and $\Phi(y)=C-a|y|^{2}$
$P(y)=I_{\alpha}\left(\Phi_{\alpha, 2, R}\right)(y)$,
I_{α} is the Riesz potential,
$\Phi_{\alpha, 2}(y)=k_{\alpha, d}\left(R^{2}-|y|^{2}\right)_{+}^{\frac{\alpha}{2}}$

Classical boundary obstacle problems:

given a smooth $\Omega \subset \mathbb{R}^{d}, d \geq 3$, seek a function u that:

- in the interior of Ω, u satisfies a nice, elliptic equation, say
$\Delta u=f$,
- along the boundary of Ω, instead of giving Dirichlet or Neumann conditions we prescribe "complementary conditions":
as long as u is bigger than some prescribed function ϕ, there is no flux across $\partial \Omega: \partial u / \partial \nu=0$. But as soon as u becomes equal to ϕ, boundary flux, $\partial u / \partial \nu$, is turned on $(\partial u / \partial \nu>0)$ to keep u above ϕ.

Classical boundary obstacle problems:

given a smooth $\Omega \subset \mathbb{R}^{d}, d \geq 3$, seek a function u that:

- in the interior of Ω, u satisfies a nice, elliptic equation, say
$\Delta u=f$,
- along the boundary of Ω, instead of giving Dirichlet or Neumann conditions we prescribe "complementary conditions": as long as u is bigger than some prescribed function ϕ, there is no flux across $\partial \Omega$: $\partial u / \partial \nu=0$. But as soon as u becomes equal to ϕ, boundary flux, $\partial u / \partial \nu$, is turned on $(\partial u / \partial \nu>0)$ to keep u above ϕ.
This type of problem arises in elasticity (the Signorini problem) when an elastic body is at rest, partially lying on a surface, - in optimal control of temperature across a surface, - in the modelling of semipermeable membranes where some saline concentration can flow through the membrane only in one direction,
- and in financial math when the random variation of underlying asset changes in a discontinuous fashion (a Lévy process).

Another point of view:

$u \geq \phi,(-\Delta)^{\alpha / 2} u=0$ for $u>\phi,(-\Delta)^{\alpha / 2} u \geq 0$ for $x \in \mathbb{R}^{d}$

- a variational problem in $\dot{H}^{\alpha / 2}\left(\mathbb{R}^{d}\right)$,
- the least supersolution of $(-\Delta)^{\alpha / 2} v \geq 0$ among $v \geq \phi$,
- a Hamilton-Jacobi equation $\min \left\{(-\Delta)^{\alpha / 2} u, u-\phi\right\}=0$.

Another point of view:

$u \geq \phi,(-\Delta)^{\alpha / 2} u=0$ for $u>\phi,(-\Delta)^{\alpha / 2} u \geq 0$ for $x \in \mathbb{R}^{d}$

- a variational problem in $\dot{H}^{\alpha / 2}\left(\mathbb{R}^{d}\right)$,
- the least supersolution of $(-\Delta)^{\alpha / 2} v \geq 0$ among $v \geq \phi$,
- a Hamilton-Jacobi equation $\min \left\{(-\Delta)^{\alpha / 2} u, u-\phi\right\}=0$.
optimal regularity of the solution
and
regularity of the free boundary

Another point of view:

$u \geq \phi,(-\Delta)^{\alpha / 2} u=0$ for $u>\phi,(-\Delta)^{\alpha / 2} u \geq 0$ for $x \in \mathbb{R}^{d}$

- a variational problem in $\dot{H}^{\alpha / 2}\left(\mathbb{R}^{d}\right)$,
- the least supersolution of $(-\Delta)^{\alpha / 2} v \geq 0$ among $v \geq \phi$,
- a Hamilton-Jacobi equation $\min \left\{(-\Delta)^{\alpha / 2} u, u-\phi\right\}=0$.
optimal regularity of the solution
and
regularity of the free boundary
Fractional Laplacian as "Dirichlet to Neumann" operator (as for $\alpha=1$):
$u(x, 0) \geq \phi(x)$ for $x \in \mathbb{R}^{d}$,
$\nabla \cdot\left(y^{1-\alpha} \nabla u(x, y)\right)=0$ for $y>0$
$\lim _{y \searrow 0} y^{1-\alpha} \partial_{y} u(x, y)=0$ for $u(x, 0)>\phi(x)$,
$\lim _{y \searrow 0} y^{1-\alpha} \partial_{y} u(x, y) \leq 0$ for $x \in \mathbb{R}^{d}$.

References

P. Biler, G. Karch, and R. Monneau, Nonlinear diffusion of dislocation density and self-similar solutions, Communications in Mathematical Physics 294 (2010), 145-168.
P. Biler, C. Imbert and Grzegorz Karch, Barenblatt profiles for a nonlocal porous medium equation, (Solutions auto-similaires pour une équation des milieux poreux non locale), C. R. Acad. Sci. Paris, Mathématique 349 (2011), 641-645.
P. Biler, C. Imbert and Grzegorz Karch, The nonlocal porous medium equation: Barenblatt profiles and other weak solutions, Arch. Ration. Mech. Anal. 215 (2015), 497-529.
L. Caffarelli and J. L. Vázquez, Asymptotic behaviour of a porous medium equation with fractional diffusion, Discrete and Continuous Dynamical Systems 29 (2011), 1394-1404.
L. Caffarelli and J. L. Vázquez, Nonlinear porous medium flow with fractional potential pressure, Arch. Ration. Mech. Anal. 202 (2011), 537-565.
R. K. Getoor, First passage times for symmetric stable processes in space, Trans. Amer. Math. Soc. 101 (1961), 75-90.
C. Imbert and A. Mellet, Existence of solutions for a higher order non-local equation appearing in crack dynamics, Nonlinearity 24 (2011), 3487-3514.
C. Imbert, R. Tarhini, F. Vigneron, Regularity of solutions of a fractional porous medium equation, Interfaces Free Bound. 22 (2020), 401-442. arXiv:1910.00328
V. A. Liskevich and Y. A. Semenov, Some problems on Markov semigroups, in Schrödinger operators, wavelet analysis, operator algebras, Akademie Verlag, Berlin, 1996, 163-217.
W. Magnus, F. Oberhettinger, R. P. Soni, Formulas and theorems for the special functions of mathematical physics. 3rd enlarged ed. Berlin-Heidelberg-New York: Springer-Verlag. VII, 508 p. (1966).
D. Stan, F. del Teso, J. L. Vázquez, Existence of weak solutions for a general porous medium equation with nonlocal pressure. Arch. Ration. Mech. Anal. 233 (2019), 451-496.

Supplementary references on obstacle problems:

I. Athanasopoulos, L. A. Caffarelli, S. Salsa, The structure of the free boundary for lower dimensional obstacle problems, Amer. J. Math. 130 (2008), 485-498.
L. A. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equations 32 (2007), 1245-1260.
L. A. Caffarelli, S. Sandro Salsa, L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math. 171 (2008), 425-461.
L. Caffarelli, X. Ros-Oton, J. Serra, Obstacle problems for integro-differential operators: regularity of solutions and free boundaries, Invent. Math. 208 (2017), 1155-1211.
B. Barrios, A. Figalli, X. Ros-Oton, Global regularity for the free boundary in the obstacle problem for the fractional Laplacian, American Journal of Mathematics 140 (2018), 415-447.

